| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * analyze.c |
| 4 | * transform the raw parse tree into a query tree |
| 5 | * |
| 6 | * For optimizable statements, we are careful to obtain a suitable lock on |
| 7 | * each referenced table, and other modules of the backend preserve or |
| 8 | * re-obtain these locks before depending on the results. It is therefore |
| 9 | * okay to do significant semantic analysis of these statements. For |
| 10 | * utility commands, no locks are obtained here (and if they were, we could |
| 11 | * not be sure we'd still have them at execution). Hence the general rule |
| 12 | * for utility commands is to just dump them into a Query node untransformed. |
| 13 | * DECLARE CURSOR, EXPLAIN, and CREATE TABLE AS are exceptions because they |
| 14 | * contain optimizable statements, which we should transform. |
| 15 | * |
| 16 | * |
| 17 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 18 | * Portions Copyright (c) 1994, Regents of the University of California |
| 19 | * |
| 20 | * src/backend/parser/analyze.c |
| 21 | * |
| 22 | *------------------------------------------------------------------------- |
| 23 | */ |
| 24 | |
| 25 | #include "postgres.h" |
| 26 | |
| 27 | #include "access/sysattr.h" |
| 28 | #include "catalog/pg_type.h" |
| 29 | #include "miscadmin.h" |
| 30 | #include "nodes/makefuncs.h" |
| 31 | #include "nodes/nodeFuncs.h" |
| 32 | #include "optimizer/optimizer.h" |
| 33 | #include "parser/analyze.h" |
| 34 | #include "parser/parse_agg.h" |
| 35 | #include "parser/parse_clause.h" |
| 36 | #include "parser/parse_coerce.h" |
| 37 | #include "parser/parse_collate.h" |
| 38 | #include "parser/parse_cte.h" |
| 39 | #include "parser/parse_expr.h" |
| 40 | #include "parser/parse_func.h" |
| 41 | #include "parser/parse_oper.h" |
| 42 | #include "parser/parse_param.h" |
| 43 | #include "parser/parse_relation.h" |
| 44 | #include "parser/parse_target.h" |
| 45 | #include "parser/parsetree.h" |
| 46 | #include "rewrite/rewriteManip.h" |
| 47 | #include "utils/rel.h" |
| 48 | |
| 49 | |
| 50 | /* Hook for plugins to get control at end of parse analysis */ |
| 51 | post_parse_analyze_hook_type post_parse_analyze_hook = NULL; |
| 52 | |
| 53 | static Query *transformOptionalSelectInto(ParseState *pstate, Node *parseTree); |
| 54 | static Query *transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt); |
| 55 | static Query *transformInsertStmt(ParseState *pstate, InsertStmt *stmt); |
| 56 | static List *transformInsertRow(ParseState *pstate, List *exprlist, |
| 57 | List *stmtcols, List *icolumns, List *attrnos, |
| 58 | bool strip_indirection); |
| 59 | static OnConflictExpr *transformOnConflictClause(ParseState *pstate, |
| 60 | OnConflictClause *onConflictClause); |
| 61 | static int count_rowexpr_columns(ParseState *pstate, Node *expr); |
| 62 | static Query *transformSelectStmt(ParseState *pstate, SelectStmt *stmt); |
| 63 | static Query *transformValuesClause(ParseState *pstate, SelectStmt *stmt); |
| 64 | static Query *transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt); |
| 65 | static Node *transformSetOperationTree(ParseState *pstate, SelectStmt *stmt, |
| 66 | bool isTopLevel, List **targetlist); |
| 67 | static void determineRecursiveColTypes(ParseState *pstate, |
| 68 | Node *larg, List *nrtargetlist); |
| 69 | static Query *transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt); |
| 70 | static List *transformReturningList(ParseState *pstate, List *returningList); |
| 71 | static List *transformUpdateTargetList(ParseState *pstate, |
| 72 | List *targetList); |
| 73 | static Query *transformDeclareCursorStmt(ParseState *pstate, |
| 74 | DeclareCursorStmt *stmt); |
| 75 | static Query *transformExplainStmt(ParseState *pstate, |
| 76 | ExplainStmt *stmt); |
| 77 | static Query *transformCreateTableAsStmt(ParseState *pstate, |
| 78 | CreateTableAsStmt *stmt); |
| 79 | static Query *transformCallStmt(ParseState *pstate, |
| 80 | CallStmt *stmt); |
| 81 | static void transformLockingClause(ParseState *pstate, Query *qry, |
| 82 | LockingClause *lc, bool pushedDown); |
| 83 | #ifdef RAW_EXPRESSION_COVERAGE_TEST |
| 84 | static bool test_raw_expression_coverage(Node *node, void *context); |
| 85 | #endif |
| 86 | |
| 87 | |
| 88 | /* |
| 89 | * parse_analyze |
| 90 | * Analyze a raw parse tree and transform it to Query form. |
| 91 | * |
| 92 | * Optionally, information about $n parameter types can be supplied. |
| 93 | * References to $n indexes not defined by paramTypes[] are disallowed. |
| 94 | * |
| 95 | * The result is a Query node. Optimizable statements require considerable |
| 96 | * transformation, while utility-type statements are simply hung off |
| 97 | * a dummy CMD_UTILITY Query node. |
| 98 | */ |
| 99 | Query * |
| 100 | parse_analyze(RawStmt *parseTree, const char *sourceText, |
| 101 | Oid *paramTypes, int numParams, |
| 102 | QueryEnvironment *queryEnv) |
| 103 | { |
| 104 | ParseState *pstate = make_parsestate(NULL); |
| 105 | Query *query; |
| 106 | |
| 107 | Assert(sourceText != NULL); /* required as of 8.4 */ |
| 108 | |
| 109 | pstate->p_sourcetext = sourceText; |
| 110 | |
| 111 | if (numParams > 0) |
| 112 | parse_fixed_parameters(pstate, paramTypes, numParams); |
| 113 | |
| 114 | pstate->p_queryEnv = queryEnv; |
| 115 | |
| 116 | query = transformTopLevelStmt(pstate, parseTree); |
| 117 | |
| 118 | if (post_parse_analyze_hook) |
| 119 | (*post_parse_analyze_hook) (pstate, query); |
| 120 | |
| 121 | free_parsestate(pstate); |
| 122 | |
| 123 | return query; |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * parse_analyze_varparams |
| 128 | * |
| 129 | * This variant is used when it's okay to deduce information about $n |
| 130 | * symbol datatypes from context. The passed-in paramTypes[] array can |
| 131 | * be modified or enlarged (via repalloc). |
| 132 | */ |
| 133 | Query * |
| 134 | parse_analyze_varparams(RawStmt *parseTree, const char *sourceText, |
| 135 | Oid **paramTypes, int *numParams) |
| 136 | { |
| 137 | ParseState *pstate = make_parsestate(NULL); |
| 138 | Query *query; |
| 139 | |
| 140 | Assert(sourceText != NULL); /* required as of 8.4 */ |
| 141 | |
| 142 | pstate->p_sourcetext = sourceText; |
| 143 | |
| 144 | parse_variable_parameters(pstate, paramTypes, numParams); |
| 145 | |
| 146 | query = transformTopLevelStmt(pstate, parseTree); |
| 147 | |
| 148 | /* make sure all is well with parameter types */ |
| 149 | check_variable_parameters(pstate, query); |
| 150 | |
| 151 | if (post_parse_analyze_hook) |
| 152 | (*post_parse_analyze_hook) (pstate, query); |
| 153 | |
| 154 | free_parsestate(pstate); |
| 155 | |
| 156 | return query; |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * parse_sub_analyze |
| 161 | * Entry point for recursively analyzing a sub-statement. |
| 162 | */ |
| 163 | Query * |
| 164 | parse_sub_analyze(Node *parseTree, ParseState *parentParseState, |
| 165 | CommonTableExpr *parentCTE, |
| 166 | bool locked_from_parent, |
| 167 | bool resolve_unknowns) |
| 168 | { |
| 169 | ParseState *pstate = make_parsestate(parentParseState); |
| 170 | Query *query; |
| 171 | |
| 172 | pstate->p_parent_cte = parentCTE; |
| 173 | pstate->p_locked_from_parent = locked_from_parent; |
| 174 | pstate->p_resolve_unknowns = resolve_unknowns; |
| 175 | |
| 176 | query = transformStmt(pstate, parseTree); |
| 177 | |
| 178 | free_parsestate(pstate); |
| 179 | |
| 180 | return query; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * transformTopLevelStmt - |
| 185 | * transform a Parse tree into a Query tree. |
| 186 | * |
| 187 | * This function is just responsible for transferring statement location data |
| 188 | * from the RawStmt into the finished Query. |
| 189 | */ |
| 190 | Query * |
| 191 | transformTopLevelStmt(ParseState *pstate, RawStmt *parseTree) |
| 192 | { |
| 193 | Query *result; |
| 194 | |
| 195 | /* We're at top level, so allow SELECT INTO */ |
| 196 | result = transformOptionalSelectInto(pstate, parseTree->stmt); |
| 197 | |
| 198 | result->stmt_location = parseTree->stmt_location; |
| 199 | result->stmt_len = parseTree->stmt_len; |
| 200 | |
| 201 | return result; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * transformOptionalSelectInto - |
| 206 | * If SELECT has INTO, convert it to CREATE TABLE AS. |
| 207 | * |
| 208 | * The only thing we do here that we don't do in transformStmt() is to |
| 209 | * convert SELECT ... INTO into CREATE TABLE AS. Since utility statements |
| 210 | * aren't allowed within larger statements, this is only allowed at the top |
| 211 | * of the parse tree, and so we only try it before entering the recursive |
| 212 | * transformStmt() processing. |
| 213 | */ |
| 214 | static Query * |
| 215 | transformOptionalSelectInto(ParseState *pstate, Node *parseTree) |
| 216 | { |
| 217 | if (IsA(parseTree, SelectStmt)) |
| 218 | { |
| 219 | SelectStmt *stmt = (SelectStmt *) parseTree; |
| 220 | |
| 221 | /* If it's a set-operation tree, drill down to leftmost SelectStmt */ |
| 222 | while (stmt && stmt->op != SETOP_NONE) |
| 223 | stmt = stmt->larg; |
| 224 | Assert(stmt && IsA(stmt, SelectStmt) &&stmt->larg == NULL); |
| 225 | |
| 226 | if (stmt->intoClause) |
| 227 | { |
| 228 | CreateTableAsStmt *ctas = makeNode(CreateTableAsStmt); |
| 229 | |
| 230 | ctas->query = parseTree; |
| 231 | ctas->into = stmt->intoClause; |
| 232 | ctas->relkind = OBJECT_TABLE; |
| 233 | ctas->is_select_into = true; |
| 234 | |
| 235 | /* |
| 236 | * Remove the intoClause from the SelectStmt. This makes it safe |
| 237 | * for transformSelectStmt to complain if it finds intoClause set |
| 238 | * (implying that the INTO appeared in a disallowed place). |
| 239 | */ |
| 240 | stmt->intoClause = NULL; |
| 241 | |
| 242 | parseTree = (Node *) ctas; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | return transformStmt(pstate, parseTree); |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * transformStmt - |
| 251 | * recursively transform a Parse tree into a Query tree. |
| 252 | */ |
| 253 | Query * |
| 254 | transformStmt(ParseState *pstate, Node *parseTree) |
| 255 | { |
| 256 | Query *result; |
| 257 | |
| 258 | /* |
| 259 | * We apply RAW_EXPRESSION_COVERAGE_TEST testing to basic DML statements; |
| 260 | * we can't just run it on everything because raw_expression_tree_walker() |
| 261 | * doesn't claim to handle utility statements. |
| 262 | */ |
| 263 | #ifdef RAW_EXPRESSION_COVERAGE_TEST |
| 264 | switch (nodeTag(parseTree)) |
| 265 | { |
| 266 | case T_SelectStmt: |
| 267 | case T_InsertStmt: |
| 268 | case T_UpdateStmt: |
| 269 | case T_DeleteStmt: |
| 270 | (void) test_raw_expression_coverage(parseTree, NULL); |
| 271 | break; |
| 272 | default: |
| 273 | break; |
| 274 | } |
| 275 | #endif /* RAW_EXPRESSION_COVERAGE_TEST */ |
| 276 | |
| 277 | switch (nodeTag(parseTree)) |
| 278 | { |
| 279 | /* |
| 280 | * Optimizable statements |
| 281 | */ |
| 282 | case T_InsertStmt: |
| 283 | result = transformInsertStmt(pstate, (InsertStmt *) parseTree); |
| 284 | break; |
| 285 | |
| 286 | case T_DeleteStmt: |
| 287 | result = transformDeleteStmt(pstate, (DeleteStmt *) parseTree); |
| 288 | break; |
| 289 | |
| 290 | case T_UpdateStmt: |
| 291 | result = transformUpdateStmt(pstate, (UpdateStmt *) parseTree); |
| 292 | break; |
| 293 | |
| 294 | case T_SelectStmt: |
| 295 | { |
| 296 | SelectStmt *n = (SelectStmt *) parseTree; |
| 297 | |
| 298 | if (n->valuesLists) |
| 299 | result = transformValuesClause(pstate, n); |
| 300 | else if (n->op == SETOP_NONE) |
| 301 | result = transformSelectStmt(pstate, n); |
| 302 | else |
| 303 | result = transformSetOperationStmt(pstate, n); |
| 304 | } |
| 305 | break; |
| 306 | |
| 307 | /* |
| 308 | * Special cases |
| 309 | */ |
| 310 | case T_DeclareCursorStmt: |
| 311 | result = transformDeclareCursorStmt(pstate, |
| 312 | (DeclareCursorStmt *) parseTree); |
| 313 | break; |
| 314 | |
| 315 | case T_ExplainStmt: |
| 316 | result = transformExplainStmt(pstate, |
| 317 | (ExplainStmt *) parseTree); |
| 318 | break; |
| 319 | |
| 320 | case T_CreateTableAsStmt: |
| 321 | result = transformCreateTableAsStmt(pstate, |
| 322 | (CreateTableAsStmt *) parseTree); |
| 323 | break; |
| 324 | |
| 325 | case T_CallStmt: |
| 326 | result = transformCallStmt(pstate, |
| 327 | (CallStmt *) parseTree); |
| 328 | break; |
| 329 | |
| 330 | default: |
| 331 | |
| 332 | /* |
| 333 | * other statements don't require any transformation; just return |
| 334 | * the original parsetree with a Query node plastered on top. |
| 335 | */ |
| 336 | result = makeNode(Query); |
| 337 | result->commandType = CMD_UTILITY; |
| 338 | result->utilityStmt = (Node *) parseTree; |
| 339 | break; |
| 340 | } |
| 341 | |
| 342 | /* Mark as original query until we learn differently */ |
| 343 | result->querySource = QSRC_ORIGINAL; |
| 344 | result->canSetTag = true; |
| 345 | |
| 346 | return result; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * analyze_requires_snapshot |
| 351 | * Returns true if a snapshot must be set before doing parse analysis |
| 352 | * on the given raw parse tree. |
| 353 | * |
| 354 | * Classification here should match transformStmt(). |
| 355 | */ |
| 356 | bool |
| 357 | analyze_requires_snapshot(RawStmt *parseTree) |
| 358 | { |
| 359 | bool result; |
| 360 | |
| 361 | switch (nodeTag(parseTree->stmt)) |
| 362 | { |
| 363 | /* |
| 364 | * Optimizable statements |
| 365 | */ |
| 366 | case T_InsertStmt: |
| 367 | case T_DeleteStmt: |
| 368 | case T_UpdateStmt: |
| 369 | case T_SelectStmt: |
| 370 | result = true; |
| 371 | break; |
| 372 | |
| 373 | /* |
| 374 | * Special cases |
| 375 | */ |
| 376 | case T_DeclareCursorStmt: |
| 377 | case T_ExplainStmt: |
| 378 | case T_CreateTableAsStmt: |
| 379 | /* yes, because we must analyze the contained statement */ |
| 380 | result = true; |
| 381 | break; |
| 382 | |
| 383 | default: |
| 384 | /* other utility statements don't have any real parse analysis */ |
| 385 | result = false; |
| 386 | break; |
| 387 | } |
| 388 | |
| 389 | return result; |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * transformDeleteStmt - |
| 394 | * transforms a Delete Statement |
| 395 | */ |
| 396 | static Query * |
| 397 | transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt) |
| 398 | { |
| 399 | Query *qry = makeNode(Query); |
| 400 | ParseNamespaceItem *nsitem; |
| 401 | Node *qual; |
| 402 | |
| 403 | qry->commandType = CMD_DELETE; |
| 404 | |
| 405 | /* process the WITH clause independently of all else */ |
| 406 | if (stmt->withClause) |
| 407 | { |
| 408 | qry->hasRecursive = stmt->withClause->recursive; |
| 409 | qry->cteList = transformWithClause(pstate, stmt->withClause); |
| 410 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 411 | } |
| 412 | |
| 413 | /* set up range table with just the result rel */ |
| 414 | qry->resultRelation = setTargetTable(pstate, stmt->relation, |
| 415 | stmt->relation->inh, |
| 416 | true, |
| 417 | ACL_DELETE); |
| 418 | |
| 419 | /* grab the namespace item made by setTargetTable */ |
| 420 | nsitem = (ParseNamespaceItem *) llast(pstate->p_namespace); |
| 421 | |
| 422 | /* there's no DISTINCT in DELETE */ |
| 423 | qry->distinctClause = NIL; |
| 424 | |
| 425 | /* subqueries in USING cannot access the result relation */ |
| 426 | nsitem->p_lateral_only = true; |
| 427 | nsitem->p_lateral_ok = false; |
| 428 | |
| 429 | /* |
| 430 | * The USING clause is non-standard SQL syntax, and is equivalent in |
| 431 | * functionality to the FROM list that can be specified for UPDATE. The |
| 432 | * USING keyword is used rather than FROM because FROM is already a |
| 433 | * keyword in the DELETE syntax. |
| 434 | */ |
| 435 | transformFromClause(pstate, stmt->usingClause); |
| 436 | |
| 437 | /* remaining clauses can reference the result relation normally */ |
| 438 | nsitem->p_lateral_only = false; |
| 439 | nsitem->p_lateral_ok = true; |
| 440 | |
| 441 | qual = transformWhereClause(pstate, stmt->whereClause, |
| 442 | EXPR_KIND_WHERE, "WHERE" ); |
| 443 | |
| 444 | qry->returningList = transformReturningList(pstate, stmt->returningList); |
| 445 | |
| 446 | /* done building the range table and jointree */ |
| 447 | qry->rtable = pstate->p_rtable; |
| 448 | qry->jointree = makeFromExpr(pstate->p_joinlist, qual); |
| 449 | |
| 450 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 451 | qry->hasWindowFuncs = pstate->p_hasWindowFuncs; |
| 452 | qry->hasTargetSRFs = pstate->p_hasTargetSRFs; |
| 453 | qry->hasAggs = pstate->p_hasAggs; |
| 454 | |
| 455 | assign_query_collations(pstate, qry); |
| 456 | |
| 457 | /* this must be done after collations, for reliable comparison of exprs */ |
| 458 | if (pstate->p_hasAggs) |
| 459 | parseCheckAggregates(pstate, qry); |
| 460 | |
| 461 | return qry; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * transformInsertStmt - |
| 466 | * transform an Insert Statement |
| 467 | */ |
| 468 | static Query * |
| 469 | transformInsertStmt(ParseState *pstate, InsertStmt *stmt) |
| 470 | { |
| 471 | Query *qry = makeNode(Query); |
| 472 | SelectStmt *selectStmt = (SelectStmt *) stmt->selectStmt; |
| 473 | List *exprList = NIL; |
| 474 | bool isGeneralSelect; |
| 475 | List *sub_rtable; |
| 476 | List *sub_namespace; |
| 477 | List *icolumns; |
| 478 | List *attrnos; |
| 479 | RangeTblEntry *rte; |
| 480 | RangeTblRef *rtr; |
| 481 | ListCell *icols; |
| 482 | ListCell *attnos; |
| 483 | ListCell *lc; |
| 484 | bool isOnConflictUpdate; |
| 485 | AclMode targetPerms; |
| 486 | |
| 487 | /* There can't be any outer WITH to worry about */ |
| 488 | Assert(pstate->p_ctenamespace == NIL); |
| 489 | |
| 490 | qry->commandType = CMD_INSERT; |
| 491 | pstate->p_is_insert = true; |
| 492 | |
| 493 | /* process the WITH clause independently of all else */ |
| 494 | if (stmt->withClause) |
| 495 | { |
| 496 | qry->hasRecursive = stmt->withClause->recursive; |
| 497 | qry->cteList = transformWithClause(pstate, stmt->withClause); |
| 498 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 499 | } |
| 500 | |
| 501 | qry->override = stmt->override; |
| 502 | |
| 503 | isOnConflictUpdate = (stmt->onConflictClause && |
| 504 | stmt->onConflictClause->action == ONCONFLICT_UPDATE); |
| 505 | |
| 506 | /* |
| 507 | * We have three cases to deal with: DEFAULT VALUES (selectStmt == NULL), |
| 508 | * VALUES list, or general SELECT input. We special-case VALUES, both for |
| 509 | * efficiency and so we can handle DEFAULT specifications. |
| 510 | * |
| 511 | * The grammar allows attaching ORDER BY, LIMIT, FOR UPDATE, or WITH to a |
| 512 | * VALUES clause. If we have any of those, treat it as a general SELECT; |
| 513 | * so it will work, but you can't use DEFAULT items together with those. |
| 514 | */ |
| 515 | isGeneralSelect = (selectStmt && (selectStmt->valuesLists == NIL || |
| 516 | selectStmt->sortClause != NIL || |
| 517 | selectStmt->limitOffset != NULL || |
| 518 | selectStmt->limitCount != NULL || |
| 519 | selectStmt->lockingClause != NIL || |
| 520 | selectStmt->withClause != NULL)); |
| 521 | |
| 522 | /* |
| 523 | * If a non-nil rangetable/namespace was passed in, and we are doing |
| 524 | * INSERT/SELECT, arrange to pass the rangetable/namespace down to the |
| 525 | * SELECT. This can only happen if we are inside a CREATE RULE, and in |
| 526 | * that case we want the rule's OLD and NEW rtable entries to appear as |
| 527 | * part of the SELECT's rtable, not as outer references for it. (Kluge!) |
| 528 | * The SELECT's joinlist is not affected however. We must do this before |
| 529 | * adding the target table to the INSERT's rtable. |
| 530 | */ |
| 531 | if (isGeneralSelect) |
| 532 | { |
| 533 | sub_rtable = pstate->p_rtable; |
| 534 | pstate->p_rtable = NIL; |
| 535 | sub_namespace = pstate->p_namespace; |
| 536 | pstate->p_namespace = NIL; |
| 537 | } |
| 538 | else |
| 539 | { |
| 540 | sub_rtable = NIL; /* not used, but keep compiler quiet */ |
| 541 | sub_namespace = NIL; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Must get write lock on INSERT target table before scanning SELECT, else |
| 546 | * we will grab the wrong kind of initial lock if the target table is also |
| 547 | * mentioned in the SELECT part. Note that the target table is not added |
| 548 | * to the joinlist or namespace. |
| 549 | */ |
| 550 | targetPerms = ACL_INSERT; |
| 551 | if (isOnConflictUpdate) |
| 552 | targetPerms |= ACL_UPDATE; |
| 553 | qry->resultRelation = setTargetTable(pstate, stmt->relation, |
| 554 | false, false, targetPerms); |
| 555 | |
| 556 | /* Validate stmt->cols list, or build default list if no list given */ |
| 557 | icolumns = checkInsertTargets(pstate, stmt->cols, &attrnos); |
| 558 | Assert(list_length(icolumns) == list_length(attrnos)); |
| 559 | |
| 560 | /* |
| 561 | * Determine which variant of INSERT we have. |
| 562 | */ |
| 563 | if (selectStmt == NULL) |
| 564 | { |
| 565 | /* |
| 566 | * We have INSERT ... DEFAULT VALUES. We can handle this case by |
| 567 | * emitting an empty targetlist --- all columns will be defaulted when |
| 568 | * the planner expands the targetlist. |
| 569 | */ |
| 570 | exprList = NIL; |
| 571 | } |
| 572 | else if (isGeneralSelect) |
| 573 | { |
| 574 | /* |
| 575 | * We make the sub-pstate a child of the outer pstate so that it can |
| 576 | * see any Param definitions supplied from above. Since the outer |
| 577 | * pstate's rtable and namespace are presently empty, there are no |
| 578 | * side-effects of exposing names the sub-SELECT shouldn't be able to |
| 579 | * see. |
| 580 | */ |
| 581 | ParseState *sub_pstate = make_parsestate(pstate); |
| 582 | Query *selectQuery; |
| 583 | |
| 584 | /* |
| 585 | * Process the source SELECT. |
| 586 | * |
| 587 | * It is important that this be handled just like a standalone SELECT; |
| 588 | * otherwise the behavior of SELECT within INSERT might be different |
| 589 | * from a stand-alone SELECT. (Indeed, Postgres up through 6.5 had |
| 590 | * bugs of just that nature...) |
| 591 | * |
| 592 | * The sole exception is that we prevent resolving unknown-type |
| 593 | * outputs as TEXT. This does not change the semantics since if the |
| 594 | * column type matters semantically, it would have been resolved to |
| 595 | * something else anyway. Doing this lets us resolve such outputs as |
| 596 | * the target column's type, which we handle below. |
| 597 | */ |
| 598 | sub_pstate->p_rtable = sub_rtable; |
| 599 | sub_pstate->p_joinexprs = NIL; /* sub_rtable has no joins */ |
| 600 | sub_pstate->p_namespace = sub_namespace; |
| 601 | sub_pstate->p_resolve_unknowns = false; |
| 602 | |
| 603 | selectQuery = transformStmt(sub_pstate, stmt->selectStmt); |
| 604 | |
| 605 | free_parsestate(sub_pstate); |
| 606 | |
| 607 | /* The grammar should have produced a SELECT */ |
| 608 | if (!IsA(selectQuery, Query) || |
| 609 | selectQuery->commandType != CMD_SELECT) |
| 610 | elog(ERROR, "unexpected non-SELECT command in INSERT ... SELECT" ); |
| 611 | |
| 612 | /* |
| 613 | * Make the source be a subquery in the INSERT's rangetable, and add |
| 614 | * it to the INSERT's joinlist. |
| 615 | */ |
| 616 | rte = addRangeTableEntryForSubquery(pstate, |
| 617 | selectQuery, |
| 618 | makeAlias("*SELECT*" , NIL), |
| 619 | false, |
| 620 | false); |
| 621 | rtr = makeNode(RangeTblRef); |
| 622 | /* assume new rte is at end */ |
| 623 | rtr->rtindex = list_length(pstate->p_rtable); |
| 624 | Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable)); |
| 625 | pstate->p_joinlist = lappend(pstate->p_joinlist, rtr); |
| 626 | |
| 627 | /*---------- |
| 628 | * Generate an expression list for the INSERT that selects all the |
| 629 | * non-resjunk columns from the subquery. (INSERT's tlist must be |
| 630 | * separate from the subquery's tlist because we may add columns, |
| 631 | * insert datatype coercions, etc.) |
| 632 | * |
| 633 | * HACK: unknown-type constants and params in the SELECT's targetlist |
| 634 | * are copied up as-is rather than being referenced as subquery |
| 635 | * outputs. This is to ensure that when we try to coerce them to |
| 636 | * the target column's datatype, the right things happen (see |
| 637 | * special cases in coerce_type). Otherwise, this fails: |
| 638 | * INSERT INTO foo SELECT 'bar', ... FROM baz |
| 639 | *---------- |
| 640 | */ |
| 641 | exprList = NIL; |
| 642 | foreach(lc, selectQuery->targetList) |
| 643 | { |
| 644 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
| 645 | Expr *expr; |
| 646 | |
| 647 | if (tle->resjunk) |
| 648 | continue; |
| 649 | if (tle->expr && |
| 650 | (IsA(tle->expr, Const) ||IsA(tle->expr, Param)) && |
| 651 | exprType((Node *) tle->expr) == UNKNOWNOID) |
| 652 | expr = tle->expr; |
| 653 | else |
| 654 | { |
| 655 | Var *var = makeVarFromTargetEntry(rtr->rtindex, tle); |
| 656 | |
| 657 | var->location = exprLocation((Node *) tle->expr); |
| 658 | expr = (Expr *) var; |
| 659 | } |
| 660 | exprList = lappend(exprList, expr); |
| 661 | } |
| 662 | |
| 663 | /* Prepare row for assignment to target table */ |
| 664 | exprList = transformInsertRow(pstate, exprList, |
| 665 | stmt->cols, |
| 666 | icolumns, attrnos, |
| 667 | false); |
| 668 | } |
| 669 | else if (list_length(selectStmt->valuesLists) > 1) |
| 670 | { |
| 671 | /* |
| 672 | * Process INSERT ... VALUES with multiple VALUES sublists. We |
| 673 | * generate a VALUES RTE holding the transformed expression lists, and |
| 674 | * build up a targetlist containing Vars that reference the VALUES |
| 675 | * RTE. |
| 676 | */ |
| 677 | List *exprsLists = NIL; |
| 678 | List *coltypes = NIL; |
| 679 | List *coltypmods = NIL; |
| 680 | List *colcollations = NIL; |
| 681 | int sublist_length = -1; |
| 682 | bool lateral = false; |
| 683 | |
| 684 | Assert(selectStmt->intoClause == NULL); |
| 685 | |
| 686 | foreach(lc, selectStmt->valuesLists) |
| 687 | { |
| 688 | List *sublist = (List *) lfirst(lc); |
| 689 | |
| 690 | /* |
| 691 | * Do basic expression transformation (same as a ROW() expr, but |
| 692 | * allow SetToDefault at top level) |
| 693 | */ |
| 694 | sublist = transformExpressionList(pstate, sublist, |
| 695 | EXPR_KIND_VALUES, true); |
| 696 | |
| 697 | /* |
| 698 | * All the sublists must be the same length, *after* |
| 699 | * transformation (which might expand '*' into multiple items). |
| 700 | * The VALUES RTE can't handle anything different. |
| 701 | */ |
| 702 | if (sublist_length < 0) |
| 703 | { |
| 704 | /* Remember post-transformation length of first sublist */ |
| 705 | sublist_length = list_length(sublist); |
| 706 | } |
| 707 | else if (sublist_length != list_length(sublist)) |
| 708 | { |
| 709 | ereport(ERROR, |
| 710 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 711 | errmsg("VALUES lists must all be the same length" ), |
| 712 | parser_errposition(pstate, |
| 713 | exprLocation((Node *) sublist)))); |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * Prepare row for assignment to target table. We process any |
| 718 | * indirection on the target column specs normally but then strip |
| 719 | * off the resulting field/array assignment nodes, since we don't |
| 720 | * want the parsed statement to contain copies of those in each |
| 721 | * VALUES row. (It's annoying to have to transform the |
| 722 | * indirection specs over and over like this, but avoiding it |
| 723 | * would take some really messy refactoring of |
| 724 | * transformAssignmentIndirection.) |
| 725 | */ |
| 726 | sublist = transformInsertRow(pstate, sublist, |
| 727 | stmt->cols, |
| 728 | icolumns, attrnos, |
| 729 | true); |
| 730 | |
| 731 | /* |
| 732 | * We must assign collations now because assign_query_collations |
| 733 | * doesn't process rangetable entries. We just assign all the |
| 734 | * collations independently in each row, and don't worry about |
| 735 | * whether they are consistent vertically. The outer INSERT query |
| 736 | * isn't going to care about the collations of the VALUES columns, |
| 737 | * so it's not worth the effort to identify a common collation for |
| 738 | * each one here. (But note this does have one user-visible |
| 739 | * consequence: INSERT ... VALUES won't complain about conflicting |
| 740 | * explicit COLLATEs in a column, whereas the same VALUES |
| 741 | * construct in another context would complain.) |
| 742 | */ |
| 743 | assign_list_collations(pstate, sublist); |
| 744 | |
| 745 | exprsLists = lappend(exprsLists, sublist); |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Construct column type/typmod/collation lists for the VALUES RTE. |
| 750 | * Every expression in each column has been coerced to the type/typmod |
| 751 | * of the corresponding target column or subfield, so it's sufficient |
| 752 | * to look at the exprType/exprTypmod of the first row. We don't care |
| 753 | * about the collation labeling, so just fill in InvalidOid for that. |
| 754 | */ |
| 755 | foreach(lc, (List *) linitial(exprsLists)) |
| 756 | { |
| 757 | Node *val = (Node *) lfirst(lc); |
| 758 | |
| 759 | coltypes = lappend_oid(coltypes, exprType(val)); |
| 760 | coltypmods = lappend_int(coltypmods, exprTypmod(val)); |
| 761 | colcollations = lappend_oid(colcollations, InvalidOid); |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Ordinarily there can't be any current-level Vars in the expression |
| 766 | * lists, because the namespace was empty ... but if we're inside |
| 767 | * CREATE RULE, then NEW/OLD references might appear. In that case we |
| 768 | * have to mark the VALUES RTE as LATERAL. |
| 769 | */ |
| 770 | if (list_length(pstate->p_rtable) != 1 && |
| 771 | contain_vars_of_level((Node *) exprsLists, 0)) |
| 772 | lateral = true; |
| 773 | |
| 774 | /* |
| 775 | * Generate the VALUES RTE |
| 776 | */ |
| 777 | rte = addRangeTableEntryForValues(pstate, exprsLists, |
| 778 | coltypes, coltypmods, colcollations, |
| 779 | NULL, lateral, true); |
| 780 | rtr = makeNode(RangeTblRef); |
| 781 | /* assume new rte is at end */ |
| 782 | rtr->rtindex = list_length(pstate->p_rtable); |
| 783 | Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable)); |
| 784 | pstate->p_joinlist = lappend(pstate->p_joinlist, rtr); |
| 785 | |
| 786 | /* |
| 787 | * Generate list of Vars referencing the RTE |
| 788 | */ |
| 789 | expandRTE(rte, rtr->rtindex, 0, -1, false, NULL, &exprList); |
| 790 | |
| 791 | /* |
| 792 | * Re-apply any indirection on the target column specs to the Vars |
| 793 | */ |
| 794 | exprList = transformInsertRow(pstate, exprList, |
| 795 | stmt->cols, |
| 796 | icolumns, attrnos, |
| 797 | false); |
| 798 | } |
| 799 | else |
| 800 | { |
| 801 | /* |
| 802 | * Process INSERT ... VALUES with a single VALUES sublist. We treat |
| 803 | * this case separately for efficiency. The sublist is just computed |
| 804 | * directly as the Query's targetlist, with no VALUES RTE. So it |
| 805 | * works just like a SELECT without any FROM. |
| 806 | */ |
| 807 | List *valuesLists = selectStmt->valuesLists; |
| 808 | |
| 809 | Assert(list_length(valuesLists) == 1); |
| 810 | Assert(selectStmt->intoClause == NULL); |
| 811 | |
| 812 | /* |
| 813 | * Do basic expression transformation (same as a ROW() expr, but allow |
| 814 | * SetToDefault at top level) |
| 815 | */ |
| 816 | exprList = transformExpressionList(pstate, |
| 817 | (List *) linitial(valuesLists), |
| 818 | EXPR_KIND_VALUES_SINGLE, |
| 819 | true); |
| 820 | |
| 821 | /* Prepare row for assignment to target table */ |
| 822 | exprList = transformInsertRow(pstate, exprList, |
| 823 | stmt->cols, |
| 824 | icolumns, attrnos, |
| 825 | false); |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * Generate query's target list using the computed list of expressions. |
| 830 | * Also, mark all the target columns as needing insert permissions. |
| 831 | */ |
| 832 | rte = pstate->p_target_rangetblentry; |
| 833 | qry->targetList = NIL; |
| 834 | Assert(list_length(exprList) <= list_length(icolumns)); |
| 835 | forthree(lc, exprList, icols, icolumns, attnos, attrnos) |
| 836 | { |
| 837 | Expr *expr = (Expr *) lfirst(lc); |
| 838 | ResTarget *col = lfirst_node(ResTarget, icols); |
| 839 | AttrNumber attr_num = (AttrNumber) lfirst_int(attnos); |
| 840 | TargetEntry *tle; |
| 841 | |
| 842 | tle = makeTargetEntry(expr, |
| 843 | attr_num, |
| 844 | col->name, |
| 845 | false); |
| 846 | qry->targetList = lappend(qry->targetList, tle); |
| 847 | |
| 848 | rte->insertedCols = bms_add_member(rte->insertedCols, |
| 849 | attr_num - FirstLowInvalidHeapAttributeNumber); |
| 850 | } |
| 851 | |
| 852 | /* Process ON CONFLICT, if any. */ |
| 853 | if (stmt->onConflictClause) |
| 854 | qry->onConflict = transformOnConflictClause(pstate, |
| 855 | stmt->onConflictClause); |
| 856 | |
| 857 | /* |
| 858 | * If we have a RETURNING clause, we need to add the target relation to |
| 859 | * the query namespace before processing it, so that Var references in |
| 860 | * RETURNING will work. Also, remove any namespace entries added in a |
| 861 | * sub-SELECT or VALUES list. |
| 862 | */ |
| 863 | if (stmt->returningList) |
| 864 | { |
| 865 | pstate->p_namespace = NIL; |
| 866 | addRTEtoQuery(pstate, pstate->p_target_rangetblentry, |
| 867 | false, true, true); |
| 868 | qry->returningList = transformReturningList(pstate, |
| 869 | stmt->returningList); |
| 870 | } |
| 871 | |
| 872 | /* done building the range table and jointree */ |
| 873 | qry->rtable = pstate->p_rtable; |
| 874 | qry->jointree = makeFromExpr(pstate->p_joinlist, NULL); |
| 875 | |
| 876 | qry->hasTargetSRFs = pstate->p_hasTargetSRFs; |
| 877 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 878 | |
| 879 | assign_query_collations(pstate, qry); |
| 880 | |
| 881 | return qry; |
| 882 | } |
| 883 | |
| 884 | /* |
| 885 | * Prepare an INSERT row for assignment to the target table. |
| 886 | * |
| 887 | * exprlist: transformed expressions for source values; these might come from |
| 888 | * a VALUES row, or be Vars referencing a sub-SELECT or VALUES RTE output. |
| 889 | * stmtcols: original target-columns spec for INSERT (we just test for NIL) |
| 890 | * icolumns: effective target-columns spec (list of ResTarget) |
| 891 | * attrnos: integer column numbers (must be same length as icolumns) |
| 892 | * strip_indirection: if true, remove any field/array assignment nodes |
| 893 | */ |
| 894 | static List * |
| 895 | transformInsertRow(ParseState *pstate, List *exprlist, |
| 896 | List *stmtcols, List *icolumns, List *attrnos, |
| 897 | bool strip_indirection) |
| 898 | { |
| 899 | List *result; |
| 900 | ListCell *lc; |
| 901 | ListCell *icols; |
| 902 | ListCell *attnos; |
| 903 | |
| 904 | /* |
| 905 | * Check length of expr list. It must not have more expressions than |
| 906 | * there are target columns. We allow fewer, but only if no explicit |
| 907 | * columns list was given (the remaining columns are implicitly |
| 908 | * defaulted). Note we must check this *after* transformation because |
| 909 | * that could expand '*' into multiple items. |
| 910 | */ |
| 911 | if (list_length(exprlist) > list_length(icolumns)) |
| 912 | ereport(ERROR, |
| 913 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 914 | errmsg("INSERT has more expressions than target columns" ), |
| 915 | parser_errposition(pstate, |
| 916 | exprLocation(list_nth(exprlist, |
| 917 | list_length(icolumns)))))); |
| 918 | if (stmtcols != NIL && |
| 919 | list_length(exprlist) < list_length(icolumns)) |
| 920 | { |
| 921 | /* |
| 922 | * We can get here for cases like INSERT ... SELECT (a,b,c) FROM ... |
| 923 | * where the user accidentally created a RowExpr instead of separate |
| 924 | * columns. Add a suitable hint if that seems to be the problem, |
| 925 | * because the main error message is quite misleading for this case. |
| 926 | * (If there's no stmtcols, you'll get something about data type |
| 927 | * mismatch, which is less misleading so we don't worry about giving a |
| 928 | * hint in that case.) |
| 929 | */ |
| 930 | ereport(ERROR, |
| 931 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 932 | errmsg("INSERT has more target columns than expressions" ), |
| 933 | ((list_length(exprlist) == 1 && |
| 934 | count_rowexpr_columns(pstate, linitial(exprlist)) == |
| 935 | list_length(icolumns)) ? |
| 936 | errhint("The insertion source is a row expression containing the same number of columns expected by the INSERT. Did you accidentally use extra parentheses?" ) : 0), |
| 937 | parser_errposition(pstate, |
| 938 | exprLocation(list_nth(icolumns, |
| 939 | list_length(exprlist)))))); |
| 940 | } |
| 941 | |
| 942 | /* |
| 943 | * Prepare columns for assignment to target table. |
| 944 | */ |
| 945 | result = NIL; |
| 946 | forthree(lc, exprlist, icols, icolumns, attnos, attrnos) |
| 947 | { |
| 948 | Expr *expr = (Expr *) lfirst(lc); |
| 949 | ResTarget *col = lfirst_node(ResTarget, icols); |
| 950 | int attno = lfirst_int(attnos); |
| 951 | |
| 952 | expr = transformAssignedExpr(pstate, expr, |
| 953 | EXPR_KIND_INSERT_TARGET, |
| 954 | col->name, |
| 955 | attno, |
| 956 | col->indirection, |
| 957 | col->location); |
| 958 | |
| 959 | if (strip_indirection) |
| 960 | { |
| 961 | while (expr) |
| 962 | { |
| 963 | if (IsA(expr, FieldStore)) |
| 964 | { |
| 965 | FieldStore *fstore = (FieldStore *) expr; |
| 966 | |
| 967 | expr = (Expr *) linitial(fstore->newvals); |
| 968 | } |
| 969 | else if (IsA(expr, SubscriptingRef)) |
| 970 | { |
| 971 | SubscriptingRef *sbsref = (SubscriptingRef *) expr; |
| 972 | |
| 973 | if (sbsref->refassgnexpr == NULL) |
| 974 | break; |
| 975 | |
| 976 | expr = sbsref->refassgnexpr; |
| 977 | } |
| 978 | else |
| 979 | break; |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | result = lappend(result, expr); |
| 984 | } |
| 985 | |
| 986 | return result; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * transformOnConflictClause - |
| 991 | * transforms an OnConflictClause in an INSERT |
| 992 | */ |
| 993 | static OnConflictExpr * |
| 994 | transformOnConflictClause(ParseState *pstate, |
| 995 | OnConflictClause *onConflictClause) |
| 996 | { |
| 997 | List *arbiterElems; |
| 998 | Node *arbiterWhere; |
| 999 | Oid arbiterConstraint; |
| 1000 | List *onConflictSet = NIL; |
| 1001 | Node *onConflictWhere = NULL; |
| 1002 | RangeTblEntry *exclRte = NULL; |
| 1003 | int exclRelIndex = 0; |
| 1004 | List *exclRelTlist = NIL; |
| 1005 | OnConflictExpr *result; |
| 1006 | |
| 1007 | /* Process the arbiter clause, ON CONFLICT ON (...) */ |
| 1008 | transformOnConflictArbiter(pstate, onConflictClause, &arbiterElems, |
| 1009 | &arbiterWhere, &arbiterConstraint); |
| 1010 | |
| 1011 | /* Process DO UPDATE */ |
| 1012 | if (onConflictClause->action == ONCONFLICT_UPDATE) |
| 1013 | { |
| 1014 | Relation targetrel = pstate->p_target_relation; |
| 1015 | |
| 1016 | /* |
| 1017 | * All INSERT expressions have been parsed, get ready for potentially |
| 1018 | * existing SET statements that need to be processed like an UPDATE. |
| 1019 | */ |
| 1020 | pstate->p_is_insert = false; |
| 1021 | |
| 1022 | /* |
| 1023 | * Add range table entry for the EXCLUDED pseudo relation. relkind is |
| 1024 | * set to composite to signal that we're not dealing with an actual |
| 1025 | * relation, and no permission checks are required on it. (We'll |
| 1026 | * check the actual target relation, instead.) |
| 1027 | */ |
| 1028 | exclRte = addRangeTableEntryForRelation(pstate, |
| 1029 | targetrel, |
| 1030 | RowExclusiveLock, |
| 1031 | makeAlias("excluded" , NIL), |
| 1032 | false, false); |
| 1033 | exclRte->relkind = RELKIND_COMPOSITE_TYPE; |
| 1034 | exclRte->requiredPerms = 0; |
| 1035 | /* other permissions fields in exclRte are already empty */ |
| 1036 | |
| 1037 | exclRelIndex = list_length(pstate->p_rtable); |
| 1038 | |
| 1039 | /* Create EXCLUDED rel's targetlist for use by EXPLAIN */ |
| 1040 | exclRelTlist = BuildOnConflictExcludedTargetlist(targetrel, |
| 1041 | exclRelIndex); |
| 1042 | |
| 1043 | /* |
| 1044 | * Add EXCLUDED and the target RTE to the namespace, so that they can |
| 1045 | * be used in the UPDATE subexpressions. |
| 1046 | */ |
| 1047 | addRTEtoQuery(pstate, exclRte, false, true, true); |
| 1048 | addRTEtoQuery(pstate, pstate->p_target_rangetblentry, |
| 1049 | false, true, true); |
| 1050 | |
| 1051 | /* |
| 1052 | * Now transform the UPDATE subexpressions. |
| 1053 | */ |
| 1054 | onConflictSet = |
| 1055 | transformUpdateTargetList(pstate, onConflictClause->targetList); |
| 1056 | |
| 1057 | onConflictWhere = transformWhereClause(pstate, |
| 1058 | onConflictClause->whereClause, |
| 1059 | EXPR_KIND_WHERE, "WHERE" ); |
| 1060 | } |
| 1061 | |
| 1062 | /* Finally, build ON CONFLICT DO [NOTHING | UPDATE] expression */ |
| 1063 | result = makeNode(OnConflictExpr); |
| 1064 | |
| 1065 | result->action = onConflictClause->action; |
| 1066 | result->arbiterElems = arbiterElems; |
| 1067 | result->arbiterWhere = arbiterWhere; |
| 1068 | result->constraint = arbiterConstraint; |
| 1069 | result->onConflictSet = onConflictSet; |
| 1070 | result->onConflictWhere = onConflictWhere; |
| 1071 | result->exclRelIndex = exclRelIndex; |
| 1072 | result->exclRelTlist = exclRelTlist; |
| 1073 | |
| 1074 | return result; |
| 1075 | } |
| 1076 | |
| 1077 | |
| 1078 | /* |
| 1079 | * BuildOnConflictExcludedTargetlist |
| 1080 | * Create target list for the EXCLUDED pseudo-relation of ON CONFLICT, |
| 1081 | * representing the columns of targetrel with varno exclRelIndex. |
| 1082 | * |
| 1083 | * Note: Exported for use in the rewriter. |
| 1084 | */ |
| 1085 | List * |
| 1086 | BuildOnConflictExcludedTargetlist(Relation targetrel, |
| 1087 | Index exclRelIndex) |
| 1088 | { |
| 1089 | List *result = NIL; |
| 1090 | int attno; |
| 1091 | Var *var; |
| 1092 | TargetEntry *te; |
| 1093 | |
| 1094 | /* |
| 1095 | * Note that resnos of the tlist must correspond to attnos of the |
| 1096 | * underlying relation, hence we need entries for dropped columns too. |
| 1097 | */ |
| 1098 | for (attno = 0; attno < RelationGetNumberOfAttributes(targetrel); attno++) |
| 1099 | { |
| 1100 | Form_pg_attribute attr = TupleDescAttr(targetrel->rd_att, attno); |
| 1101 | char *name; |
| 1102 | |
| 1103 | if (attr->attisdropped) |
| 1104 | { |
| 1105 | /* |
| 1106 | * can't use atttypid here, but it doesn't really matter what type |
| 1107 | * the Const claims to be. |
| 1108 | */ |
| 1109 | var = (Var *) makeNullConst(INT4OID, -1, InvalidOid); |
| 1110 | name = NULL; |
| 1111 | } |
| 1112 | else |
| 1113 | { |
| 1114 | var = makeVar(exclRelIndex, attno + 1, |
| 1115 | attr->atttypid, attr->atttypmod, |
| 1116 | attr->attcollation, |
| 1117 | 0); |
| 1118 | name = pstrdup(NameStr(attr->attname)); |
| 1119 | } |
| 1120 | |
| 1121 | te = makeTargetEntry((Expr *) var, |
| 1122 | attno + 1, |
| 1123 | name, |
| 1124 | false); |
| 1125 | |
| 1126 | result = lappend(result, te); |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * Add a whole-row-Var entry to support references to "EXCLUDED.*". Like |
| 1131 | * the other entries in the EXCLUDED tlist, its resno must match the Var's |
| 1132 | * varattno, else the wrong things happen while resolving references in |
| 1133 | * setrefs.c. This is against normal conventions for targetlists, but |
| 1134 | * it's okay since we don't use this as a real tlist. |
| 1135 | */ |
| 1136 | var = makeVar(exclRelIndex, InvalidAttrNumber, |
| 1137 | targetrel->rd_rel->reltype, |
| 1138 | -1, InvalidOid, 0); |
| 1139 | te = makeTargetEntry((Expr *) var, InvalidAttrNumber, NULL, true); |
| 1140 | result = lappend(result, te); |
| 1141 | |
| 1142 | return result; |
| 1143 | } |
| 1144 | |
| 1145 | |
| 1146 | /* |
| 1147 | * count_rowexpr_columns - |
| 1148 | * get number of columns contained in a ROW() expression; |
| 1149 | * return -1 if expression isn't a RowExpr or a Var referencing one. |
| 1150 | * |
| 1151 | * This is currently used only for hint purposes, so we aren't terribly |
| 1152 | * tense about recognizing all possible cases. The Var case is interesting |
| 1153 | * because that's what we'll get in the INSERT ... SELECT (...) case. |
| 1154 | */ |
| 1155 | static int |
| 1156 | count_rowexpr_columns(ParseState *pstate, Node *expr) |
| 1157 | { |
| 1158 | if (expr == NULL) |
| 1159 | return -1; |
| 1160 | if (IsA(expr, RowExpr)) |
| 1161 | return list_length(((RowExpr *) expr)->args); |
| 1162 | if (IsA(expr, Var)) |
| 1163 | { |
| 1164 | Var *var = (Var *) expr; |
| 1165 | AttrNumber attnum = var->varattno; |
| 1166 | |
| 1167 | if (attnum > 0 && var->vartype == RECORDOID) |
| 1168 | { |
| 1169 | RangeTblEntry *rte; |
| 1170 | |
| 1171 | rte = GetRTEByRangeTablePosn(pstate, var->varno, var->varlevelsup); |
| 1172 | if (rte->rtekind == RTE_SUBQUERY) |
| 1173 | { |
| 1174 | /* Subselect-in-FROM: examine sub-select's output expr */ |
| 1175 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
| 1176 | attnum); |
| 1177 | |
| 1178 | if (ste == NULL || ste->resjunk) |
| 1179 | return -1; |
| 1180 | expr = (Node *) ste->expr; |
| 1181 | if (IsA(expr, RowExpr)) |
| 1182 | return list_length(((RowExpr *) expr)->args); |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | return -1; |
| 1187 | } |
| 1188 | |
| 1189 | |
| 1190 | /* |
| 1191 | * transformSelectStmt - |
| 1192 | * transforms a Select Statement |
| 1193 | * |
| 1194 | * Note: this covers only cases with no set operations and no VALUES lists; |
| 1195 | * see below for the other cases. |
| 1196 | */ |
| 1197 | static Query * |
| 1198 | transformSelectStmt(ParseState *pstate, SelectStmt *stmt) |
| 1199 | { |
| 1200 | Query *qry = makeNode(Query); |
| 1201 | Node *qual; |
| 1202 | ListCell *l; |
| 1203 | |
| 1204 | qry->commandType = CMD_SELECT; |
| 1205 | |
| 1206 | /* process the WITH clause independently of all else */ |
| 1207 | if (stmt->withClause) |
| 1208 | { |
| 1209 | qry->hasRecursive = stmt->withClause->recursive; |
| 1210 | qry->cteList = transformWithClause(pstate, stmt->withClause); |
| 1211 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 1212 | } |
| 1213 | |
| 1214 | /* Complain if we get called from someplace where INTO is not allowed */ |
| 1215 | if (stmt->intoClause) |
| 1216 | ereport(ERROR, |
| 1217 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1218 | errmsg("SELECT ... INTO is not allowed here" ), |
| 1219 | parser_errposition(pstate, |
| 1220 | exprLocation((Node *) stmt->intoClause)))); |
| 1221 | |
| 1222 | /* make FOR UPDATE/FOR SHARE info available to addRangeTableEntry */ |
| 1223 | pstate->p_locking_clause = stmt->lockingClause; |
| 1224 | |
| 1225 | /* make WINDOW info available for window functions, too */ |
| 1226 | pstate->p_windowdefs = stmt->windowClause; |
| 1227 | |
| 1228 | /* process the FROM clause */ |
| 1229 | transformFromClause(pstate, stmt->fromClause); |
| 1230 | |
| 1231 | /* transform targetlist */ |
| 1232 | qry->targetList = transformTargetList(pstate, stmt->targetList, |
| 1233 | EXPR_KIND_SELECT_TARGET); |
| 1234 | |
| 1235 | /* mark column origins */ |
| 1236 | markTargetListOrigins(pstate, qry->targetList); |
| 1237 | |
| 1238 | /* transform WHERE */ |
| 1239 | qual = transformWhereClause(pstate, stmt->whereClause, |
| 1240 | EXPR_KIND_WHERE, "WHERE" ); |
| 1241 | |
| 1242 | /* initial processing of HAVING clause is much like WHERE clause */ |
| 1243 | qry->havingQual = transformWhereClause(pstate, stmt->havingClause, |
| 1244 | EXPR_KIND_HAVING, "HAVING" ); |
| 1245 | |
| 1246 | /* |
| 1247 | * Transform sorting/grouping stuff. Do ORDER BY first because both |
| 1248 | * transformGroupClause and transformDistinctClause need the results. Note |
| 1249 | * that these functions can also change the targetList, so it's passed to |
| 1250 | * them by reference. |
| 1251 | */ |
| 1252 | qry->sortClause = transformSortClause(pstate, |
| 1253 | stmt->sortClause, |
| 1254 | &qry->targetList, |
| 1255 | EXPR_KIND_ORDER_BY, |
| 1256 | false /* allow SQL92 rules */ ); |
| 1257 | |
| 1258 | qry->groupClause = transformGroupClause(pstate, |
| 1259 | stmt->groupClause, |
| 1260 | &qry->groupingSets, |
| 1261 | &qry->targetList, |
| 1262 | qry->sortClause, |
| 1263 | EXPR_KIND_GROUP_BY, |
| 1264 | false /* allow SQL92 rules */ ); |
| 1265 | |
| 1266 | if (stmt->distinctClause == NIL) |
| 1267 | { |
| 1268 | qry->distinctClause = NIL; |
| 1269 | qry->hasDistinctOn = false; |
| 1270 | } |
| 1271 | else if (linitial(stmt->distinctClause) == NULL) |
| 1272 | { |
| 1273 | /* We had SELECT DISTINCT */ |
| 1274 | qry->distinctClause = transformDistinctClause(pstate, |
| 1275 | &qry->targetList, |
| 1276 | qry->sortClause, |
| 1277 | false); |
| 1278 | qry->hasDistinctOn = false; |
| 1279 | } |
| 1280 | else |
| 1281 | { |
| 1282 | /* We had SELECT DISTINCT ON */ |
| 1283 | qry->distinctClause = transformDistinctOnClause(pstate, |
| 1284 | stmt->distinctClause, |
| 1285 | &qry->targetList, |
| 1286 | qry->sortClause); |
| 1287 | qry->hasDistinctOn = true; |
| 1288 | } |
| 1289 | |
| 1290 | /* transform LIMIT */ |
| 1291 | qry->limitOffset = transformLimitClause(pstate, stmt->limitOffset, |
| 1292 | EXPR_KIND_OFFSET, "OFFSET" ); |
| 1293 | qry->limitCount = transformLimitClause(pstate, stmt->limitCount, |
| 1294 | EXPR_KIND_LIMIT, "LIMIT" ); |
| 1295 | |
| 1296 | /* transform window clauses after we have seen all window functions */ |
| 1297 | qry->windowClause = transformWindowDefinitions(pstate, |
| 1298 | pstate->p_windowdefs, |
| 1299 | &qry->targetList); |
| 1300 | |
| 1301 | /* resolve any still-unresolved output columns as being type text */ |
| 1302 | if (pstate->p_resolve_unknowns) |
| 1303 | resolveTargetListUnknowns(pstate, qry->targetList); |
| 1304 | |
| 1305 | qry->rtable = pstate->p_rtable; |
| 1306 | qry->jointree = makeFromExpr(pstate->p_joinlist, qual); |
| 1307 | |
| 1308 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 1309 | qry->hasWindowFuncs = pstate->p_hasWindowFuncs; |
| 1310 | qry->hasTargetSRFs = pstate->p_hasTargetSRFs; |
| 1311 | qry->hasAggs = pstate->p_hasAggs; |
| 1312 | |
| 1313 | foreach(l, stmt->lockingClause) |
| 1314 | { |
| 1315 | transformLockingClause(pstate, qry, |
| 1316 | (LockingClause *) lfirst(l), false); |
| 1317 | } |
| 1318 | |
| 1319 | assign_query_collations(pstate, qry); |
| 1320 | |
| 1321 | /* this must be done after collations, for reliable comparison of exprs */ |
| 1322 | if (pstate->p_hasAggs || qry->groupClause || qry->groupingSets || qry->havingQual) |
| 1323 | parseCheckAggregates(pstate, qry); |
| 1324 | |
| 1325 | return qry; |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * transformValuesClause - |
| 1330 | * transforms a VALUES clause that's being used as a standalone SELECT |
| 1331 | * |
| 1332 | * We build a Query containing a VALUES RTE, rather as if one had written |
| 1333 | * SELECT * FROM (VALUES ...) AS "*VALUES*" |
| 1334 | */ |
| 1335 | static Query * |
| 1336 | transformValuesClause(ParseState *pstate, SelectStmt *stmt) |
| 1337 | { |
| 1338 | Query *qry = makeNode(Query); |
| 1339 | List *exprsLists; |
| 1340 | List *coltypes = NIL; |
| 1341 | List *coltypmods = NIL; |
| 1342 | List *colcollations = NIL; |
| 1343 | List **colexprs = NULL; |
| 1344 | int sublist_length = -1; |
| 1345 | bool lateral = false; |
| 1346 | RangeTblEntry *rte; |
| 1347 | int rtindex; |
| 1348 | ListCell *lc; |
| 1349 | ListCell *lc2; |
| 1350 | int i; |
| 1351 | |
| 1352 | qry->commandType = CMD_SELECT; |
| 1353 | |
| 1354 | /* Most SELECT stuff doesn't apply in a VALUES clause */ |
| 1355 | Assert(stmt->distinctClause == NIL); |
| 1356 | Assert(stmt->intoClause == NULL); |
| 1357 | Assert(stmt->targetList == NIL); |
| 1358 | Assert(stmt->fromClause == NIL); |
| 1359 | Assert(stmt->whereClause == NULL); |
| 1360 | Assert(stmt->groupClause == NIL); |
| 1361 | Assert(stmt->havingClause == NULL); |
| 1362 | Assert(stmt->windowClause == NIL); |
| 1363 | Assert(stmt->op == SETOP_NONE); |
| 1364 | |
| 1365 | /* process the WITH clause independently of all else */ |
| 1366 | if (stmt->withClause) |
| 1367 | { |
| 1368 | qry->hasRecursive = stmt->withClause->recursive; |
| 1369 | qry->cteList = transformWithClause(pstate, stmt->withClause); |
| 1370 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * For each row of VALUES, transform the raw expressions. |
| 1375 | * |
| 1376 | * Note that the intermediate representation we build is column-organized |
| 1377 | * not row-organized. That simplifies the type and collation processing |
| 1378 | * below. |
| 1379 | */ |
| 1380 | foreach(lc, stmt->valuesLists) |
| 1381 | { |
| 1382 | List *sublist = (List *) lfirst(lc); |
| 1383 | |
| 1384 | /* |
| 1385 | * Do basic expression transformation (same as a ROW() expr, but here |
| 1386 | * we disallow SetToDefault) |
| 1387 | */ |
| 1388 | sublist = transformExpressionList(pstate, sublist, |
| 1389 | EXPR_KIND_VALUES, false); |
| 1390 | |
| 1391 | /* |
| 1392 | * All the sublists must be the same length, *after* transformation |
| 1393 | * (which might expand '*' into multiple items). The VALUES RTE can't |
| 1394 | * handle anything different. |
| 1395 | */ |
| 1396 | if (sublist_length < 0) |
| 1397 | { |
| 1398 | /* Remember post-transformation length of first sublist */ |
| 1399 | sublist_length = list_length(sublist); |
| 1400 | /* and allocate array for per-column lists */ |
| 1401 | colexprs = (List **) palloc0(sublist_length * sizeof(List *)); |
| 1402 | } |
| 1403 | else if (sublist_length != list_length(sublist)) |
| 1404 | { |
| 1405 | ereport(ERROR, |
| 1406 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1407 | errmsg("VALUES lists must all be the same length" ), |
| 1408 | parser_errposition(pstate, |
| 1409 | exprLocation((Node *) sublist)))); |
| 1410 | } |
| 1411 | |
| 1412 | /* Build per-column expression lists */ |
| 1413 | i = 0; |
| 1414 | foreach(lc2, sublist) |
| 1415 | { |
| 1416 | Node *col = (Node *) lfirst(lc2); |
| 1417 | |
| 1418 | colexprs[i] = lappend(colexprs[i], col); |
| 1419 | i++; |
| 1420 | } |
| 1421 | |
| 1422 | /* Release sub-list's cells to save memory */ |
| 1423 | list_free(sublist); |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * Now resolve the common types of the columns, and coerce everything to |
| 1428 | * those types. Then identify the common typmod and common collation, if |
| 1429 | * any, of each column. |
| 1430 | * |
| 1431 | * We must do collation processing now because (1) assign_query_collations |
| 1432 | * doesn't process rangetable entries, and (2) we need to label the VALUES |
| 1433 | * RTE with column collations for use in the outer query. We don't |
| 1434 | * consider conflict of implicit collations to be an error here; instead |
| 1435 | * the column will just show InvalidOid as its collation, and you'll get a |
| 1436 | * failure later if that results in failure to resolve a collation. |
| 1437 | * |
| 1438 | * Note we modify the per-column expression lists in-place. |
| 1439 | */ |
| 1440 | for (i = 0; i < sublist_length; i++) |
| 1441 | { |
| 1442 | Oid coltype; |
| 1443 | int32 coltypmod = -1; |
| 1444 | Oid colcoll; |
| 1445 | bool first = true; |
| 1446 | |
| 1447 | coltype = select_common_type(pstate, colexprs[i], "VALUES" , NULL); |
| 1448 | |
| 1449 | foreach(lc, colexprs[i]) |
| 1450 | { |
| 1451 | Node *col = (Node *) lfirst(lc); |
| 1452 | |
| 1453 | col = coerce_to_common_type(pstate, col, coltype, "VALUES" ); |
| 1454 | lfirst(lc) = (void *) col; |
| 1455 | if (first) |
| 1456 | { |
| 1457 | coltypmod = exprTypmod(col); |
| 1458 | first = false; |
| 1459 | } |
| 1460 | else |
| 1461 | { |
| 1462 | /* As soon as we see a non-matching typmod, fall back to -1 */ |
| 1463 | if (coltypmod >= 0 && coltypmod != exprTypmod(col)) |
| 1464 | coltypmod = -1; |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | colcoll = select_common_collation(pstate, colexprs[i], true); |
| 1469 | |
| 1470 | coltypes = lappend_oid(coltypes, coltype); |
| 1471 | coltypmods = lappend_int(coltypmods, coltypmod); |
| 1472 | colcollations = lappend_oid(colcollations, colcoll); |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Finally, rearrange the coerced expressions into row-organized lists. |
| 1477 | */ |
| 1478 | exprsLists = NIL; |
| 1479 | foreach(lc, colexprs[0]) |
| 1480 | { |
| 1481 | Node *col = (Node *) lfirst(lc); |
| 1482 | List *sublist; |
| 1483 | |
| 1484 | sublist = list_make1(col); |
| 1485 | exprsLists = lappend(exprsLists, sublist); |
| 1486 | } |
| 1487 | list_free(colexprs[0]); |
| 1488 | for (i = 1; i < sublist_length; i++) |
| 1489 | { |
| 1490 | forboth(lc, colexprs[i], lc2, exprsLists) |
| 1491 | { |
| 1492 | Node *col = (Node *) lfirst(lc); |
| 1493 | List *sublist = lfirst(lc2); |
| 1494 | |
| 1495 | /* sublist pointer in exprsLists won't need adjustment */ |
| 1496 | (void) lappend(sublist, col); |
| 1497 | } |
| 1498 | list_free(colexprs[i]); |
| 1499 | } |
| 1500 | |
| 1501 | /* |
| 1502 | * Ordinarily there can't be any current-level Vars in the expression |
| 1503 | * lists, because the namespace was empty ... but if we're inside CREATE |
| 1504 | * RULE, then NEW/OLD references might appear. In that case we have to |
| 1505 | * mark the VALUES RTE as LATERAL. |
| 1506 | */ |
| 1507 | if (pstate->p_rtable != NIL && |
| 1508 | contain_vars_of_level((Node *) exprsLists, 0)) |
| 1509 | lateral = true; |
| 1510 | |
| 1511 | /* |
| 1512 | * Generate the VALUES RTE |
| 1513 | */ |
| 1514 | rte = addRangeTableEntryForValues(pstate, exprsLists, |
| 1515 | coltypes, coltypmods, colcollations, |
| 1516 | NULL, lateral, true); |
| 1517 | addRTEtoQuery(pstate, rte, true, true, true); |
| 1518 | |
| 1519 | /* assume new rte is at end */ |
| 1520 | rtindex = list_length(pstate->p_rtable); |
| 1521 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 1522 | |
| 1523 | /* |
| 1524 | * Generate a targetlist as though expanding "*" |
| 1525 | */ |
| 1526 | Assert(pstate->p_next_resno == 1); |
| 1527 | qry->targetList = expandRelAttrs(pstate, rte, rtindex, 0, -1); |
| 1528 | |
| 1529 | /* |
| 1530 | * The grammar allows attaching ORDER BY, LIMIT, and FOR UPDATE to a |
| 1531 | * VALUES, so cope. |
| 1532 | */ |
| 1533 | qry->sortClause = transformSortClause(pstate, |
| 1534 | stmt->sortClause, |
| 1535 | &qry->targetList, |
| 1536 | EXPR_KIND_ORDER_BY, |
| 1537 | false /* allow SQL92 rules */ ); |
| 1538 | |
| 1539 | qry->limitOffset = transformLimitClause(pstate, stmt->limitOffset, |
| 1540 | EXPR_KIND_OFFSET, "OFFSET" ); |
| 1541 | qry->limitCount = transformLimitClause(pstate, stmt->limitCount, |
| 1542 | EXPR_KIND_LIMIT, "LIMIT" ); |
| 1543 | |
| 1544 | if (stmt->lockingClause) |
| 1545 | ereport(ERROR, |
| 1546 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1547 | /*------ |
| 1548 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 1549 | errmsg("%s cannot be applied to VALUES" , |
| 1550 | LCS_asString(((LockingClause *) |
| 1551 | linitial(stmt->lockingClause))->strength)))); |
| 1552 | |
| 1553 | qry->rtable = pstate->p_rtable; |
| 1554 | qry->jointree = makeFromExpr(pstate->p_joinlist, NULL); |
| 1555 | |
| 1556 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 1557 | |
| 1558 | assign_query_collations(pstate, qry); |
| 1559 | |
| 1560 | return qry; |
| 1561 | } |
| 1562 | |
| 1563 | /* |
| 1564 | * transformSetOperationStmt - |
| 1565 | * transforms a set-operations tree |
| 1566 | * |
| 1567 | * A set-operation tree is just a SELECT, but with UNION/INTERSECT/EXCEPT |
| 1568 | * structure to it. We must transform each leaf SELECT and build up a top- |
| 1569 | * level Query that contains the leaf SELECTs as subqueries in its rangetable. |
| 1570 | * The tree of set operations is converted into the setOperations field of |
| 1571 | * the top-level Query. |
| 1572 | */ |
| 1573 | static Query * |
| 1574 | transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt) |
| 1575 | { |
| 1576 | Query *qry = makeNode(Query); |
| 1577 | SelectStmt *leftmostSelect; |
| 1578 | int leftmostRTI; |
| 1579 | Query *leftmostQuery; |
| 1580 | SetOperationStmt *sostmt; |
| 1581 | List *sortClause; |
| 1582 | Node *limitOffset; |
| 1583 | Node *limitCount; |
| 1584 | List *lockingClause; |
| 1585 | WithClause *withClause; |
| 1586 | Node *node; |
| 1587 | ListCell *left_tlist, |
| 1588 | *lct, |
| 1589 | *lcm, |
| 1590 | *lcc, |
| 1591 | *l; |
| 1592 | List *targetvars, |
| 1593 | *targetnames, |
| 1594 | *sv_namespace; |
| 1595 | int sv_rtable_length; |
| 1596 | RangeTblEntry *jrte; |
| 1597 | int tllen; |
| 1598 | |
| 1599 | qry->commandType = CMD_SELECT; |
| 1600 | |
| 1601 | /* |
| 1602 | * Find leftmost leaf SelectStmt. We currently only need to do this in |
| 1603 | * order to deliver a suitable error message if there's an INTO clause |
| 1604 | * there, implying the set-op tree is in a context that doesn't allow |
| 1605 | * INTO. (transformSetOperationTree would throw error anyway, but it |
| 1606 | * seems worth the trouble to throw a different error for non-leftmost |
| 1607 | * INTO, so we produce that error in transformSetOperationTree.) |
| 1608 | */ |
| 1609 | leftmostSelect = stmt->larg; |
| 1610 | while (leftmostSelect && leftmostSelect->op != SETOP_NONE) |
| 1611 | leftmostSelect = leftmostSelect->larg; |
| 1612 | Assert(leftmostSelect && IsA(leftmostSelect, SelectStmt) && |
| 1613 | leftmostSelect->larg == NULL); |
| 1614 | if (leftmostSelect->intoClause) |
| 1615 | ereport(ERROR, |
| 1616 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1617 | errmsg("SELECT ... INTO is not allowed here" ), |
| 1618 | parser_errposition(pstate, |
| 1619 | exprLocation((Node *) leftmostSelect->intoClause)))); |
| 1620 | |
| 1621 | /* |
| 1622 | * We need to extract ORDER BY and other top-level clauses here and not |
| 1623 | * let transformSetOperationTree() see them --- else it'll just recurse |
| 1624 | * right back here! |
| 1625 | */ |
| 1626 | sortClause = stmt->sortClause; |
| 1627 | limitOffset = stmt->limitOffset; |
| 1628 | limitCount = stmt->limitCount; |
| 1629 | lockingClause = stmt->lockingClause; |
| 1630 | withClause = stmt->withClause; |
| 1631 | |
| 1632 | stmt->sortClause = NIL; |
| 1633 | stmt->limitOffset = NULL; |
| 1634 | stmt->limitCount = NULL; |
| 1635 | stmt->lockingClause = NIL; |
| 1636 | stmt->withClause = NULL; |
| 1637 | |
| 1638 | /* We don't support FOR UPDATE/SHARE with set ops at the moment. */ |
| 1639 | if (lockingClause) |
| 1640 | ereport(ERROR, |
| 1641 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1642 | /*------ |
| 1643 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 1644 | errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT" , |
| 1645 | LCS_asString(((LockingClause *) |
| 1646 | linitial(lockingClause))->strength)))); |
| 1647 | |
| 1648 | /* Process the WITH clause independently of all else */ |
| 1649 | if (withClause) |
| 1650 | { |
| 1651 | qry->hasRecursive = withClause->recursive; |
| 1652 | qry->cteList = transformWithClause(pstate, withClause); |
| 1653 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Recursively transform the components of the tree. |
| 1658 | */ |
| 1659 | sostmt = castNode(SetOperationStmt, |
| 1660 | transformSetOperationTree(pstate, stmt, true, NULL)); |
| 1661 | Assert(sostmt); |
| 1662 | qry->setOperations = (Node *) sostmt; |
| 1663 | |
| 1664 | /* |
| 1665 | * Re-find leftmost SELECT (now it's a sub-query in rangetable) |
| 1666 | */ |
| 1667 | node = sostmt->larg; |
| 1668 | while (node && IsA(node, SetOperationStmt)) |
| 1669 | node = ((SetOperationStmt *) node)->larg; |
| 1670 | Assert(node && IsA(node, RangeTblRef)); |
| 1671 | leftmostRTI = ((RangeTblRef *) node)->rtindex; |
| 1672 | leftmostQuery = rt_fetch(leftmostRTI, pstate->p_rtable)->subquery; |
| 1673 | Assert(leftmostQuery != NULL); |
| 1674 | |
| 1675 | /* |
| 1676 | * Generate dummy targetlist for outer query using column names of |
| 1677 | * leftmost select and common datatypes/collations of topmost set |
| 1678 | * operation. Also make lists of the dummy vars and their names for use |
| 1679 | * in parsing ORDER BY. |
| 1680 | * |
| 1681 | * Note: we use leftmostRTI as the varno of the dummy variables. It |
| 1682 | * shouldn't matter too much which RT index they have, as long as they |
| 1683 | * have one that corresponds to a real RT entry; else funny things may |
| 1684 | * happen when the tree is mashed by rule rewriting. |
| 1685 | */ |
| 1686 | qry->targetList = NIL; |
| 1687 | targetvars = NIL; |
| 1688 | targetnames = NIL; |
| 1689 | |
| 1690 | forfour(lct, sostmt->colTypes, |
| 1691 | lcm, sostmt->colTypmods, |
| 1692 | lcc, sostmt->colCollations, |
| 1693 | left_tlist, leftmostQuery->targetList) |
| 1694 | { |
| 1695 | Oid colType = lfirst_oid(lct); |
| 1696 | int32 colTypmod = lfirst_int(lcm); |
| 1697 | Oid colCollation = lfirst_oid(lcc); |
| 1698 | TargetEntry *lefttle = (TargetEntry *) lfirst(left_tlist); |
| 1699 | char *colName; |
| 1700 | TargetEntry *tle; |
| 1701 | Var *var; |
| 1702 | |
| 1703 | Assert(!lefttle->resjunk); |
| 1704 | colName = pstrdup(lefttle->resname); |
| 1705 | var = makeVar(leftmostRTI, |
| 1706 | lefttle->resno, |
| 1707 | colType, |
| 1708 | colTypmod, |
| 1709 | colCollation, |
| 1710 | 0); |
| 1711 | var->location = exprLocation((Node *) lefttle->expr); |
| 1712 | tle = makeTargetEntry((Expr *) var, |
| 1713 | (AttrNumber) pstate->p_next_resno++, |
| 1714 | colName, |
| 1715 | false); |
| 1716 | qry->targetList = lappend(qry->targetList, tle); |
| 1717 | targetvars = lappend(targetvars, var); |
| 1718 | targetnames = lappend(targetnames, makeString(colName)); |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * As a first step towards supporting sort clauses that are expressions |
| 1723 | * using the output columns, generate a namespace entry that makes the |
| 1724 | * output columns visible. A Join RTE node is handy for this, since we |
| 1725 | * can easily control the Vars generated upon matches. |
| 1726 | * |
| 1727 | * Note: we don't yet do anything useful with such cases, but at least |
| 1728 | * "ORDER BY upper(foo)" will draw the right error message rather than |
| 1729 | * "foo not found". |
| 1730 | */ |
| 1731 | sv_rtable_length = list_length(pstate->p_rtable); |
| 1732 | |
| 1733 | jrte = addRangeTableEntryForJoin(pstate, |
| 1734 | targetnames, |
| 1735 | JOIN_INNER, |
| 1736 | targetvars, |
| 1737 | NULL, |
| 1738 | false); |
| 1739 | |
| 1740 | sv_namespace = pstate->p_namespace; |
| 1741 | pstate->p_namespace = NIL; |
| 1742 | |
| 1743 | /* add jrte to column namespace only */ |
| 1744 | addRTEtoQuery(pstate, jrte, false, false, true); |
| 1745 | |
| 1746 | /* |
| 1747 | * For now, we don't support resjunk sort clauses on the output of a |
| 1748 | * setOperation tree --- you can only use the SQL92-spec options of |
| 1749 | * selecting an output column by name or number. Enforce by checking that |
| 1750 | * transformSortClause doesn't add any items to tlist. |
| 1751 | */ |
| 1752 | tllen = list_length(qry->targetList); |
| 1753 | |
| 1754 | qry->sortClause = transformSortClause(pstate, |
| 1755 | sortClause, |
| 1756 | &qry->targetList, |
| 1757 | EXPR_KIND_ORDER_BY, |
| 1758 | false /* allow SQL92 rules */ ); |
| 1759 | |
| 1760 | /* restore namespace, remove jrte from rtable */ |
| 1761 | pstate->p_namespace = sv_namespace; |
| 1762 | pstate->p_rtable = list_truncate(pstate->p_rtable, sv_rtable_length); |
| 1763 | |
| 1764 | if (tllen != list_length(qry->targetList)) |
| 1765 | ereport(ERROR, |
| 1766 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1767 | errmsg("invalid UNION/INTERSECT/EXCEPT ORDER BY clause" ), |
| 1768 | errdetail("Only result column names can be used, not expressions or functions." ), |
| 1769 | errhint("Add the expression/function to every SELECT, or move the UNION into a FROM clause." ), |
| 1770 | parser_errposition(pstate, |
| 1771 | exprLocation(list_nth(qry->targetList, tllen))))); |
| 1772 | |
| 1773 | qry->limitOffset = transformLimitClause(pstate, limitOffset, |
| 1774 | EXPR_KIND_OFFSET, "OFFSET" ); |
| 1775 | qry->limitCount = transformLimitClause(pstate, limitCount, |
| 1776 | EXPR_KIND_LIMIT, "LIMIT" ); |
| 1777 | |
| 1778 | qry->rtable = pstate->p_rtable; |
| 1779 | qry->jointree = makeFromExpr(pstate->p_joinlist, NULL); |
| 1780 | |
| 1781 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 1782 | qry->hasWindowFuncs = pstate->p_hasWindowFuncs; |
| 1783 | qry->hasTargetSRFs = pstate->p_hasTargetSRFs; |
| 1784 | qry->hasAggs = pstate->p_hasAggs; |
| 1785 | |
| 1786 | foreach(l, lockingClause) |
| 1787 | { |
| 1788 | transformLockingClause(pstate, qry, |
| 1789 | (LockingClause *) lfirst(l), false); |
| 1790 | } |
| 1791 | |
| 1792 | assign_query_collations(pstate, qry); |
| 1793 | |
| 1794 | /* this must be done after collations, for reliable comparison of exprs */ |
| 1795 | if (pstate->p_hasAggs || qry->groupClause || qry->groupingSets || qry->havingQual) |
| 1796 | parseCheckAggregates(pstate, qry); |
| 1797 | |
| 1798 | return qry; |
| 1799 | } |
| 1800 | |
| 1801 | /* |
| 1802 | * transformSetOperationTree |
| 1803 | * Recursively transform leaves and internal nodes of a set-op tree |
| 1804 | * |
| 1805 | * In addition to returning the transformed node, if targetlist isn't NULL |
| 1806 | * then we return a list of its non-resjunk TargetEntry nodes. For a leaf |
| 1807 | * set-op node these are the actual targetlist entries; otherwise they are |
| 1808 | * dummy entries created to carry the type, typmod, collation, and location |
| 1809 | * (for error messages) of each output column of the set-op node. This info |
| 1810 | * is needed only during the internal recursion of this function, so outside |
| 1811 | * callers pass NULL for targetlist. Note: the reason for passing the |
| 1812 | * actual targetlist entries of a leaf node is so that upper levels can |
| 1813 | * replace UNKNOWN Consts with properly-coerced constants. |
| 1814 | */ |
| 1815 | static Node * |
| 1816 | transformSetOperationTree(ParseState *pstate, SelectStmt *stmt, |
| 1817 | bool isTopLevel, List **targetlist) |
| 1818 | { |
| 1819 | bool isLeaf; |
| 1820 | |
| 1821 | Assert(stmt && IsA(stmt, SelectStmt)); |
| 1822 | |
| 1823 | /* Guard against stack overflow due to overly complex set-expressions */ |
| 1824 | check_stack_depth(); |
| 1825 | |
| 1826 | /* |
| 1827 | * Validity-check both leaf and internal SELECTs for disallowed ops. |
| 1828 | */ |
| 1829 | if (stmt->intoClause) |
| 1830 | ereport(ERROR, |
| 1831 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1832 | errmsg("INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT" ), |
| 1833 | parser_errposition(pstate, |
| 1834 | exprLocation((Node *) stmt->intoClause)))); |
| 1835 | |
| 1836 | /* We don't support FOR UPDATE/SHARE with set ops at the moment. */ |
| 1837 | if (stmt->lockingClause) |
| 1838 | ereport(ERROR, |
| 1839 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1840 | /*------ |
| 1841 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 1842 | errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT" , |
| 1843 | LCS_asString(((LockingClause *) |
| 1844 | linitial(stmt->lockingClause))->strength)))); |
| 1845 | |
| 1846 | /* |
| 1847 | * If an internal node of a set-op tree has ORDER BY, LIMIT, FOR UPDATE, |
| 1848 | * or WITH clauses attached, we need to treat it like a leaf node to |
| 1849 | * generate an independent sub-Query tree. Otherwise, it can be |
| 1850 | * represented by a SetOperationStmt node underneath the parent Query. |
| 1851 | */ |
| 1852 | if (stmt->op == SETOP_NONE) |
| 1853 | { |
| 1854 | Assert(stmt->larg == NULL && stmt->rarg == NULL); |
| 1855 | isLeaf = true; |
| 1856 | } |
| 1857 | else |
| 1858 | { |
| 1859 | Assert(stmt->larg != NULL && stmt->rarg != NULL); |
| 1860 | if (stmt->sortClause || stmt->limitOffset || stmt->limitCount || |
| 1861 | stmt->lockingClause || stmt->withClause) |
| 1862 | isLeaf = true; |
| 1863 | else |
| 1864 | isLeaf = false; |
| 1865 | } |
| 1866 | |
| 1867 | if (isLeaf) |
| 1868 | { |
| 1869 | /* Process leaf SELECT */ |
| 1870 | Query *selectQuery; |
| 1871 | char selectName[32]; |
| 1872 | RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY; |
| 1873 | RangeTblRef *rtr; |
| 1874 | ListCell *tl; |
| 1875 | |
| 1876 | /* |
| 1877 | * Transform SelectStmt into a Query. |
| 1878 | * |
| 1879 | * This works the same as SELECT transformation normally would, except |
| 1880 | * that we prevent resolving unknown-type outputs as TEXT. This does |
| 1881 | * not change the subquery's semantics since if the column type |
| 1882 | * matters semantically, it would have been resolved to something else |
| 1883 | * anyway. Doing this lets us resolve such outputs using |
| 1884 | * select_common_type(), below. |
| 1885 | * |
| 1886 | * Note: previously transformed sub-queries don't affect the parsing |
| 1887 | * of this sub-query, because they are not in the toplevel pstate's |
| 1888 | * namespace list. |
| 1889 | */ |
| 1890 | selectQuery = parse_sub_analyze((Node *) stmt, pstate, |
| 1891 | NULL, false, false); |
| 1892 | |
| 1893 | /* |
| 1894 | * Check for bogus references to Vars on the current query level (but |
| 1895 | * upper-level references are okay). Normally this can't happen |
| 1896 | * because the namespace will be empty, but it could happen if we are |
| 1897 | * inside a rule. |
| 1898 | */ |
| 1899 | if (pstate->p_namespace) |
| 1900 | { |
| 1901 | if (contain_vars_of_level((Node *) selectQuery, 1)) |
| 1902 | ereport(ERROR, |
| 1903 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 1904 | errmsg("UNION/INTERSECT/EXCEPT member statement cannot refer to other relations of same query level" ), |
| 1905 | parser_errposition(pstate, |
| 1906 | locate_var_of_level((Node *) selectQuery, 1)))); |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * Extract a list of the non-junk TLEs for upper-level processing. |
| 1911 | */ |
| 1912 | if (targetlist) |
| 1913 | { |
| 1914 | *targetlist = NIL; |
| 1915 | foreach(tl, selectQuery->targetList) |
| 1916 | { |
| 1917 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
| 1918 | |
| 1919 | if (!tle->resjunk) |
| 1920 | *targetlist = lappend(*targetlist, tle); |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | /* |
| 1925 | * Make the leaf query be a subquery in the top-level rangetable. |
| 1926 | */ |
| 1927 | snprintf(selectName, sizeof(selectName), "*SELECT* %d" , |
| 1928 | list_length(pstate->p_rtable) + 1); |
| 1929 | rte = addRangeTableEntryForSubquery(pstate, |
| 1930 | selectQuery, |
| 1931 | makeAlias(selectName, NIL), |
| 1932 | false, |
| 1933 | false); |
| 1934 | |
| 1935 | /* |
| 1936 | * Return a RangeTblRef to replace the SelectStmt in the set-op tree. |
| 1937 | */ |
| 1938 | rtr = makeNode(RangeTblRef); |
| 1939 | /* assume new rte is at end */ |
| 1940 | rtr->rtindex = list_length(pstate->p_rtable); |
| 1941 | Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable)); |
| 1942 | return (Node *) rtr; |
| 1943 | } |
| 1944 | else |
| 1945 | { |
| 1946 | /* Process an internal node (set operation node) */ |
| 1947 | SetOperationStmt *op = makeNode(SetOperationStmt); |
| 1948 | List *ltargetlist; |
| 1949 | List *rtargetlist; |
| 1950 | ListCell *ltl; |
| 1951 | ListCell *rtl; |
| 1952 | const char *context; |
| 1953 | |
| 1954 | context = (stmt->op == SETOP_UNION ? "UNION" : |
| 1955 | (stmt->op == SETOP_INTERSECT ? "INTERSECT" : |
| 1956 | "EXCEPT" )); |
| 1957 | |
| 1958 | op->op = stmt->op; |
| 1959 | op->all = stmt->all; |
| 1960 | |
| 1961 | /* |
| 1962 | * Recursively transform the left child node. |
| 1963 | */ |
| 1964 | op->larg = transformSetOperationTree(pstate, stmt->larg, |
| 1965 | false, |
| 1966 | <argetlist); |
| 1967 | |
| 1968 | /* |
| 1969 | * If we are processing a recursive union query, now is the time to |
| 1970 | * examine the non-recursive term's output columns and mark the |
| 1971 | * containing CTE as having those result columns. We should do this |
| 1972 | * only at the topmost setop of the CTE, of course. |
| 1973 | */ |
| 1974 | if (isTopLevel && |
| 1975 | pstate->p_parent_cte && |
| 1976 | pstate->p_parent_cte->cterecursive) |
| 1977 | determineRecursiveColTypes(pstate, op->larg, ltargetlist); |
| 1978 | |
| 1979 | /* |
| 1980 | * Recursively transform the right child node. |
| 1981 | */ |
| 1982 | op->rarg = transformSetOperationTree(pstate, stmt->rarg, |
| 1983 | false, |
| 1984 | &rtargetlist); |
| 1985 | |
| 1986 | /* |
| 1987 | * Verify that the two children have the same number of non-junk |
| 1988 | * columns, and determine the types of the merged output columns. |
| 1989 | */ |
| 1990 | if (list_length(ltargetlist) != list_length(rtargetlist)) |
| 1991 | ereport(ERROR, |
| 1992 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1993 | errmsg("each %s query must have the same number of columns" , |
| 1994 | context), |
| 1995 | parser_errposition(pstate, |
| 1996 | exprLocation((Node *) rtargetlist)))); |
| 1997 | |
| 1998 | if (targetlist) |
| 1999 | *targetlist = NIL; |
| 2000 | op->colTypes = NIL; |
| 2001 | op->colTypmods = NIL; |
| 2002 | op->colCollations = NIL; |
| 2003 | op->groupClauses = NIL; |
| 2004 | forboth(ltl, ltargetlist, rtl, rtargetlist) |
| 2005 | { |
| 2006 | TargetEntry *ltle = (TargetEntry *) lfirst(ltl); |
| 2007 | TargetEntry *rtle = (TargetEntry *) lfirst(rtl); |
| 2008 | Node *lcolnode = (Node *) ltle->expr; |
| 2009 | Node *rcolnode = (Node *) rtle->expr; |
| 2010 | Oid lcoltype = exprType(lcolnode); |
| 2011 | Oid rcoltype = exprType(rcolnode); |
| 2012 | int32 lcoltypmod = exprTypmod(lcolnode); |
| 2013 | int32 rcoltypmod = exprTypmod(rcolnode); |
| 2014 | Node *bestexpr; |
| 2015 | int bestlocation; |
| 2016 | Oid rescoltype; |
| 2017 | int32 rescoltypmod; |
| 2018 | Oid rescolcoll; |
| 2019 | |
| 2020 | /* select common type, same as CASE et al */ |
| 2021 | rescoltype = select_common_type(pstate, |
| 2022 | list_make2(lcolnode, rcolnode), |
| 2023 | context, |
| 2024 | &bestexpr); |
| 2025 | bestlocation = exprLocation(bestexpr); |
| 2026 | /* if same type and same typmod, use typmod; else default */ |
| 2027 | if (lcoltype == rcoltype && lcoltypmod == rcoltypmod) |
| 2028 | rescoltypmod = lcoltypmod; |
| 2029 | else |
| 2030 | rescoltypmod = -1; |
| 2031 | |
| 2032 | /* |
| 2033 | * Verify the coercions are actually possible. If not, we'd fail |
| 2034 | * later anyway, but we want to fail now while we have sufficient |
| 2035 | * context to produce an error cursor position. |
| 2036 | * |
| 2037 | * For all non-UNKNOWN-type cases, we verify coercibility but we |
| 2038 | * don't modify the child's expression, for fear of changing the |
| 2039 | * child query's semantics. |
| 2040 | * |
| 2041 | * If a child expression is an UNKNOWN-type Const or Param, we |
| 2042 | * want to replace it with the coerced expression. This can only |
| 2043 | * happen when the child is a leaf set-op node. It's safe to |
| 2044 | * replace the expression because if the child query's semantics |
| 2045 | * depended on the type of this output column, it'd have already |
| 2046 | * coerced the UNKNOWN to something else. We want to do this |
| 2047 | * because (a) we want to verify that a Const is valid for the |
| 2048 | * target type, or resolve the actual type of an UNKNOWN Param, |
| 2049 | * and (b) we want to avoid unnecessary discrepancies between the |
| 2050 | * output type of the child query and the resolved target type. |
| 2051 | * Such a discrepancy would disable optimization in the planner. |
| 2052 | * |
| 2053 | * If it's some other UNKNOWN-type node, eg a Var, we do nothing |
| 2054 | * (knowing that coerce_to_common_type would fail). The planner |
| 2055 | * is sometimes able to fold an UNKNOWN Var to a constant before |
| 2056 | * it has to coerce the type, so failing now would just break |
| 2057 | * cases that might work. |
| 2058 | */ |
| 2059 | if (lcoltype != UNKNOWNOID) |
| 2060 | lcolnode = coerce_to_common_type(pstate, lcolnode, |
| 2061 | rescoltype, context); |
| 2062 | else if (IsA(lcolnode, Const) || |
| 2063 | IsA(lcolnode, Param)) |
| 2064 | { |
| 2065 | lcolnode = coerce_to_common_type(pstate, lcolnode, |
| 2066 | rescoltype, context); |
| 2067 | ltle->expr = (Expr *) lcolnode; |
| 2068 | } |
| 2069 | |
| 2070 | if (rcoltype != UNKNOWNOID) |
| 2071 | rcolnode = coerce_to_common_type(pstate, rcolnode, |
| 2072 | rescoltype, context); |
| 2073 | else if (IsA(rcolnode, Const) || |
| 2074 | IsA(rcolnode, Param)) |
| 2075 | { |
| 2076 | rcolnode = coerce_to_common_type(pstate, rcolnode, |
| 2077 | rescoltype, context); |
| 2078 | rtle->expr = (Expr *) rcolnode; |
| 2079 | } |
| 2080 | |
| 2081 | /* |
| 2082 | * Select common collation. A common collation is required for |
| 2083 | * all set operators except UNION ALL; see SQL:2008 7.13 <query |
| 2084 | * expression> Syntax Rule 15c. (If we fail to identify a common |
| 2085 | * collation for a UNION ALL column, the colCollations element |
| 2086 | * will be set to InvalidOid, which may result in a runtime error |
| 2087 | * if something at a higher query level wants to use the column's |
| 2088 | * collation.) |
| 2089 | */ |
| 2090 | rescolcoll = select_common_collation(pstate, |
| 2091 | list_make2(lcolnode, rcolnode), |
| 2092 | (op->op == SETOP_UNION && op->all)); |
| 2093 | |
| 2094 | /* emit results */ |
| 2095 | op->colTypes = lappend_oid(op->colTypes, rescoltype); |
| 2096 | op->colTypmods = lappend_int(op->colTypmods, rescoltypmod); |
| 2097 | op->colCollations = lappend_oid(op->colCollations, rescolcoll); |
| 2098 | |
| 2099 | /* |
| 2100 | * For all cases except UNION ALL, identify the grouping operators |
| 2101 | * (and, if available, sorting operators) that will be used to |
| 2102 | * eliminate duplicates. |
| 2103 | */ |
| 2104 | if (op->op != SETOP_UNION || !op->all) |
| 2105 | { |
| 2106 | SortGroupClause *grpcl = makeNode(SortGroupClause); |
| 2107 | Oid sortop; |
| 2108 | Oid eqop; |
| 2109 | bool hashable; |
| 2110 | ParseCallbackState pcbstate; |
| 2111 | |
| 2112 | setup_parser_errposition_callback(&pcbstate, pstate, |
| 2113 | bestlocation); |
| 2114 | |
| 2115 | /* determine the eqop and optional sortop */ |
| 2116 | get_sort_group_operators(rescoltype, |
| 2117 | false, true, false, |
| 2118 | &sortop, &eqop, NULL, |
| 2119 | &hashable); |
| 2120 | |
| 2121 | cancel_parser_errposition_callback(&pcbstate); |
| 2122 | |
| 2123 | /* we don't have a tlist yet, so can't assign sortgrouprefs */ |
| 2124 | grpcl->tleSortGroupRef = 0; |
| 2125 | grpcl->eqop = eqop; |
| 2126 | grpcl->sortop = sortop; |
| 2127 | grpcl->nulls_first = false; /* OK with or without sortop */ |
| 2128 | grpcl->hashable = hashable; |
| 2129 | |
| 2130 | op->groupClauses = lappend(op->groupClauses, grpcl); |
| 2131 | } |
| 2132 | |
| 2133 | /* |
| 2134 | * Construct a dummy tlist entry to return. We use a SetToDefault |
| 2135 | * node for the expression, since it carries exactly the fields |
| 2136 | * needed, but any other expression node type would do as well. |
| 2137 | */ |
| 2138 | if (targetlist) |
| 2139 | { |
| 2140 | SetToDefault *rescolnode = makeNode(SetToDefault); |
| 2141 | TargetEntry *restle; |
| 2142 | |
| 2143 | rescolnode->typeId = rescoltype; |
| 2144 | rescolnode->typeMod = rescoltypmod; |
| 2145 | rescolnode->collation = rescolcoll; |
| 2146 | rescolnode->location = bestlocation; |
| 2147 | restle = makeTargetEntry((Expr *) rescolnode, |
| 2148 | 0, /* no need to set resno */ |
| 2149 | NULL, |
| 2150 | false); |
| 2151 | *targetlist = lappend(*targetlist, restle); |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | return (Node *) op; |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | * Process the outputs of the non-recursive term of a recursive union |
| 2161 | * to set up the parent CTE's columns |
| 2162 | */ |
| 2163 | static void |
| 2164 | determineRecursiveColTypes(ParseState *pstate, Node *larg, List *nrtargetlist) |
| 2165 | { |
| 2166 | Node *node; |
| 2167 | int leftmostRTI; |
| 2168 | Query *leftmostQuery; |
| 2169 | List *targetList; |
| 2170 | ListCell *left_tlist; |
| 2171 | ListCell *nrtl; |
| 2172 | int next_resno; |
| 2173 | |
| 2174 | /* |
| 2175 | * Find leftmost leaf SELECT |
| 2176 | */ |
| 2177 | node = larg; |
| 2178 | while (node && IsA(node, SetOperationStmt)) |
| 2179 | node = ((SetOperationStmt *) node)->larg; |
| 2180 | Assert(node && IsA(node, RangeTblRef)); |
| 2181 | leftmostRTI = ((RangeTblRef *) node)->rtindex; |
| 2182 | leftmostQuery = rt_fetch(leftmostRTI, pstate->p_rtable)->subquery; |
| 2183 | Assert(leftmostQuery != NULL); |
| 2184 | |
| 2185 | /* |
| 2186 | * Generate dummy targetlist using column names of leftmost select and |
| 2187 | * dummy result expressions of the non-recursive term. |
| 2188 | */ |
| 2189 | targetList = NIL; |
| 2190 | next_resno = 1; |
| 2191 | |
| 2192 | forboth(nrtl, nrtargetlist, left_tlist, leftmostQuery->targetList) |
| 2193 | { |
| 2194 | TargetEntry *nrtle = (TargetEntry *) lfirst(nrtl); |
| 2195 | TargetEntry *lefttle = (TargetEntry *) lfirst(left_tlist); |
| 2196 | char *colName; |
| 2197 | TargetEntry *tle; |
| 2198 | |
| 2199 | Assert(!lefttle->resjunk); |
| 2200 | colName = pstrdup(lefttle->resname); |
| 2201 | tle = makeTargetEntry(nrtle->expr, |
| 2202 | next_resno++, |
| 2203 | colName, |
| 2204 | false); |
| 2205 | targetList = lappend(targetList, tle); |
| 2206 | } |
| 2207 | |
| 2208 | /* Now build CTE's output column info using dummy targetlist */ |
| 2209 | analyzeCTETargetList(pstate, pstate->p_parent_cte, targetList); |
| 2210 | } |
| 2211 | |
| 2212 | |
| 2213 | /* |
| 2214 | * transformUpdateStmt - |
| 2215 | * transforms an update statement |
| 2216 | */ |
| 2217 | static Query * |
| 2218 | transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt) |
| 2219 | { |
| 2220 | Query *qry = makeNode(Query); |
| 2221 | ParseNamespaceItem *nsitem; |
| 2222 | Node *qual; |
| 2223 | |
| 2224 | qry->commandType = CMD_UPDATE; |
| 2225 | pstate->p_is_insert = false; |
| 2226 | |
| 2227 | /* process the WITH clause independently of all else */ |
| 2228 | if (stmt->withClause) |
| 2229 | { |
| 2230 | qry->hasRecursive = stmt->withClause->recursive; |
| 2231 | qry->cteList = transformWithClause(pstate, stmt->withClause); |
| 2232 | qry->hasModifyingCTE = pstate->p_hasModifyingCTE; |
| 2233 | } |
| 2234 | |
| 2235 | qry->resultRelation = setTargetTable(pstate, stmt->relation, |
| 2236 | stmt->relation->inh, |
| 2237 | true, |
| 2238 | ACL_UPDATE); |
| 2239 | |
| 2240 | /* grab the namespace item made by setTargetTable */ |
| 2241 | nsitem = (ParseNamespaceItem *) llast(pstate->p_namespace); |
| 2242 | |
| 2243 | /* subqueries in FROM cannot access the result relation */ |
| 2244 | nsitem->p_lateral_only = true; |
| 2245 | nsitem->p_lateral_ok = false; |
| 2246 | |
| 2247 | /* |
| 2248 | * the FROM clause is non-standard SQL syntax. We used to be able to do |
| 2249 | * this with REPLACE in POSTQUEL so we keep the feature. |
| 2250 | */ |
| 2251 | transformFromClause(pstate, stmt->fromClause); |
| 2252 | |
| 2253 | /* remaining clauses can reference the result relation normally */ |
| 2254 | nsitem->p_lateral_only = false; |
| 2255 | nsitem->p_lateral_ok = true; |
| 2256 | |
| 2257 | qual = transformWhereClause(pstate, stmt->whereClause, |
| 2258 | EXPR_KIND_WHERE, "WHERE" ); |
| 2259 | |
| 2260 | qry->returningList = transformReturningList(pstate, stmt->returningList); |
| 2261 | |
| 2262 | /* |
| 2263 | * Now we are done with SELECT-like processing, and can get on with |
| 2264 | * transforming the target list to match the UPDATE target columns. |
| 2265 | */ |
| 2266 | qry->targetList = transformUpdateTargetList(pstate, stmt->targetList); |
| 2267 | |
| 2268 | qry->rtable = pstate->p_rtable; |
| 2269 | qry->jointree = makeFromExpr(pstate->p_joinlist, qual); |
| 2270 | |
| 2271 | qry->hasTargetSRFs = pstate->p_hasTargetSRFs; |
| 2272 | qry->hasSubLinks = pstate->p_hasSubLinks; |
| 2273 | |
| 2274 | assign_query_collations(pstate, qry); |
| 2275 | |
| 2276 | return qry; |
| 2277 | } |
| 2278 | |
| 2279 | /* |
| 2280 | * transformUpdateTargetList - |
| 2281 | * handle SET clause in UPDATE/INSERT ... ON CONFLICT UPDATE |
| 2282 | */ |
| 2283 | static List * |
| 2284 | transformUpdateTargetList(ParseState *pstate, List *origTlist) |
| 2285 | { |
| 2286 | List *tlist = NIL; |
| 2287 | RangeTblEntry *target_rte; |
| 2288 | ListCell *orig_tl; |
| 2289 | ListCell *tl; |
| 2290 | TupleDesc tupdesc = pstate->p_target_relation->rd_att; |
| 2291 | |
| 2292 | tlist = transformTargetList(pstate, origTlist, |
| 2293 | EXPR_KIND_UPDATE_SOURCE); |
| 2294 | |
| 2295 | /* Prepare to assign non-conflicting resnos to resjunk attributes */ |
| 2296 | if (pstate->p_next_resno <= RelationGetNumberOfAttributes(pstate->p_target_relation)) |
| 2297 | pstate->p_next_resno = RelationGetNumberOfAttributes(pstate->p_target_relation) + 1; |
| 2298 | |
| 2299 | /* Prepare non-junk columns for assignment to target table */ |
| 2300 | target_rte = pstate->p_target_rangetblentry; |
| 2301 | orig_tl = list_head(origTlist); |
| 2302 | |
| 2303 | foreach(tl, tlist) |
| 2304 | { |
| 2305 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
| 2306 | ResTarget *origTarget; |
| 2307 | int attrno; |
| 2308 | |
| 2309 | if (tle->resjunk) |
| 2310 | { |
| 2311 | /* |
| 2312 | * Resjunk nodes need no additional processing, but be sure they |
| 2313 | * have resnos that do not match any target columns; else rewriter |
| 2314 | * or planner might get confused. They don't need a resname |
| 2315 | * either. |
| 2316 | */ |
| 2317 | tle->resno = (AttrNumber) pstate->p_next_resno++; |
| 2318 | tle->resname = NULL; |
| 2319 | continue; |
| 2320 | } |
| 2321 | if (orig_tl == NULL) |
| 2322 | elog(ERROR, "UPDATE target count mismatch --- internal error" ); |
| 2323 | origTarget = lfirst_node(ResTarget, orig_tl); |
| 2324 | |
| 2325 | attrno = attnameAttNum(pstate->p_target_relation, |
| 2326 | origTarget->name, true); |
| 2327 | if (attrno == InvalidAttrNumber) |
| 2328 | ereport(ERROR, |
| 2329 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 2330 | errmsg("column \"%s\" of relation \"%s\" does not exist" , |
| 2331 | origTarget->name, |
| 2332 | RelationGetRelationName(pstate->p_target_relation)), |
| 2333 | parser_errposition(pstate, origTarget->location))); |
| 2334 | |
| 2335 | updateTargetListEntry(pstate, tle, origTarget->name, |
| 2336 | attrno, |
| 2337 | origTarget->indirection, |
| 2338 | origTarget->location); |
| 2339 | |
| 2340 | /* Mark the target column as requiring update permissions */ |
| 2341 | target_rte->updatedCols = bms_add_member(target_rte->updatedCols, |
| 2342 | attrno - FirstLowInvalidHeapAttributeNumber); |
| 2343 | |
| 2344 | orig_tl = lnext(orig_tl); |
| 2345 | } |
| 2346 | if (orig_tl != NULL) |
| 2347 | elog(ERROR, "UPDATE target count mismatch --- internal error" ); |
| 2348 | |
| 2349 | /* |
| 2350 | * Record in extraUpdatedCols generated columns referencing updated base |
| 2351 | * columns. |
| 2352 | */ |
| 2353 | if (tupdesc->constr && |
| 2354 | tupdesc->constr->has_generated_stored) |
| 2355 | { |
| 2356 | for (int i = 0; i < tupdesc->constr->num_defval; i++) |
| 2357 | { |
| 2358 | AttrDefault defval = tupdesc->constr->defval[i]; |
| 2359 | Node *expr; |
| 2360 | Bitmapset *attrs_used = NULL; |
| 2361 | |
| 2362 | /* skip if not generated column */ |
| 2363 | if (!TupleDescAttr(tupdesc, defval.adnum - 1)->attgenerated) |
| 2364 | continue; |
| 2365 | |
| 2366 | expr = stringToNode(defval.adbin); |
| 2367 | pull_varattnos(expr, 1, &attrs_used); |
| 2368 | |
| 2369 | if (bms_overlap(target_rte->updatedCols, attrs_used)) |
| 2370 | target_rte->extraUpdatedCols = bms_add_member(target_rte->extraUpdatedCols, |
| 2371 | defval.adnum - FirstLowInvalidHeapAttributeNumber); |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | return tlist; |
| 2376 | } |
| 2377 | |
| 2378 | /* |
| 2379 | * transformReturningList - |
| 2380 | * handle a RETURNING clause in INSERT/UPDATE/DELETE |
| 2381 | */ |
| 2382 | static List * |
| 2383 | transformReturningList(ParseState *pstate, List *returningList) |
| 2384 | { |
| 2385 | List *rlist; |
| 2386 | int save_next_resno; |
| 2387 | |
| 2388 | if (returningList == NIL) |
| 2389 | return NIL; /* nothing to do */ |
| 2390 | |
| 2391 | /* |
| 2392 | * We need to assign resnos starting at one in the RETURNING list. Save |
| 2393 | * and restore the main tlist's value of p_next_resno, just in case |
| 2394 | * someone looks at it later (probably won't happen). |
| 2395 | */ |
| 2396 | save_next_resno = pstate->p_next_resno; |
| 2397 | pstate->p_next_resno = 1; |
| 2398 | |
| 2399 | /* transform RETURNING identically to a SELECT targetlist */ |
| 2400 | rlist = transformTargetList(pstate, returningList, EXPR_KIND_RETURNING); |
| 2401 | |
| 2402 | /* |
| 2403 | * Complain if the nonempty tlist expanded to nothing (which is possible |
| 2404 | * if it contains only a star-expansion of a zero-column table). If we |
| 2405 | * allow this, the parsed Query will look like it didn't have RETURNING, |
| 2406 | * with results that would probably surprise the user. |
| 2407 | */ |
| 2408 | if (rlist == NIL) |
| 2409 | ereport(ERROR, |
| 2410 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2411 | errmsg("RETURNING must have at least one column" ), |
| 2412 | parser_errposition(pstate, |
| 2413 | exprLocation(linitial(returningList))))); |
| 2414 | |
| 2415 | /* mark column origins */ |
| 2416 | markTargetListOrigins(pstate, rlist); |
| 2417 | |
| 2418 | /* resolve any still-unresolved output columns as being type text */ |
| 2419 | if (pstate->p_resolve_unknowns) |
| 2420 | resolveTargetListUnknowns(pstate, rlist); |
| 2421 | |
| 2422 | /* restore state */ |
| 2423 | pstate->p_next_resno = save_next_resno; |
| 2424 | |
| 2425 | return rlist; |
| 2426 | } |
| 2427 | |
| 2428 | |
| 2429 | /* |
| 2430 | * transformDeclareCursorStmt - |
| 2431 | * transform a DECLARE CURSOR Statement |
| 2432 | * |
| 2433 | * DECLARE CURSOR is like other utility statements in that we emit it as a |
| 2434 | * CMD_UTILITY Query node; however, we must first transform the contained |
| 2435 | * query. We used to postpone that until execution, but it's really necessary |
| 2436 | * to do it during the normal parse analysis phase to ensure that side effects |
| 2437 | * of parser hooks happen at the expected time. |
| 2438 | */ |
| 2439 | static Query * |
| 2440 | transformDeclareCursorStmt(ParseState *pstate, DeclareCursorStmt *stmt) |
| 2441 | { |
| 2442 | Query *result; |
| 2443 | Query *query; |
| 2444 | |
| 2445 | /* |
| 2446 | * Don't allow both SCROLL and NO SCROLL to be specified |
| 2447 | */ |
| 2448 | if ((stmt->options & CURSOR_OPT_SCROLL) && |
| 2449 | (stmt->options & CURSOR_OPT_NO_SCROLL)) |
| 2450 | ereport(ERROR, |
| 2451 | (errcode(ERRCODE_INVALID_CURSOR_DEFINITION), |
| 2452 | errmsg("cannot specify both SCROLL and NO SCROLL" ))); |
| 2453 | |
| 2454 | /* Transform contained query, not allowing SELECT INTO */ |
| 2455 | query = transformStmt(pstate, stmt->query); |
| 2456 | stmt->query = (Node *) query; |
| 2457 | |
| 2458 | /* Grammar should not have allowed anything but SELECT */ |
| 2459 | if (!IsA(query, Query) || |
| 2460 | query->commandType != CMD_SELECT) |
| 2461 | elog(ERROR, "unexpected non-SELECT command in DECLARE CURSOR" ); |
| 2462 | |
| 2463 | /* |
| 2464 | * We also disallow data-modifying WITH in a cursor. (This could be |
| 2465 | * allowed, but the semantics of when the updates occur might be |
| 2466 | * surprising.) |
| 2467 | */ |
| 2468 | if (query->hasModifyingCTE) |
| 2469 | ereport(ERROR, |
| 2470 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2471 | errmsg("DECLARE CURSOR must not contain data-modifying statements in WITH" ))); |
| 2472 | |
| 2473 | /* FOR UPDATE and WITH HOLD are not compatible */ |
| 2474 | if (query->rowMarks != NIL && (stmt->options & CURSOR_OPT_HOLD)) |
| 2475 | ereport(ERROR, |
| 2476 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2477 | /*------ |
| 2478 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2479 | errmsg("DECLARE CURSOR WITH HOLD ... %s is not supported" , |
| 2480 | LCS_asString(((RowMarkClause *) |
| 2481 | linitial(query->rowMarks))->strength)), |
| 2482 | errdetail("Holdable cursors must be READ ONLY." ))); |
| 2483 | |
| 2484 | /* FOR UPDATE and SCROLL are not compatible */ |
| 2485 | if (query->rowMarks != NIL && (stmt->options & CURSOR_OPT_SCROLL)) |
| 2486 | ereport(ERROR, |
| 2487 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2488 | /*------ |
| 2489 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2490 | errmsg("DECLARE SCROLL CURSOR ... %s is not supported" , |
| 2491 | LCS_asString(((RowMarkClause *) |
| 2492 | linitial(query->rowMarks))->strength)), |
| 2493 | errdetail("Scrollable cursors must be READ ONLY." ))); |
| 2494 | |
| 2495 | /* FOR UPDATE and INSENSITIVE are not compatible */ |
| 2496 | if (query->rowMarks != NIL && (stmt->options & CURSOR_OPT_INSENSITIVE)) |
| 2497 | ereport(ERROR, |
| 2498 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2499 | /*------ |
| 2500 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2501 | errmsg("DECLARE INSENSITIVE CURSOR ... %s is not supported" , |
| 2502 | LCS_asString(((RowMarkClause *) |
| 2503 | linitial(query->rowMarks))->strength)), |
| 2504 | errdetail("Insensitive cursors must be READ ONLY." ))); |
| 2505 | |
| 2506 | /* represent the command as a utility Query */ |
| 2507 | result = makeNode(Query); |
| 2508 | result->commandType = CMD_UTILITY; |
| 2509 | result->utilityStmt = (Node *) stmt; |
| 2510 | |
| 2511 | return result; |
| 2512 | } |
| 2513 | |
| 2514 | |
| 2515 | /* |
| 2516 | * transformExplainStmt - |
| 2517 | * transform an EXPLAIN Statement |
| 2518 | * |
| 2519 | * EXPLAIN is like other utility statements in that we emit it as a |
| 2520 | * CMD_UTILITY Query node; however, we must first transform the contained |
| 2521 | * query. We used to postpone that until execution, but it's really necessary |
| 2522 | * to do it during the normal parse analysis phase to ensure that side effects |
| 2523 | * of parser hooks happen at the expected time. |
| 2524 | */ |
| 2525 | static Query * |
| 2526 | transformExplainStmt(ParseState *pstate, ExplainStmt *stmt) |
| 2527 | { |
| 2528 | Query *result; |
| 2529 | |
| 2530 | /* transform contained query, allowing SELECT INTO */ |
| 2531 | stmt->query = (Node *) transformOptionalSelectInto(pstate, stmt->query); |
| 2532 | |
| 2533 | /* represent the command as a utility Query */ |
| 2534 | result = makeNode(Query); |
| 2535 | result->commandType = CMD_UTILITY; |
| 2536 | result->utilityStmt = (Node *) stmt; |
| 2537 | |
| 2538 | return result; |
| 2539 | } |
| 2540 | |
| 2541 | |
| 2542 | /* |
| 2543 | * transformCreateTableAsStmt - |
| 2544 | * transform a CREATE TABLE AS, SELECT ... INTO, or CREATE MATERIALIZED VIEW |
| 2545 | * Statement |
| 2546 | * |
| 2547 | * As with DECLARE CURSOR and EXPLAIN, transform the contained statement now. |
| 2548 | */ |
| 2549 | static Query * |
| 2550 | transformCreateTableAsStmt(ParseState *pstate, CreateTableAsStmt *stmt) |
| 2551 | { |
| 2552 | Query *result; |
| 2553 | Query *query; |
| 2554 | |
| 2555 | /* transform contained query, not allowing SELECT INTO */ |
| 2556 | query = transformStmt(pstate, stmt->query); |
| 2557 | stmt->query = (Node *) query; |
| 2558 | |
| 2559 | /* additional work needed for CREATE MATERIALIZED VIEW */ |
| 2560 | if (stmt->relkind == OBJECT_MATVIEW) |
| 2561 | { |
| 2562 | /* |
| 2563 | * Prohibit a data-modifying CTE in the query used to create a |
| 2564 | * materialized view. It's not sufficiently clear what the user would |
| 2565 | * want to happen if the MV is refreshed or incrementally maintained. |
| 2566 | */ |
| 2567 | if (query->hasModifyingCTE) |
| 2568 | ereport(ERROR, |
| 2569 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2570 | errmsg("materialized views must not use data-modifying statements in WITH" ))); |
| 2571 | |
| 2572 | /* |
| 2573 | * Check whether any temporary database objects are used in the |
| 2574 | * creation query. It would be hard to refresh data or incrementally |
| 2575 | * maintain it if a source disappeared. |
| 2576 | */ |
| 2577 | if (isQueryUsingTempRelation(query)) |
| 2578 | ereport(ERROR, |
| 2579 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2580 | errmsg("materialized views must not use temporary tables or views" ))); |
| 2581 | |
| 2582 | /* |
| 2583 | * A materialized view would either need to save parameters for use in |
| 2584 | * maintaining/loading the data or prohibit them entirely. The latter |
| 2585 | * seems safer and more sane. |
| 2586 | */ |
| 2587 | if (query_contains_extern_params(query)) |
| 2588 | ereport(ERROR, |
| 2589 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2590 | errmsg("materialized views may not be defined using bound parameters" ))); |
| 2591 | |
| 2592 | /* |
| 2593 | * For now, we disallow unlogged materialized views, because it seems |
| 2594 | * like a bad idea for them to just go to empty after a crash. (If we |
| 2595 | * could mark them as unpopulated, that would be better, but that |
| 2596 | * requires catalog changes which crash recovery can't presently |
| 2597 | * handle.) |
| 2598 | */ |
| 2599 | if (stmt->into->rel->relpersistence == RELPERSISTENCE_UNLOGGED) |
| 2600 | ereport(ERROR, |
| 2601 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2602 | errmsg("materialized views cannot be unlogged" ))); |
| 2603 | |
| 2604 | /* |
| 2605 | * At runtime, we'll need a copy of the parsed-but-not-rewritten Query |
| 2606 | * for purposes of creating the view's ON SELECT rule. We stash that |
| 2607 | * in the IntoClause because that's where intorel_startup() can |
| 2608 | * conveniently get it from. |
| 2609 | */ |
| 2610 | stmt->into->viewQuery = (Node *) copyObject(query); |
| 2611 | } |
| 2612 | |
| 2613 | /* represent the command as a utility Query */ |
| 2614 | result = makeNode(Query); |
| 2615 | result->commandType = CMD_UTILITY; |
| 2616 | result->utilityStmt = (Node *) stmt; |
| 2617 | |
| 2618 | return result; |
| 2619 | } |
| 2620 | |
| 2621 | /* |
| 2622 | * transform a CallStmt |
| 2623 | * |
| 2624 | * We need to do parse analysis on the procedure call and its arguments. |
| 2625 | */ |
| 2626 | static Query * |
| 2627 | transformCallStmt(ParseState *pstate, CallStmt *stmt) |
| 2628 | { |
| 2629 | List *targs; |
| 2630 | ListCell *lc; |
| 2631 | Node *node; |
| 2632 | Query *result; |
| 2633 | |
| 2634 | targs = NIL; |
| 2635 | foreach(lc, stmt->funccall->args) |
| 2636 | { |
| 2637 | targs = lappend(targs, transformExpr(pstate, |
| 2638 | (Node *) lfirst(lc), |
| 2639 | EXPR_KIND_CALL_ARGUMENT)); |
| 2640 | } |
| 2641 | |
| 2642 | node = ParseFuncOrColumn(pstate, |
| 2643 | stmt->funccall->funcname, |
| 2644 | targs, |
| 2645 | pstate->p_last_srf, |
| 2646 | stmt->funccall, |
| 2647 | true, |
| 2648 | stmt->funccall->location); |
| 2649 | |
| 2650 | assign_expr_collations(pstate, node); |
| 2651 | |
| 2652 | stmt->funcexpr = castNode(FuncExpr, node); |
| 2653 | |
| 2654 | result = makeNode(Query); |
| 2655 | result->commandType = CMD_UTILITY; |
| 2656 | result->utilityStmt = (Node *) stmt; |
| 2657 | |
| 2658 | return result; |
| 2659 | } |
| 2660 | |
| 2661 | /* |
| 2662 | * Produce a string representation of a LockClauseStrength value. |
| 2663 | * This should only be applied to valid values (not LCS_NONE). |
| 2664 | */ |
| 2665 | const char * |
| 2666 | LCS_asString(LockClauseStrength strength) |
| 2667 | { |
| 2668 | switch (strength) |
| 2669 | { |
| 2670 | case LCS_NONE: |
| 2671 | Assert(false); |
| 2672 | break; |
| 2673 | case LCS_FORKEYSHARE: |
| 2674 | return "FOR KEY SHARE" ; |
| 2675 | case LCS_FORSHARE: |
| 2676 | return "FOR SHARE" ; |
| 2677 | case LCS_FORNOKEYUPDATE: |
| 2678 | return "FOR NO KEY UPDATE" ; |
| 2679 | case LCS_FORUPDATE: |
| 2680 | return "FOR UPDATE" ; |
| 2681 | } |
| 2682 | return "FOR some" ; /* shouldn't happen */ |
| 2683 | } |
| 2684 | |
| 2685 | /* |
| 2686 | * Check for features that are not supported with FOR [KEY] UPDATE/SHARE. |
| 2687 | * |
| 2688 | * exported so planner can check again after rewriting, query pullup, etc |
| 2689 | */ |
| 2690 | void |
| 2691 | CheckSelectLocking(Query *qry, LockClauseStrength strength) |
| 2692 | { |
| 2693 | Assert(strength != LCS_NONE); /* else caller error */ |
| 2694 | |
| 2695 | if (qry->setOperations) |
| 2696 | ereport(ERROR, |
| 2697 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2698 | /*------ |
| 2699 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2700 | errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT" , |
| 2701 | LCS_asString(strength)))); |
| 2702 | if (qry->distinctClause != NIL) |
| 2703 | ereport(ERROR, |
| 2704 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2705 | /*------ |
| 2706 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2707 | errmsg("%s is not allowed with DISTINCT clause" , |
| 2708 | LCS_asString(strength)))); |
| 2709 | if (qry->groupClause != NIL) |
| 2710 | ereport(ERROR, |
| 2711 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2712 | /*------ |
| 2713 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2714 | errmsg("%s is not allowed with GROUP BY clause" , |
| 2715 | LCS_asString(strength)))); |
| 2716 | if (qry->havingQual != NULL) |
| 2717 | ereport(ERROR, |
| 2718 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2719 | /*------ |
| 2720 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2721 | errmsg("%s is not allowed with HAVING clause" , |
| 2722 | LCS_asString(strength)))); |
| 2723 | if (qry->hasAggs) |
| 2724 | ereport(ERROR, |
| 2725 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2726 | /*------ |
| 2727 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2728 | errmsg("%s is not allowed with aggregate functions" , |
| 2729 | LCS_asString(strength)))); |
| 2730 | if (qry->hasWindowFuncs) |
| 2731 | ereport(ERROR, |
| 2732 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2733 | /*------ |
| 2734 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2735 | errmsg("%s is not allowed with window functions" , |
| 2736 | LCS_asString(strength)))); |
| 2737 | if (qry->hasTargetSRFs) |
| 2738 | ereport(ERROR, |
| 2739 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2740 | /*------ |
| 2741 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2742 | errmsg("%s is not allowed with set-returning functions in the target list" , |
| 2743 | LCS_asString(strength)))); |
| 2744 | } |
| 2745 | |
| 2746 | /* |
| 2747 | * Transform a FOR [KEY] UPDATE/SHARE clause |
| 2748 | * |
| 2749 | * This basically involves replacing names by integer relids. |
| 2750 | * |
| 2751 | * NB: if you need to change this, see also markQueryForLocking() |
| 2752 | * in rewriteHandler.c, and isLockedRefname() in parse_relation.c. |
| 2753 | */ |
| 2754 | static void |
| 2755 | transformLockingClause(ParseState *pstate, Query *qry, LockingClause *lc, |
| 2756 | bool pushedDown) |
| 2757 | { |
| 2758 | List *lockedRels = lc->lockedRels; |
| 2759 | ListCell *l; |
| 2760 | ListCell *rt; |
| 2761 | Index i; |
| 2762 | LockingClause *allrels; |
| 2763 | |
| 2764 | CheckSelectLocking(qry, lc->strength); |
| 2765 | |
| 2766 | /* make a clause we can pass down to subqueries to select all rels */ |
| 2767 | allrels = makeNode(LockingClause); |
| 2768 | allrels->lockedRels = NIL; /* indicates all rels */ |
| 2769 | allrels->strength = lc->strength; |
| 2770 | allrels->waitPolicy = lc->waitPolicy; |
| 2771 | |
| 2772 | if (lockedRels == NIL) |
| 2773 | { |
| 2774 | /* all regular tables used in query */ |
| 2775 | i = 0; |
| 2776 | foreach(rt, qry->rtable) |
| 2777 | { |
| 2778 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
| 2779 | |
| 2780 | ++i; |
| 2781 | switch (rte->rtekind) |
| 2782 | { |
| 2783 | case RTE_RELATION: |
| 2784 | applyLockingClause(qry, i, lc->strength, lc->waitPolicy, |
| 2785 | pushedDown); |
| 2786 | rte->requiredPerms |= ACL_SELECT_FOR_UPDATE; |
| 2787 | break; |
| 2788 | case RTE_SUBQUERY: |
| 2789 | applyLockingClause(qry, i, lc->strength, lc->waitPolicy, |
| 2790 | pushedDown); |
| 2791 | |
| 2792 | /* |
| 2793 | * FOR UPDATE/SHARE of subquery is propagated to all of |
| 2794 | * subquery's rels, too. We could do this later (based on |
| 2795 | * the marking of the subquery RTE) but it is convenient |
| 2796 | * to have local knowledge in each query level about which |
| 2797 | * rels need to be opened with RowShareLock. |
| 2798 | */ |
| 2799 | transformLockingClause(pstate, rte->subquery, |
| 2800 | allrels, true); |
| 2801 | break; |
| 2802 | default: |
| 2803 | /* ignore JOIN, SPECIAL, FUNCTION, VALUES, CTE RTEs */ |
| 2804 | break; |
| 2805 | } |
| 2806 | } |
| 2807 | } |
| 2808 | else |
| 2809 | { |
| 2810 | /* just the named tables */ |
| 2811 | foreach(l, lockedRels) |
| 2812 | { |
| 2813 | RangeVar *thisrel = (RangeVar *) lfirst(l); |
| 2814 | |
| 2815 | /* For simplicity we insist on unqualified alias names here */ |
| 2816 | if (thisrel->catalogname || thisrel->schemaname) |
| 2817 | ereport(ERROR, |
| 2818 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2819 | /*------ |
| 2820 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2821 | errmsg("%s must specify unqualified relation names" , |
| 2822 | LCS_asString(lc->strength)), |
| 2823 | parser_errposition(pstate, thisrel->location))); |
| 2824 | |
| 2825 | i = 0; |
| 2826 | foreach(rt, qry->rtable) |
| 2827 | { |
| 2828 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
| 2829 | |
| 2830 | ++i; |
| 2831 | if (strcmp(rte->eref->aliasname, thisrel->relname) == 0) |
| 2832 | { |
| 2833 | switch (rte->rtekind) |
| 2834 | { |
| 2835 | case RTE_RELATION: |
| 2836 | applyLockingClause(qry, i, lc->strength, |
| 2837 | lc->waitPolicy, pushedDown); |
| 2838 | rte->requiredPerms |= ACL_SELECT_FOR_UPDATE; |
| 2839 | break; |
| 2840 | case RTE_SUBQUERY: |
| 2841 | applyLockingClause(qry, i, lc->strength, |
| 2842 | lc->waitPolicy, pushedDown); |
| 2843 | /* see comment above */ |
| 2844 | transformLockingClause(pstate, rte->subquery, |
| 2845 | allrels, true); |
| 2846 | break; |
| 2847 | case RTE_JOIN: |
| 2848 | ereport(ERROR, |
| 2849 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2850 | /*------ |
| 2851 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2852 | errmsg("%s cannot be applied to a join" , |
| 2853 | LCS_asString(lc->strength)), |
| 2854 | parser_errposition(pstate, thisrel->location))); |
| 2855 | break; |
| 2856 | case RTE_FUNCTION: |
| 2857 | ereport(ERROR, |
| 2858 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2859 | /*------ |
| 2860 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2861 | errmsg("%s cannot be applied to a function" , |
| 2862 | LCS_asString(lc->strength)), |
| 2863 | parser_errposition(pstate, thisrel->location))); |
| 2864 | break; |
| 2865 | case RTE_TABLEFUNC: |
| 2866 | ereport(ERROR, |
| 2867 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2868 | /*------ |
| 2869 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2870 | errmsg("%s cannot be applied to a table function" , |
| 2871 | LCS_asString(lc->strength)), |
| 2872 | parser_errposition(pstate, thisrel->location))); |
| 2873 | break; |
| 2874 | case RTE_VALUES: |
| 2875 | ereport(ERROR, |
| 2876 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2877 | /*------ |
| 2878 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2879 | errmsg("%s cannot be applied to VALUES" , |
| 2880 | LCS_asString(lc->strength)), |
| 2881 | parser_errposition(pstate, thisrel->location))); |
| 2882 | break; |
| 2883 | case RTE_CTE: |
| 2884 | ereport(ERROR, |
| 2885 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2886 | /*------ |
| 2887 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2888 | errmsg("%s cannot be applied to a WITH query" , |
| 2889 | LCS_asString(lc->strength)), |
| 2890 | parser_errposition(pstate, thisrel->location))); |
| 2891 | break; |
| 2892 | case RTE_NAMEDTUPLESTORE: |
| 2893 | ereport(ERROR, |
| 2894 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2895 | /*------ |
| 2896 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2897 | errmsg("%s cannot be applied to a named tuplestore" , |
| 2898 | LCS_asString(lc->strength)), |
| 2899 | parser_errposition(pstate, thisrel->location))); |
| 2900 | break; |
| 2901 | |
| 2902 | /* Shouldn't be possible to see RTE_RESULT here */ |
| 2903 | |
| 2904 | default: |
| 2905 | elog(ERROR, "unrecognized RTE type: %d" , |
| 2906 | (int) rte->rtekind); |
| 2907 | break; |
| 2908 | } |
| 2909 | break; /* out of foreach loop */ |
| 2910 | } |
| 2911 | } |
| 2912 | if (rt == NULL) |
| 2913 | ereport(ERROR, |
| 2914 | (errcode(ERRCODE_UNDEFINED_TABLE), |
| 2915 | /*------ |
| 2916 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 2917 | errmsg("relation \"%s\" in %s clause not found in FROM clause" , |
| 2918 | thisrel->relname, |
| 2919 | LCS_asString(lc->strength)), |
| 2920 | parser_errposition(pstate, thisrel->location))); |
| 2921 | } |
| 2922 | } |
| 2923 | } |
| 2924 | |
| 2925 | /* |
| 2926 | * Record locking info for a single rangetable item |
| 2927 | */ |
| 2928 | void |
| 2929 | applyLockingClause(Query *qry, Index rtindex, |
| 2930 | LockClauseStrength strength, LockWaitPolicy waitPolicy, |
| 2931 | bool pushedDown) |
| 2932 | { |
| 2933 | RowMarkClause *rc; |
| 2934 | |
| 2935 | Assert(strength != LCS_NONE); /* else caller error */ |
| 2936 | |
| 2937 | /* If it's an explicit clause, make sure hasForUpdate gets set */ |
| 2938 | if (!pushedDown) |
| 2939 | qry->hasForUpdate = true; |
| 2940 | |
| 2941 | /* Check for pre-existing entry for same rtindex */ |
| 2942 | if ((rc = get_parse_rowmark(qry, rtindex)) != NULL) |
| 2943 | { |
| 2944 | /* |
| 2945 | * If the same RTE is specified with more than one locking strength, |
| 2946 | * use the strongest. (Reasonable, since you can't take both a shared |
| 2947 | * and exclusive lock at the same time; it'll end up being exclusive |
| 2948 | * anyway.) |
| 2949 | * |
| 2950 | * Similarly, if the same RTE is specified with more than one lock |
| 2951 | * wait policy, consider that NOWAIT wins over SKIP LOCKED, which in |
| 2952 | * turn wins over waiting for the lock (the default). This is a bit |
| 2953 | * more debatable but raising an error doesn't seem helpful. (Consider |
| 2954 | * for instance SELECT FOR UPDATE NOWAIT from a view that internally |
| 2955 | * contains a plain FOR UPDATE spec.) Having NOWAIT win over SKIP |
| 2956 | * LOCKED is reasonable since the former throws an error in case of |
| 2957 | * coming across a locked tuple, which may be undesirable in some |
| 2958 | * cases but it seems better than silently returning inconsistent |
| 2959 | * results. |
| 2960 | * |
| 2961 | * And of course pushedDown becomes false if any clause is explicit. |
| 2962 | */ |
| 2963 | rc->strength = Max(rc->strength, strength); |
| 2964 | rc->waitPolicy = Max(rc->waitPolicy, waitPolicy); |
| 2965 | rc->pushedDown &= pushedDown; |
| 2966 | return; |
| 2967 | } |
| 2968 | |
| 2969 | /* Make a new RowMarkClause */ |
| 2970 | rc = makeNode(RowMarkClause); |
| 2971 | rc->rti = rtindex; |
| 2972 | rc->strength = strength; |
| 2973 | rc->waitPolicy = waitPolicy; |
| 2974 | rc->pushedDown = pushedDown; |
| 2975 | qry->rowMarks = lappend(qry->rowMarks, rc); |
| 2976 | } |
| 2977 | |
| 2978 | /* |
| 2979 | * Coverage testing for raw_expression_tree_walker(). |
| 2980 | * |
| 2981 | * When enabled, we run raw_expression_tree_walker() over every DML statement |
| 2982 | * submitted to parse analysis. Without this provision, that function is only |
| 2983 | * applied in limited cases involving CTEs, and we don't really want to have |
| 2984 | * to test everything inside as well as outside a CTE. |
| 2985 | */ |
| 2986 | #ifdef RAW_EXPRESSION_COVERAGE_TEST |
| 2987 | |
| 2988 | static bool |
| 2989 | test_raw_expression_coverage(Node *node, void *context) |
| 2990 | { |
| 2991 | if (node == NULL) |
| 2992 | return false; |
| 2993 | return raw_expression_tree_walker(node, |
| 2994 | test_raw_expression_coverage, |
| 2995 | context); |
| 2996 | } |
| 2997 | |
| 2998 | #endif /* RAW_EXPRESSION_COVERAGE_TEST */ |
| 2999 | |