| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * parse_agg.c |
| 4 | * handle aggregates and window functions in parser |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/parser/parse_agg.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "catalog/pg_aggregate.h" |
| 18 | #include "catalog/pg_constraint.h" |
| 19 | #include "catalog/pg_type.h" |
| 20 | #include "nodes/makefuncs.h" |
| 21 | #include "nodes/nodeFuncs.h" |
| 22 | #include "optimizer/optimizer.h" |
| 23 | #include "parser/parse_agg.h" |
| 24 | #include "parser/parse_clause.h" |
| 25 | #include "parser/parse_coerce.h" |
| 26 | #include "parser/parse_expr.h" |
| 27 | #include "parser/parsetree.h" |
| 28 | #include "rewrite/rewriteManip.h" |
| 29 | #include "utils/builtins.h" |
| 30 | #include "utils/lsyscache.h" |
| 31 | |
| 32 | |
| 33 | typedef struct |
| 34 | { |
| 35 | ParseState *pstate; |
| 36 | int min_varlevel; |
| 37 | int min_agglevel; |
| 38 | int sublevels_up; |
| 39 | } check_agg_arguments_context; |
| 40 | |
| 41 | typedef struct |
| 42 | { |
| 43 | ParseState *pstate; |
| 44 | Query *qry; |
| 45 | bool hasJoinRTEs; |
| 46 | List *groupClauses; |
| 47 | List *groupClauseCommonVars; |
| 48 | bool have_non_var_grouping; |
| 49 | List **func_grouped_rels; |
| 50 | int sublevels_up; |
| 51 | bool in_agg_direct_args; |
| 52 | } check_ungrouped_columns_context; |
| 53 | |
| 54 | static int check_agg_arguments(ParseState *pstate, |
| 55 | List *directargs, |
| 56 | List *args, |
| 57 | Expr *filter); |
| 58 | static bool check_agg_arguments_walker(Node *node, |
| 59 | check_agg_arguments_context *context); |
| 60 | static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry, |
| 61 | List *groupClauses, List *groupClauseVars, |
| 62 | bool have_non_var_grouping, |
| 63 | List **func_grouped_rels); |
| 64 | static bool check_ungrouped_columns_walker(Node *node, |
| 65 | check_ungrouped_columns_context *context); |
| 66 | static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, |
| 67 | List *groupClauses, bool hasJoinRTEs, |
| 68 | bool have_non_var_grouping); |
| 69 | static bool finalize_grouping_exprs_walker(Node *node, |
| 70 | check_ungrouped_columns_context *context); |
| 71 | static void check_agglevels_and_constraints(ParseState *pstate, Node *expr); |
| 72 | static List *expand_groupingset_node(GroupingSet *gs); |
| 73 | static Node *make_agg_arg(Oid argtype, Oid argcollation); |
| 74 | |
| 75 | |
| 76 | /* |
| 77 | * transformAggregateCall - |
| 78 | * Finish initial transformation of an aggregate call |
| 79 | * |
| 80 | * parse_func.c has recognized the function as an aggregate, and has set up |
| 81 | * all the fields of the Aggref except aggargtypes, aggdirectargs, args, |
| 82 | * aggorder, aggdistinct and agglevelsup. The passed-in args list has been |
| 83 | * through standard expression transformation and type coercion to match the |
| 84 | * agg's declared arg types, while the passed-in aggorder list hasn't been |
| 85 | * transformed at all. |
| 86 | * |
| 87 | * Here we separate the args list into direct and aggregated args, storing the |
| 88 | * former in agg->aggdirectargs and the latter in agg->args. The regular |
| 89 | * args, but not the direct args, are converted into a targetlist by inserting |
| 90 | * TargetEntry nodes. We then transform the aggorder and agg_distinct |
| 91 | * specifications to produce lists of SortGroupClause nodes for agg->aggorder |
| 92 | * and agg->aggdistinct. (For a regular aggregate, this might result in |
| 93 | * adding resjunk expressions to the targetlist; but for ordered-set |
| 94 | * aggregates the aggorder list will always be one-to-one with the aggregated |
| 95 | * args.) |
| 96 | * |
| 97 | * We must also determine which query level the aggregate actually belongs to, |
| 98 | * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding |
| 99 | * pstate level. |
| 100 | */ |
| 101 | void |
| 102 | transformAggregateCall(ParseState *pstate, Aggref *agg, |
| 103 | List *args, List *aggorder, bool agg_distinct) |
| 104 | { |
| 105 | List *argtypes = NIL; |
| 106 | List *tlist = NIL; |
| 107 | List *torder = NIL; |
| 108 | List *tdistinct = NIL; |
| 109 | AttrNumber attno = 1; |
| 110 | int save_next_resno; |
| 111 | ListCell *lc; |
| 112 | |
| 113 | /* |
| 114 | * Before separating the args into direct and aggregated args, make a list |
| 115 | * of their data type OIDs for use later. |
| 116 | */ |
| 117 | foreach(lc, args) |
| 118 | { |
| 119 | Expr *arg = (Expr *) lfirst(lc); |
| 120 | |
| 121 | argtypes = lappend_oid(argtypes, exprType((Node *) arg)); |
| 122 | } |
| 123 | agg->aggargtypes = argtypes; |
| 124 | |
| 125 | if (AGGKIND_IS_ORDERED_SET(agg->aggkind)) |
| 126 | { |
| 127 | /* |
| 128 | * For an ordered-set agg, the args list includes direct args and |
| 129 | * aggregated args; we must split them apart. |
| 130 | */ |
| 131 | int numDirectArgs = list_length(args) - list_length(aggorder); |
| 132 | List *aargs; |
| 133 | ListCell *lc2; |
| 134 | |
| 135 | Assert(numDirectArgs >= 0); |
| 136 | |
| 137 | aargs = list_copy_tail(args, numDirectArgs); |
| 138 | agg->aggdirectargs = list_truncate(args, numDirectArgs); |
| 139 | |
| 140 | /* |
| 141 | * Build a tlist from the aggregated args, and make a sortlist entry |
| 142 | * for each one. Note that the expressions in the SortBy nodes are |
| 143 | * ignored (they are the raw versions of the transformed args); we are |
| 144 | * just looking at the sort information in the SortBy nodes. |
| 145 | */ |
| 146 | forboth(lc, aargs, lc2, aggorder) |
| 147 | { |
| 148 | Expr *arg = (Expr *) lfirst(lc); |
| 149 | SortBy *sortby = (SortBy *) lfirst(lc2); |
| 150 | TargetEntry *tle; |
| 151 | |
| 152 | /* We don't bother to assign column names to the entries */ |
| 153 | tle = makeTargetEntry(arg, attno++, NULL, false); |
| 154 | tlist = lappend(tlist, tle); |
| 155 | |
| 156 | torder = addTargetToSortList(pstate, tle, |
| 157 | torder, tlist, sortby); |
| 158 | } |
| 159 | |
| 160 | /* Never any DISTINCT in an ordered-set agg */ |
| 161 | Assert(!agg_distinct); |
| 162 | } |
| 163 | else |
| 164 | { |
| 165 | /* Regular aggregate, so it has no direct args */ |
| 166 | agg->aggdirectargs = NIL; |
| 167 | |
| 168 | /* |
| 169 | * Transform the plain list of Exprs into a targetlist. |
| 170 | */ |
| 171 | foreach(lc, args) |
| 172 | { |
| 173 | Expr *arg = (Expr *) lfirst(lc); |
| 174 | TargetEntry *tle; |
| 175 | |
| 176 | /* We don't bother to assign column names to the entries */ |
| 177 | tle = makeTargetEntry(arg, attno++, NULL, false); |
| 178 | tlist = lappend(tlist, tle); |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * If we have an ORDER BY, transform it. This will add columns to the |
| 183 | * tlist if they appear in ORDER BY but weren't already in the arg |
| 184 | * list. They will be marked resjunk = true so we can tell them apart |
| 185 | * from regular aggregate arguments later. |
| 186 | * |
| 187 | * We need to mess with p_next_resno since it will be used to number |
| 188 | * any new targetlist entries. |
| 189 | */ |
| 190 | save_next_resno = pstate->p_next_resno; |
| 191 | pstate->p_next_resno = attno; |
| 192 | |
| 193 | torder = transformSortClause(pstate, |
| 194 | aggorder, |
| 195 | &tlist, |
| 196 | EXPR_KIND_ORDER_BY, |
| 197 | true /* force SQL99 rules */ ); |
| 198 | |
| 199 | /* |
| 200 | * If we have DISTINCT, transform that to produce a distinctList. |
| 201 | */ |
| 202 | if (agg_distinct) |
| 203 | { |
| 204 | tdistinct = transformDistinctClause(pstate, &tlist, torder, true); |
| 205 | |
| 206 | /* |
| 207 | * Remove this check if executor support for hashed distinct for |
| 208 | * aggregates is ever added. |
| 209 | */ |
| 210 | foreach(lc, tdistinct) |
| 211 | { |
| 212 | SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc); |
| 213 | |
| 214 | if (!OidIsValid(sortcl->sortop)) |
| 215 | { |
| 216 | Node *expr = get_sortgroupclause_expr(sortcl, tlist); |
| 217 | |
| 218 | ereport(ERROR, |
| 219 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 220 | errmsg("could not identify an ordering operator for type %s" , |
| 221 | format_type_be(exprType(expr))), |
| 222 | errdetail("Aggregates with DISTINCT must be able to sort their inputs." ), |
| 223 | parser_errposition(pstate, exprLocation(expr)))); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | pstate->p_next_resno = save_next_resno; |
| 229 | } |
| 230 | |
| 231 | /* Update the Aggref with the transformation results */ |
| 232 | agg->args = tlist; |
| 233 | agg->aggorder = torder; |
| 234 | agg->aggdistinct = tdistinct; |
| 235 | |
| 236 | check_agglevels_and_constraints(pstate, (Node *) agg); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * transformGroupingFunc |
| 241 | * Transform a GROUPING expression |
| 242 | * |
| 243 | * GROUPING() behaves very like an aggregate. Processing of levels and nesting |
| 244 | * is done as for aggregates. We set p_hasAggs for these expressions too. |
| 245 | */ |
| 246 | Node * |
| 247 | transformGroupingFunc(ParseState *pstate, GroupingFunc *p) |
| 248 | { |
| 249 | ListCell *lc; |
| 250 | List *args = p->args; |
| 251 | List *result_list = NIL; |
| 252 | GroupingFunc *result = makeNode(GroupingFunc); |
| 253 | |
| 254 | if (list_length(args) > 31) |
| 255 | ereport(ERROR, |
| 256 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 257 | errmsg("GROUPING must have fewer than 32 arguments" ), |
| 258 | parser_errposition(pstate, p->location))); |
| 259 | |
| 260 | foreach(lc, args) |
| 261 | { |
| 262 | Node *current_result; |
| 263 | |
| 264 | current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind); |
| 265 | |
| 266 | /* acceptability of expressions is checked later */ |
| 267 | |
| 268 | result_list = lappend(result_list, current_result); |
| 269 | } |
| 270 | |
| 271 | result->args = result_list; |
| 272 | result->location = p->location; |
| 273 | |
| 274 | check_agglevels_and_constraints(pstate, (Node *) result); |
| 275 | |
| 276 | return (Node *) result; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Aggregate functions and grouping operations (which are combined in the spec |
| 281 | * as <set function specification>) are very similar with regard to level and |
| 282 | * nesting restrictions (though we allow a lot more things than the spec does). |
| 283 | * Centralise those restrictions here. |
| 284 | */ |
| 285 | static void |
| 286 | check_agglevels_and_constraints(ParseState *pstate, Node *expr) |
| 287 | { |
| 288 | List *directargs = NIL; |
| 289 | List *args = NIL; |
| 290 | Expr *filter = NULL; |
| 291 | int min_varlevel; |
| 292 | int location = -1; |
| 293 | Index *p_levelsup; |
| 294 | const char *err; |
| 295 | bool errkind; |
| 296 | bool isAgg = IsA(expr, Aggref); |
| 297 | |
| 298 | if (isAgg) |
| 299 | { |
| 300 | Aggref *agg = (Aggref *) expr; |
| 301 | |
| 302 | directargs = agg->aggdirectargs; |
| 303 | args = agg->args; |
| 304 | filter = agg->aggfilter; |
| 305 | location = agg->location; |
| 306 | p_levelsup = &agg->agglevelsup; |
| 307 | } |
| 308 | else |
| 309 | { |
| 310 | GroupingFunc *grp = (GroupingFunc *) expr; |
| 311 | |
| 312 | args = grp->args; |
| 313 | location = grp->location; |
| 314 | p_levelsup = &grp->agglevelsup; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Check the arguments to compute the aggregate's level and detect |
| 319 | * improper nesting. |
| 320 | */ |
| 321 | min_varlevel = check_agg_arguments(pstate, |
| 322 | directargs, |
| 323 | args, |
| 324 | filter); |
| 325 | |
| 326 | *p_levelsup = min_varlevel; |
| 327 | |
| 328 | /* Mark the correct pstate level as having aggregates */ |
| 329 | while (min_varlevel-- > 0) |
| 330 | pstate = pstate->parentParseState; |
| 331 | pstate->p_hasAggs = true; |
| 332 | |
| 333 | /* |
| 334 | * Check to see if the aggregate function is in an invalid place within |
| 335 | * its aggregation query. |
| 336 | * |
| 337 | * For brevity we support two schemes for reporting an error here: set |
| 338 | * "err" to a custom message, or set "errkind" true if the error context |
| 339 | * is sufficiently identified by what ParseExprKindName will return, *and* |
| 340 | * what it will return is just a SQL keyword. (Otherwise, use a custom |
| 341 | * message to avoid creating translation problems.) |
| 342 | */ |
| 343 | err = NULL; |
| 344 | errkind = false; |
| 345 | switch (pstate->p_expr_kind) |
| 346 | { |
| 347 | case EXPR_KIND_NONE: |
| 348 | Assert(false); /* can't happen */ |
| 349 | break; |
| 350 | case EXPR_KIND_OTHER: |
| 351 | |
| 352 | /* |
| 353 | * Accept aggregate/grouping here; caller must throw error if |
| 354 | * wanted |
| 355 | */ |
| 356 | break; |
| 357 | case EXPR_KIND_JOIN_ON: |
| 358 | case EXPR_KIND_JOIN_USING: |
| 359 | if (isAgg) |
| 360 | err = _("aggregate functions are not allowed in JOIN conditions" ); |
| 361 | else |
| 362 | err = _("grouping operations are not allowed in JOIN conditions" ); |
| 363 | |
| 364 | break; |
| 365 | case EXPR_KIND_FROM_SUBSELECT: |
| 366 | /* Should only be possible in a LATERAL subquery */ |
| 367 | Assert(pstate->p_lateral_active); |
| 368 | |
| 369 | /* |
| 370 | * Aggregate/grouping scope rules make it worth being explicit |
| 371 | * here |
| 372 | */ |
| 373 | if (isAgg) |
| 374 | err = _("aggregate functions are not allowed in FROM clause of their own query level" ); |
| 375 | else |
| 376 | err = _("grouping operations are not allowed in FROM clause of their own query level" ); |
| 377 | |
| 378 | break; |
| 379 | case EXPR_KIND_FROM_FUNCTION: |
| 380 | if (isAgg) |
| 381 | err = _("aggregate functions are not allowed in functions in FROM" ); |
| 382 | else |
| 383 | err = _("grouping operations are not allowed in functions in FROM" ); |
| 384 | |
| 385 | break; |
| 386 | case EXPR_KIND_WHERE: |
| 387 | errkind = true; |
| 388 | break; |
| 389 | case EXPR_KIND_POLICY: |
| 390 | if (isAgg) |
| 391 | err = _("aggregate functions are not allowed in policy expressions" ); |
| 392 | else |
| 393 | err = _("grouping operations are not allowed in policy expressions" ); |
| 394 | |
| 395 | break; |
| 396 | case EXPR_KIND_HAVING: |
| 397 | /* okay */ |
| 398 | break; |
| 399 | case EXPR_KIND_FILTER: |
| 400 | errkind = true; |
| 401 | break; |
| 402 | case EXPR_KIND_WINDOW_PARTITION: |
| 403 | /* okay */ |
| 404 | break; |
| 405 | case EXPR_KIND_WINDOW_ORDER: |
| 406 | /* okay */ |
| 407 | break; |
| 408 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 409 | if (isAgg) |
| 410 | err = _("aggregate functions are not allowed in window RANGE" ); |
| 411 | else |
| 412 | err = _("grouping operations are not allowed in window RANGE" ); |
| 413 | |
| 414 | break; |
| 415 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 416 | if (isAgg) |
| 417 | err = _("aggregate functions are not allowed in window ROWS" ); |
| 418 | else |
| 419 | err = _("grouping operations are not allowed in window ROWS" ); |
| 420 | |
| 421 | break; |
| 422 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 423 | if (isAgg) |
| 424 | err = _("aggregate functions are not allowed in window GROUPS" ); |
| 425 | else |
| 426 | err = _("grouping operations are not allowed in window GROUPS" ); |
| 427 | |
| 428 | break; |
| 429 | case EXPR_KIND_SELECT_TARGET: |
| 430 | /* okay */ |
| 431 | break; |
| 432 | case EXPR_KIND_INSERT_TARGET: |
| 433 | case EXPR_KIND_UPDATE_SOURCE: |
| 434 | case EXPR_KIND_UPDATE_TARGET: |
| 435 | errkind = true; |
| 436 | break; |
| 437 | case EXPR_KIND_GROUP_BY: |
| 438 | errkind = true; |
| 439 | break; |
| 440 | case EXPR_KIND_ORDER_BY: |
| 441 | /* okay */ |
| 442 | break; |
| 443 | case EXPR_KIND_DISTINCT_ON: |
| 444 | /* okay */ |
| 445 | break; |
| 446 | case EXPR_KIND_LIMIT: |
| 447 | case EXPR_KIND_OFFSET: |
| 448 | errkind = true; |
| 449 | break; |
| 450 | case EXPR_KIND_RETURNING: |
| 451 | errkind = true; |
| 452 | break; |
| 453 | case EXPR_KIND_VALUES: |
| 454 | case EXPR_KIND_VALUES_SINGLE: |
| 455 | errkind = true; |
| 456 | break; |
| 457 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 458 | case EXPR_KIND_DOMAIN_CHECK: |
| 459 | if (isAgg) |
| 460 | err = _("aggregate functions are not allowed in check constraints" ); |
| 461 | else |
| 462 | err = _("grouping operations are not allowed in check constraints" ); |
| 463 | |
| 464 | break; |
| 465 | case EXPR_KIND_COLUMN_DEFAULT: |
| 466 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 467 | |
| 468 | if (isAgg) |
| 469 | err = _("aggregate functions are not allowed in DEFAULT expressions" ); |
| 470 | else |
| 471 | err = _("grouping operations are not allowed in DEFAULT expressions" ); |
| 472 | |
| 473 | break; |
| 474 | case EXPR_KIND_INDEX_EXPRESSION: |
| 475 | if (isAgg) |
| 476 | err = _("aggregate functions are not allowed in index expressions" ); |
| 477 | else |
| 478 | err = _("grouping operations are not allowed in index expressions" ); |
| 479 | |
| 480 | break; |
| 481 | case EXPR_KIND_INDEX_PREDICATE: |
| 482 | if (isAgg) |
| 483 | err = _("aggregate functions are not allowed in index predicates" ); |
| 484 | else |
| 485 | err = _("grouping operations are not allowed in index predicates" ); |
| 486 | |
| 487 | break; |
| 488 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 489 | if (isAgg) |
| 490 | err = _("aggregate functions are not allowed in transform expressions" ); |
| 491 | else |
| 492 | err = _("grouping operations are not allowed in transform expressions" ); |
| 493 | |
| 494 | break; |
| 495 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 496 | if (isAgg) |
| 497 | err = _("aggregate functions are not allowed in EXECUTE parameters" ); |
| 498 | else |
| 499 | err = _("grouping operations are not allowed in EXECUTE parameters" ); |
| 500 | |
| 501 | break; |
| 502 | case EXPR_KIND_TRIGGER_WHEN: |
| 503 | if (isAgg) |
| 504 | err = _("aggregate functions are not allowed in trigger WHEN conditions" ); |
| 505 | else |
| 506 | err = _("grouping operations are not allowed in trigger WHEN conditions" ); |
| 507 | |
| 508 | break; |
| 509 | case EXPR_KIND_PARTITION_BOUND: |
| 510 | if (isAgg) |
| 511 | err = _("aggregate functions are not allowed in partition bound" ); |
| 512 | else |
| 513 | err = _("grouping operations are not allowed in partition bound" ); |
| 514 | |
| 515 | break; |
| 516 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 517 | if (isAgg) |
| 518 | err = _("aggregate functions are not allowed in partition key expressions" ); |
| 519 | else |
| 520 | err = _("grouping operations are not allowed in partition key expressions" ); |
| 521 | |
| 522 | break; |
| 523 | case EXPR_KIND_GENERATED_COLUMN: |
| 524 | |
| 525 | if (isAgg) |
| 526 | err = _("aggregate functions are not allowed in column generation expressions" ); |
| 527 | else |
| 528 | err = _("grouping operations are not allowed in column generation expressions" ); |
| 529 | |
| 530 | break; |
| 531 | |
| 532 | case EXPR_KIND_CALL_ARGUMENT: |
| 533 | if (isAgg) |
| 534 | err = _("aggregate functions are not allowed in CALL arguments" ); |
| 535 | else |
| 536 | err = _("grouping operations are not allowed in CALL arguments" ); |
| 537 | |
| 538 | break; |
| 539 | |
| 540 | case EXPR_KIND_COPY_WHERE: |
| 541 | if (isAgg) |
| 542 | err = _("aggregate functions are not allowed in COPY FROM WHERE conditions" ); |
| 543 | else |
| 544 | err = _("grouping operations are not allowed in COPY FROM WHERE conditions" ); |
| 545 | |
| 546 | break; |
| 547 | |
| 548 | /* |
| 549 | * There is intentionally no default: case here, so that the |
| 550 | * compiler will warn if we add a new ParseExprKind without |
| 551 | * extending this switch. If we do see an unrecognized value at |
| 552 | * runtime, the behavior will be the same as for EXPR_KIND_OTHER, |
| 553 | * which is sane anyway. |
| 554 | */ |
| 555 | } |
| 556 | |
| 557 | if (err) |
| 558 | ereport(ERROR, |
| 559 | (errcode(ERRCODE_GROUPING_ERROR), |
| 560 | errmsg_internal("%s" , err), |
| 561 | parser_errposition(pstate, location))); |
| 562 | |
| 563 | if (errkind) |
| 564 | { |
| 565 | if (isAgg) |
| 566 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 567 | err = _("aggregate functions are not allowed in %s" ); |
| 568 | else |
| 569 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 570 | err = _("grouping operations are not allowed in %s" ); |
| 571 | |
| 572 | ereport(ERROR, |
| 573 | (errcode(ERRCODE_GROUPING_ERROR), |
| 574 | errmsg_internal(err, |
| 575 | ParseExprKindName(pstate->p_expr_kind)), |
| 576 | parser_errposition(pstate, location))); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * check_agg_arguments |
| 582 | * Scan the arguments of an aggregate function to determine the |
| 583 | * aggregate's semantic level (zero is the current select's level, |
| 584 | * one is its parent, etc). |
| 585 | * |
| 586 | * The aggregate's level is the same as the level of the lowest-level variable |
| 587 | * or aggregate in its aggregated arguments (including any ORDER BY columns) |
| 588 | * or filter expression; or if it contains no variables at all, we presume it |
| 589 | * to be local. |
| 590 | * |
| 591 | * Vars/Aggs in direct arguments are *not* counted towards determining the |
| 592 | * agg's level, as those arguments aren't evaluated per-row but only |
| 593 | * per-group, and so in some sense aren't really agg arguments. However, |
| 594 | * this can mean that we decide an agg is upper-level even when its direct |
| 595 | * args contain lower-level Vars/Aggs, and that case has to be disallowed. |
| 596 | * (This is a little strange, but the SQL standard seems pretty definite that |
| 597 | * direct args are not to be considered when setting the agg's level.) |
| 598 | * |
| 599 | * We also take this opportunity to detect any aggregates or window functions |
| 600 | * nested within the arguments. We can throw error immediately if we find |
| 601 | * a window function. Aggregates are a bit trickier because it's only an |
| 602 | * error if the inner aggregate is of the same semantic level as the outer, |
| 603 | * which we can't know until we finish scanning the arguments. |
| 604 | */ |
| 605 | static int |
| 606 | check_agg_arguments(ParseState *pstate, |
| 607 | List *directargs, |
| 608 | List *args, |
| 609 | Expr *filter) |
| 610 | { |
| 611 | int agglevel; |
| 612 | check_agg_arguments_context context; |
| 613 | |
| 614 | context.pstate = pstate; |
| 615 | context.min_varlevel = -1; /* signifies nothing found yet */ |
| 616 | context.min_agglevel = -1; |
| 617 | context.sublevels_up = 0; |
| 618 | |
| 619 | (void) expression_tree_walker((Node *) args, |
| 620 | check_agg_arguments_walker, |
| 621 | (void *) &context); |
| 622 | |
| 623 | (void) expression_tree_walker((Node *) filter, |
| 624 | check_agg_arguments_walker, |
| 625 | (void *) &context); |
| 626 | |
| 627 | /* |
| 628 | * If we found no vars nor aggs at all, it's a level-zero aggregate; |
| 629 | * otherwise, its level is the minimum of vars or aggs. |
| 630 | */ |
| 631 | if (context.min_varlevel < 0) |
| 632 | { |
| 633 | if (context.min_agglevel < 0) |
| 634 | agglevel = 0; |
| 635 | else |
| 636 | agglevel = context.min_agglevel; |
| 637 | } |
| 638 | else if (context.min_agglevel < 0) |
| 639 | agglevel = context.min_varlevel; |
| 640 | else |
| 641 | agglevel = Min(context.min_varlevel, context.min_agglevel); |
| 642 | |
| 643 | /* |
| 644 | * If there's a nested aggregate of the same semantic level, complain. |
| 645 | */ |
| 646 | if (agglevel == context.min_agglevel) |
| 647 | { |
| 648 | int aggloc; |
| 649 | |
| 650 | aggloc = locate_agg_of_level((Node *) args, agglevel); |
| 651 | if (aggloc < 0) |
| 652 | aggloc = locate_agg_of_level((Node *) filter, agglevel); |
| 653 | ereport(ERROR, |
| 654 | (errcode(ERRCODE_GROUPING_ERROR), |
| 655 | errmsg("aggregate function calls cannot be nested" ), |
| 656 | parser_errposition(pstate, aggloc))); |
| 657 | } |
| 658 | |
| 659 | /* |
| 660 | * Now check for vars/aggs in the direct arguments, and throw error if |
| 661 | * needed. Note that we allow a Var of the agg's semantic level, but not |
| 662 | * an Agg of that level. In principle such Aggs could probably be |
| 663 | * supported, but it would create an ordering dependency among the |
| 664 | * aggregates at execution time. Since the case appears neither to be |
| 665 | * required by spec nor particularly useful, we just treat it as a |
| 666 | * nested-aggregate situation. |
| 667 | */ |
| 668 | if (directargs) |
| 669 | { |
| 670 | context.min_varlevel = -1; |
| 671 | context.min_agglevel = -1; |
| 672 | (void) expression_tree_walker((Node *) directargs, |
| 673 | check_agg_arguments_walker, |
| 674 | (void *) &context); |
| 675 | if (context.min_varlevel >= 0 && context.min_varlevel < agglevel) |
| 676 | ereport(ERROR, |
| 677 | (errcode(ERRCODE_GROUPING_ERROR), |
| 678 | errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments" ), |
| 679 | parser_errposition(pstate, |
| 680 | locate_var_of_level((Node *) directargs, |
| 681 | context.min_varlevel)))); |
| 682 | if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel) |
| 683 | ereport(ERROR, |
| 684 | (errcode(ERRCODE_GROUPING_ERROR), |
| 685 | errmsg("aggregate function calls cannot be nested" ), |
| 686 | parser_errposition(pstate, |
| 687 | locate_agg_of_level((Node *) directargs, |
| 688 | context.min_agglevel)))); |
| 689 | } |
| 690 | return agglevel; |
| 691 | } |
| 692 | |
| 693 | static bool |
| 694 | check_agg_arguments_walker(Node *node, |
| 695 | check_agg_arguments_context *context) |
| 696 | { |
| 697 | if (node == NULL) |
| 698 | return false; |
| 699 | if (IsA(node, Var)) |
| 700 | { |
| 701 | int varlevelsup = ((Var *) node)->varlevelsup; |
| 702 | |
| 703 | /* convert levelsup to frame of reference of original query */ |
| 704 | varlevelsup -= context->sublevels_up; |
| 705 | /* ignore local vars of subqueries */ |
| 706 | if (varlevelsup >= 0) |
| 707 | { |
| 708 | if (context->min_varlevel < 0 || |
| 709 | context->min_varlevel > varlevelsup) |
| 710 | context->min_varlevel = varlevelsup; |
| 711 | } |
| 712 | return false; |
| 713 | } |
| 714 | if (IsA(node, Aggref)) |
| 715 | { |
| 716 | int agglevelsup = ((Aggref *) node)->agglevelsup; |
| 717 | |
| 718 | /* convert levelsup to frame of reference of original query */ |
| 719 | agglevelsup -= context->sublevels_up; |
| 720 | /* ignore local aggs of subqueries */ |
| 721 | if (agglevelsup >= 0) |
| 722 | { |
| 723 | if (context->min_agglevel < 0 || |
| 724 | context->min_agglevel > agglevelsup) |
| 725 | context->min_agglevel = agglevelsup; |
| 726 | } |
| 727 | /* no need to examine args of the inner aggregate */ |
| 728 | return false; |
| 729 | } |
| 730 | if (IsA(node, GroupingFunc)) |
| 731 | { |
| 732 | int agglevelsup = ((GroupingFunc *) node)->agglevelsup; |
| 733 | |
| 734 | /* convert levelsup to frame of reference of original query */ |
| 735 | agglevelsup -= context->sublevels_up; |
| 736 | /* ignore local aggs of subqueries */ |
| 737 | if (agglevelsup >= 0) |
| 738 | { |
| 739 | if (context->min_agglevel < 0 || |
| 740 | context->min_agglevel > agglevelsup) |
| 741 | context->min_agglevel = agglevelsup; |
| 742 | } |
| 743 | /* Continue and descend into subtree */ |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * SRFs and window functions can be rejected immediately, unless we are |
| 748 | * within a sub-select within the aggregate's arguments; in that case |
| 749 | * they're OK. |
| 750 | */ |
| 751 | if (context->sublevels_up == 0) |
| 752 | { |
| 753 | if ((IsA(node, FuncExpr) &&((FuncExpr *) node)->funcretset) || |
| 754 | (IsA(node, OpExpr) &&((OpExpr *) node)->opretset)) |
| 755 | ereport(ERROR, |
| 756 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 757 | errmsg("aggregate function calls cannot contain set-returning function calls" ), |
| 758 | errhint("You might be able to move the set-returning function into a LATERAL FROM item." ), |
| 759 | parser_errposition(context->pstate, exprLocation(node)))); |
| 760 | if (IsA(node, WindowFunc)) |
| 761 | ereport(ERROR, |
| 762 | (errcode(ERRCODE_GROUPING_ERROR), |
| 763 | errmsg("aggregate function calls cannot contain window function calls" ), |
| 764 | parser_errposition(context->pstate, |
| 765 | ((WindowFunc *) node)->location))); |
| 766 | } |
| 767 | if (IsA(node, Query)) |
| 768 | { |
| 769 | /* Recurse into subselects */ |
| 770 | bool result; |
| 771 | |
| 772 | context->sublevels_up++; |
| 773 | result = query_tree_walker((Query *) node, |
| 774 | check_agg_arguments_walker, |
| 775 | (void *) context, |
| 776 | 0); |
| 777 | context->sublevels_up--; |
| 778 | return result; |
| 779 | } |
| 780 | |
| 781 | return expression_tree_walker(node, |
| 782 | check_agg_arguments_walker, |
| 783 | (void *) context); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * transformWindowFuncCall - |
| 788 | * Finish initial transformation of a window function call |
| 789 | * |
| 790 | * parse_func.c has recognized the function as a window function, and has set |
| 791 | * up all the fields of the WindowFunc except winref. Here we must (1) add |
| 792 | * the WindowDef to the pstate (if not a duplicate of one already present) and |
| 793 | * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate. |
| 794 | * Unlike aggregates, only the most closely nested pstate level need be |
| 795 | * considered --- there are no "outer window functions" per SQL spec. |
| 796 | */ |
| 797 | void |
| 798 | transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, |
| 799 | WindowDef *windef) |
| 800 | { |
| 801 | const char *err; |
| 802 | bool errkind; |
| 803 | |
| 804 | /* |
| 805 | * A window function call can't contain another one (but aggs are OK). XXX |
| 806 | * is this required by spec, or just an unimplemented feature? |
| 807 | * |
| 808 | * Note: we don't need to check the filter expression here, because the |
| 809 | * context checks done below and in transformAggregateCall would have |
| 810 | * already rejected any window funcs or aggs within the filter. |
| 811 | */ |
| 812 | if (pstate->p_hasWindowFuncs && |
| 813 | contain_windowfuncs((Node *) wfunc->args)) |
| 814 | ereport(ERROR, |
| 815 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 816 | errmsg("window function calls cannot be nested" ), |
| 817 | parser_errposition(pstate, |
| 818 | locate_windowfunc((Node *) wfunc->args)))); |
| 819 | |
| 820 | /* |
| 821 | * Check to see if the window function is in an invalid place within the |
| 822 | * query. |
| 823 | * |
| 824 | * For brevity we support two schemes for reporting an error here: set |
| 825 | * "err" to a custom message, or set "errkind" true if the error context |
| 826 | * is sufficiently identified by what ParseExprKindName will return, *and* |
| 827 | * what it will return is just a SQL keyword. (Otherwise, use a custom |
| 828 | * message to avoid creating translation problems.) |
| 829 | */ |
| 830 | err = NULL; |
| 831 | errkind = false; |
| 832 | switch (pstate->p_expr_kind) |
| 833 | { |
| 834 | case EXPR_KIND_NONE: |
| 835 | Assert(false); /* can't happen */ |
| 836 | break; |
| 837 | case EXPR_KIND_OTHER: |
| 838 | /* Accept window func here; caller must throw error if wanted */ |
| 839 | break; |
| 840 | case EXPR_KIND_JOIN_ON: |
| 841 | case EXPR_KIND_JOIN_USING: |
| 842 | err = _("window functions are not allowed in JOIN conditions" ); |
| 843 | break; |
| 844 | case EXPR_KIND_FROM_SUBSELECT: |
| 845 | /* can't get here, but just in case, throw an error */ |
| 846 | errkind = true; |
| 847 | break; |
| 848 | case EXPR_KIND_FROM_FUNCTION: |
| 849 | err = _("window functions are not allowed in functions in FROM" ); |
| 850 | break; |
| 851 | case EXPR_KIND_WHERE: |
| 852 | errkind = true; |
| 853 | break; |
| 854 | case EXPR_KIND_POLICY: |
| 855 | err = _("window functions are not allowed in policy expressions" ); |
| 856 | break; |
| 857 | case EXPR_KIND_HAVING: |
| 858 | errkind = true; |
| 859 | break; |
| 860 | case EXPR_KIND_FILTER: |
| 861 | errkind = true; |
| 862 | break; |
| 863 | case EXPR_KIND_WINDOW_PARTITION: |
| 864 | case EXPR_KIND_WINDOW_ORDER: |
| 865 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 866 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 867 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 868 | err = _("window functions are not allowed in window definitions" ); |
| 869 | break; |
| 870 | case EXPR_KIND_SELECT_TARGET: |
| 871 | /* okay */ |
| 872 | break; |
| 873 | case EXPR_KIND_INSERT_TARGET: |
| 874 | case EXPR_KIND_UPDATE_SOURCE: |
| 875 | case EXPR_KIND_UPDATE_TARGET: |
| 876 | errkind = true; |
| 877 | break; |
| 878 | case EXPR_KIND_GROUP_BY: |
| 879 | errkind = true; |
| 880 | break; |
| 881 | case EXPR_KIND_ORDER_BY: |
| 882 | /* okay */ |
| 883 | break; |
| 884 | case EXPR_KIND_DISTINCT_ON: |
| 885 | /* okay */ |
| 886 | break; |
| 887 | case EXPR_KIND_LIMIT: |
| 888 | case EXPR_KIND_OFFSET: |
| 889 | errkind = true; |
| 890 | break; |
| 891 | case EXPR_KIND_RETURNING: |
| 892 | errkind = true; |
| 893 | break; |
| 894 | case EXPR_KIND_VALUES: |
| 895 | case EXPR_KIND_VALUES_SINGLE: |
| 896 | errkind = true; |
| 897 | break; |
| 898 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 899 | case EXPR_KIND_DOMAIN_CHECK: |
| 900 | err = _("window functions are not allowed in check constraints" ); |
| 901 | break; |
| 902 | case EXPR_KIND_COLUMN_DEFAULT: |
| 903 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 904 | err = _("window functions are not allowed in DEFAULT expressions" ); |
| 905 | break; |
| 906 | case EXPR_KIND_INDEX_EXPRESSION: |
| 907 | err = _("window functions are not allowed in index expressions" ); |
| 908 | break; |
| 909 | case EXPR_KIND_INDEX_PREDICATE: |
| 910 | err = _("window functions are not allowed in index predicates" ); |
| 911 | break; |
| 912 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 913 | err = _("window functions are not allowed in transform expressions" ); |
| 914 | break; |
| 915 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 916 | err = _("window functions are not allowed in EXECUTE parameters" ); |
| 917 | break; |
| 918 | case EXPR_KIND_TRIGGER_WHEN: |
| 919 | err = _("window functions are not allowed in trigger WHEN conditions" ); |
| 920 | break; |
| 921 | case EXPR_KIND_PARTITION_BOUND: |
| 922 | err = _("window functions are not allowed in partition bound" ); |
| 923 | break; |
| 924 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 925 | err = _("window functions are not allowed in partition key expressions" ); |
| 926 | break; |
| 927 | case EXPR_KIND_CALL_ARGUMENT: |
| 928 | err = _("window functions are not allowed in CALL arguments" ); |
| 929 | break; |
| 930 | case EXPR_KIND_COPY_WHERE: |
| 931 | err = _("window functions are not allowed in COPY FROM WHERE conditions" ); |
| 932 | break; |
| 933 | case EXPR_KIND_GENERATED_COLUMN: |
| 934 | err = _("window functions are not allowed in column generation expressions" ); |
| 935 | break; |
| 936 | |
| 937 | /* |
| 938 | * There is intentionally no default: case here, so that the |
| 939 | * compiler will warn if we add a new ParseExprKind without |
| 940 | * extending this switch. If we do see an unrecognized value at |
| 941 | * runtime, the behavior will be the same as for EXPR_KIND_OTHER, |
| 942 | * which is sane anyway. |
| 943 | */ |
| 944 | } |
| 945 | if (err) |
| 946 | ereport(ERROR, |
| 947 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 948 | errmsg_internal("%s" , err), |
| 949 | parser_errposition(pstate, wfunc->location))); |
| 950 | if (errkind) |
| 951 | ereport(ERROR, |
| 952 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 953 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 954 | errmsg("window functions are not allowed in %s" , |
| 955 | ParseExprKindName(pstate->p_expr_kind)), |
| 956 | parser_errposition(pstate, wfunc->location))); |
| 957 | |
| 958 | /* |
| 959 | * If the OVER clause just specifies a window name, find that WINDOW |
| 960 | * clause (which had better be present). Otherwise, try to match all the |
| 961 | * properties of the OVER clause, and make a new entry in the p_windowdefs |
| 962 | * list if no luck. |
| 963 | */ |
| 964 | if (windef->name) |
| 965 | { |
| 966 | Index winref = 0; |
| 967 | ListCell *lc; |
| 968 | |
| 969 | Assert(windef->refname == NULL && |
| 970 | windef->partitionClause == NIL && |
| 971 | windef->orderClause == NIL && |
| 972 | windef->frameOptions == FRAMEOPTION_DEFAULTS); |
| 973 | |
| 974 | foreach(lc, pstate->p_windowdefs) |
| 975 | { |
| 976 | WindowDef *refwin = (WindowDef *) lfirst(lc); |
| 977 | |
| 978 | winref++; |
| 979 | if (refwin->name && strcmp(refwin->name, windef->name) == 0) |
| 980 | { |
| 981 | wfunc->winref = winref; |
| 982 | break; |
| 983 | } |
| 984 | } |
| 985 | if (lc == NULL) /* didn't find it? */ |
| 986 | ereport(ERROR, |
| 987 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 988 | errmsg("window \"%s\" does not exist" , windef->name), |
| 989 | parser_errposition(pstate, windef->location))); |
| 990 | } |
| 991 | else |
| 992 | { |
| 993 | Index winref = 0; |
| 994 | ListCell *lc; |
| 995 | |
| 996 | foreach(lc, pstate->p_windowdefs) |
| 997 | { |
| 998 | WindowDef *refwin = (WindowDef *) lfirst(lc); |
| 999 | |
| 1000 | winref++; |
| 1001 | if (refwin->refname && windef->refname && |
| 1002 | strcmp(refwin->refname, windef->refname) == 0) |
| 1003 | /* matched on refname */ ; |
| 1004 | else if (!refwin->refname && !windef->refname) |
| 1005 | /* matched, no refname */ ; |
| 1006 | else |
| 1007 | continue; |
| 1008 | if (equal(refwin->partitionClause, windef->partitionClause) && |
| 1009 | equal(refwin->orderClause, windef->orderClause) && |
| 1010 | refwin->frameOptions == windef->frameOptions && |
| 1011 | equal(refwin->startOffset, windef->startOffset) && |
| 1012 | equal(refwin->endOffset, windef->endOffset)) |
| 1013 | { |
| 1014 | /* found a duplicate window specification */ |
| 1015 | wfunc->winref = winref; |
| 1016 | break; |
| 1017 | } |
| 1018 | } |
| 1019 | if (lc == NULL) /* didn't find it? */ |
| 1020 | { |
| 1021 | pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef); |
| 1022 | wfunc->winref = list_length(pstate->p_windowdefs); |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | pstate->p_hasWindowFuncs = true; |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * parseCheckAggregates |
| 1031 | * Check for aggregates where they shouldn't be and improper grouping. |
| 1032 | * This function should be called after the target list and qualifications |
| 1033 | * are finalized. |
| 1034 | * |
| 1035 | * Misplaced aggregates are now mostly detected in transformAggregateCall, |
| 1036 | * but it seems more robust to check for aggregates in recursive queries |
| 1037 | * only after everything is finalized. In any case it's hard to detect |
| 1038 | * improper grouping on-the-fly, so we have to make another pass over the |
| 1039 | * query for that. |
| 1040 | */ |
| 1041 | void |
| 1042 | parseCheckAggregates(ParseState *pstate, Query *qry) |
| 1043 | { |
| 1044 | List *gset_common = NIL; |
| 1045 | List *groupClauses = NIL; |
| 1046 | List *groupClauseCommonVars = NIL; |
| 1047 | bool have_non_var_grouping; |
| 1048 | List *func_grouped_rels = NIL; |
| 1049 | ListCell *l; |
| 1050 | bool hasJoinRTEs; |
| 1051 | bool hasSelfRefRTEs; |
| 1052 | Node *clause; |
| 1053 | |
| 1054 | /* This should only be called if we found aggregates or grouping */ |
| 1055 | Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets); |
| 1056 | |
| 1057 | /* |
| 1058 | * If we have grouping sets, expand them and find the intersection of all |
| 1059 | * sets. |
| 1060 | */ |
| 1061 | if (qry->groupingSets) |
| 1062 | { |
| 1063 | /* |
| 1064 | * The limit of 4096 is arbitrary and exists simply to avoid resource |
| 1065 | * issues from pathological constructs. |
| 1066 | */ |
| 1067 | List *gsets = expand_grouping_sets(qry->groupingSets, 4096); |
| 1068 | |
| 1069 | if (!gsets) |
| 1070 | ereport(ERROR, |
| 1071 | (errcode(ERRCODE_STATEMENT_TOO_COMPLEX), |
| 1072 | errmsg("too many grouping sets present (maximum 4096)" ), |
| 1073 | parser_errposition(pstate, |
| 1074 | qry->groupClause |
| 1075 | ? exprLocation((Node *) qry->groupClause) |
| 1076 | : exprLocation((Node *) qry->groupingSets)))); |
| 1077 | |
| 1078 | /* |
| 1079 | * The intersection will often be empty, so help things along by |
| 1080 | * seeding the intersect with the smallest set. |
| 1081 | */ |
| 1082 | gset_common = linitial(gsets); |
| 1083 | |
| 1084 | if (gset_common) |
| 1085 | { |
| 1086 | for_each_cell(l, lnext(list_head(gsets))) |
| 1087 | { |
| 1088 | gset_common = list_intersection_int(gset_common, lfirst(l)); |
| 1089 | if (!gset_common) |
| 1090 | break; |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * If there was only one grouping set in the expansion, AND if the |
| 1096 | * groupClause is non-empty (meaning that the grouping set is not |
| 1097 | * empty either), then we can ditch the grouping set and pretend we |
| 1098 | * just had a normal GROUP BY. |
| 1099 | */ |
| 1100 | if (list_length(gsets) == 1 && qry->groupClause) |
| 1101 | qry->groupingSets = NIL; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * Scan the range table to see if there are JOIN or self-reference CTE |
| 1106 | * entries. We'll need this info below. |
| 1107 | */ |
| 1108 | hasJoinRTEs = hasSelfRefRTEs = false; |
| 1109 | foreach(l, pstate->p_rtable) |
| 1110 | { |
| 1111 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(l); |
| 1112 | |
| 1113 | if (rte->rtekind == RTE_JOIN) |
| 1114 | hasJoinRTEs = true; |
| 1115 | else if (rte->rtekind == RTE_CTE && rte->self_reference) |
| 1116 | hasSelfRefRTEs = true; |
| 1117 | } |
| 1118 | |
| 1119 | /* |
| 1120 | * Build a list of the acceptable GROUP BY expressions for use by |
| 1121 | * check_ungrouped_columns(). |
| 1122 | * |
| 1123 | * We get the TLE, not just the expr, because GROUPING wants to know the |
| 1124 | * sortgroupref. |
| 1125 | */ |
| 1126 | foreach(l, qry->groupClause) |
| 1127 | { |
| 1128 | SortGroupClause *grpcl = (SortGroupClause *) lfirst(l); |
| 1129 | TargetEntry *expr; |
| 1130 | |
| 1131 | expr = get_sortgroupclause_tle(grpcl, qry->targetList); |
| 1132 | if (expr == NULL) |
| 1133 | continue; /* probably cannot happen */ |
| 1134 | |
| 1135 | groupClauses = lcons(expr, groupClauses); |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * If there are join alias vars involved, we have to flatten them to the |
| 1140 | * underlying vars, so that aliased and unaliased vars will be correctly |
| 1141 | * taken as equal. We can skip the expense of doing this if no rangetable |
| 1142 | * entries are RTE_JOIN kind. |
| 1143 | */ |
| 1144 | if (hasJoinRTEs) |
| 1145 | groupClauses = (List *) flatten_join_alias_vars(qry, |
| 1146 | (Node *) groupClauses); |
| 1147 | |
| 1148 | /* |
| 1149 | * Detect whether any of the grouping expressions aren't simple Vars; if |
| 1150 | * they're all Vars then we don't have to work so hard in the recursive |
| 1151 | * scans. (Note we have to flatten aliases before this.) |
| 1152 | * |
| 1153 | * Track Vars that are included in all grouping sets separately in |
| 1154 | * groupClauseCommonVars, since these are the only ones we can use to |
| 1155 | * check for functional dependencies. |
| 1156 | */ |
| 1157 | have_non_var_grouping = false; |
| 1158 | foreach(l, groupClauses) |
| 1159 | { |
| 1160 | TargetEntry *tle = lfirst(l); |
| 1161 | |
| 1162 | if (!IsA(tle->expr, Var)) |
| 1163 | { |
| 1164 | have_non_var_grouping = true; |
| 1165 | } |
| 1166 | else if (!qry->groupingSets || |
| 1167 | list_member_int(gset_common, tle->ressortgroupref)) |
| 1168 | { |
| 1169 | groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | /* |
| 1174 | * Check the targetlist and HAVING clause for ungrouped variables. |
| 1175 | * |
| 1176 | * Note: because we check resjunk tlist elements as well as regular ones, |
| 1177 | * this will also find ungrouped variables that came from ORDER BY and |
| 1178 | * WINDOW clauses. For that matter, it's also going to examine the |
| 1179 | * grouping expressions themselves --- but they'll all pass the test ... |
| 1180 | * |
| 1181 | * We also finalize GROUPING expressions, but for that we need to traverse |
| 1182 | * the original (unflattened) clause in order to modify nodes. |
| 1183 | */ |
| 1184 | clause = (Node *) qry->targetList; |
| 1185 | finalize_grouping_exprs(clause, pstate, qry, |
| 1186 | groupClauses, hasJoinRTEs, |
| 1187 | have_non_var_grouping); |
| 1188 | if (hasJoinRTEs) |
| 1189 | clause = flatten_join_alias_vars(qry, clause); |
| 1190 | check_ungrouped_columns(clause, pstate, qry, |
| 1191 | groupClauses, groupClauseCommonVars, |
| 1192 | have_non_var_grouping, |
| 1193 | &func_grouped_rels); |
| 1194 | |
| 1195 | clause = (Node *) qry->havingQual; |
| 1196 | finalize_grouping_exprs(clause, pstate, qry, |
| 1197 | groupClauses, hasJoinRTEs, |
| 1198 | have_non_var_grouping); |
| 1199 | if (hasJoinRTEs) |
| 1200 | clause = flatten_join_alias_vars(qry, clause); |
| 1201 | check_ungrouped_columns(clause, pstate, qry, |
| 1202 | groupClauses, groupClauseCommonVars, |
| 1203 | have_non_var_grouping, |
| 1204 | &func_grouped_rels); |
| 1205 | |
| 1206 | /* |
| 1207 | * Per spec, aggregates can't appear in a recursive term. |
| 1208 | */ |
| 1209 | if (pstate->p_hasAggs && hasSelfRefRTEs) |
| 1210 | ereport(ERROR, |
| 1211 | (errcode(ERRCODE_INVALID_RECURSION), |
| 1212 | errmsg("aggregate functions are not allowed in a recursive query's recursive term" ), |
| 1213 | parser_errposition(pstate, |
| 1214 | locate_agg_of_level((Node *) qry, 0)))); |
| 1215 | } |
| 1216 | |
| 1217 | /* |
| 1218 | * check_ungrouped_columns - |
| 1219 | * Scan the given expression tree for ungrouped variables (variables |
| 1220 | * that are not listed in the groupClauses list and are not within |
| 1221 | * the arguments of aggregate functions). Emit a suitable error message |
| 1222 | * if any are found. |
| 1223 | * |
| 1224 | * NOTE: we assume that the given clause has been transformed suitably for |
| 1225 | * parser output. This means we can use expression_tree_walker. |
| 1226 | * |
| 1227 | * NOTE: we recognize grouping expressions in the main query, but only |
| 1228 | * grouping Vars in subqueries. For example, this will be rejected, |
| 1229 | * although it could be allowed: |
| 1230 | * SELECT |
| 1231 | * (SELECT x FROM bar where y = (foo.a + foo.b)) |
| 1232 | * FROM foo |
| 1233 | * GROUP BY a + b; |
| 1234 | * The difficulty is the need to account for different sublevels_up. |
| 1235 | * This appears to require a whole custom version of equal(), which is |
| 1236 | * way more pain than the feature seems worth. |
| 1237 | */ |
| 1238 | static void |
| 1239 | check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry, |
| 1240 | List *groupClauses, List *groupClauseCommonVars, |
| 1241 | bool have_non_var_grouping, |
| 1242 | List **func_grouped_rels) |
| 1243 | { |
| 1244 | check_ungrouped_columns_context context; |
| 1245 | |
| 1246 | context.pstate = pstate; |
| 1247 | context.qry = qry; |
| 1248 | context.hasJoinRTEs = false; /* assume caller flattened join Vars */ |
| 1249 | context.groupClauses = groupClauses; |
| 1250 | context.groupClauseCommonVars = groupClauseCommonVars; |
| 1251 | context.have_non_var_grouping = have_non_var_grouping; |
| 1252 | context.func_grouped_rels = func_grouped_rels; |
| 1253 | context.sublevels_up = 0; |
| 1254 | context.in_agg_direct_args = false; |
| 1255 | check_ungrouped_columns_walker(node, &context); |
| 1256 | } |
| 1257 | |
| 1258 | static bool |
| 1259 | check_ungrouped_columns_walker(Node *node, |
| 1260 | check_ungrouped_columns_context *context) |
| 1261 | { |
| 1262 | ListCell *gl; |
| 1263 | |
| 1264 | if (node == NULL) |
| 1265 | return false; |
| 1266 | if (IsA(node, Const) || |
| 1267 | IsA(node, Param)) |
| 1268 | return false; /* constants are always acceptable */ |
| 1269 | |
| 1270 | if (IsA(node, Aggref)) |
| 1271 | { |
| 1272 | Aggref *agg = (Aggref *) node; |
| 1273 | |
| 1274 | if ((int) agg->agglevelsup == context->sublevels_up) |
| 1275 | { |
| 1276 | /* |
| 1277 | * If we find an aggregate call of the original level, do not |
| 1278 | * recurse into its normal arguments, ORDER BY arguments, or |
| 1279 | * filter; ungrouped vars there are not an error. But we should |
| 1280 | * check direct arguments as though they weren't in an aggregate. |
| 1281 | * We set a special flag in the context to help produce a useful |
| 1282 | * error message for ungrouped vars in direct arguments. |
| 1283 | */ |
| 1284 | bool result; |
| 1285 | |
| 1286 | Assert(!context->in_agg_direct_args); |
| 1287 | context->in_agg_direct_args = true; |
| 1288 | result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs, |
| 1289 | context); |
| 1290 | context->in_agg_direct_args = false; |
| 1291 | return result; |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * We can skip recursing into aggregates of higher levels altogether, |
| 1296 | * since they could not possibly contain Vars of concern to us (see |
| 1297 | * transformAggregateCall). We do need to look at aggregates of lower |
| 1298 | * levels, however. |
| 1299 | */ |
| 1300 | if ((int) agg->agglevelsup > context->sublevels_up) |
| 1301 | return false; |
| 1302 | } |
| 1303 | |
| 1304 | if (IsA(node, GroupingFunc)) |
| 1305 | { |
| 1306 | GroupingFunc *grp = (GroupingFunc *) node; |
| 1307 | |
| 1308 | /* handled GroupingFunc separately, no need to recheck at this level */ |
| 1309 | |
| 1310 | if ((int) grp->agglevelsup >= context->sublevels_up) |
| 1311 | return false; |
| 1312 | } |
| 1313 | |
| 1314 | /* |
| 1315 | * If we have any GROUP BY items that are not simple Vars, check to see if |
| 1316 | * subexpression as a whole matches any GROUP BY item. We need to do this |
| 1317 | * at every recursion level so that we recognize GROUPed-BY expressions |
| 1318 | * before reaching variables within them. But this only works at the outer |
| 1319 | * query level, as noted above. |
| 1320 | */ |
| 1321 | if (context->have_non_var_grouping && context->sublevels_up == 0) |
| 1322 | { |
| 1323 | foreach(gl, context->groupClauses) |
| 1324 | { |
| 1325 | TargetEntry *tle = lfirst(gl); |
| 1326 | |
| 1327 | if (equal(node, tle->expr)) |
| 1328 | return false; /* acceptable, do not descend more */ |
| 1329 | } |
| 1330 | } |
| 1331 | |
| 1332 | /* |
| 1333 | * If we have an ungrouped Var of the original query level, we have a |
| 1334 | * failure. Vars below the original query level are not a problem, and |
| 1335 | * neither are Vars from above it. (If such Vars are ungrouped as far as |
| 1336 | * their own query level is concerned, that's someone else's problem...) |
| 1337 | */ |
| 1338 | if (IsA(node, Var)) |
| 1339 | { |
| 1340 | Var *var = (Var *) node; |
| 1341 | RangeTblEntry *rte; |
| 1342 | char *attname; |
| 1343 | |
| 1344 | if (var->varlevelsup != context->sublevels_up) |
| 1345 | return false; /* it's not local to my query, ignore */ |
| 1346 | |
| 1347 | /* |
| 1348 | * Check for a match, if we didn't do it above. |
| 1349 | */ |
| 1350 | if (!context->have_non_var_grouping || context->sublevels_up != 0) |
| 1351 | { |
| 1352 | foreach(gl, context->groupClauses) |
| 1353 | { |
| 1354 | Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr; |
| 1355 | |
| 1356 | if (IsA(gvar, Var) && |
| 1357 | gvar->varno == var->varno && |
| 1358 | gvar->varattno == var->varattno && |
| 1359 | gvar->varlevelsup == 0) |
| 1360 | return false; /* acceptable, we're okay */ |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * Check whether the Var is known functionally dependent on the GROUP |
| 1366 | * BY columns. If so, we can allow the Var to be used, because the |
| 1367 | * grouping is really a no-op for this table. However, this deduction |
| 1368 | * depends on one or more constraints of the table, so we have to add |
| 1369 | * those constraints to the query's constraintDeps list, because it's |
| 1370 | * not semantically valid anymore if the constraint(s) get dropped. |
| 1371 | * (Therefore, this check must be the last-ditch effort before raising |
| 1372 | * error: we don't want to add dependencies unnecessarily.) |
| 1373 | * |
| 1374 | * Because this is a pretty expensive check, and will have the same |
| 1375 | * outcome for all columns of a table, we remember which RTEs we've |
| 1376 | * already proven functional dependency for in the func_grouped_rels |
| 1377 | * list. This test also prevents us from adding duplicate entries to |
| 1378 | * the constraintDeps list. |
| 1379 | */ |
| 1380 | if (list_member_int(*context->func_grouped_rels, var->varno)) |
| 1381 | return false; /* previously proven acceptable */ |
| 1382 | |
| 1383 | Assert(var->varno > 0 && |
| 1384 | (int) var->varno <= list_length(context->pstate->p_rtable)); |
| 1385 | rte = rt_fetch(var->varno, context->pstate->p_rtable); |
| 1386 | if (rte->rtekind == RTE_RELATION) |
| 1387 | { |
| 1388 | if (check_functional_grouping(rte->relid, |
| 1389 | var->varno, |
| 1390 | 0, |
| 1391 | context->groupClauseCommonVars, |
| 1392 | &context->qry->constraintDeps)) |
| 1393 | { |
| 1394 | *context->func_grouped_rels = |
| 1395 | lappend_int(*context->func_grouped_rels, var->varno); |
| 1396 | return false; /* acceptable */ |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | /* Found an ungrouped local variable; generate error message */ |
| 1401 | attname = get_rte_attribute_name(rte, var->varattno); |
| 1402 | if (context->sublevels_up == 0) |
| 1403 | ereport(ERROR, |
| 1404 | (errcode(ERRCODE_GROUPING_ERROR), |
| 1405 | errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function" , |
| 1406 | rte->eref->aliasname, attname), |
| 1407 | context->in_agg_direct_args ? |
| 1408 | errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns." ) : 0, |
| 1409 | parser_errposition(context->pstate, var->location))); |
| 1410 | else |
| 1411 | ereport(ERROR, |
| 1412 | (errcode(ERRCODE_GROUPING_ERROR), |
| 1413 | errmsg("subquery uses ungrouped column \"%s.%s\" from outer query" , |
| 1414 | rte->eref->aliasname, attname), |
| 1415 | parser_errposition(context->pstate, var->location))); |
| 1416 | } |
| 1417 | |
| 1418 | if (IsA(node, Query)) |
| 1419 | { |
| 1420 | /* Recurse into subselects */ |
| 1421 | bool result; |
| 1422 | |
| 1423 | context->sublevels_up++; |
| 1424 | result = query_tree_walker((Query *) node, |
| 1425 | check_ungrouped_columns_walker, |
| 1426 | (void *) context, |
| 1427 | 0); |
| 1428 | context->sublevels_up--; |
| 1429 | return result; |
| 1430 | } |
| 1431 | return expression_tree_walker(node, check_ungrouped_columns_walker, |
| 1432 | (void *) context); |
| 1433 | } |
| 1434 | |
| 1435 | /* |
| 1436 | * finalize_grouping_exprs - |
| 1437 | * Scan the given expression tree for GROUPING() and related calls, |
| 1438 | * and validate and process their arguments. |
| 1439 | * |
| 1440 | * This is split out from check_ungrouped_columns above because it needs |
| 1441 | * to modify the nodes (which it does in-place, not via a mutator) while |
| 1442 | * check_ungrouped_columns may see only a copy of the original thanks to |
| 1443 | * flattening of join alias vars. So here, we flatten each individual |
| 1444 | * GROUPING argument as we see it before comparing it. |
| 1445 | */ |
| 1446 | static void |
| 1447 | finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, |
| 1448 | List *groupClauses, bool hasJoinRTEs, |
| 1449 | bool have_non_var_grouping) |
| 1450 | { |
| 1451 | check_ungrouped_columns_context context; |
| 1452 | |
| 1453 | context.pstate = pstate; |
| 1454 | context.qry = qry; |
| 1455 | context.hasJoinRTEs = hasJoinRTEs; |
| 1456 | context.groupClauses = groupClauses; |
| 1457 | context.groupClauseCommonVars = NIL; |
| 1458 | context.have_non_var_grouping = have_non_var_grouping; |
| 1459 | context.func_grouped_rels = NULL; |
| 1460 | context.sublevels_up = 0; |
| 1461 | context.in_agg_direct_args = false; |
| 1462 | finalize_grouping_exprs_walker(node, &context); |
| 1463 | } |
| 1464 | |
| 1465 | static bool |
| 1466 | finalize_grouping_exprs_walker(Node *node, |
| 1467 | check_ungrouped_columns_context *context) |
| 1468 | { |
| 1469 | ListCell *gl; |
| 1470 | |
| 1471 | if (node == NULL) |
| 1472 | return false; |
| 1473 | if (IsA(node, Const) || |
| 1474 | IsA(node, Param)) |
| 1475 | return false; /* constants are always acceptable */ |
| 1476 | |
| 1477 | if (IsA(node, Aggref)) |
| 1478 | { |
| 1479 | Aggref *agg = (Aggref *) node; |
| 1480 | |
| 1481 | if ((int) agg->agglevelsup == context->sublevels_up) |
| 1482 | { |
| 1483 | /* |
| 1484 | * If we find an aggregate call of the original level, do not |
| 1485 | * recurse into its normal arguments, ORDER BY arguments, or |
| 1486 | * filter; GROUPING exprs of this level are not allowed there. But |
| 1487 | * check direct arguments as though they weren't in an aggregate. |
| 1488 | */ |
| 1489 | bool result; |
| 1490 | |
| 1491 | Assert(!context->in_agg_direct_args); |
| 1492 | context->in_agg_direct_args = true; |
| 1493 | result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs, |
| 1494 | context); |
| 1495 | context->in_agg_direct_args = false; |
| 1496 | return result; |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * We can skip recursing into aggregates of higher levels altogether, |
| 1501 | * since they could not possibly contain exprs of concern to us (see |
| 1502 | * transformAggregateCall). We do need to look at aggregates of lower |
| 1503 | * levels, however. |
| 1504 | */ |
| 1505 | if ((int) agg->agglevelsup > context->sublevels_up) |
| 1506 | return false; |
| 1507 | } |
| 1508 | |
| 1509 | if (IsA(node, GroupingFunc)) |
| 1510 | { |
| 1511 | GroupingFunc *grp = (GroupingFunc *) node; |
| 1512 | |
| 1513 | /* |
| 1514 | * We only need to check GroupingFunc nodes at the exact level to |
| 1515 | * which they belong, since they cannot mix levels in arguments. |
| 1516 | */ |
| 1517 | |
| 1518 | if ((int) grp->agglevelsup == context->sublevels_up) |
| 1519 | { |
| 1520 | ListCell *lc; |
| 1521 | List *ref_list = NIL; |
| 1522 | |
| 1523 | foreach(lc, grp->args) |
| 1524 | { |
| 1525 | Node *expr = lfirst(lc); |
| 1526 | Index ref = 0; |
| 1527 | |
| 1528 | if (context->hasJoinRTEs) |
| 1529 | expr = flatten_join_alias_vars(context->qry, expr); |
| 1530 | |
| 1531 | /* |
| 1532 | * Each expression must match a grouping entry at the current |
| 1533 | * query level. Unlike the general expression case, we don't |
| 1534 | * allow functional dependencies or outer references. |
| 1535 | */ |
| 1536 | |
| 1537 | if (IsA(expr, Var)) |
| 1538 | { |
| 1539 | Var *var = (Var *) expr; |
| 1540 | |
| 1541 | if (var->varlevelsup == context->sublevels_up) |
| 1542 | { |
| 1543 | foreach(gl, context->groupClauses) |
| 1544 | { |
| 1545 | TargetEntry *tle = lfirst(gl); |
| 1546 | Var *gvar = (Var *) tle->expr; |
| 1547 | |
| 1548 | if (IsA(gvar, Var) && |
| 1549 | gvar->varno == var->varno && |
| 1550 | gvar->varattno == var->varattno && |
| 1551 | gvar->varlevelsup == 0) |
| 1552 | { |
| 1553 | ref = tle->ressortgroupref; |
| 1554 | break; |
| 1555 | } |
| 1556 | } |
| 1557 | } |
| 1558 | } |
| 1559 | else if (context->have_non_var_grouping && |
| 1560 | context->sublevels_up == 0) |
| 1561 | { |
| 1562 | foreach(gl, context->groupClauses) |
| 1563 | { |
| 1564 | TargetEntry *tle = lfirst(gl); |
| 1565 | |
| 1566 | if (equal(expr, tle->expr)) |
| 1567 | { |
| 1568 | ref = tle->ressortgroupref; |
| 1569 | break; |
| 1570 | } |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | if (ref == 0) |
| 1575 | ereport(ERROR, |
| 1576 | (errcode(ERRCODE_GROUPING_ERROR), |
| 1577 | errmsg("arguments to GROUPING must be grouping expressions of the associated query level" ), |
| 1578 | parser_errposition(context->pstate, |
| 1579 | exprLocation(expr)))); |
| 1580 | |
| 1581 | ref_list = lappend_int(ref_list, ref); |
| 1582 | } |
| 1583 | |
| 1584 | grp->refs = ref_list; |
| 1585 | } |
| 1586 | |
| 1587 | if ((int) grp->agglevelsup > context->sublevels_up) |
| 1588 | return false; |
| 1589 | } |
| 1590 | |
| 1591 | if (IsA(node, Query)) |
| 1592 | { |
| 1593 | /* Recurse into subselects */ |
| 1594 | bool result; |
| 1595 | |
| 1596 | context->sublevels_up++; |
| 1597 | result = query_tree_walker((Query *) node, |
| 1598 | finalize_grouping_exprs_walker, |
| 1599 | (void *) context, |
| 1600 | 0); |
| 1601 | context->sublevels_up--; |
| 1602 | return result; |
| 1603 | } |
| 1604 | return expression_tree_walker(node, finalize_grouping_exprs_walker, |
| 1605 | (void *) context); |
| 1606 | } |
| 1607 | |
| 1608 | |
| 1609 | /* |
| 1610 | * Given a GroupingSet node, expand it and return a list of lists. |
| 1611 | * |
| 1612 | * For EMPTY nodes, return a list of one empty list. |
| 1613 | * |
| 1614 | * For SIMPLE nodes, return a list of one list, which is the node content. |
| 1615 | * |
| 1616 | * For CUBE and ROLLUP nodes, return a list of the expansions. |
| 1617 | * |
| 1618 | * For SET nodes, recursively expand contained CUBE and ROLLUP. |
| 1619 | */ |
| 1620 | static List * |
| 1621 | expand_groupingset_node(GroupingSet *gs) |
| 1622 | { |
| 1623 | List *result = NIL; |
| 1624 | |
| 1625 | switch (gs->kind) |
| 1626 | { |
| 1627 | case GROUPING_SET_EMPTY: |
| 1628 | result = list_make1(NIL); |
| 1629 | break; |
| 1630 | |
| 1631 | case GROUPING_SET_SIMPLE: |
| 1632 | result = list_make1(gs->content); |
| 1633 | break; |
| 1634 | |
| 1635 | case GROUPING_SET_ROLLUP: |
| 1636 | { |
| 1637 | List *rollup_val = gs->content; |
| 1638 | ListCell *lc; |
| 1639 | int curgroup_size = list_length(gs->content); |
| 1640 | |
| 1641 | while (curgroup_size > 0) |
| 1642 | { |
| 1643 | List *current_result = NIL; |
| 1644 | int i = curgroup_size; |
| 1645 | |
| 1646 | foreach(lc, rollup_val) |
| 1647 | { |
| 1648 | GroupingSet *gs_current = (GroupingSet *) lfirst(lc); |
| 1649 | |
| 1650 | Assert(gs_current->kind == GROUPING_SET_SIMPLE); |
| 1651 | |
| 1652 | current_result |
| 1653 | = list_concat(current_result, |
| 1654 | list_copy(gs_current->content)); |
| 1655 | |
| 1656 | /* If we are done with making the current group, break */ |
| 1657 | if (--i == 0) |
| 1658 | break; |
| 1659 | } |
| 1660 | |
| 1661 | result = lappend(result, current_result); |
| 1662 | --curgroup_size; |
| 1663 | } |
| 1664 | |
| 1665 | result = lappend(result, NIL); |
| 1666 | } |
| 1667 | break; |
| 1668 | |
| 1669 | case GROUPING_SET_CUBE: |
| 1670 | { |
| 1671 | List *cube_list = gs->content; |
| 1672 | int number_bits = list_length(cube_list); |
| 1673 | uint32 num_sets; |
| 1674 | uint32 i; |
| 1675 | |
| 1676 | /* parser should cap this much lower */ |
| 1677 | Assert(number_bits < 31); |
| 1678 | |
| 1679 | num_sets = (1U << number_bits); |
| 1680 | |
| 1681 | for (i = 0; i < num_sets; i++) |
| 1682 | { |
| 1683 | List *current_result = NIL; |
| 1684 | ListCell *lc; |
| 1685 | uint32 mask = 1U; |
| 1686 | |
| 1687 | foreach(lc, cube_list) |
| 1688 | { |
| 1689 | GroupingSet *gs_current = (GroupingSet *) lfirst(lc); |
| 1690 | |
| 1691 | Assert(gs_current->kind == GROUPING_SET_SIMPLE); |
| 1692 | |
| 1693 | if (mask & i) |
| 1694 | { |
| 1695 | current_result |
| 1696 | = list_concat(current_result, |
| 1697 | list_copy(gs_current->content)); |
| 1698 | } |
| 1699 | |
| 1700 | mask <<= 1; |
| 1701 | } |
| 1702 | |
| 1703 | result = lappend(result, current_result); |
| 1704 | } |
| 1705 | } |
| 1706 | break; |
| 1707 | |
| 1708 | case GROUPING_SET_SETS: |
| 1709 | { |
| 1710 | ListCell *lc; |
| 1711 | |
| 1712 | foreach(lc, gs->content) |
| 1713 | { |
| 1714 | List *current_result = expand_groupingset_node(lfirst(lc)); |
| 1715 | |
| 1716 | result = list_concat(result, current_result); |
| 1717 | } |
| 1718 | } |
| 1719 | break; |
| 1720 | } |
| 1721 | |
| 1722 | return result; |
| 1723 | } |
| 1724 | |
| 1725 | static int |
| 1726 | cmp_list_len_asc(const void *a, const void *b) |
| 1727 | { |
| 1728 | int la = list_length(*(List *const *) a); |
| 1729 | int lb = list_length(*(List *const *) b); |
| 1730 | |
| 1731 | return (la > lb) ? 1 : (la == lb) ? 0 : -1; |
| 1732 | } |
| 1733 | |
| 1734 | /* |
| 1735 | * Expand a groupingSets clause to a flat list of grouping sets. |
| 1736 | * The returned list is sorted by length, shortest sets first. |
| 1737 | * |
| 1738 | * This is mainly for the planner, but we use it here too to do |
| 1739 | * some consistency checks. |
| 1740 | */ |
| 1741 | List * |
| 1742 | expand_grouping_sets(List *groupingSets, int limit) |
| 1743 | { |
| 1744 | List *expanded_groups = NIL; |
| 1745 | List *result = NIL; |
| 1746 | double numsets = 1; |
| 1747 | ListCell *lc; |
| 1748 | |
| 1749 | if (groupingSets == NIL) |
| 1750 | return NIL; |
| 1751 | |
| 1752 | foreach(lc, groupingSets) |
| 1753 | { |
| 1754 | List *current_result = NIL; |
| 1755 | GroupingSet *gs = lfirst(lc); |
| 1756 | |
| 1757 | current_result = expand_groupingset_node(gs); |
| 1758 | |
| 1759 | Assert(current_result != NIL); |
| 1760 | |
| 1761 | numsets *= list_length(current_result); |
| 1762 | |
| 1763 | if (limit >= 0 && numsets > limit) |
| 1764 | return NIL; |
| 1765 | |
| 1766 | expanded_groups = lappend(expanded_groups, current_result); |
| 1767 | } |
| 1768 | |
| 1769 | /* |
| 1770 | * Do cartesian product between sublists of expanded_groups. While at it, |
| 1771 | * remove any duplicate elements from individual grouping sets (we must |
| 1772 | * NOT change the number of sets though) |
| 1773 | */ |
| 1774 | |
| 1775 | foreach(lc, (List *) linitial(expanded_groups)) |
| 1776 | { |
| 1777 | result = lappend(result, list_union_int(NIL, (List *) lfirst(lc))); |
| 1778 | } |
| 1779 | |
| 1780 | for_each_cell(lc, lnext(list_head(expanded_groups))) |
| 1781 | { |
| 1782 | List *p = lfirst(lc); |
| 1783 | List *new_result = NIL; |
| 1784 | ListCell *lc2; |
| 1785 | |
| 1786 | foreach(lc2, result) |
| 1787 | { |
| 1788 | List *q = lfirst(lc2); |
| 1789 | ListCell *lc3; |
| 1790 | |
| 1791 | foreach(lc3, p) |
| 1792 | { |
| 1793 | new_result = lappend(new_result, |
| 1794 | list_union_int(q, (List *) lfirst(lc3))); |
| 1795 | } |
| 1796 | } |
| 1797 | result = new_result; |
| 1798 | } |
| 1799 | |
| 1800 | if (list_length(result) > 1) |
| 1801 | { |
| 1802 | int result_len = list_length(result); |
| 1803 | List **buf = palloc(sizeof(List *) * result_len); |
| 1804 | List **ptr = buf; |
| 1805 | |
| 1806 | foreach(lc, result) |
| 1807 | { |
| 1808 | *ptr++ = lfirst(lc); |
| 1809 | } |
| 1810 | |
| 1811 | qsort(buf, result_len, sizeof(List *), cmp_list_len_asc); |
| 1812 | |
| 1813 | result = NIL; |
| 1814 | ptr = buf; |
| 1815 | |
| 1816 | while (result_len-- > 0) |
| 1817 | result = lappend(result, *ptr++); |
| 1818 | |
| 1819 | pfree(buf); |
| 1820 | } |
| 1821 | |
| 1822 | return result; |
| 1823 | } |
| 1824 | |
| 1825 | /* |
| 1826 | * get_aggregate_argtypes |
| 1827 | * Identify the specific datatypes passed to an aggregate call. |
| 1828 | * |
| 1829 | * Given an Aggref, extract the actual datatypes of the input arguments. |
| 1830 | * The input datatypes are reported in a way that matches up with the |
| 1831 | * aggregate's declaration, ie, any ORDER BY columns attached to a plain |
| 1832 | * aggregate are ignored, but we report both direct and aggregated args of |
| 1833 | * an ordered-set aggregate. |
| 1834 | * |
| 1835 | * Datatypes are returned into inputTypes[], which must reference an array |
| 1836 | * of length FUNC_MAX_ARGS. |
| 1837 | * |
| 1838 | * The function result is the number of actual arguments. |
| 1839 | */ |
| 1840 | int |
| 1841 | get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes) |
| 1842 | { |
| 1843 | int numArguments = 0; |
| 1844 | ListCell *lc; |
| 1845 | |
| 1846 | Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS); |
| 1847 | |
| 1848 | foreach(lc, aggref->aggargtypes) |
| 1849 | { |
| 1850 | inputTypes[numArguments++] = lfirst_oid(lc); |
| 1851 | } |
| 1852 | |
| 1853 | return numArguments; |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * resolve_aggregate_transtype |
| 1858 | * Identify the transition state value's datatype for an aggregate call. |
| 1859 | * |
| 1860 | * This function resolves a polymorphic aggregate's state datatype. |
| 1861 | * It must be passed the aggtranstype from the aggregate's catalog entry, |
| 1862 | * as well as the actual argument types extracted by get_aggregate_argtypes. |
| 1863 | * (We could fetch pg_aggregate.aggtranstype internally, but all existing |
| 1864 | * callers already have the value at hand, so we make them pass it.) |
| 1865 | */ |
| 1866 | Oid |
| 1867 | resolve_aggregate_transtype(Oid aggfuncid, |
| 1868 | Oid aggtranstype, |
| 1869 | Oid *inputTypes, |
| 1870 | int numArguments) |
| 1871 | { |
| 1872 | /* resolve actual type of transition state, if polymorphic */ |
| 1873 | if (IsPolymorphicType(aggtranstype)) |
| 1874 | { |
| 1875 | /* have to fetch the agg's declared input types... */ |
| 1876 | Oid *declaredArgTypes; |
| 1877 | int agg_nargs; |
| 1878 | |
| 1879 | (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs); |
| 1880 | |
| 1881 | /* |
| 1882 | * VARIADIC ANY aggs could have more actual than declared args, but |
| 1883 | * such extra args can't affect polymorphic type resolution. |
| 1884 | */ |
| 1885 | Assert(agg_nargs <= numArguments); |
| 1886 | |
| 1887 | aggtranstype = enforce_generic_type_consistency(inputTypes, |
| 1888 | declaredArgTypes, |
| 1889 | agg_nargs, |
| 1890 | aggtranstype, |
| 1891 | false); |
| 1892 | pfree(declaredArgTypes); |
| 1893 | } |
| 1894 | return aggtranstype; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Create an expression tree for the transition function of an aggregate. |
| 1899 | * This is needed so that polymorphic functions can be used within an |
| 1900 | * aggregate --- without the expression tree, such functions would not know |
| 1901 | * the datatypes they are supposed to use. (The trees will never actually |
| 1902 | * be executed, however, so we can skimp a bit on correctness.) |
| 1903 | * |
| 1904 | * agg_input_types and agg_state_type identifies the input types of the |
| 1905 | * aggregate. These should be resolved to actual types (ie, none should |
| 1906 | * ever be ANYELEMENT etc). |
| 1907 | * agg_input_collation is the aggregate function's input collation. |
| 1908 | * |
| 1909 | * For an ordered-set aggregate, remember that agg_input_types describes |
| 1910 | * the direct arguments followed by the aggregated arguments. |
| 1911 | * |
| 1912 | * transfn_oid and invtransfn_oid identify the funcs to be called; the |
| 1913 | * latter may be InvalidOid, however if invtransfn_oid is set then |
| 1914 | * transfn_oid must also be set. |
| 1915 | * |
| 1916 | * Pointers to the constructed trees are returned into *transfnexpr, |
| 1917 | * *invtransfnexpr. If there is no invtransfn, the respective pointer is set |
| 1918 | * to NULL. Since use of the invtransfn is optional, NULL may be passed for |
| 1919 | * invtransfnexpr. |
| 1920 | */ |
| 1921 | void |
| 1922 | build_aggregate_transfn_expr(Oid *agg_input_types, |
| 1923 | int agg_num_inputs, |
| 1924 | int agg_num_direct_inputs, |
| 1925 | bool agg_variadic, |
| 1926 | Oid agg_state_type, |
| 1927 | Oid agg_input_collation, |
| 1928 | Oid transfn_oid, |
| 1929 | Oid invtransfn_oid, |
| 1930 | Expr **transfnexpr, |
| 1931 | Expr **invtransfnexpr) |
| 1932 | { |
| 1933 | List *args; |
| 1934 | FuncExpr *fexpr; |
| 1935 | int i; |
| 1936 | |
| 1937 | /* |
| 1938 | * Build arg list to use in the transfn FuncExpr node. |
| 1939 | */ |
| 1940 | args = list_make1(make_agg_arg(agg_state_type, agg_input_collation)); |
| 1941 | |
| 1942 | for (i = agg_num_direct_inputs; i < agg_num_inputs; i++) |
| 1943 | { |
| 1944 | args = lappend(args, |
| 1945 | make_agg_arg(agg_input_types[i], agg_input_collation)); |
| 1946 | } |
| 1947 | |
| 1948 | fexpr = makeFuncExpr(transfn_oid, |
| 1949 | agg_state_type, |
| 1950 | args, |
| 1951 | InvalidOid, |
| 1952 | agg_input_collation, |
| 1953 | COERCE_EXPLICIT_CALL); |
| 1954 | fexpr->funcvariadic = agg_variadic; |
| 1955 | *transfnexpr = (Expr *) fexpr; |
| 1956 | |
| 1957 | /* |
| 1958 | * Build invtransfn expression if requested, with same args as transfn |
| 1959 | */ |
| 1960 | if (invtransfnexpr != NULL) |
| 1961 | { |
| 1962 | if (OidIsValid(invtransfn_oid)) |
| 1963 | { |
| 1964 | fexpr = makeFuncExpr(invtransfn_oid, |
| 1965 | agg_state_type, |
| 1966 | args, |
| 1967 | InvalidOid, |
| 1968 | agg_input_collation, |
| 1969 | COERCE_EXPLICIT_CALL); |
| 1970 | fexpr->funcvariadic = agg_variadic; |
| 1971 | *invtransfnexpr = (Expr *) fexpr; |
| 1972 | } |
| 1973 | else |
| 1974 | *invtransfnexpr = NULL; |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | /* |
| 1979 | * Like build_aggregate_transfn_expr, but creates an expression tree for the |
| 1980 | * combine function of an aggregate, rather than the transition function. |
| 1981 | */ |
| 1982 | void |
| 1983 | build_aggregate_combinefn_expr(Oid agg_state_type, |
| 1984 | Oid agg_input_collation, |
| 1985 | Oid combinefn_oid, |
| 1986 | Expr **combinefnexpr) |
| 1987 | { |
| 1988 | Node *argp; |
| 1989 | List *args; |
| 1990 | FuncExpr *fexpr; |
| 1991 | |
| 1992 | /* combinefn takes two arguments of the aggregate state type */ |
| 1993 | argp = make_agg_arg(agg_state_type, agg_input_collation); |
| 1994 | |
| 1995 | args = list_make2(argp, argp); |
| 1996 | |
| 1997 | fexpr = makeFuncExpr(combinefn_oid, |
| 1998 | agg_state_type, |
| 1999 | args, |
| 2000 | InvalidOid, |
| 2001 | agg_input_collation, |
| 2002 | COERCE_EXPLICIT_CALL); |
| 2003 | /* combinefn is currently never treated as variadic */ |
| 2004 | *combinefnexpr = (Expr *) fexpr; |
| 2005 | } |
| 2006 | |
| 2007 | /* |
| 2008 | * Like build_aggregate_transfn_expr, but creates an expression tree for the |
| 2009 | * serialization function of an aggregate. |
| 2010 | */ |
| 2011 | void |
| 2012 | build_aggregate_serialfn_expr(Oid serialfn_oid, |
| 2013 | Expr **serialfnexpr) |
| 2014 | { |
| 2015 | List *args; |
| 2016 | FuncExpr *fexpr; |
| 2017 | |
| 2018 | /* serialfn always takes INTERNAL and returns BYTEA */ |
| 2019 | args = list_make1(make_agg_arg(INTERNALOID, InvalidOid)); |
| 2020 | |
| 2021 | fexpr = makeFuncExpr(serialfn_oid, |
| 2022 | BYTEAOID, |
| 2023 | args, |
| 2024 | InvalidOid, |
| 2025 | InvalidOid, |
| 2026 | COERCE_EXPLICIT_CALL); |
| 2027 | *serialfnexpr = (Expr *) fexpr; |
| 2028 | } |
| 2029 | |
| 2030 | /* |
| 2031 | * Like build_aggregate_transfn_expr, but creates an expression tree for the |
| 2032 | * deserialization function of an aggregate. |
| 2033 | */ |
| 2034 | void |
| 2035 | build_aggregate_deserialfn_expr(Oid deserialfn_oid, |
| 2036 | Expr **deserialfnexpr) |
| 2037 | { |
| 2038 | List *args; |
| 2039 | FuncExpr *fexpr; |
| 2040 | |
| 2041 | /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */ |
| 2042 | args = list_make2(make_agg_arg(BYTEAOID, InvalidOid), |
| 2043 | make_agg_arg(INTERNALOID, InvalidOid)); |
| 2044 | |
| 2045 | fexpr = makeFuncExpr(deserialfn_oid, |
| 2046 | INTERNALOID, |
| 2047 | args, |
| 2048 | InvalidOid, |
| 2049 | InvalidOid, |
| 2050 | COERCE_EXPLICIT_CALL); |
| 2051 | *deserialfnexpr = (Expr *) fexpr; |
| 2052 | } |
| 2053 | |
| 2054 | /* |
| 2055 | * Like build_aggregate_transfn_expr, but creates an expression tree for the |
| 2056 | * final function of an aggregate, rather than the transition function. |
| 2057 | */ |
| 2058 | void |
| 2059 | build_aggregate_finalfn_expr(Oid *agg_input_types, |
| 2060 | int num_finalfn_inputs, |
| 2061 | Oid agg_state_type, |
| 2062 | Oid agg_result_type, |
| 2063 | Oid agg_input_collation, |
| 2064 | Oid finalfn_oid, |
| 2065 | Expr **finalfnexpr) |
| 2066 | { |
| 2067 | List *args; |
| 2068 | int i; |
| 2069 | |
| 2070 | /* |
| 2071 | * Build expr tree for final function |
| 2072 | */ |
| 2073 | args = list_make1(make_agg_arg(agg_state_type, agg_input_collation)); |
| 2074 | |
| 2075 | /* finalfn may take additional args, which match agg's input types */ |
| 2076 | for (i = 0; i < num_finalfn_inputs - 1; i++) |
| 2077 | { |
| 2078 | args = lappend(args, |
| 2079 | make_agg_arg(agg_input_types[i], agg_input_collation)); |
| 2080 | } |
| 2081 | |
| 2082 | *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid, |
| 2083 | agg_result_type, |
| 2084 | args, |
| 2085 | InvalidOid, |
| 2086 | agg_input_collation, |
| 2087 | COERCE_EXPLICIT_CALL); |
| 2088 | /* finalfn is currently never treated as variadic */ |
| 2089 | } |
| 2090 | |
| 2091 | /* |
| 2092 | * Convenience function to build dummy argument expressions for aggregates. |
| 2093 | * |
| 2094 | * We really only care that an aggregate support function can discover its |
| 2095 | * actual argument types at runtime using get_fn_expr_argtype(), so it's okay |
| 2096 | * to use Param nodes that don't correspond to any real Param. |
| 2097 | */ |
| 2098 | static Node * |
| 2099 | make_agg_arg(Oid argtype, Oid argcollation) |
| 2100 | { |
| 2101 | Param *argp = makeNode(Param); |
| 2102 | |
| 2103 | argp->paramkind = PARAM_EXEC; |
| 2104 | argp->paramid = -1; |
| 2105 | argp->paramtype = argtype; |
| 2106 | argp->paramtypmod = -1; |
| 2107 | argp->paramcollid = argcollation; |
| 2108 | argp->location = -1; |
| 2109 | return (Node *) argp; |
| 2110 | } |
| 2111 | |