| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * tlist.c |
| 4 | * Target list manipulation routines |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/optimizer/util/tlist.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "nodes/makefuncs.h" |
| 18 | #include "nodes/nodeFuncs.h" |
| 19 | #include "optimizer/cost.h" |
| 20 | #include "optimizer/optimizer.h" |
| 21 | #include "optimizer/tlist.h" |
| 22 | |
| 23 | |
| 24 | /* Test if an expression node represents a SRF call. Beware multiple eval! */ |
| 25 | #define IS_SRF_CALL(node) \ |
| 26 | ((IsA(node, FuncExpr) && ((FuncExpr *) (node))->funcretset) || \ |
| 27 | (IsA(node, OpExpr) && ((OpExpr *) (node))->opretset)) |
| 28 | |
| 29 | /* |
| 30 | * Data structures for split_pathtarget_at_srfs(). To preserve the identity |
| 31 | * of sortgroupref items even if they are textually equal(), what we track is |
| 32 | * not just bare expressions but expressions plus their sortgroupref indexes. |
| 33 | */ |
| 34 | typedef struct |
| 35 | { |
| 36 | Node *expr; /* some subexpression of a PathTarget */ |
| 37 | Index sortgroupref; /* its sortgroupref, or 0 if none */ |
| 38 | } split_pathtarget_item; |
| 39 | |
| 40 | typedef struct |
| 41 | { |
| 42 | /* This is a List of bare expressions: */ |
| 43 | List *input_target_exprs; /* exprs available from input */ |
| 44 | /* These are Lists of Lists of split_pathtarget_items: */ |
| 45 | List *level_srfs; /* SRF exprs to evaluate at each level */ |
| 46 | List *level_input_vars; /* input vars needed at each level */ |
| 47 | List *level_input_srfs; /* input SRFs needed at each level */ |
| 48 | /* These are Lists of split_pathtarget_items: */ |
| 49 | List *current_input_vars; /* vars needed in current subexpr */ |
| 50 | List *current_input_srfs; /* SRFs needed in current subexpr */ |
| 51 | /* Auxiliary data for current split_pathtarget_walker traversal: */ |
| 52 | int current_depth; /* max SRF depth in current subexpr */ |
| 53 | Index current_sgref; /* current subexpr's sortgroupref, or 0 */ |
| 54 | } split_pathtarget_context; |
| 55 | |
| 56 | static bool split_pathtarget_walker(Node *node, |
| 57 | split_pathtarget_context *context); |
| 58 | static void add_sp_item_to_pathtarget(PathTarget *target, |
| 59 | split_pathtarget_item *item); |
| 60 | static void add_sp_items_to_pathtarget(PathTarget *target, List *items); |
| 61 | |
| 62 | |
| 63 | /***************************************************************************** |
| 64 | * Target list creation and searching utilities |
| 65 | *****************************************************************************/ |
| 66 | |
| 67 | /* |
| 68 | * tlist_member |
| 69 | * Finds the (first) member of the given tlist whose expression is |
| 70 | * equal() to the given expression. Result is NULL if no such member. |
| 71 | */ |
| 72 | TargetEntry * |
| 73 | tlist_member(Expr *node, List *targetlist) |
| 74 | { |
| 75 | ListCell *temp; |
| 76 | |
| 77 | foreach(temp, targetlist) |
| 78 | { |
| 79 | TargetEntry *tlentry = (TargetEntry *) lfirst(temp); |
| 80 | |
| 81 | if (equal(node, tlentry->expr)) |
| 82 | return tlentry; |
| 83 | } |
| 84 | return NULL; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * tlist_member_ignore_relabel |
| 89 | * Same as above, except that we ignore top-level RelabelType nodes |
| 90 | * while checking for a match. This is needed for some scenarios |
| 91 | * involving binary-compatible sort operations. |
| 92 | */ |
| 93 | TargetEntry * |
| 94 | tlist_member_ignore_relabel(Expr *node, List *targetlist) |
| 95 | { |
| 96 | ListCell *temp; |
| 97 | |
| 98 | while (node && IsA(node, RelabelType)) |
| 99 | node = ((RelabelType *) node)->arg; |
| 100 | |
| 101 | foreach(temp, targetlist) |
| 102 | { |
| 103 | TargetEntry *tlentry = (TargetEntry *) lfirst(temp); |
| 104 | Expr *tlexpr = tlentry->expr; |
| 105 | |
| 106 | while (tlexpr && IsA(tlexpr, RelabelType)) |
| 107 | tlexpr = ((RelabelType *) tlexpr)->arg; |
| 108 | |
| 109 | if (equal(node, tlexpr)) |
| 110 | return tlentry; |
| 111 | } |
| 112 | return NULL; |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * tlist_member_match_var |
| 117 | * Same as above, except that we match the provided Var on the basis |
| 118 | * of varno/varattno/varlevelsup/vartype only, rather than full equal(). |
| 119 | * |
| 120 | * This is needed in some cases where we can't be sure of an exact typmod |
| 121 | * match. For safety, though, we insist on vartype match. |
| 122 | */ |
| 123 | static TargetEntry * |
| 124 | tlist_member_match_var(Var *var, List *targetlist) |
| 125 | { |
| 126 | ListCell *temp; |
| 127 | |
| 128 | foreach(temp, targetlist) |
| 129 | { |
| 130 | TargetEntry *tlentry = (TargetEntry *) lfirst(temp); |
| 131 | Var *tlvar = (Var *) tlentry->expr; |
| 132 | |
| 133 | if (!tlvar || !IsA(tlvar, Var)) |
| 134 | continue; |
| 135 | if (var->varno == tlvar->varno && |
| 136 | var->varattno == tlvar->varattno && |
| 137 | var->varlevelsup == tlvar->varlevelsup && |
| 138 | var->vartype == tlvar->vartype) |
| 139 | return tlentry; |
| 140 | } |
| 141 | return NULL; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * add_to_flat_tlist |
| 146 | * Add more items to a flattened tlist (if they're not already in it) |
| 147 | * |
| 148 | * 'tlist' is the flattened tlist |
| 149 | * 'exprs' is a list of expressions (usually, but not necessarily, Vars) |
| 150 | * |
| 151 | * Returns the extended tlist. |
| 152 | */ |
| 153 | List * |
| 154 | add_to_flat_tlist(List *tlist, List *exprs) |
| 155 | { |
| 156 | int next_resno = list_length(tlist) + 1; |
| 157 | ListCell *lc; |
| 158 | |
| 159 | foreach(lc, exprs) |
| 160 | { |
| 161 | Expr *expr = (Expr *) lfirst(lc); |
| 162 | |
| 163 | if (!tlist_member(expr, tlist)) |
| 164 | { |
| 165 | TargetEntry *tle; |
| 166 | |
| 167 | tle = makeTargetEntry(copyObject(expr), /* copy needed?? */ |
| 168 | next_resno++, |
| 169 | NULL, |
| 170 | false); |
| 171 | tlist = lappend(tlist, tle); |
| 172 | } |
| 173 | } |
| 174 | return tlist; |
| 175 | } |
| 176 | |
| 177 | |
| 178 | /* |
| 179 | * get_tlist_exprs |
| 180 | * Get just the expression subtrees of a tlist |
| 181 | * |
| 182 | * Resjunk columns are ignored unless includeJunk is true |
| 183 | */ |
| 184 | List * |
| 185 | get_tlist_exprs(List *tlist, bool includeJunk) |
| 186 | { |
| 187 | List *result = NIL; |
| 188 | ListCell *l; |
| 189 | |
| 190 | foreach(l, tlist) |
| 191 | { |
| 192 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 193 | |
| 194 | if (tle->resjunk && !includeJunk) |
| 195 | continue; |
| 196 | |
| 197 | result = lappend(result, tle->expr); |
| 198 | } |
| 199 | return result; |
| 200 | } |
| 201 | |
| 202 | |
| 203 | /* |
| 204 | * count_nonjunk_tlist_entries |
| 205 | * What it says ... |
| 206 | */ |
| 207 | int |
| 208 | count_nonjunk_tlist_entries(List *tlist) |
| 209 | { |
| 210 | int len = 0; |
| 211 | ListCell *l; |
| 212 | |
| 213 | foreach(l, tlist) |
| 214 | { |
| 215 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 216 | |
| 217 | if (!tle->resjunk) |
| 218 | len++; |
| 219 | } |
| 220 | return len; |
| 221 | } |
| 222 | |
| 223 | |
| 224 | /* |
| 225 | * tlist_same_exprs |
| 226 | * Check whether two target lists contain the same expressions |
| 227 | * |
| 228 | * Note: this function is used to decide whether it's safe to jam a new tlist |
| 229 | * into a non-projection-capable plan node. Obviously we can't do that unless |
| 230 | * the node's tlist shows it already returns the column values we want. |
| 231 | * However, we can ignore the TargetEntry attributes resname, ressortgroupref, |
| 232 | * resorigtbl, resorigcol, and resjunk, because those are only labelings that |
| 233 | * don't affect the row values computed by the node. (Moreover, if we didn't |
| 234 | * ignore them, we'd frequently fail to make the desired optimization, since |
| 235 | * the planner tends to not bother to make resname etc. valid in intermediate |
| 236 | * plan nodes.) Note that on success, the caller must still jam the desired |
| 237 | * tlist into the plan node, else it won't have the desired labeling fields. |
| 238 | */ |
| 239 | bool |
| 240 | tlist_same_exprs(List *tlist1, List *tlist2) |
| 241 | { |
| 242 | ListCell *lc1, |
| 243 | *lc2; |
| 244 | |
| 245 | if (list_length(tlist1) != list_length(tlist2)) |
| 246 | return false; /* not same length, so can't match */ |
| 247 | |
| 248 | forboth(lc1, tlist1, lc2, tlist2) |
| 249 | { |
| 250 | TargetEntry *tle1 = (TargetEntry *) lfirst(lc1); |
| 251 | TargetEntry *tle2 = (TargetEntry *) lfirst(lc2); |
| 252 | |
| 253 | if (!equal(tle1->expr, tle2->expr)) |
| 254 | return false; |
| 255 | } |
| 256 | |
| 257 | return true; |
| 258 | } |
| 259 | |
| 260 | |
| 261 | /* |
| 262 | * Does tlist have same output datatypes as listed in colTypes? |
| 263 | * |
| 264 | * Resjunk columns are ignored if junkOK is true; otherwise presence of |
| 265 | * a resjunk column will always cause a 'false' result. |
| 266 | * |
| 267 | * Note: currently no callers care about comparing typmods. |
| 268 | */ |
| 269 | bool |
| 270 | tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK) |
| 271 | { |
| 272 | ListCell *l; |
| 273 | ListCell *curColType = list_head(colTypes); |
| 274 | |
| 275 | foreach(l, tlist) |
| 276 | { |
| 277 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 278 | |
| 279 | if (tle->resjunk) |
| 280 | { |
| 281 | if (!junkOK) |
| 282 | return false; |
| 283 | } |
| 284 | else |
| 285 | { |
| 286 | if (curColType == NULL) |
| 287 | return false; /* tlist longer than colTypes */ |
| 288 | if (exprType((Node *) tle->expr) != lfirst_oid(curColType)) |
| 289 | return false; |
| 290 | curColType = lnext(curColType); |
| 291 | } |
| 292 | } |
| 293 | if (curColType != NULL) |
| 294 | return false; /* tlist shorter than colTypes */ |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Does tlist have same exposed collations as listed in colCollations? |
| 300 | * |
| 301 | * Identical logic to the above, but for collations. |
| 302 | */ |
| 303 | bool |
| 304 | tlist_same_collations(List *tlist, List *colCollations, bool junkOK) |
| 305 | { |
| 306 | ListCell *l; |
| 307 | ListCell *curColColl = list_head(colCollations); |
| 308 | |
| 309 | foreach(l, tlist) |
| 310 | { |
| 311 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 312 | |
| 313 | if (tle->resjunk) |
| 314 | { |
| 315 | if (!junkOK) |
| 316 | return false; |
| 317 | } |
| 318 | else |
| 319 | { |
| 320 | if (curColColl == NULL) |
| 321 | return false; /* tlist longer than colCollations */ |
| 322 | if (exprCollation((Node *) tle->expr) != lfirst_oid(curColColl)) |
| 323 | return false; |
| 324 | curColColl = lnext(curColColl); |
| 325 | } |
| 326 | } |
| 327 | if (curColColl != NULL) |
| 328 | return false; /* tlist shorter than colCollations */ |
| 329 | return true; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * apply_tlist_labeling |
| 334 | * Apply the TargetEntry labeling attributes of src_tlist to dest_tlist |
| 335 | * |
| 336 | * This is useful for reattaching column names etc to a plan's final output |
| 337 | * targetlist. |
| 338 | */ |
| 339 | void |
| 340 | apply_tlist_labeling(List *dest_tlist, List *src_tlist) |
| 341 | { |
| 342 | ListCell *ld, |
| 343 | *ls; |
| 344 | |
| 345 | Assert(list_length(dest_tlist) == list_length(src_tlist)); |
| 346 | forboth(ld, dest_tlist, ls, src_tlist) |
| 347 | { |
| 348 | TargetEntry *dest_tle = (TargetEntry *) lfirst(ld); |
| 349 | TargetEntry *src_tle = (TargetEntry *) lfirst(ls); |
| 350 | |
| 351 | Assert(dest_tle->resno == src_tle->resno); |
| 352 | dest_tle->resname = src_tle->resname; |
| 353 | dest_tle->ressortgroupref = src_tle->ressortgroupref; |
| 354 | dest_tle->resorigtbl = src_tle->resorigtbl; |
| 355 | dest_tle->resorigcol = src_tle->resorigcol; |
| 356 | dest_tle->resjunk = src_tle->resjunk; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | |
| 361 | /* |
| 362 | * get_sortgroupref_tle |
| 363 | * Find the targetlist entry matching the given SortGroupRef index, |
| 364 | * and return it. |
| 365 | */ |
| 366 | TargetEntry * |
| 367 | get_sortgroupref_tle(Index sortref, List *targetList) |
| 368 | { |
| 369 | ListCell *l; |
| 370 | |
| 371 | foreach(l, targetList) |
| 372 | { |
| 373 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 374 | |
| 375 | if (tle->ressortgroupref == sortref) |
| 376 | return tle; |
| 377 | } |
| 378 | |
| 379 | elog(ERROR, "ORDER/GROUP BY expression not found in targetlist" ); |
| 380 | return NULL; /* keep compiler quiet */ |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * get_sortgroupclause_tle |
| 385 | * Find the targetlist entry matching the given SortGroupClause |
| 386 | * by ressortgroupref, and return it. |
| 387 | */ |
| 388 | TargetEntry * |
| 389 | get_sortgroupclause_tle(SortGroupClause *sgClause, |
| 390 | List *targetList) |
| 391 | { |
| 392 | return get_sortgroupref_tle(sgClause->tleSortGroupRef, targetList); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * get_sortgroupclause_expr |
| 397 | * Find the targetlist entry matching the given SortGroupClause |
| 398 | * by ressortgroupref, and return its expression. |
| 399 | */ |
| 400 | Node * |
| 401 | get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList) |
| 402 | { |
| 403 | TargetEntry *tle = get_sortgroupclause_tle(sgClause, targetList); |
| 404 | |
| 405 | return (Node *) tle->expr; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * get_sortgrouplist_exprs |
| 410 | * Given a list of SortGroupClauses, build a list |
| 411 | * of the referenced targetlist expressions. |
| 412 | */ |
| 413 | List * |
| 414 | get_sortgrouplist_exprs(List *sgClauses, List *targetList) |
| 415 | { |
| 416 | List *result = NIL; |
| 417 | ListCell *l; |
| 418 | |
| 419 | foreach(l, sgClauses) |
| 420 | { |
| 421 | SortGroupClause *sortcl = (SortGroupClause *) lfirst(l); |
| 422 | Node *sortexpr; |
| 423 | |
| 424 | sortexpr = get_sortgroupclause_expr(sortcl, targetList); |
| 425 | result = lappend(result, sortexpr); |
| 426 | } |
| 427 | return result; |
| 428 | } |
| 429 | |
| 430 | |
| 431 | /***************************************************************************** |
| 432 | * Functions to extract data from a list of SortGroupClauses |
| 433 | * |
| 434 | * These don't really belong in tlist.c, but they are sort of related to the |
| 435 | * functions just above, and they don't seem to deserve their own file. |
| 436 | *****************************************************************************/ |
| 437 | |
| 438 | /* |
| 439 | * get_sortgroupref_clause |
| 440 | * Find the SortGroupClause matching the given SortGroupRef index, |
| 441 | * and return it. |
| 442 | */ |
| 443 | SortGroupClause * |
| 444 | get_sortgroupref_clause(Index sortref, List *clauses) |
| 445 | { |
| 446 | ListCell *l; |
| 447 | |
| 448 | foreach(l, clauses) |
| 449 | { |
| 450 | SortGroupClause *cl = (SortGroupClause *) lfirst(l); |
| 451 | |
| 452 | if (cl->tleSortGroupRef == sortref) |
| 453 | return cl; |
| 454 | } |
| 455 | |
| 456 | elog(ERROR, "ORDER/GROUP BY expression not found in list" ); |
| 457 | return NULL; /* keep compiler quiet */ |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * get_sortgroupref_clause_noerr |
| 462 | * As above, but return NULL rather than throwing an error if not found. |
| 463 | */ |
| 464 | SortGroupClause * |
| 465 | get_sortgroupref_clause_noerr(Index sortref, List *clauses) |
| 466 | { |
| 467 | ListCell *l; |
| 468 | |
| 469 | foreach(l, clauses) |
| 470 | { |
| 471 | SortGroupClause *cl = (SortGroupClause *) lfirst(l); |
| 472 | |
| 473 | if (cl->tleSortGroupRef == sortref) |
| 474 | return cl; |
| 475 | } |
| 476 | |
| 477 | return NULL; |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * extract_grouping_ops - make an array of the equality operator OIDs |
| 482 | * for a SortGroupClause list |
| 483 | */ |
| 484 | Oid * |
| 485 | (List *groupClause) |
| 486 | { |
| 487 | int numCols = list_length(groupClause); |
| 488 | int colno = 0; |
| 489 | Oid *groupOperators; |
| 490 | ListCell *glitem; |
| 491 | |
| 492 | groupOperators = (Oid *) palloc(sizeof(Oid) * numCols); |
| 493 | |
| 494 | foreach(glitem, groupClause) |
| 495 | { |
| 496 | SortGroupClause *groupcl = (SortGroupClause *) lfirst(glitem); |
| 497 | |
| 498 | groupOperators[colno] = groupcl->eqop; |
| 499 | Assert(OidIsValid(groupOperators[colno])); |
| 500 | colno++; |
| 501 | } |
| 502 | |
| 503 | return groupOperators; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * extract_grouping_collations - make an array of the grouping column collations |
| 508 | * for a SortGroupClause list |
| 509 | */ |
| 510 | Oid * |
| 511 | (List *groupClause, List *tlist) |
| 512 | { |
| 513 | int numCols = list_length(groupClause); |
| 514 | int colno = 0; |
| 515 | Oid *grpCollations; |
| 516 | ListCell *glitem; |
| 517 | |
| 518 | grpCollations = (Oid *) palloc(sizeof(Oid) * numCols); |
| 519 | |
| 520 | foreach(glitem, groupClause) |
| 521 | { |
| 522 | SortGroupClause *groupcl = (SortGroupClause *) lfirst(glitem); |
| 523 | TargetEntry *tle = get_sortgroupclause_tle(groupcl, tlist); |
| 524 | |
| 525 | grpCollations[colno++] = exprCollation((Node *) tle->expr); |
| 526 | } |
| 527 | |
| 528 | return grpCollations; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * extract_grouping_cols - make an array of the grouping column resnos |
| 533 | * for a SortGroupClause list |
| 534 | */ |
| 535 | AttrNumber * |
| 536 | (List *groupClause, List *tlist) |
| 537 | { |
| 538 | AttrNumber *grpColIdx; |
| 539 | int numCols = list_length(groupClause); |
| 540 | int colno = 0; |
| 541 | ListCell *glitem; |
| 542 | |
| 543 | grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); |
| 544 | |
| 545 | foreach(glitem, groupClause) |
| 546 | { |
| 547 | SortGroupClause *groupcl = (SortGroupClause *) lfirst(glitem); |
| 548 | TargetEntry *tle = get_sortgroupclause_tle(groupcl, tlist); |
| 549 | |
| 550 | grpColIdx[colno++] = tle->resno; |
| 551 | } |
| 552 | |
| 553 | return grpColIdx; |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * grouping_is_sortable - is it possible to implement grouping list by sorting? |
| 558 | * |
| 559 | * This is easy since the parser will have included a sortop if one exists. |
| 560 | */ |
| 561 | bool |
| 562 | grouping_is_sortable(List *groupClause) |
| 563 | { |
| 564 | ListCell *glitem; |
| 565 | |
| 566 | foreach(glitem, groupClause) |
| 567 | { |
| 568 | SortGroupClause *groupcl = (SortGroupClause *) lfirst(glitem); |
| 569 | |
| 570 | if (!OidIsValid(groupcl->sortop)) |
| 571 | return false; |
| 572 | } |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * grouping_is_hashable - is it possible to implement grouping list by hashing? |
| 578 | * |
| 579 | * We rely on the parser to have set the hashable flag correctly. |
| 580 | */ |
| 581 | bool |
| 582 | grouping_is_hashable(List *groupClause) |
| 583 | { |
| 584 | ListCell *glitem; |
| 585 | |
| 586 | foreach(glitem, groupClause) |
| 587 | { |
| 588 | SortGroupClause *groupcl = (SortGroupClause *) lfirst(glitem); |
| 589 | |
| 590 | if (!groupcl->hashable) |
| 591 | return false; |
| 592 | } |
| 593 | return true; |
| 594 | } |
| 595 | |
| 596 | |
| 597 | /***************************************************************************** |
| 598 | * PathTarget manipulation functions |
| 599 | * |
| 600 | * PathTarget is a somewhat stripped-down version of a full targetlist; it |
| 601 | * omits all the TargetEntry decoration except (optionally) sortgroupref data, |
| 602 | * and it adds evaluation cost and output data width info. |
| 603 | *****************************************************************************/ |
| 604 | |
| 605 | /* |
| 606 | * make_pathtarget_from_tlist |
| 607 | * Construct a PathTarget equivalent to the given targetlist. |
| 608 | * |
| 609 | * This leaves the cost and width fields as zeroes. Most callers will want |
| 610 | * to use create_pathtarget(), so as to get those set. |
| 611 | */ |
| 612 | PathTarget * |
| 613 | make_pathtarget_from_tlist(List *tlist) |
| 614 | { |
| 615 | PathTarget *target = makeNode(PathTarget); |
| 616 | int i; |
| 617 | ListCell *lc; |
| 618 | |
| 619 | target->sortgrouprefs = (Index *) palloc(list_length(tlist) * sizeof(Index)); |
| 620 | |
| 621 | i = 0; |
| 622 | foreach(lc, tlist) |
| 623 | { |
| 624 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
| 625 | |
| 626 | target->exprs = lappend(target->exprs, tle->expr); |
| 627 | target->sortgrouprefs[i] = tle->ressortgroupref; |
| 628 | i++; |
| 629 | } |
| 630 | |
| 631 | return target; |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * make_tlist_from_pathtarget |
| 636 | * Construct a targetlist from a PathTarget. |
| 637 | */ |
| 638 | List * |
| 639 | make_tlist_from_pathtarget(PathTarget *target) |
| 640 | { |
| 641 | List *tlist = NIL; |
| 642 | int i; |
| 643 | ListCell *lc; |
| 644 | |
| 645 | i = 0; |
| 646 | foreach(lc, target->exprs) |
| 647 | { |
| 648 | Expr *expr = (Expr *) lfirst(lc); |
| 649 | TargetEntry *tle; |
| 650 | |
| 651 | tle = makeTargetEntry(expr, |
| 652 | i + 1, |
| 653 | NULL, |
| 654 | false); |
| 655 | if (target->sortgrouprefs) |
| 656 | tle->ressortgroupref = target->sortgrouprefs[i]; |
| 657 | tlist = lappend(tlist, tle); |
| 658 | i++; |
| 659 | } |
| 660 | |
| 661 | return tlist; |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * copy_pathtarget |
| 666 | * Copy a PathTarget. |
| 667 | * |
| 668 | * The new PathTarget has its own List cells, but shares the underlying |
| 669 | * target expression trees with the old one. We duplicate the List cells |
| 670 | * so that items can be added to one target without damaging the other. |
| 671 | */ |
| 672 | PathTarget * |
| 673 | copy_pathtarget(PathTarget *src) |
| 674 | { |
| 675 | PathTarget *dst = makeNode(PathTarget); |
| 676 | |
| 677 | /* Copy scalar fields */ |
| 678 | memcpy(dst, src, sizeof(PathTarget)); |
| 679 | /* Shallow-copy the expression list */ |
| 680 | dst->exprs = list_copy(src->exprs); |
| 681 | /* Duplicate sortgrouprefs if any (if not, the memcpy handled this) */ |
| 682 | if (src->sortgrouprefs) |
| 683 | { |
| 684 | Size nbytes = list_length(src->exprs) * sizeof(Index); |
| 685 | |
| 686 | dst->sortgrouprefs = (Index *) palloc(nbytes); |
| 687 | memcpy(dst->sortgrouprefs, src->sortgrouprefs, nbytes); |
| 688 | } |
| 689 | return dst; |
| 690 | } |
| 691 | |
| 692 | /* |
| 693 | * create_empty_pathtarget |
| 694 | * Create an empty (zero columns, zero cost) PathTarget. |
| 695 | */ |
| 696 | PathTarget * |
| 697 | create_empty_pathtarget(void) |
| 698 | { |
| 699 | /* This is easy, but we don't want callers to hard-wire this ... */ |
| 700 | return makeNode(PathTarget); |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * add_column_to_pathtarget |
| 705 | * Append a target column to the PathTarget. |
| 706 | * |
| 707 | * As with make_pathtarget_from_tlist, we leave it to the caller to update |
| 708 | * the cost and width fields. |
| 709 | */ |
| 710 | void |
| 711 | add_column_to_pathtarget(PathTarget *target, Expr *expr, Index sortgroupref) |
| 712 | { |
| 713 | /* Updating the exprs list is easy ... */ |
| 714 | target->exprs = lappend(target->exprs, expr); |
| 715 | /* ... the sortgroupref data, a bit less so */ |
| 716 | if (target->sortgrouprefs) |
| 717 | { |
| 718 | int nexprs = list_length(target->exprs); |
| 719 | |
| 720 | /* This might look inefficient, but actually it's usually cheap */ |
| 721 | target->sortgrouprefs = (Index *) |
| 722 | repalloc(target->sortgrouprefs, nexprs * sizeof(Index)); |
| 723 | target->sortgrouprefs[nexprs - 1] = sortgroupref; |
| 724 | } |
| 725 | else if (sortgroupref) |
| 726 | { |
| 727 | /* Adding sortgroupref labeling to a previously unlabeled target */ |
| 728 | int nexprs = list_length(target->exprs); |
| 729 | |
| 730 | target->sortgrouprefs = (Index *) palloc0(nexprs * sizeof(Index)); |
| 731 | target->sortgrouprefs[nexprs - 1] = sortgroupref; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * add_new_column_to_pathtarget |
| 737 | * Append a target column to the PathTarget, but only if it's not |
| 738 | * equal() to any pre-existing target expression. |
| 739 | * |
| 740 | * The caller cannot specify a sortgroupref, since it would be unclear how |
| 741 | * to merge that with a pre-existing column. |
| 742 | * |
| 743 | * As with make_pathtarget_from_tlist, we leave it to the caller to update |
| 744 | * the cost and width fields. |
| 745 | */ |
| 746 | void |
| 747 | add_new_column_to_pathtarget(PathTarget *target, Expr *expr) |
| 748 | { |
| 749 | if (!list_member(target->exprs, expr)) |
| 750 | add_column_to_pathtarget(target, expr, 0); |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * add_new_columns_to_pathtarget |
| 755 | * Apply add_new_column_to_pathtarget() for each element of the list. |
| 756 | */ |
| 757 | void |
| 758 | add_new_columns_to_pathtarget(PathTarget *target, List *exprs) |
| 759 | { |
| 760 | ListCell *lc; |
| 761 | |
| 762 | foreach(lc, exprs) |
| 763 | { |
| 764 | Expr *expr = (Expr *) lfirst(lc); |
| 765 | |
| 766 | add_new_column_to_pathtarget(target, expr); |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * apply_pathtarget_labeling_to_tlist |
| 772 | * Apply any sortgrouprefs in the PathTarget to matching tlist entries |
| 773 | * |
| 774 | * Here, we do not assume that the tlist entries are one-for-one with the |
| 775 | * PathTarget. The intended use of this function is to deal with cases |
| 776 | * where createplan.c has decided to use some other tlist and we have |
| 777 | * to identify what matches exist. |
| 778 | */ |
| 779 | void |
| 780 | apply_pathtarget_labeling_to_tlist(List *tlist, PathTarget *target) |
| 781 | { |
| 782 | int i; |
| 783 | ListCell *lc; |
| 784 | |
| 785 | /* Nothing to do if PathTarget has no sortgrouprefs data */ |
| 786 | if (target->sortgrouprefs == NULL) |
| 787 | return; |
| 788 | |
| 789 | i = 0; |
| 790 | foreach(lc, target->exprs) |
| 791 | { |
| 792 | Expr *expr = (Expr *) lfirst(lc); |
| 793 | TargetEntry *tle; |
| 794 | |
| 795 | if (target->sortgrouprefs[i]) |
| 796 | { |
| 797 | /* |
| 798 | * For Vars, use tlist_member_match_var's weakened matching rule; |
| 799 | * this allows us to deal with some cases where a set-returning |
| 800 | * function has been inlined, so that we now have more knowledge |
| 801 | * about what it returns than we did when the original Var was |
| 802 | * created. Otherwise, use regular equal() to find the matching |
| 803 | * TLE. (In current usage, only the Var case is actually needed; |
| 804 | * but it seems best to have sane behavior here for non-Vars too.) |
| 805 | */ |
| 806 | if (expr && IsA(expr, Var)) |
| 807 | tle = tlist_member_match_var((Var *) expr, tlist); |
| 808 | else |
| 809 | tle = tlist_member(expr, tlist); |
| 810 | |
| 811 | /* |
| 812 | * Complain if noplace for the sortgrouprefs label, or if we'd |
| 813 | * have to label a column twice. (The case where it already has |
| 814 | * the desired label probably can't happen, but we may as well |
| 815 | * allow for it.) |
| 816 | */ |
| 817 | if (!tle) |
| 818 | elog(ERROR, "ORDER/GROUP BY expression not found in targetlist" ); |
| 819 | if (tle->ressortgroupref != 0 && |
| 820 | tle->ressortgroupref != target->sortgrouprefs[i]) |
| 821 | elog(ERROR, "targetlist item has multiple sortgroupref labels" ); |
| 822 | |
| 823 | tle->ressortgroupref = target->sortgrouprefs[i]; |
| 824 | } |
| 825 | i++; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * split_pathtarget_at_srfs |
| 831 | * Split given PathTarget into multiple levels to position SRFs safely |
| 832 | * |
| 833 | * The executor can only handle set-returning functions that appear at the |
| 834 | * top level of the targetlist of a ProjectSet plan node. If we have any SRFs |
| 835 | * that are not at top level, we need to split up the evaluation into multiple |
| 836 | * plan levels in which each level satisfies this constraint. This function |
| 837 | * creates appropriate PathTarget(s) for each level. |
| 838 | * |
| 839 | * As an example, consider the tlist expression |
| 840 | * x + srf1(srf2(y + z)) |
| 841 | * This expression should appear as-is in the top PathTarget, but below that |
| 842 | * we must have a PathTarget containing |
| 843 | * x, srf1(srf2(y + z)) |
| 844 | * and below that, another PathTarget containing |
| 845 | * x, srf2(y + z) |
| 846 | * and below that, another PathTarget containing |
| 847 | * x, y, z |
| 848 | * When these tlists are processed by setrefs.c, subexpressions that match |
| 849 | * output expressions of the next lower tlist will be replaced by Vars, |
| 850 | * so that what the executor gets are tlists looking like |
| 851 | * Var1 + Var2 |
| 852 | * Var1, srf1(Var2) |
| 853 | * Var1, srf2(Var2 + Var3) |
| 854 | * x, y, z |
| 855 | * which satisfy the desired property. |
| 856 | * |
| 857 | * Another example is |
| 858 | * srf1(x), srf2(srf3(y)) |
| 859 | * That must appear as-is in the top PathTarget, but below that we need |
| 860 | * srf1(x), srf3(y) |
| 861 | * That is, each SRF must be computed at a level corresponding to the nesting |
| 862 | * depth of SRFs within its arguments. |
| 863 | * |
| 864 | * In some cases, a SRF has already been evaluated in some previous plan level |
| 865 | * and we shouldn't expand it again (that is, what we see in the target is |
| 866 | * already meant as a reference to a lower subexpression). So, don't expand |
| 867 | * any tlist expressions that appear in input_target, if that's not NULL. |
| 868 | * |
| 869 | * It's also important that we preserve any sortgroupref annotation appearing |
| 870 | * in the given target, especially on expressions matching input_target items. |
| 871 | * |
| 872 | * The outputs of this function are two parallel lists, one a list of |
| 873 | * PathTargets and the other an integer list of bool flags indicating |
| 874 | * whether the corresponding PathTarget contains any evaluatable SRFs. |
| 875 | * The lists are given in the order they'd need to be evaluated in, with |
| 876 | * the "lowest" PathTarget first. So the last list entry is always the |
| 877 | * originally given PathTarget, and any entries before it indicate evaluation |
| 878 | * levels that must be inserted below it. The first list entry must not |
| 879 | * contain any SRFs (other than ones duplicating input_target entries), since |
| 880 | * it will typically be attached to a plan node that cannot evaluate SRFs. |
| 881 | * |
| 882 | * Note: using a list for the flags may seem like overkill, since there |
| 883 | * are only a few possible patterns for which levels contain SRFs. |
| 884 | * But this representation decouples callers from that knowledge. |
| 885 | */ |
| 886 | void |
| 887 | split_pathtarget_at_srfs(PlannerInfo *root, |
| 888 | PathTarget *target, PathTarget *input_target, |
| 889 | List **targets, List **targets_contain_srfs) |
| 890 | { |
| 891 | split_pathtarget_context context; |
| 892 | int max_depth; |
| 893 | bool ; |
| 894 | List *prev_level_tlist; |
| 895 | int lci; |
| 896 | ListCell *lc, |
| 897 | *lc1, |
| 898 | *lc2, |
| 899 | *lc3; |
| 900 | |
| 901 | /* |
| 902 | * It's not unusual for planner.c to pass us two physically identical |
| 903 | * targets, in which case we can conclude without further ado that all |
| 904 | * expressions are available from the input. (The logic below would |
| 905 | * arrive at the same conclusion, but much more tediously.) |
| 906 | */ |
| 907 | if (target == input_target) |
| 908 | { |
| 909 | *targets = list_make1(target); |
| 910 | *targets_contain_srfs = list_make1_int(false); |
| 911 | return; |
| 912 | } |
| 913 | |
| 914 | /* Pass any input_target exprs down to split_pathtarget_walker() */ |
| 915 | context.input_target_exprs = input_target ? input_target->exprs : NIL; |
| 916 | |
| 917 | /* |
| 918 | * Initialize with empty level-zero lists, and no levels after that. |
| 919 | * (Note: we could dispense with representing level zero explicitly, since |
| 920 | * it will never receive any SRFs, but then we'd have to special-case that |
| 921 | * level when we get to building result PathTargets. Level zero describes |
| 922 | * the SRF-free PathTarget that will be given to the input plan node.) |
| 923 | */ |
| 924 | context.level_srfs = list_make1(NIL); |
| 925 | context.level_input_vars = list_make1(NIL); |
| 926 | context.level_input_srfs = list_make1(NIL); |
| 927 | |
| 928 | /* Initialize data we'll accumulate across all the target expressions */ |
| 929 | context.current_input_vars = NIL; |
| 930 | context.current_input_srfs = NIL; |
| 931 | max_depth = 0; |
| 932 | need_extra_projection = false; |
| 933 | |
| 934 | /* Scan each expression in the PathTarget looking for SRFs */ |
| 935 | lci = 0; |
| 936 | foreach(lc, target->exprs) |
| 937 | { |
| 938 | Node *node = (Node *) lfirst(lc); |
| 939 | |
| 940 | /* Tell split_pathtarget_walker about this expr's sortgroupref */ |
| 941 | context.current_sgref = get_pathtarget_sortgroupref(target, lci); |
| 942 | lci++; |
| 943 | |
| 944 | /* |
| 945 | * Find all SRFs and Vars (and Var-like nodes) in this expression, and |
| 946 | * enter them into appropriate lists within the context struct. |
| 947 | */ |
| 948 | context.current_depth = 0; |
| 949 | split_pathtarget_walker(node, &context); |
| 950 | |
| 951 | /* An expression containing no SRFs is of no further interest */ |
| 952 | if (context.current_depth == 0) |
| 953 | continue; |
| 954 | |
| 955 | /* |
| 956 | * Track max SRF nesting depth over the whole PathTarget. Also, if |
| 957 | * this expression establishes a new max depth, we no longer care |
| 958 | * whether previous expressions contained nested SRFs; we can handle |
| 959 | * any required projection for them in the final ProjectSet node. |
| 960 | */ |
| 961 | if (max_depth < context.current_depth) |
| 962 | { |
| 963 | max_depth = context.current_depth; |
| 964 | need_extra_projection = false; |
| 965 | } |
| 966 | |
| 967 | /* |
| 968 | * If any maximum-depth SRF is not at the top level of its expression, |
| 969 | * we'll need an extra Result node to compute the top-level scalar |
| 970 | * expression. |
| 971 | */ |
| 972 | if (max_depth == context.current_depth && !IS_SRF_CALL(node)) |
| 973 | need_extra_projection = true; |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * If we found no SRFs needing evaluation (maybe they were all present in |
| 978 | * input_target, or maybe they were all removed by const-simplification), |
| 979 | * then no ProjectSet is needed; fall out. |
| 980 | */ |
| 981 | if (max_depth == 0) |
| 982 | { |
| 983 | *targets = list_make1(target); |
| 984 | *targets_contain_srfs = list_make1_int(false); |
| 985 | return; |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * The Vars and SRF outputs needed at top level can be added to the last |
| 990 | * level_input lists if we don't need an extra projection step. If we do |
| 991 | * need one, add a SRF-free level to the lists. |
| 992 | */ |
| 993 | if (need_extra_projection) |
| 994 | { |
| 995 | context.level_srfs = lappend(context.level_srfs, NIL); |
| 996 | context.level_input_vars = lappend(context.level_input_vars, |
| 997 | context.current_input_vars); |
| 998 | context.level_input_srfs = lappend(context.level_input_srfs, |
| 999 | context.current_input_srfs); |
| 1000 | } |
| 1001 | else |
| 1002 | { |
| 1003 | lc = list_nth_cell(context.level_input_vars, max_depth); |
| 1004 | lfirst(lc) = list_concat(lfirst(lc), context.current_input_vars); |
| 1005 | lc = list_nth_cell(context.level_input_srfs, max_depth); |
| 1006 | lfirst(lc) = list_concat(lfirst(lc), context.current_input_srfs); |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * Now construct the output PathTargets. The original target can be used |
| 1011 | * as-is for the last one, but we need to construct a new SRF-free target |
| 1012 | * representing what the preceding plan node has to emit, as well as a |
| 1013 | * target for each intermediate ProjectSet node. |
| 1014 | */ |
| 1015 | *targets = *targets_contain_srfs = NIL; |
| 1016 | prev_level_tlist = NIL; |
| 1017 | |
| 1018 | forthree(lc1, context.level_srfs, |
| 1019 | lc2, context.level_input_vars, |
| 1020 | lc3, context.level_input_srfs) |
| 1021 | { |
| 1022 | List *level_srfs = (List *) lfirst(lc1); |
| 1023 | PathTarget *ntarget; |
| 1024 | |
| 1025 | if (lnext(lc1) == NULL) |
| 1026 | { |
| 1027 | ntarget = target; |
| 1028 | } |
| 1029 | else |
| 1030 | { |
| 1031 | ntarget = create_empty_pathtarget(); |
| 1032 | |
| 1033 | /* |
| 1034 | * This target should actually evaluate any SRFs of the current |
| 1035 | * level, and it needs to propagate forward any Vars needed by |
| 1036 | * later levels, as well as SRFs computed earlier and needed by |
| 1037 | * later levels. |
| 1038 | */ |
| 1039 | add_sp_items_to_pathtarget(ntarget, level_srfs); |
| 1040 | for_each_cell(lc, lnext(lc2)) |
| 1041 | { |
| 1042 | List *input_vars = (List *) lfirst(lc); |
| 1043 | |
| 1044 | add_sp_items_to_pathtarget(ntarget, input_vars); |
| 1045 | } |
| 1046 | for_each_cell(lc, lnext(lc3)) |
| 1047 | { |
| 1048 | List *input_srfs = (List *) lfirst(lc); |
| 1049 | ListCell *lcx; |
| 1050 | |
| 1051 | foreach(lcx, input_srfs) |
| 1052 | { |
| 1053 | split_pathtarget_item *item = lfirst(lcx); |
| 1054 | |
| 1055 | if (list_member(prev_level_tlist, item->expr)) |
| 1056 | add_sp_item_to_pathtarget(ntarget, item); |
| 1057 | } |
| 1058 | } |
| 1059 | set_pathtarget_cost_width(root, ntarget); |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * Add current target and does-it-compute-SRFs flag to output lists. |
| 1064 | */ |
| 1065 | *targets = lappend(*targets, ntarget); |
| 1066 | *targets_contain_srfs = lappend_int(*targets_contain_srfs, |
| 1067 | (level_srfs != NIL)); |
| 1068 | |
| 1069 | /* Remember this level's output for next pass */ |
| 1070 | prev_level_tlist = ntarget->exprs; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * Recursively examine expressions for split_pathtarget_at_srfs. |
| 1076 | * |
| 1077 | * Note we make no effort here to prevent duplicate entries in the output |
| 1078 | * lists. Duplicates will be gotten rid of later. |
| 1079 | */ |
| 1080 | static bool |
| 1081 | split_pathtarget_walker(Node *node, split_pathtarget_context *context) |
| 1082 | { |
| 1083 | if (node == NULL) |
| 1084 | return false; |
| 1085 | |
| 1086 | /* |
| 1087 | * A subexpression that matches an expression already computed in |
| 1088 | * input_target can be treated like a Var (which indeed it will be after |
| 1089 | * setrefs.c gets done with it), even if it's actually a SRF. Record it |
| 1090 | * as being needed for the current expression, and ignore any |
| 1091 | * substructure. (Note in particular that this preserves the identity of |
| 1092 | * any expressions that appear as sortgrouprefs in input_target.) |
| 1093 | */ |
| 1094 | if (list_member(context->input_target_exprs, node)) |
| 1095 | { |
| 1096 | split_pathtarget_item *item = palloc(sizeof(split_pathtarget_item)); |
| 1097 | |
| 1098 | item->expr = node; |
| 1099 | item->sortgroupref = context->current_sgref; |
| 1100 | context->current_input_vars = lappend(context->current_input_vars, |
| 1101 | item); |
| 1102 | return false; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * Vars and Var-like constructs are expected to be gotten from the input, |
| 1107 | * too. We assume that these constructs cannot contain any SRFs (if one |
| 1108 | * does, there will be an executor failure from a misplaced SRF). |
| 1109 | */ |
| 1110 | if (IsA(node, Var) || |
| 1111 | IsA(node, PlaceHolderVar) || |
| 1112 | IsA(node, Aggref) || |
| 1113 | IsA(node, GroupingFunc) || |
| 1114 | IsA(node, WindowFunc)) |
| 1115 | { |
| 1116 | split_pathtarget_item *item = palloc(sizeof(split_pathtarget_item)); |
| 1117 | |
| 1118 | item->expr = node; |
| 1119 | item->sortgroupref = context->current_sgref; |
| 1120 | context->current_input_vars = lappend(context->current_input_vars, |
| 1121 | item); |
| 1122 | return false; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * If it's a SRF, recursively examine its inputs, determine its level, and |
| 1127 | * make appropriate entries in the output lists. |
| 1128 | */ |
| 1129 | if (IS_SRF_CALL(node)) |
| 1130 | { |
| 1131 | split_pathtarget_item *item = palloc(sizeof(split_pathtarget_item)); |
| 1132 | List *save_input_vars = context->current_input_vars; |
| 1133 | List *save_input_srfs = context->current_input_srfs; |
| 1134 | int save_current_depth = context->current_depth; |
| 1135 | int srf_depth; |
| 1136 | ListCell *lc; |
| 1137 | |
| 1138 | item->expr = node; |
| 1139 | item->sortgroupref = context->current_sgref; |
| 1140 | |
| 1141 | context->current_input_vars = NIL; |
| 1142 | context->current_input_srfs = NIL; |
| 1143 | context->current_depth = 0; |
| 1144 | context->current_sgref = 0; /* subexpressions are not sortgroup items */ |
| 1145 | |
| 1146 | (void) expression_tree_walker(node, split_pathtarget_walker, |
| 1147 | (void *) context); |
| 1148 | |
| 1149 | /* Depth is one more than any SRF below it */ |
| 1150 | srf_depth = context->current_depth + 1; |
| 1151 | |
| 1152 | /* If new record depth, initialize another level of output lists */ |
| 1153 | if (srf_depth >= list_length(context->level_srfs)) |
| 1154 | { |
| 1155 | context->level_srfs = lappend(context->level_srfs, NIL); |
| 1156 | context->level_input_vars = lappend(context->level_input_vars, NIL); |
| 1157 | context->level_input_srfs = lappend(context->level_input_srfs, NIL); |
| 1158 | } |
| 1159 | |
| 1160 | /* Record this SRF as needing to be evaluated at appropriate level */ |
| 1161 | lc = list_nth_cell(context->level_srfs, srf_depth); |
| 1162 | lfirst(lc) = lappend(lfirst(lc), item); |
| 1163 | |
| 1164 | /* Record its inputs as being needed at the same level */ |
| 1165 | lc = list_nth_cell(context->level_input_vars, srf_depth); |
| 1166 | lfirst(lc) = list_concat(lfirst(lc), context->current_input_vars); |
| 1167 | lc = list_nth_cell(context->level_input_srfs, srf_depth); |
| 1168 | lfirst(lc) = list_concat(lfirst(lc), context->current_input_srfs); |
| 1169 | |
| 1170 | /* |
| 1171 | * Restore caller-level state and update it for presence of this SRF. |
| 1172 | * Notice we report the SRF itself as being needed for evaluation of |
| 1173 | * surrounding expression. |
| 1174 | */ |
| 1175 | context->current_input_vars = save_input_vars; |
| 1176 | context->current_input_srfs = lappend(save_input_srfs, item); |
| 1177 | context->current_depth = Max(save_current_depth, srf_depth); |
| 1178 | |
| 1179 | /* We're done here */ |
| 1180 | return false; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Otherwise, the node is a scalar (non-set) expression, so recurse to |
| 1185 | * examine its inputs. |
| 1186 | */ |
| 1187 | context->current_sgref = 0; /* subexpressions are not sortgroup items */ |
| 1188 | return expression_tree_walker(node, split_pathtarget_walker, |
| 1189 | (void *) context); |
| 1190 | } |
| 1191 | |
| 1192 | /* |
| 1193 | * Add a split_pathtarget_item to the PathTarget, unless a matching item is |
| 1194 | * already present. This is like add_new_column_to_pathtarget, but allows |
| 1195 | * for sortgrouprefs to be handled. An item having zero sortgroupref can |
| 1196 | * be merged with one that has a sortgroupref, acquiring the latter's |
| 1197 | * sortgroupref. |
| 1198 | * |
| 1199 | * Note that we don't worry about possibly adding duplicate sortgrouprefs |
| 1200 | * to the PathTarget. That would be bad, but it should be impossible unless |
| 1201 | * the target passed to split_pathtarget_at_srfs already had duplicates. |
| 1202 | * As long as it didn't, we can have at most one split_pathtarget_item with |
| 1203 | * any particular nonzero sortgroupref. |
| 1204 | */ |
| 1205 | static void |
| 1206 | add_sp_item_to_pathtarget(PathTarget *target, split_pathtarget_item *item) |
| 1207 | { |
| 1208 | int lci; |
| 1209 | ListCell *lc; |
| 1210 | |
| 1211 | /* |
| 1212 | * Look for a pre-existing entry that is equal() and does not have a |
| 1213 | * conflicting sortgroupref already. |
| 1214 | */ |
| 1215 | lci = 0; |
| 1216 | foreach(lc, target->exprs) |
| 1217 | { |
| 1218 | Node *node = (Node *) lfirst(lc); |
| 1219 | Index sgref = get_pathtarget_sortgroupref(target, lci); |
| 1220 | |
| 1221 | if ((item->sortgroupref == sgref || |
| 1222 | item->sortgroupref == 0 || |
| 1223 | sgref == 0) && |
| 1224 | equal(item->expr, node)) |
| 1225 | { |
| 1226 | /* Found a match. Assign item's sortgroupref if it has one. */ |
| 1227 | if (item->sortgroupref) |
| 1228 | { |
| 1229 | if (target->sortgrouprefs == NULL) |
| 1230 | { |
| 1231 | target->sortgrouprefs = (Index *) |
| 1232 | palloc0(list_length(target->exprs) * sizeof(Index)); |
| 1233 | } |
| 1234 | target->sortgrouprefs[lci] = item->sortgroupref; |
| 1235 | } |
| 1236 | return; |
| 1237 | } |
| 1238 | lci++; |
| 1239 | } |
| 1240 | |
| 1241 | /* |
| 1242 | * No match, so add item to PathTarget. Copy the expr for safety. |
| 1243 | */ |
| 1244 | add_column_to_pathtarget(target, (Expr *) copyObject(item->expr), |
| 1245 | item->sortgroupref); |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * Apply add_sp_item_to_pathtarget to each element of list. |
| 1250 | */ |
| 1251 | static void |
| 1252 | add_sp_items_to_pathtarget(PathTarget *target, List *items) |
| 1253 | { |
| 1254 | ListCell *lc; |
| 1255 | |
| 1256 | foreach(lc, items) |
| 1257 | { |
| 1258 | split_pathtarget_item *item = lfirst(lc); |
| 1259 | |
| 1260 | add_sp_item_to_pathtarget(target, item); |
| 1261 | } |
| 1262 | } |
| 1263 | |