| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * parse_expr.c |
| 4 | * handle expressions in parser |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/parser/parse_expr.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "catalog/pg_type.h" |
| 19 | #include "commands/dbcommands.h" |
| 20 | #include "miscadmin.h" |
| 21 | #include "nodes/makefuncs.h" |
| 22 | #include "nodes/nodeFuncs.h" |
| 23 | #include "optimizer/optimizer.h" |
| 24 | #include "parser/analyze.h" |
| 25 | #include "parser/parse_clause.h" |
| 26 | #include "parser/parse_coerce.h" |
| 27 | #include "parser/parse_collate.h" |
| 28 | #include "parser/parse_expr.h" |
| 29 | #include "parser/parse_func.h" |
| 30 | #include "parser/parse_oper.h" |
| 31 | #include "parser/parse_relation.h" |
| 32 | #include "parser/parse_target.h" |
| 33 | #include "parser/parse_type.h" |
| 34 | #include "parser/parse_agg.h" |
| 35 | #include "utils/builtins.h" |
| 36 | #include "utils/date.h" |
| 37 | #include "utils/lsyscache.h" |
| 38 | #include "utils/timestamp.h" |
| 39 | #include "utils/xml.h" |
| 40 | |
| 41 | |
| 42 | /* GUC parameters */ |
| 43 | bool operator_precedence_warning = false; |
| 44 | bool Transform_null_equals = false; |
| 45 | |
| 46 | /* |
| 47 | * Node-type groups for operator precedence warnings |
| 48 | * We use zero for everything not otherwise classified |
| 49 | */ |
| 50 | #define PREC_GROUP_POSTFIX_IS 1 /* postfix IS tests (NullTest, etc) */ |
| 51 | #define PREC_GROUP_INFIX_IS 2 /* infix IS (IS DISTINCT FROM, etc) */ |
| 52 | #define PREC_GROUP_LESS 3 /* < > */ |
| 53 | #define PREC_GROUP_EQUAL 4 /* = */ |
| 54 | #define PREC_GROUP_LESS_EQUAL 5 /* <= >= <> */ |
| 55 | #define PREC_GROUP_LIKE 6 /* LIKE ILIKE SIMILAR */ |
| 56 | #define PREC_GROUP_BETWEEN 7 /* BETWEEN */ |
| 57 | #define PREC_GROUP_IN 8 /* IN */ |
| 58 | #define PREC_GROUP_NOT_LIKE 9 /* NOT LIKE/ILIKE/SIMILAR */ |
| 59 | #define PREC_GROUP_NOT_BETWEEN 10 /* NOT BETWEEN */ |
| 60 | #define PREC_GROUP_NOT_IN 11 /* NOT IN */ |
| 61 | #define PREC_GROUP_POSTFIX_OP 12 /* generic postfix operators */ |
| 62 | #define PREC_GROUP_INFIX_OP 13 /* generic infix operators */ |
| 63 | #define PREC_GROUP_PREFIX_OP 14 /* generic prefix operators */ |
| 64 | |
| 65 | /* |
| 66 | * Map precedence groupings to old precedence ordering |
| 67 | * |
| 68 | * Old precedence order: |
| 69 | * 1. NOT |
| 70 | * 2. = |
| 71 | * 3. < > |
| 72 | * 4. LIKE ILIKE SIMILAR |
| 73 | * 5. BETWEEN |
| 74 | * 6. IN |
| 75 | * 7. generic postfix Op |
| 76 | * 8. generic Op, including <= => <> |
| 77 | * 9. generic prefix Op |
| 78 | * 10. IS tests (NullTest, BooleanTest, etc) |
| 79 | * |
| 80 | * NOT BETWEEN etc map to BETWEEN etc when considered as being on the left, |
| 81 | * but to NOT when considered as being on the right, because of the buggy |
| 82 | * precedence handling of those productions in the old grammar. |
| 83 | */ |
| 84 | static const int oldprecedence_l[] = { |
| 85 | 0, 10, 10, 3, 2, 8, 4, 5, 6, 4, 5, 6, 7, 8, 9 |
| 86 | }; |
| 87 | static const int oldprecedence_r[] = { |
| 88 | 0, 10, 10, 3, 2, 8, 4, 5, 6, 1, 1, 1, 7, 8, 9 |
| 89 | }; |
| 90 | |
| 91 | static Node *transformExprRecurse(ParseState *pstate, Node *expr); |
| 92 | static Node *transformParamRef(ParseState *pstate, ParamRef *pref); |
| 93 | static Node *transformAExprOp(ParseState *pstate, A_Expr *a); |
| 94 | static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a); |
| 95 | static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a); |
| 96 | static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a); |
| 97 | static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a); |
| 98 | static Node *transformAExprOf(ParseState *pstate, A_Expr *a); |
| 99 | static Node *transformAExprIn(ParseState *pstate, A_Expr *a); |
| 100 | static Node *transformAExprBetween(ParseState *pstate, A_Expr *a); |
| 101 | static Node *transformBoolExpr(ParseState *pstate, BoolExpr *a); |
| 102 | static Node *transformFuncCall(ParseState *pstate, FuncCall *fn); |
| 103 | static Node *transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref); |
| 104 | static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c); |
| 105 | static Node *transformSubLink(ParseState *pstate, SubLink *sublink); |
| 106 | static Node *transformArrayExpr(ParseState *pstate, A_ArrayExpr *a, |
| 107 | Oid array_type, Oid element_type, int32 typmod); |
| 108 | static Node *transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault); |
| 109 | static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c); |
| 110 | static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m); |
| 111 | static Node *transformSQLValueFunction(ParseState *pstate, |
| 112 | SQLValueFunction *svf); |
| 113 | static Node *transformXmlExpr(ParseState *pstate, XmlExpr *x); |
| 114 | static Node *transformXmlSerialize(ParseState *pstate, XmlSerialize *xs); |
| 115 | static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b); |
| 116 | static Node *transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr); |
| 117 | static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref); |
| 118 | static Node *transformWholeRowRef(ParseState *pstate, RangeTblEntry *rte, |
| 119 | int location); |
| 120 | static Node *transformIndirection(ParseState *pstate, A_Indirection *ind); |
| 121 | static Node *transformTypeCast(ParseState *pstate, TypeCast *tc); |
| 122 | static Node *transformCollateClause(ParseState *pstate, CollateClause *c); |
| 123 | static Node *make_row_comparison_op(ParseState *pstate, List *opname, |
| 124 | List *largs, List *rargs, int location); |
| 125 | static Node *make_row_distinct_op(ParseState *pstate, List *opname, |
| 126 | RowExpr *lrow, RowExpr *rrow, int location); |
| 127 | static Expr *make_distinct_op(ParseState *pstate, List *opname, |
| 128 | Node *ltree, Node *rtree, int location); |
| 129 | static Node *make_nulltest_from_distinct(ParseState *pstate, |
| 130 | A_Expr *distincta, Node *arg); |
| 131 | static int operator_precedence_group(Node *node, const char **nodename); |
| 132 | static void emit_precedence_warnings(ParseState *pstate, |
| 133 | int opgroup, const char *opname, |
| 134 | Node *lchild, Node *rchild, |
| 135 | int location); |
| 136 | |
| 137 | |
| 138 | /* |
| 139 | * transformExpr - |
| 140 | * Analyze and transform expressions. Type checking and type casting is |
| 141 | * done here. This processing converts the raw grammar output into |
| 142 | * expression trees with fully determined semantics. |
| 143 | */ |
| 144 | Node * |
| 145 | transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind) |
| 146 | { |
| 147 | Node *result; |
| 148 | ParseExprKind sv_expr_kind; |
| 149 | |
| 150 | /* Save and restore identity of expression type we're parsing */ |
| 151 | Assert(exprKind != EXPR_KIND_NONE); |
| 152 | sv_expr_kind = pstate->p_expr_kind; |
| 153 | pstate->p_expr_kind = exprKind; |
| 154 | |
| 155 | result = transformExprRecurse(pstate, expr); |
| 156 | |
| 157 | pstate->p_expr_kind = sv_expr_kind; |
| 158 | |
| 159 | return result; |
| 160 | } |
| 161 | |
| 162 | static Node * |
| 163 | transformExprRecurse(ParseState *pstate, Node *expr) |
| 164 | { |
| 165 | Node *result; |
| 166 | |
| 167 | if (expr == NULL) |
| 168 | return NULL; |
| 169 | |
| 170 | /* Guard against stack overflow due to overly complex expressions */ |
| 171 | check_stack_depth(); |
| 172 | |
| 173 | switch (nodeTag(expr)) |
| 174 | { |
| 175 | case T_ColumnRef: |
| 176 | result = transformColumnRef(pstate, (ColumnRef *) expr); |
| 177 | break; |
| 178 | |
| 179 | case T_ParamRef: |
| 180 | result = transformParamRef(pstate, (ParamRef *) expr); |
| 181 | break; |
| 182 | |
| 183 | case T_A_Const: |
| 184 | { |
| 185 | A_Const *con = (A_Const *) expr; |
| 186 | Value *val = &con->val; |
| 187 | |
| 188 | result = (Node *) make_const(pstate, val, con->location); |
| 189 | break; |
| 190 | } |
| 191 | |
| 192 | case T_A_Indirection: |
| 193 | result = transformIndirection(pstate, (A_Indirection *) expr); |
| 194 | break; |
| 195 | |
| 196 | case T_A_ArrayExpr: |
| 197 | result = transformArrayExpr(pstate, (A_ArrayExpr *) expr, |
| 198 | InvalidOid, InvalidOid, -1); |
| 199 | break; |
| 200 | |
| 201 | case T_TypeCast: |
| 202 | result = transformTypeCast(pstate, (TypeCast *) expr); |
| 203 | break; |
| 204 | |
| 205 | case T_CollateClause: |
| 206 | result = transformCollateClause(pstate, (CollateClause *) expr); |
| 207 | break; |
| 208 | |
| 209 | case T_A_Expr: |
| 210 | { |
| 211 | A_Expr *a = (A_Expr *) expr; |
| 212 | |
| 213 | switch (a->kind) |
| 214 | { |
| 215 | case AEXPR_OP: |
| 216 | result = transformAExprOp(pstate, a); |
| 217 | break; |
| 218 | case AEXPR_OP_ANY: |
| 219 | result = transformAExprOpAny(pstate, a); |
| 220 | break; |
| 221 | case AEXPR_OP_ALL: |
| 222 | result = transformAExprOpAll(pstate, a); |
| 223 | break; |
| 224 | case AEXPR_DISTINCT: |
| 225 | case AEXPR_NOT_DISTINCT: |
| 226 | result = transformAExprDistinct(pstate, a); |
| 227 | break; |
| 228 | case AEXPR_NULLIF: |
| 229 | result = transformAExprNullIf(pstate, a); |
| 230 | break; |
| 231 | case AEXPR_OF: |
| 232 | result = transformAExprOf(pstate, a); |
| 233 | break; |
| 234 | case AEXPR_IN: |
| 235 | result = transformAExprIn(pstate, a); |
| 236 | break; |
| 237 | case AEXPR_LIKE: |
| 238 | case AEXPR_ILIKE: |
| 239 | case AEXPR_SIMILAR: |
| 240 | /* we can transform these just like AEXPR_OP */ |
| 241 | result = transformAExprOp(pstate, a); |
| 242 | break; |
| 243 | case AEXPR_BETWEEN: |
| 244 | case AEXPR_NOT_BETWEEN: |
| 245 | case AEXPR_BETWEEN_SYM: |
| 246 | case AEXPR_NOT_BETWEEN_SYM: |
| 247 | result = transformAExprBetween(pstate, a); |
| 248 | break; |
| 249 | case AEXPR_PAREN: |
| 250 | result = transformExprRecurse(pstate, a->lexpr); |
| 251 | break; |
| 252 | default: |
| 253 | elog(ERROR, "unrecognized A_Expr kind: %d" , a->kind); |
| 254 | result = NULL; /* keep compiler quiet */ |
| 255 | break; |
| 256 | } |
| 257 | break; |
| 258 | } |
| 259 | |
| 260 | case T_BoolExpr: |
| 261 | result = transformBoolExpr(pstate, (BoolExpr *) expr); |
| 262 | break; |
| 263 | |
| 264 | case T_FuncCall: |
| 265 | result = transformFuncCall(pstate, (FuncCall *) expr); |
| 266 | break; |
| 267 | |
| 268 | case T_MultiAssignRef: |
| 269 | result = transformMultiAssignRef(pstate, (MultiAssignRef *) expr); |
| 270 | break; |
| 271 | |
| 272 | case T_GroupingFunc: |
| 273 | result = transformGroupingFunc(pstate, (GroupingFunc *) expr); |
| 274 | break; |
| 275 | |
| 276 | case T_NamedArgExpr: |
| 277 | { |
| 278 | NamedArgExpr *na = (NamedArgExpr *) expr; |
| 279 | |
| 280 | na->arg = (Expr *) transformExprRecurse(pstate, (Node *) na->arg); |
| 281 | result = expr; |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | case T_SubLink: |
| 286 | result = transformSubLink(pstate, (SubLink *) expr); |
| 287 | break; |
| 288 | |
| 289 | case T_CaseExpr: |
| 290 | result = transformCaseExpr(pstate, (CaseExpr *) expr); |
| 291 | break; |
| 292 | |
| 293 | case T_RowExpr: |
| 294 | result = transformRowExpr(pstate, (RowExpr *) expr, false); |
| 295 | break; |
| 296 | |
| 297 | case T_CoalesceExpr: |
| 298 | result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr); |
| 299 | break; |
| 300 | |
| 301 | case T_MinMaxExpr: |
| 302 | result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr); |
| 303 | break; |
| 304 | |
| 305 | case T_SQLValueFunction: |
| 306 | result = transformSQLValueFunction(pstate, |
| 307 | (SQLValueFunction *) expr); |
| 308 | break; |
| 309 | |
| 310 | case T_XmlExpr: |
| 311 | result = transformXmlExpr(pstate, (XmlExpr *) expr); |
| 312 | break; |
| 313 | |
| 314 | case T_XmlSerialize: |
| 315 | result = transformXmlSerialize(pstate, (XmlSerialize *) expr); |
| 316 | break; |
| 317 | |
| 318 | case T_NullTest: |
| 319 | { |
| 320 | NullTest *n = (NullTest *) expr; |
| 321 | |
| 322 | if (operator_precedence_warning) |
| 323 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_IS, "IS" , |
| 324 | (Node *) n->arg, NULL, |
| 325 | n->location); |
| 326 | |
| 327 | n->arg = (Expr *) transformExprRecurse(pstate, (Node *) n->arg); |
| 328 | /* the argument can be any type, so don't coerce it */ |
| 329 | n->argisrow = type_is_rowtype(exprType((Node *) n->arg)); |
| 330 | result = expr; |
| 331 | break; |
| 332 | } |
| 333 | |
| 334 | case T_BooleanTest: |
| 335 | result = transformBooleanTest(pstate, (BooleanTest *) expr); |
| 336 | break; |
| 337 | |
| 338 | case T_CurrentOfExpr: |
| 339 | result = transformCurrentOfExpr(pstate, (CurrentOfExpr *) expr); |
| 340 | break; |
| 341 | |
| 342 | /* |
| 343 | * In all places where DEFAULT is legal, the caller should have |
| 344 | * processed it rather than passing it to transformExpr(). |
| 345 | */ |
| 346 | case T_SetToDefault: |
| 347 | ereport(ERROR, |
| 348 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 349 | errmsg("DEFAULT is not allowed in this context" ), |
| 350 | parser_errposition(pstate, |
| 351 | ((SetToDefault *) expr)->location))); |
| 352 | break; |
| 353 | |
| 354 | /* |
| 355 | * CaseTestExpr doesn't require any processing; it is only |
| 356 | * injected into parse trees in a fully-formed state. |
| 357 | * |
| 358 | * Ordinarily we should not see a Var here, but it is convenient |
| 359 | * for transformJoinUsingClause() to create untransformed operator |
| 360 | * trees containing already-transformed Vars. The best |
| 361 | * alternative would be to deconstruct and reconstruct column |
| 362 | * references, which seems expensively pointless. So allow it. |
| 363 | */ |
| 364 | case T_CaseTestExpr: |
| 365 | case T_Var: |
| 366 | { |
| 367 | result = (Node *) expr; |
| 368 | break; |
| 369 | } |
| 370 | |
| 371 | default: |
| 372 | /* should not reach here */ |
| 373 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
| 374 | result = NULL; /* keep compiler quiet */ |
| 375 | break; |
| 376 | } |
| 377 | |
| 378 | return result; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * helper routine for delivering "column does not exist" error message |
| 383 | * |
| 384 | * (Usually we don't have to work this hard, but the general case of field |
| 385 | * selection from an arbitrary node needs it.) |
| 386 | */ |
| 387 | static void |
| 388 | unknown_attribute(ParseState *pstate, Node *relref, const char *attname, |
| 389 | int location) |
| 390 | { |
| 391 | RangeTblEntry *rte; |
| 392 | |
| 393 | if (IsA(relref, Var) && |
| 394 | ((Var *) relref)->varattno == InvalidAttrNumber) |
| 395 | { |
| 396 | /* Reference the RTE by alias not by actual table name */ |
| 397 | rte = GetRTEByRangeTablePosn(pstate, |
| 398 | ((Var *) relref)->varno, |
| 399 | ((Var *) relref)->varlevelsup); |
| 400 | ereport(ERROR, |
| 401 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 402 | errmsg("column %s.%s does not exist" , |
| 403 | rte->eref->aliasname, attname), |
| 404 | parser_errposition(pstate, location))); |
| 405 | } |
| 406 | else |
| 407 | { |
| 408 | /* Have to do it by reference to the type of the expression */ |
| 409 | Oid relTypeId = exprType(relref); |
| 410 | |
| 411 | if (ISCOMPLEX(relTypeId)) |
| 412 | ereport(ERROR, |
| 413 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 414 | errmsg("column \"%s\" not found in data type %s" , |
| 415 | attname, format_type_be(relTypeId)), |
| 416 | parser_errposition(pstate, location))); |
| 417 | else if (relTypeId == RECORDOID) |
| 418 | ereport(ERROR, |
| 419 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 420 | errmsg("could not identify column \"%s\" in record data type" , |
| 421 | attname), |
| 422 | parser_errposition(pstate, location))); |
| 423 | else |
| 424 | ereport(ERROR, |
| 425 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 426 | errmsg("column notation .%s applied to type %s, " |
| 427 | "which is not a composite type" , |
| 428 | attname, format_type_be(relTypeId)), |
| 429 | parser_errposition(pstate, location))); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | static Node * |
| 434 | transformIndirection(ParseState *pstate, A_Indirection *ind) |
| 435 | { |
| 436 | Node *last_srf = pstate->p_last_srf; |
| 437 | Node *result = transformExprRecurse(pstate, ind->arg); |
| 438 | List *subscripts = NIL; |
| 439 | int location = exprLocation(result); |
| 440 | ListCell *i; |
| 441 | |
| 442 | /* |
| 443 | * We have to split any field-selection operations apart from |
| 444 | * subscripting. Adjacent A_Indices nodes have to be treated as a single |
| 445 | * multidimensional subscript operation. |
| 446 | */ |
| 447 | foreach(i, ind->indirection) |
| 448 | { |
| 449 | Node *n = lfirst(i); |
| 450 | |
| 451 | if (IsA(n, A_Indices)) |
| 452 | subscripts = lappend(subscripts, n); |
| 453 | else if (IsA(n, A_Star)) |
| 454 | { |
| 455 | ereport(ERROR, |
| 456 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 457 | errmsg("row expansion via \"*\" is not supported here" ), |
| 458 | parser_errposition(pstate, location))); |
| 459 | } |
| 460 | else |
| 461 | { |
| 462 | Node *newresult; |
| 463 | |
| 464 | Assert(IsA(n, String)); |
| 465 | |
| 466 | /* process subscripts before this field selection */ |
| 467 | if (subscripts) |
| 468 | result = (Node *) transformContainerSubscripts(pstate, |
| 469 | result, |
| 470 | exprType(result), |
| 471 | InvalidOid, |
| 472 | exprTypmod(result), |
| 473 | subscripts, |
| 474 | NULL); |
| 475 | subscripts = NIL; |
| 476 | |
| 477 | newresult = ParseFuncOrColumn(pstate, |
| 478 | list_make1(n), |
| 479 | list_make1(result), |
| 480 | last_srf, |
| 481 | NULL, |
| 482 | false, |
| 483 | location); |
| 484 | if (newresult == NULL) |
| 485 | unknown_attribute(pstate, result, strVal(n), location); |
| 486 | result = newresult; |
| 487 | } |
| 488 | } |
| 489 | /* process trailing subscripts, if any */ |
| 490 | if (subscripts) |
| 491 | result = (Node *) transformContainerSubscripts(pstate, |
| 492 | result, |
| 493 | exprType(result), |
| 494 | InvalidOid, |
| 495 | exprTypmod(result), |
| 496 | subscripts, |
| 497 | NULL); |
| 498 | |
| 499 | return result; |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | * Transform a ColumnRef. |
| 504 | * |
| 505 | * If you find yourself changing this code, see also ExpandColumnRefStar. |
| 506 | */ |
| 507 | static Node * |
| 508 | transformColumnRef(ParseState *pstate, ColumnRef *cref) |
| 509 | { |
| 510 | Node *node = NULL; |
| 511 | char *nspname = NULL; |
| 512 | char *relname = NULL; |
| 513 | char *colname = NULL; |
| 514 | RangeTblEntry *rte; |
| 515 | int levels_up; |
| 516 | enum |
| 517 | { |
| 518 | CRERR_NO_COLUMN, |
| 519 | CRERR_NO_RTE, |
| 520 | CRERR_WRONG_DB, |
| 521 | CRERR_TOO_MANY |
| 522 | } crerr = CRERR_NO_COLUMN; |
| 523 | const char *err; |
| 524 | |
| 525 | /* |
| 526 | * Check to see if the column reference is in an invalid place within the |
| 527 | * query. We allow column references in most places, except in default |
| 528 | * expressions and partition bound expressions. |
| 529 | */ |
| 530 | err = NULL; |
| 531 | switch (pstate->p_expr_kind) |
| 532 | { |
| 533 | case EXPR_KIND_NONE: |
| 534 | Assert(false); /* can't happen */ |
| 535 | break; |
| 536 | case EXPR_KIND_OTHER: |
| 537 | case EXPR_KIND_JOIN_ON: |
| 538 | case EXPR_KIND_JOIN_USING: |
| 539 | case EXPR_KIND_FROM_SUBSELECT: |
| 540 | case EXPR_KIND_FROM_FUNCTION: |
| 541 | case EXPR_KIND_WHERE: |
| 542 | case EXPR_KIND_POLICY: |
| 543 | case EXPR_KIND_HAVING: |
| 544 | case EXPR_KIND_FILTER: |
| 545 | case EXPR_KIND_WINDOW_PARTITION: |
| 546 | case EXPR_KIND_WINDOW_ORDER: |
| 547 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 548 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 549 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 550 | case EXPR_KIND_SELECT_TARGET: |
| 551 | case EXPR_KIND_INSERT_TARGET: |
| 552 | case EXPR_KIND_UPDATE_SOURCE: |
| 553 | case EXPR_KIND_UPDATE_TARGET: |
| 554 | case EXPR_KIND_GROUP_BY: |
| 555 | case EXPR_KIND_ORDER_BY: |
| 556 | case EXPR_KIND_DISTINCT_ON: |
| 557 | case EXPR_KIND_LIMIT: |
| 558 | case EXPR_KIND_OFFSET: |
| 559 | case EXPR_KIND_RETURNING: |
| 560 | case EXPR_KIND_VALUES: |
| 561 | case EXPR_KIND_VALUES_SINGLE: |
| 562 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 563 | case EXPR_KIND_DOMAIN_CHECK: |
| 564 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 565 | case EXPR_KIND_INDEX_EXPRESSION: |
| 566 | case EXPR_KIND_INDEX_PREDICATE: |
| 567 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 568 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 569 | case EXPR_KIND_TRIGGER_WHEN: |
| 570 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 571 | case EXPR_KIND_CALL_ARGUMENT: |
| 572 | case EXPR_KIND_COPY_WHERE: |
| 573 | case EXPR_KIND_GENERATED_COLUMN: |
| 574 | /* okay */ |
| 575 | break; |
| 576 | |
| 577 | case EXPR_KIND_COLUMN_DEFAULT: |
| 578 | err = _("cannot use column reference in DEFAULT expression" ); |
| 579 | break; |
| 580 | case EXPR_KIND_PARTITION_BOUND: |
| 581 | err = _("cannot use column reference in partition bound expression" ); |
| 582 | break; |
| 583 | |
| 584 | /* |
| 585 | * There is intentionally no default: case here, so that the |
| 586 | * compiler will warn if we add a new ParseExprKind without |
| 587 | * extending this switch. If we do see an unrecognized value at |
| 588 | * runtime, the behavior will be the same as for EXPR_KIND_OTHER, |
| 589 | * which is sane anyway. |
| 590 | */ |
| 591 | } |
| 592 | if (err) |
| 593 | ereport(ERROR, |
| 594 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 595 | errmsg_internal("%s" , err), |
| 596 | parser_errposition(pstate, cref->location))); |
| 597 | |
| 598 | /* |
| 599 | * Give the PreParseColumnRefHook, if any, first shot. If it returns |
| 600 | * non-null then that's all, folks. |
| 601 | */ |
| 602 | if (pstate->p_pre_columnref_hook != NULL) |
| 603 | { |
| 604 | node = pstate->p_pre_columnref_hook(pstate, cref); |
| 605 | if (node != NULL) |
| 606 | return node; |
| 607 | } |
| 608 | |
| 609 | /*---------- |
| 610 | * The allowed syntaxes are: |
| 611 | * |
| 612 | * A First try to resolve as unqualified column name; |
| 613 | * if no luck, try to resolve as unqualified table name (A.*). |
| 614 | * A.B A is an unqualified table name; B is either a |
| 615 | * column or function name (trying column name first). |
| 616 | * A.B.C schema A, table B, col or func name C. |
| 617 | * A.B.C.D catalog A, schema B, table C, col or func D. |
| 618 | * A.* A is an unqualified table name; means whole-row value. |
| 619 | * A.B.* whole-row value of table B in schema A. |
| 620 | * A.B.C.* whole-row value of table C in schema B in catalog A. |
| 621 | * |
| 622 | * We do not need to cope with bare "*"; that will only be accepted by |
| 623 | * the grammar at the top level of a SELECT list, and transformTargetList |
| 624 | * will take care of it before it ever gets here. Also, "A.*" etc will |
| 625 | * be expanded by transformTargetList if they appear at SELECT top level, |
| 626 | * so here we are only going to see them as function or operator inputs. |
| 627 | * |
| 628 | * Currently, if a catalog name is given then it must equal the current |
| 629 | * database name; we check it here and then discard it. |
| 630 | *---------- |
| 631 | */ |
| 632 | switch (list_length(cref->fields)) |
| 633 | { |
| 634 | case 1: |
| 635 | { |
| 636 | Node *field1 = (Node *) linitial(cref->fields); |
| 637 | |
| 638 | Assert(IsA(field1, String)); |
| 639 | colname = strVal(field1); |
| 640 | |
| 641 | /* Try to identify as an unqualified column */ |
| 642 | node = colNameToVar(pstate, colname, false, cref->location); |
| 643 | |
| 644 | if (node == NULL) |
| 645 | { |
| 646 | /* |
| 647 | * Not known as a column of any range-table entry. |
| 648 | * |
| 649 | * Try to find the name as a relation. Note that only |
| 650 | * relations already entered into the rangetable will be |
| 651 | * recognized. |
| 652 | * |
| 653 | * This is a hack for backwards compatibility with |
| 654 | * PostQUEL-inspired syntax. The preferred form now is |
| 655 | * "rel.*". |
| 656 | */ |
| 657 | rte = refnameRangeTblEntry(pstate, NULL, colname, |
| 658 | cref->location, |
| 659 | &levels_up); |
| 660 | if (rte) |
| 661 | node = transformWholeRowRef(pstate, rte, |
| 662 | cref->location); |
| 663 | } |
| 664 | break; |
| 665 | } |
| 666 | case 2: |
| 667 | { |
| 668 | Node *field1 = (Node *) linitial(cref->fields); |
| 669 | Node *field2 = (Node *) lsecond(cref->fields); |
| 670 | |
| 671 | Assert(IsA(field1, String)); |
| 672 | relname = strVal(field1); |
| 673 | |
| 674 | /* Locate the referenced RTE */ |
| 675 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
| 676 | cref->location, |
| 677 | &levels_up); |
| 678 | if (rte == NULL) |
| 679 | { |
| 680 | crerr = CRERR_NO_RTE; |
| 681 | break; |
| 682 | } |
| 683 | |
| 684 | /* Whole-row reference? */ |
| 685 | if (IsA(field2, A_Star)) |
| 686 | { |
| 687 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 688 | break; |
| 689 | } |
| 690 | |
| 691 | Assert(IsA(field2, String)); |
| 692 | colname = strVal(field2); |
| 693 | |
| 694 | /* Try to identify as a column of the RTE */ |
| 695 | node = scanRTEForColumn(pstate, rte, colname, cref->location, |
| 696 | 0, NULL); |
| 697 | if (node == NULL) |
| 698 | { |
| 699 | /* Try it as a function call on the whole row */ |
| 700 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 701 | node = ParseFuncOrColumn(pstate, |
| 702 | list_make1(makeString(colname)), |
| 703 | list_make1(node), |
| 704 | pstate->p_last_srf, |
| 705 | NULL, |
| 706 | false, |
| 707 | cref->location); |
| 708 | } |
| 709 | break; |
| 710 | } |
| 711 | case 3: |
| 712 | { |
| 713 | Node *field1 = (Node *) linitial(cref->fields); |
| 714 | Node *field2 = (Node *) lsecond(cref->fields); |
| 715 | Node *field3 = (Node *) lthird(cref->fields); |
| 716 | |
| 717 | Assert(IsA(field1, String)); |
| 718 | nspname = strVal(field1); |
| 719 | Assert(IsA(field2, String)); |
| 720 | relname = strVal(field2); |
| 721 | |
| 722 | /* Locate the referenced RTE */ |
| 723 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
| 724 | cref->location, |
| 725 | &levels_up); |
| 726 | if (rte == NULL) |
| 727 | { |
| 728 | crerr = CRERR_NO_RTE; |
| 729 | break; |
| 730 | } |
| 731 | |
| 732 | /* Whole-row reference? */ |
| 733 | if (IsA(field3, A_Star)) |
| 734 | { |
| 735 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 736 | break; |
| 737 | } |
| 738 | |
| 739 | Assert(IsA(field3, String)); |
| 740 | colname = strVal(field3); |
| 741 | |
| 742 | /* Try to identify as a column of the RTE */ |
| 743 | node = scanRTEForColumn(pstate, rte, colname, cref->location, |
| 744 | 0, NULL); |
| 745 | if (node == NULL) |
| 746 | { |
| 747 | /* Try it as a function call on the whole row */ |
| 748 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 749 | node = ParseFuncOrColumn(pstate, |
| 750 | list_make1(makeString(colname)), |
| 751 | list_make1(node), |
| 752 | pstate->p_last_srf, |
| 753 | NULL, |
| 754 | false, |
| 755 | cref->location); |
| 756 | } |
| 757 | break; |
| 758 | } |
| 759 | case 4: |
| 760 | { |
| 761 | Node *field1 = (Node *) linitial(cref->fields); |
| 762 | Node *field2 = (Node *) lsecond(cref->fields); |
| 763 | Node *field3 = (Node *) lthird(cref->fields); |
| 764 | Node *field4 = (Node *) lfourth(cref->fields); |
| 765 | char *catname; |
| 766 | |
| 767 | Assert(IsA(field1, String)); |
| 768 | catname = strVal(field1); |
| 769 | Assert(IsA(field2, String)); |
| 770 | nspname = strVal(field2); |
| 771 | Assert(IsA(field3, String)); |
| 772 | relname = strVal(field3); |
| 773 | |
| 774 | /* |
| 775 | * We check the catalog name and then ignore it. |
| 776 | */ |
| 777 | if (strcmp(catname, get_database_name(MyDatabaseId)) != 0) |
| 778 | { |
| 779 | crerr = CRERR_WRONG_DB; |
| 780 | break; |
| 781 | } |
| 782 | |
| 783 | /* Locate the referenced RTE */ |
| 784 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
| 785 | cref->location, |
| 786 | &levels_up); |
| 787 | if (rte == NULL) |
| 788 | { |
| 789 | crerr = CRERR_NO_RTE; |
| 790 | break; |
| 791 | } |
| 792 | |
| 793 | /* Whole-row reference? */ |
| 794 | if (IsA(field4, A_Star)) |
| 795 | { |
| 796 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 797 | break; |
| 798 | } |
| 799 | |
| 800 | Assert(IsA(field4, String)); |
| 801 | colname = strVal(field4); |
| 802 | |
| 803 | /* Try to identify as a column of the RTE */ |
| 804 | node = scanRTEForColumn(pstate, rte, colname, cref->location, |
| 805 | 0, NULL); |
| 806 | if (node == NULL) |
| 807 | { |
| 808 | /* Try it as a function call on the whole row */ |
| 809 | node = transformWholeRowRef(pstate, rte, cref->location); |
| 810 | node = ParseFuncOrColumn(pstate, |
| 811 | list_make1(makeString(colname)), |
| 812 | list_make1(node), |
| 813 | pstate->p_last_srf, |
| 814 | NULL, |
| 815 | false, |
| 816 | cref->location); |
| 817 | } |
| 818 | break; |
| 819 | } |
| 820 | default: |
| 821 | crerr = CRERR_TOO_MANY; /* too many dotted names */ |
| 822 | break; |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * Now give the PostParseColumnRefHook, if any, a chance. We pass the |
| 827 | * translation-so-far so that it can throw an error if it wishes in the |
| 828 | * case that it has a conflicting interpretation of the ColumnRef. (If it |
| 829 | * just translates anyway, we'll throw an error, because we can't undo |
| 830 | * whatever effects the preceding steps may have had on the pstate.) If it |
| 831 | * returns NULL, use the standard translation, or throw a suitable error |
| 832 | * if there is none. |
| 833 | */ |
| 834 | if (pstate->p_post_columnref_hook != NULL) |
| 835 | { |
| 836 | Node *hookresult; |
| 837 | |
| 838 | hookresult = pstate->p_post_columnref_hook(pstate, cref, node); |
| 839 | if (node == NULL) |
| 840 | node = hookresult; |
| 841 | else if (hookresult != NULL) |
| 842 | ereport(ERROR, |
| 843 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
| 844 | errmsg("column reference \"%s\" is ambiguous" , |
| 845 | NameListToString(cref->fields)), |
| 846 | parser_errposition(pstate, cref->location))); |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Throw error if no translation found. |
| 851 | */ |
| 852 | if (node == NULL) |
| 853 | { |
| 854 | switch (crerr) |
| 855 | { |
| 856 | case CRERR_NO_COLUMN: |
| 857 | errorMissingColumn(pstate, relname, colname, cref->location); |
| 858 | break; |
| 859 | case CRERR_NO_RTE: |
| 860 | errorMissingRTE(pstate, makeRangeVar(nspname, relname, |
| 861 | cref->location)); |
| 862 | break; |
| 863 | case CRERR_WRONG_DB: |
| 864 | ereport(ERROR, |
| 865 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 866 | errmsg("cross-database references are not implemented: %s" , |
| 867 | NameListToString(cref->fields)), |
| 868 | parser_errposition(pstate, cref->location))); |
| 869 | break; |
| 870 | case CRERR_TOO_MANY: |
| 871 | ereport(ERROR, |
| 872 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 873 | errmsg("improper qualified name (too many dotted names): %s" , |
| 874 | NameListToString(cref->fields)), |
| 875 | parser_errposition(pstate, cref->location))); |
| 876 | break; |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | return node; |
| 881 | } |
| 882 | |
| 883 | static Node * |
| 884 | transformParamRef(ParseState *pstate, ParamRef *pref) |
| 885 | { |
| 886 | Node *result; |
| 887 | |
| 888 | /* |
| 889 | * The core parser knows nothing about Params. If a hook is supplied, |
| 890 | * call it. If not, or if the hook returns NULL, throw a generic error. |
| 891 | */ |
| 892 | if (pstate->p_paramref_hook != NULL) |
| 893 | result = pstate->p_paramref_hook(pstate, pref); |
| 894 | else |
| 895 | result = NULL; |
| 896 | |
| 897 | if (result == NULL) |
| 898 | ereport(ERROR, |
| 899 | (errcode(ERRCODE_UNDEFINED_PARAMETER), |
| 900 | errmsg("there is no parameter $%d" , pref->number), |
| 901 | parser_errposition(pstate, pref->location))); |
| 902 | |
| 903 | return result; |
| 904 | } |
| 905 | |
| 906 | /* Test whether an a_expr is a plain NULL constant or not */ |
| 907 | static bool |
| 908 | exprIsNullConstant(Node *arg) |
| 909 | { |
| 910 | if (arg && IsA(arg, A_Const)) |
| 911 | { |
| 912 | A_Const *con = (A_Const *) arg; |
| 913 | |
| 914 | if (con->val.type == T_Null) |
| 915 | return true; |
| 916 | } |
| 917 | return false; |
| 918 | } |
| 919 | |
| 920 | static Node * |
| 921 | transformAExprOp(ParseState *pstate, A_Expr *a) |
| 922 | { |
| 923 | Node *lexpr = a->lexpr; |
| 924 | Node *rexpr = a->rexpr; |
| 925 | Node *result; |
| 926 | |
| 927 | if (operator_precedence_warning) |
| 928 | { |
| 929 | int opgroup; |
| 930 | const char *opname; |
| 931 | |
| 932 | opgroup = operator_precedence_group((Node *) a, &opname); |
| 933 | if (opgroup > 0) |
| 934 | emit_precedence_warnings(pstate, opgroup, opname, |
| 935 | lexpr, rexpr, |
| 936 | a->location); |
| 937 | |
| 938 | /* Look through AEXPR_PAREN nodes so they don't affect tests below */ |
| 939 | while (lexpr && IsA(lexpr, A_Expr) && |
| 940 | ((A_Expr *) lexpr)->kind == AEXPR_PAREN) |
| 941 | lexpr = ((A_Expr *) lexpr)->lexpr; |
| 942 | while (rexpr && IsA(rexpr, A_Expr) && |
| 943 | ((A_Expr *) rexpr)->kind == AEXPR_PAREN) |
| 944 | rexpr = ((A_Expr *) rexpr)->lexpr; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * Special-case "foo = NULL" and "NULL = foo" for compatibility with |
| 949 | * standards-broken products (like Microsoft's). Turn these into IS NULL |
| 950 | * exprs. (If either side is a CaseTestExpr, then the expression was |
| 951 | * generated internally from a CASE-WHEN expression, and |
| 952 | * transform_null_equals does not apply.) |
| 953 | */ |
| 954 | if (Transform_null_equals && |
| 955 | list_length(a->name) == 1 && |
| 956 | strcmp(strVal(linitial(a->name)), "=" ) == 0 && |
| 957 | (exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)) && |
| 958 | (!IsA(lexpr, CaseTestExpr) &&!IsA(rexpr, CaseTestExpr))) |
| 959 | { |
| 960 | NullTest *n = makeNode(NullTest); |
| 961 | |
| 962 | n->nulltesttype = IS_NULL; |
| 963 | n->location = a->location; |
| 964 | |
| 965 | if (exprIsNullConstant(lexpr)) |
| 966 | n->arg = (Expr *) rexpr; |
| 967 | else |
| 968 | n->arg = (Expr *) lexpr; |
| 969 | |
| 970 | result = transformExprRecurse(pstate, (Node *) n); |
| 971 | } |
| 972 | else if (lexpr && IsA(lexpr, RowExpr) && |
| 973 | rexpr && IsA(rexpr, SubLink) && |
| 974 | ((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK) |
| 975 | { |
| 976 | /* |
| 977 | * Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the |
| 978 | * grammar did this, but now that a row construct is allowed anywhere |
| 979 | * in expressions, it's easier to do it here. |
| 980 | */ |
| 981 | SubLink *s = (SubLink *) rexpr; |
| 982 | |
| 983 | s->subLinkType = ROWCOMPARE_SUBLINK; |
| 984 | s->testexpr = lexpr; |
| 985 | s->operName = a->name; |
| 986 | s->location = a->location; |
| 987 | result = transformExprRecurse(pstate, (Node *) s); |
| 988 | } |
| 989 | else if (lexpr && IsA(lexpr, RowExpr) && |
| 990 | rexpr && IsA(rexpr, RowExpr)) |
| 991 | { |
| 992 | /* ROW() op ROW() is handled specially */ |
| 993 | lexpr = transformExprRecurse(pstate, lexpr); |
| 994 | rexpr = transformExprRecurse(pstate, rexpr); |
| 995 | |
| 996 | result = make_row_comparison_op(pstate, |
| 997 | a->name, |
| 998 | castNode(RowExpr, lexpr)->args, |
| 999 | castNode(RowExpr, rexpr)->args, |
| 1000 | a->location); |
| 1001 | } |
| 1002 | else |
| 1003 | { |
| 1004 | /* Ordinary scalar operator */ |
| 1005 | Node *last_srf = pstate->p_last_srf; |
| 1006 | |
| 1007 | lexpr = transformExprRecurse(pstate, lexpr); |
| 1008 | rexpr = transformExprRecurse(pstate, rexpr); |
| 1009 | |
| 1010 | result = (Node *) make_op(pstate, |
| 1011 | a->name, |
| 1012 | lexpr, |
| 1013 | rexpr, |
| 1014 | last_srf, |
| 1015 | a->location); |
| 1016 | } |
| 1017 | |
| 1018 | return result; |
| 1019 | } |
| 1020 | |
| 1021 | static Node * |
| 1022 | transformAExprOpAny(ParseState *pstate, A_Expr *a) |
| 1023 | { |
| 1024 | Node *lexpr = a->lexpr; |
| 1025 | Node *rexpr = a->rexpr; |
| 1026 | |
| 1027 | if (operator_precedence_warning) |
| 1028 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_OP, |
| 1029 | strVal(llast(a->name)), |
| 1030 | lexpr, NULL, |
| 1031 | a->location); |
| 1032 | |
| 1033 | lexpr = transformExprRecurse(pstate, lexpr); |
| 1034 | rexpr = transformExprRecurse(pstate, rexpr); |
| 1035 | |
| 1036 | return (Node *) make_scalar_array_op(pstate, |
| 1037 | a->name, |
| 1038 | true, |
| 1039 | lexpr, |
| 1040 | rexpr, |
| 1041 | a->location); |
| 1042 | } |
| 1043 | |
| 1044 | static Node * |
| 1045 | transformAExprOpAll(ParseState *pstate, A_Expr *a) |
| 1046 | { |
| 1047 | Node *lexpr = a->lexpr; |
| 1048 | Node *rexpr = a->rexpr; |
| 1049 | |
| 1050 | if (operator_precedence_warning) |
| 1051 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_OP, |
| 1052 | strVal(llast(a->name)), |
| 1053 | lexpr, NULL, |
| 1054 | a->location); |
| 1055 | |
| 1056 | lexpr = transformExprRecurse(pstate, lexpr); |
| 1057 | rexpr = transformExprRecurse(pstate, rexpr); |
| 1058 | |
| 1059 | return (Node *) make_scalar_array_op(pstate, |
| 1060 | a->name, |
| 1061 | false, |
| 1062 | lexpr, |
| 1063 | rexpr, |
| 1064 | a->location); |
| 1065 | } |
| 1066 | |
| 1067 | static Node * |
| 1068 | transformAExprDistinct(ParseState *pstate, A_Expr *a) |
| 1069 | { |
| 1070 | Node *lexpr = a->lexpr; |
| 1071 | Node *rexpr = a->rexpr; |
| 1072 | Node *result; |
| 1073 | |
| 1074 | if (operator_precedence_warning) |
| 1075 | emit_precedence_warnings(pstate, PREC_GROUP_INFIX_IS, "IS" , |
| 1076 | lexpr, rexpr, |
| 1077 | a->location); |
| 1078 | |
| 1079 | /* |
| 1080 | * If either input is an undecorated NULL literal, transform to a NullTest |
| 1081 | * on the other input. That's simpler to process than a full DistinctExpr, |
| 1082 | * and it avoids needing to require that the datatype have an = operator. |
| 1083 | */ |
| 1084 | if (exprIsNullConstant(rexpr)) |
| 1085 | return make_nulltest_from_distinct(pstate, a, lexpr); |
| 1086 | if (exprIsNullConstant(lexpr)) |
| 1087 | return make_nulltest_from_distinct(pstate, a, rexpr); |
| 1088 | |
| 1089 | lexpr = transformExprRecurse(pstate, lexpr); |
| 1090 | rexpr = transformExprRecurse(pstate, rexpr); |
| 1091 | |
| 1092 | if (lexpr && IsA(lexpr, RowExpr) && |
| 1093 | rexpr && IsA(rexpr, RowExpr)) |
| 1094 | { |
| 1095 | /* ROW() op ROW() is handled specially */ |
| 1096 | result = make_row_distinct_op(pstate, a->name, |
| 1097 | (RowExpr *) lexpr, |
| 1098 | (RowExpr *) rexpr, |
| 1099 | a->location); |
| 1100 | } |
| 1101 | else |
| 1102 | { |
| 1103 | /* Ordinary scalar operator */ |
| 1104 | result = (Node *) make_distinct_op(pstate, |
| 1105 | a->name, |
| 1106 | lexpr, |
| 1107 | rexpr, |
| 1108 | a->location); |
| 1109 | } |
| 1110 | |
| 1111 | /* |
| 1112 | * If it's NOT DISTINCT, we first build a DistinctExpr and then stick a |
| 1113 | * NOT on top. |
| 1114 | */ |
| 1115 | if (a->kind == AEXPR_NOT_DISTINCT) |
| 1116 | result = (Node *) makeBoolExpr(NOT_EXPR, |
| 1117 | list_make1(result), |
| 1118 | a->location); |
| 1119 | |
| 1120 | return result; |
| 1121 | } |
| 1122 | |
| 1123 | static Node * |
| 1124 | transformAExprNullIf(ParseState *pstate, A_Expr *a) |
| 1125 | { |
| 1126 | Node *lexpr = transformExprRecurse(pstate, a->lexpr); |
| 1127 | Node *rexpr = transformExprRecurse(pstate, a->rexpr); |
| 1128 | OpExpr *result; |
| 1129 | |
| 1130 | result = (OpExpr *) make_op(pstate, |
| 1131 | a->name, |
| 1132 | lexpr, |
| 1133 | rexpr, |
| 1134 | pstate->p_last_srf, |
| 1135 | a->location); |
| 1136 | |
| 1137 | /* |
| 1138 | * The comparison operator itself should yield boolean ... |
| 1139 | */ |
| 1140 | if (result->opresulttype != BOOLOID) |
| 1141 | ereport(ERROR, |
| 1142 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1143 | errmsg("NULLIF requires = operator to yield boolean" ), |
| 1144 | parser_errposition(pstate, a->location))); |
| 1145 | if (result->opretset) |
| 1146 | ereport(ERROR, |
| 1147 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1148 | /* translator: %s is name of a SQL construct, eg NULLIF */ |
| 1149 | errmsg("%s must not return a set" , "NULLIF" ), |
| 1150 | parser_errposition(pstate, a->location))); |
| 1151 | |
| 1152 | /* |
| 1153 | * ... but the NullIfExpr will yield the first operand's type. |
| 1154 | */ |
| 1155 | result->opresulttype = exprType((Node *) linitial(result->args)); |
| 1156 | |
| 1157 | /* |
| 1158 | * We rely on NullIfExpr and OpExpr being the same struct |
| 1159 | */ |
| 1160 | NodeSetTag(result, T_NullIfExpr); |
| 1161 | |
| 1162 | return (Node *) result; |
| 1163 | } |
| 1164 | |
| 1165 | /* |
| 1166 | * Checking an expression for match to a list of type names. Will result |
| 1167 | * in a boolean constant node. |
| 1168 | */ |
| 1169 | static Node * |
| 1170 | transformAExprOf(ParseState *pstate, A_Expr *a) |
| 1171 | { |
| 1172 | Node *lexpr = a->lexpr; |
| 1173 | Const *result; |
| 1174 | ListCell *telem; |
| 1175 | Oid ltype, |
| 1176 | rtype; |
| 1177 | bool matched = false; |
| 1178 | |
| 1179 | if (operator_precedence_warning) |
| 1180 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_IS, "IS" , |
| 1181 | lexpr, NULL, |
| 1182 | a->location); |
| 1183 | |
| 1184 | lexpr = transformExprRecurse(pstate, lexpr); |
| 1185 | |
| 1186 | ltype = exprType(lexpr); |
| 1187 | foreach(telem, (List *) a->rexpr) |
| 1188 | { |
| 1189 | rtype = typenameTypeId(pstate, lfirst(telem)); |
| 1190 | matched = (rtype == ltype); |
| 1191 | if (matched) |
| 1192 | break; |
| 1193 | } |
| 1194 | |
| 1195 | /* |
| 1196 | * We have two forms: equals or not equals. Flip the sense of the result |
| 1197 | * for not equals. |
| 1198 | */ |
| 1199 | if (strcmp(strVal(linitial(a->name)), "<>" ) == 0) |
| 1200 | matched = (!matched); |
| 1201 | |
| 1202 | result = (Const *) makeBoolConst(matched, false); |
| 1203 | |
| 1204 | /* Make the result have the original input's parse location */ |
| 1205 | result->location = exprLocation((Node *) a); |
| 1206 | |
| 1207 | return (Node *) result; |
| 1208 | } |
| 1209 | |
| 1210 | static Node * |
| 1211 | transformAExprIn(ParseState *pstate, A_Expr *a) |
| 1212 | { |
| 1213 | Node *result = NULL; |
| 1214 | Node *lexpr; |
| 1215 | List *rexprs; |
| 1216 | List *rvars; |
| 1217 | List *rnonvars; |
| 1218 | bool useOr; |
| 1219 | ListCell *l; |
| 1220 | |
| 1221 | /* |
| 1222 | * If the operator is <>, combine with AND not OR. |
| 1223 | */ |
| 1224 | if (strcmp(strVal(linitial(a->name)), "<>" ) == 0) |
| 1225 | useOr = false; |
| 1226 | else |
| 1227 | useOr = true; |
| 1228 | |
| 1229 | if (operator_precedence_warning) |
| 1230 | emit_precedence_warnings(pstate, |
| 1231 | useOr ? PREC_GROUP_IN : PREC_GROUP_NOT_IN, |
| 1232 | "IN" , |
| 1233 | a->lexpr, NULL, |
| 1234 | a->location); |
| 1235 | |
| 1236 | /* |
| 1237 | * We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only |
| 1238 | * possible if there is a suitable array type available. If not, we fall |
| 1239 | * back to a boolean condition tree with multiple copies of the lefthand |
| 1240 | * expression. Also, any IN-list items that contain Vars are handled as |
| 1241 | * separate boolean conditions, because that gives the planner more scope |
| 1242 | * for optimization on such clauses. |
| 1243 | * |
| 1244 | * First step: transform all the inputs, and detect whether any contain |
| 1245 | * Vars. |
| 1246 | */ |
| 1247 | lexpr = transformExprRecurse(pstate, a->lexpr); |
| 1248 | rexprs = rvars = rnonvars = NIL; |
| 1249 | foreach(l, (List *) a->rexpr) |
| 1250 | { |
| 1251 | Node *rexpr = transformExprRecurse(pstate, lfirst(l)); |
| 1252 | |
| 1253 | rexprs = lappend(rexprs, rexpr); |
| 1254 | if (contain_vars_of_level(rexpr, 0)) |
| 1255 | rvars = lappend(rvars, rexpr); |
| 1256 | else |
| 1257 | rnonvars = lappend(rnonvars, rexpr); |
| 1258 | } |
| 1259 | |
| 1260 | /* |
| 1261 | * ScalarArrayOpExpr is only going to be useful if there's more than one |
| 1262 | * non-Var righthand item. |
| 1263 | */ |
| 1264 | if (list_length(rnonvars) > 1) |
| 1265 | { |
| 1266 | List *allexprs; |
| 1267 | Oid scalar_type; |
| 1268 | Oid array_type; |
| 1269 | |
| 1270 | /* |
| 1271 | * Try to select a common type for the array elements. Note that |
| 1272 | * since the LHS' type is first in the list, it will be preferred when |
| 1273 | * there is doubt (eg, when all the RHS items are unknown literals). |
| 1274 | * |
| 1275 | * Note: use list_concat here not lcons, to avoid damaging rnonvars. |
| 1276 | */ |
| 1277 | allexprs = list_concat(list_make1(lexpr), rnonvars); |
| 1278 | scalar_type = select_common_type(pstate, allexprs, NULL, NULL); |
| 1279 | |
| 1280 | /* |
| 1281 | * Do we have an array type to use? Aside from the case where there |
| 1282 | * isn't one, we don't risk using ScalarArrayOpExpr when the common |
| 1283 | * type is RECORD, because the RowExpr comparison logic below can cope |
| 1284 | * with some cases of non-identical row types. |
| 1285 | */ |
| 1286 | if (OidIsValid(scalar_type) && scalar_type != RECORDOID) |
| 1287 | array_type = get_array_type(scalar_type); |
| 1288 | else |
| 1289 | array_type = InvalidOid; |
| 1290 | if (array_type != InvalidOid) |
| 1291 | { |
| 1292 | /* |
| 1293 | * OK: coerce all the right-hand non-Var inputs to the common type |
| 1294 | * and build an ArrayExpr for them. |
| 1295 | */ |
| 1296 | List *aexprs; |
| 1297 | ArrayExpr *newa; |
| 1298 | |
| 1299 | aexprs = NIL; |
| 1300 | foreach(l, rnonvars) |
| 1301 | { |
| 1302 | Node *rexpr = (Node *) lfirst(l); |
| 1303 | |
| 1304 | rexpr = coerce_to_common_type(pstate, rexpr, |
| 1305 | scalar_type, |
| 1306 | "IN" ); |
| 1307 | aexprs = lappend(aexprs, rexpr); |
| 1308 | } |
| 1309 | newa = makeNode(ArrayExpr); |
| 1310 | newa->array_typeid = array_type; |
| 1311 | /* array_collid will be set by parse_collate.c */ |
| 1312 | newa->element_typeid = scalar_type; |
| 1313 | newa->elements = aexprs; |
| 1314 | newa->multidims = false; |
| 1315 | newa->location = -1; |
| 1316 | |
| 1317 | result = (Node *) make_scalar_array_op(pstate, |
| 1318 | a->name, |
| 1319 | useOr, |
| 1320 | lexpr, |
| 1321 | (Node *) newa, |
| 1322 | a->location); |
| 1323 | |
| 1324 | /* Consider only the Vars (if any) in the loop below */ |
| 1325 | rexprs = rvars; |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | /* |
| 1330 | * Must do it the hard way, ie, with a boolean expression tree. |
| 1331 | */ |
| 1332 | foreach(l, rexprs) |
| 1333 | { |
| 1334 | Node *rexpr = (Node *) lfirst(l); |
| 1335 | Node *cmp; |
| 1336 | |
| 1337 | if (IsA(lexpr, RowExpr) && |
| 1338 | IsA(rexpr, RowExpr)) |
| 1339 | { |
| 1340 | /* ROW() op ROW() is handled specially */ |
| 1341 | cmp = make_row_comparison_op(pstate, |
| 1342 | a->name, |
| 1343 | copyObject(((RowExpr *) lexpr)->args), |
| 1344 | ((RowExpr *) rexpr)->args, |
| 1345 | a->location); |
| 1346 | } |
| 1347 | else |
| 1348 | { |
| 1349 | /* Ordinary scalar operator */ |
| 1350 | cmp = (Node *) make_op(pstate, |
| 1351 | a->name, |
| 1352 | copyObject(lexpr), |
| 1353 | rexpr, |
| 1354 | pstate->p_last_srf, |
| 1355 | a->location); |
| 1356 | } |
| 1357 | |
| 1358 | cmp = coerce_to_boolean(pstate, cmp, "IN" ); |
| 1359 | if (result == NULL) |
| 1360 | result = cmp; |
| 1361 | else |
| 1362 | result = (Node *) makeBoolExpr(useOr ? OR_EXPR : AND_EXPR, |
| 1363 | list_make2(result, cmp), |
| 1364 | a->location); |
| 1365 | } |
| 1366 | |
| 1367 | return result; |
| 1368 | } |
| 1369 | |
| 1370 | static Node * |
| 1371 | transformAExprBetween(ParseState *pstate, A_Expr *a) |
| 1372 | { |
| 1373 | Node *aexpr; |
| 1374 | Node *bexpr; |
| 1375 | Node *cexpr; |
| 1376 | Node *result; |
| 1377 | Node *sub1; |
| 1378 | Node *sub2; |
| 1379 | List *args; |
| 1380 | |
| 1381 | /* Deconstruct A_Expr into three subexprs */ |
| 1382 | aexpr = a->lexpr; |
| 1383 | args = castNode(List, a->rexpr); |
| 1384 | Assert(list_length(args) == 2); |
| 1385 | bexpr = (Node *) linitial(args); |
| 1386 | cexpr = (Node *) lsecond(args); |
| 1387 | |
| 1388 | if (operator_precedence_warning) |
| 1389 | { |
| 1390 | int opgroup; |
| 1391 | const char *opname; |
| 1392 | |
| 1393 | opgroup = operator_precedence_group((Node *) a, &opname); |
| 1394 | emit_precedence_warnings(pstate, opgroup, opname, |
| 1395 | aexpr, cexpr, |
| 1396 | a->location); |
| 1397 | /* We can ignore bexpr thanks to syntactic restrictions */ |
| 1398 | /* Wrap subexpressions to prevent extra warnings */ |
| 1399 | aexpr = (Node *) makeA_Expr(AEXPR_PAREN, NIL, aexpr, NULL, -1); |
| 1400 | bexpr = (Node *) makeA_Expr(AEXPR_PAREN, NIL, bexpr, NULL, -1); |
| 1401 | cexpr = (Node *) makeA_Expr(AEXPR_PAREN, NIL, cexpr, NULL, -1); |
| 1402 | } |
| 1403 | |
| 1404 | /* |
| 1405 | * Build the equivalent comparison expression. Make copies of |
| 1406 | * multiply-referenced subexpressions for safety. (XXX this is really |
| 1407 | * wrong since it results in multiple runtime evaluations of what may be |
| 1408 | * volatile expressions ...) |
| 1409 | * |
| 1410 | * Ideally we would not use hard-wired operators here but instead use |
| 1411 | * opclasses. However, mixed data types and other issues make this |
| 1412 | * difficult: |
| 1413 | * http://archives.postgresql.org/pgsql-hackers/2008-08/msg01142.php |
| 1414 | */ |
| 1415 | switch (a->kind) |
| 1416 | { |
| 1417 | case AEXPR_BETWEEN: |
| 1418 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=" , |
| 1419 | aexpr, bexpr, |
| 1420 | a->location), |
| 1421 | makeSimpleA_Expr(AEXPR_OP, "<=" , |
| 1422 | copyObject(aexpr), cexpr, |
| 1423 | a->location)); |
| 1424 | result = (Node *) makeBoolExpr(AND_EXPR, args, a->location); |
| 1425 | break; |
| 1426 | case AEXPR_NOT_BETWEEN: |
| 1427 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<" , |
| 1428 | aexpr, bexpr, |
| 1429 | a->location), |
| 1430 | makeSimpleA_Expr(AEXPR_OP, ">" , |
| 1431 | copyObject(aexpr), cexpr, |
| 1432 | a->location)); |
| 1433 | result = (Node *) makeBoolExpr(OR_EXPR, args, a->location); |
| 1434 | break; |
| 1435 | case AEXPR_BETWEEN_SYM: |
| 1436 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=" , |
| 1437 | aexpr, bexpr, |
| 1438 | a->location), |
| 1439 | makeSimpleA_Expr(AEXPR_OP, "<=" , |
| 1440 | copyObject(aexpr), cexpr, |
| 1441 | a->location)); |
| 1442 | sub1 = (Node *) makeBoolExpr(AND_EXPR, args, a->location); |
| 1443 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=" , |
| 1444 | copyObject(aexpr), copyObject(cexpr), |
| 1445 | a->location), |
| 1446 | makeSimpleA_Expr(AEXPR_OP, "<=" , |
| 1447 | copyObject(aexpr), copyObject(bexpr), |
| 1448 | a->location)); |
| 1449 | sub2 = (Node *) makeBoolExpr(AND_EXPR, args, a->location); |
| 1450 | args = list_make2(sub1, sub2); |
| 1451 | result = (Node *) makeBoolExpr(OR_EXPR, args, a->location); |
| 1452 | break; |
| 1453 | case AEXPR_NOT_BETWEEN_SYM: |
| 1454 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<" , |
| 1455 | aexpr, bexpr, |
| 1456 | a->location), |
| 1457 | makeSimpleA_Expr(AEXPR_OP, ">" , |
| 1458 | copyObject(aexpr), cexpr, |
| 1459 | a->location)); |
| 1460 | sub1 = (Node *) makeBoolExpr(OR_EXPR, args, a->location); |
| 1461 | args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<" , |
| 1462 | copyObject(aexpr), copyObject(cexpr), |
| 1463 | a->location), |
| 1464 | makeSimpleA_Expr(AEXPR_OP, ">" , |
| 1465 | copyObject(aexpr), copyObject(bexpr), |
| 1466 | a->location)); |
| 1467 | sub2 = (Node *) makeBoolExpr(OR_EXPR, args, a->location); |
| 1468 | args = list_make2(sub1, sub2); |
| 1469 | result = (Node *) makeBoolExpr(AND_EXPR, args, a->location); |
| 1470 | break; |
| 1471 | default: |
| 1472 | elog(ERROR, "unrecognized A_Expr kind: %d" , a->kind); |
| 1473 | result = NULL; /* keep compiler quiet */ |
| 1474 | break; |
| 1475 | } |
| 1476 | |
| 1477 | return transformExprRecurse(pstate, result); |
| 1478 | } |
| 1479 | |
| 1480 | static Node * |
| 1481 | transformBoolExpr(ParseState *pstate, BoolExpr *a) |
| 1482 | { |
| 1483 | List *args = NIL; |
| 1484 | const char *opname; |
| 1485 | ListCell *lc; |
| 1486 | |
| 1487 | switch (a->boolop) |
| 1488 | { |
| 1489 | case AND_EXPR: |
| 1490 | opname = "AND" ; |
| 1491 | break; |
| 1492 | case OR_EXPR: |
| 1493 | opname = "OR" ; |
| 1494 | break; |
| 1495 | case NOT_EXPR: |
| 1496 | opname = "NOT" ; |
| 1497 | break; |
| 1498 | default: |
| 1499 | elog(ERROR, "unrecognized boolop: %d" , (int) a->boolop); |
| 1500 | opname = NULL; /* keep compiler quiet */ |
| 1501 | break; |
| 1502 | } |
| 1503 | |
| 1504 | foreach(lc, a->args) |
| 1505 | { |
| 1506 | Node *arg = (Node *) lfirst(lc); |
| 1507 | |
| 1508 | arg = transformExprRecurse(pstate, arg); |
| 1509 | arg = coerce_to_boolean(pstate, arg, opname); |
| 1510 | args = lappend(args, arg); |
| 1511 | } |
| 1512 | |
| 1513 | return (Node *) makeBoolExpr(a->boolop, args, a->location); |
| 1514 | } |
| 1515 | |
| 1516 | static Node * |
| 1517 | transformFuncCall(ParseState *pstate, FuncCall *fn) |
| 1518 | { |
| 1519 | Node *last_srf = pstate->p_last_srf; |
| 1520 | List *targs; |
| 1521 | ListCell *args; |
| 1522 | |
| 1523 | /* Transform the list of arguments ... */ |
| 1524 | targs = NIL; |
| 1525 | foreach(args, fn->args) |
| 1526 | { |
| 1527 | targs = lappend(targs, transformExprRecurse(pstate, |
| 1528 | (Node *) lfirst(args))); |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * When WITHIN GROUP is used, we treat its ORDER BY expressions as |
| 1533 | * additional arguments to the function, for purposes of function lookup |
| 1534 | * and argument type coercion. So, transform each such expression and add |
| 1535 | * them to the targs list. We don't explicitly mark where each argument |
| 1536 | * came from, but ParseFuncOrColumn can tell what's what by reference to |
| 1537 | * list_length(fn->agg_order). |
| 1538 | */ |
| 1539 | if (fn->agg_within_group) |
| 1540 | { |
| 1541 | Assert(fn->agg_order != NIL); |
| 1542 | foreach(args, fn->agg_order) |
| 1543 | { |
| 1544 | SortBy *arg = (SortBy *) lfirst(args); |
| 1545 | |
| 1546 | targs = lappend(targs, transformExpr(pstate, arg->node, |
| 1547 | EXPR_KIND_ORDER_BY)); |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | /* ... and hand off to ParseFuncOrColumn */ |
| 1552 | return ParseFuncOrColumn(pstate, |
| 1553 | fn->funcname, |
| 1554 | targs, |
| 1555 | last_srf, |
| 1556 | fn, |
| 1557 | false, |
| 1558 | fn->location); |
| 1559 | } |
| 1560 | |
| 1561 | static Node * |
| 1562 | transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref) |
| 1563 | { |
| 1564 | SubLink *sublink; |
| 1565 | RowExpr *rexpr; |
| 1566 | Query *qtree; |
| 1567 | TargetEntry *tle; |
| 1568 | |
| 1569 | /* We should only see this in first-stage processing of UPDATE tlists */ |
| 1570 | Assert(pstate->p_expr_kind == EXPR_KIND_UPDATE_SOURCE); |
| 1571 | |
| 1572 | /* We only need to transform the source if this is the first column */ |
| 1573 | if (maref->colno == 1) |
| 1574 | { |
| 1575 | /* |
| 1576 | * For now, we only allow EXPR SubLinks and RowExprs as the source of |
| 1577 | * an UPDATE multiassignment. This is sufficient to cover interesting |
| 1578 | * cases; at worst, someone would have to write (SELECT * FROM expr) |
| 1579 | * to expand a composite-returning expression of another form. |
| 1580 | */ |
| 1581 | if (IsA(maref->source, SubLink) && |
| 1582 | ((SubLink *) maref->source)->subLinkType == EXPR_SUBLINK) |
| 1583 | { |
| 1584 | /* Relabel it as a MULTIEXPR_SUBLINK */ |
| 1585 | sublink = (SubLink *) maref->source; |
| 1586 | sublink->subLinkType = MULTIEXPR_SUBLINK; |
| 1587 | /* And transform it */ |
| 1588 | sublink = (SubLink *) transformExprRecurse(pstate, |
| 1589 | (Node *) sublink); |
| 1590 | |
| 1591 | qtree = castNode(Query, sublink->subselect); |
| 1592 | |
| 1593 | /* Check subquery returns required number of columns */ |
| 1594 | if (count_nonjunk_tlist_entries(qtree->targetList) != maref->ncolumns) |
| 1595 | ereport(ERROR, |
| 1596 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1597 | errmsg("number of columns does not match number of values" ), |
| 1598 | parser_errposition(pstate, sublink->location))); |
| 1599 | |
| 1600 | /* |
| 1601 | * Build a resjunk tlist item containing the MULTIEXPR SubLink, |
| 1602 | * and add it to pstate->p_multiassign_exprs, whence it will later |
| 1603 | * get appended to the completed targetlist. We needn't worry |
| 1604 | * about selecting a resno for it; transformUpdateStmt will do |
| 1605 | * that. |
| 1606 | */ |
| 1607 | tle = makeTargetEntry((Expr *) sublink, 0, NULL, true); |
| 1608 | pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs, |
| 1609 | tle); |
| 1610 | |
| 1611 | /* |
| 1612 | * Assign a unique-within-this-targetlist ID to the MULTIEXPR |
| 1613 | * SubLink. We can just use its position in the |
| 1614 | * p_multiassign_exprs list. |
| 1615 | */ |
| 1616 | sublink->subLinkId = list_length(pstate->p_multiassign_exprs); |
| 1617 | } |
| 1618 | else if (IsA(maref->source, RowExpr)) |
| 1619 | { |
| 1620 | /* Transform the RowExpr, allowing SetToDefault items */ |
| 1621 | rexpr = (RowExpr *) transformRowExpr(pstate, |
| 1622 | (RowExpr *) maref->source, |
| 1623 | true); |
| 1624 | |
| 1625 | /* Check it returns required number of columns */ |
| 1626 | if (list_length(rexpr->args) != maref->ncolumns) |
| 1627 | ereport(ERROR, |
| 1628 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1629 | errmsg("number of columns does not match number of values" ), |
| 1630 | parser_errposition(pstate, rexpr->location))); |
| 1631 | |
| 1632 | /* |
| 1633 | * Temporarily append it to p_multiassign_exprs, so we can get it |
| 1634 | * back when we come back here for additional columns. |
| 1635 | */ |
| 1636 | tle = makeTargetEntry((Expr *) rexpr, 0, NULL, true); |
| 1637 | pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs, |
| 1638 | tle); |
| 1639 | } |
| 1640 | else |
| 1641 | ereport(ERROR, |
| 1642 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1643 | errmsg("source for a multiple-column UPDATE item must be a sub-SELECT or ROW() expression" ), |
| 1644 | parser_errposition(pstate, exprLocation(maref->source)))); |
| 1645 | } |
| 1646 | else |
| 1647 | { |
| 1648 | /* |
| 1649 | * Second or later column in a multiassignment. Re-fetch the |
| 1650 | * transformed SubLink or RowExpr, which we assume is still the last |
| 1651 | * entry in p_multiassign_exprs. |
| 1652 | */ |
| 1653 | Assert(pstate->p_multiassign_exprs != NIL); |
| 1654 | tle = (TargetEntry *) llast(pstate->p_multiassign_exprs); |
| 1655 | } |
| 1656 | |
| 1657 | /* |
| 1658 | * Emit the appropriate output expression for the current column |
| 1659 | */ |
| 1660 | if (IsA(tle->expr, SubLink)) |
| 1661 | { |
| 1662 | Param *param; |
| 1663 | |
| 1664 | sublink = (SubLink *) tle->expr; |
| 1665 | Assert(sublink->subLinkType == MULTIEXPR_SUBLINK); |
| 1666 | qtree = castNode(Query, sublink->subselect); |
| 1667 | |
| 1668 | /* Build a Param representing the current subquery output column */ |
| 1669 | tle = (TargetEntry *) list_nth(qtree->targetList, maref->colno - 1); |
| 1670 | Assert(!tle->resjunk); |
| 1671 | |
| 1672 | param = makeNode(Param); |
| 1673 | param->paramkind = PARAM_MULTIEXPR; |
| 1674 | param->paramid = (sublink->subLinkId << 16) | maref->colno; |
| 1675 | param->paramtype = exprType((Node *) tle->expr); |
| 1676 | param->paramtypmod = exprTypmod((Node *) tle->expr); |
| 1677 | param->paramcollid = exprCollation((Node *) tle->expr); |
| 1678 | param->location = exprLocation((Node *) tle->expr); |
| 1679 | |
| 1680 | return (Node *) param; |
| 1681 | } |
| 1682 | |
| 1683 | if (IsA(tle->expr, RowExpr)) |
| 1684 | { |
| 1685 | Node *result; |
| 1686 | |
| 1687 | rexpr = (RowExpr *) tle->expr; |
| 1688 | |
| 1689 | /* Just extract and return the next element of the RowExpr */ |
| 1690 | result = (Node *) list_nth(rexpr->args, maref->colno - 1); |
| 1691 | |
| 1692 | /* |
| 1693 | * If we're at the last column, delete the RowExpr from |
| 1694 | * p_multiassign_exprs; we don't need it anymore, and don't want it in |
| 1695 | * the finished UPDATE tlist. |
| 1696 | */ |
| 1697 | if (maref->colno == maref->ncolumns) |
| 1698 | pstate->p_multiassign_exprs = |
| 1699 | list_delete_ptr(pstate->p_multiassign_exprs, tle); |
| 1700 | |
| 1701 | return result; |
| 1702 | } |
| 1703 | |
| 1704 | elog(ERROR, "unexpected expr type in multiassign list" ); |
| 1705 | return NULL; /* keep compiler quiet */ |
| 1706 | } |
| 1707 | |
| 1708 | static Node * |
| 1709 | transformCaseExpr(ParseState *pstate, CaseExpr *c) |
| 1710 | { |
| 1711 | CaseExpr *newc = makeNode(CaseExpr); |
| 1712 | Node *last_srf = pstate->p_last_srf; |
| 1713 | Node *arg; |
| 1714 | CaseTestExpr *placeholder; |
| 1715 | List *newargs; |
| 1716 | List *resultexprs; |
| 1717 | ListCell *l; |
| 1718 | Node *defresult; |
| 1719 | Oid ptype; |
| 1720 | |
| 1721 | /* transform the test expression, if any */ |
| 1722 | arg = transformExprRecurse(pstate, (Node *) c->arg); |
| 1723 | |
| 1724 | /* generate placeholder for test expression */ |
| 1725 | if (arg) |
| 1726 | { |
| 1727 | /* |
| 1728 | * If test expression is an untyped literal, force it to text. We have |
| 1729 | * to do something now because we won't be able to do this coercion on |
| 1730 | * the placeholder. This is not as flexible as what was done in 7.4 |
| 1731 | * and before, but it's good enough to handle the sort of silly coding |
| 1732 | * commonly seen. |
| 1733 | */ |
| 1734 | if (exprType(arg) == UNKNOWNOID) |
| 1735 | arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE" ); |
| 1736 | |
| 1737 | /* |
| 1738 | * Run collation assignment on the test expression so that we know |
| 1739 | * what collation to mark the placeholder with. In principle we could |
| 1740 | * leave it to parse_collate.c to do that later, but propagating the |
| 1741 | * result to the CaseTestExpr would be unnecessarily complicated. |
| 1742 | */ |
| 1743 | assign_expr_collations(pstate, arg); |
| 1744 | |
| 1745 | placeholder = makeNode(CaseTestExpr); |
| 1746 | placeholder->typeId = exprType(arg); |
| 1747 | placeholder->typeMod = exprTypmod(arg); |
| 1748 | placeholder->collation = exprCollation(arg); |
| 1749 | } |
| 1750 | else |
| 1751 | placeholder = NULL; |
| 1752 | |
| 1753 | newc->arg = (Expr *) arg; |
| 1754 | |
| 1755 | /* transform the list of arguments */ |
| 1756 | newargs = NIL; |
| 1757 | resultexprs = NIL; |
| 1758 | foreach(l, c->args) |
| 1759 | { |
| 1760 | CaseWhen *w = lfirst_node(CaseWhen, l); |
| 1761 | CaseWhen *neww = makeNode(CaseWhen); |
| 1762 | Node *warg; |
| 1763 | |
| 1764 | warg = (Node *) w->expr; |
| 1765 | if (placeholder) |
| 1766 | { |
| 1767 | /* shorthand form was specified, so expand... */ |
| 1768 | warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=" , |
| 1769 | (Node *) placeholder, |
| 1770 | warg, |
| 1771 | w->location); |
| 1772 | } |
| 1773 | neww->expr = (Expr *) transformExprRecurse(pstate, warg); |
| 1774 | |
| 1775 | neww->expr = (Expr *) coerce_to_boolean(pstate, |
| 1776 | (Node *) neww->expr, |
| 1777 | "CASE/WHEN" ); |
| 1778 | |
| 1779 | warg = (Node *) w->result; |
| 1780 | neww->result = (Expr *) transformExprRecurse(pstate, warg); |
| 1781 | neww->location = w->location; |
| 1782 | |
| 1783 | newargs = lappend(newargs, neww); |
| 1784 | resultexprs = lappend(resultexprs, neww->result); |
| 1785 | } |
| 1786 | |
| 1787 | newc->args = newargs; |
| 1788 | |
| 1789 | /* transform the default clause */ |
| 1790 | defresult = (Node *) c->defresult; |
| 1791 | if (defresult == NULL) |
| 1792 | { |
| 1793 | A_Const *n = makeNode(A_Const); |
| 1794 | |
| 1795 | n->val.type = T_Null; |
| 1796 | n->location = -1; |
| 1797 | defresult = (Node *) n; |
| 1798 | } |
| 1799 | newc->defresult = (Expr *) transformExprRecurse(pstate, defresult); |
| 1800 | |
| 1801 | /* |
| 1802 | * Note: default result is considered the most significant type in |
| 1803 | * determining preferred type. This is how the code worked before, but it |
| 1804 | * seems a little bogus to me --- tgl |
| 1805 | */ |
| 1806 | resultexprs = lcons(newc->defresult, resultexprs); |
| 1807 | |
| 1808 | ptype = select_common_type(pstate, resultexprs, "CASE" , NULL); |
| 1809 | Assert(OidIsValid(ptype)); |
| 1810 | newc->casetype = ptype; |
| 1811 | /* casecollid will be set by parse_collate.c */ |
| 1812 | |
| 1813 | /* Convert default result clause, if necessary */ |
| 1814 | newc->defresult = (Expr *) |
| 1815 | coerce_to_common_type(pstate, |
| 1816 | (Node *) newc->defresult, |
| 1817 | ptype, |
| 1818 | "CASE/ELSE" ); |
| 1819 | |
| 1820 | /* Convert when-clause results, if necessary */ |
| 1821 | foreach(l, newc->args) |
| 1822 | { |
| 1823 | CaseWhen *w = (CaseWhen *) lfirst(l); |
| 1824 | |
| 1825 | w->result = (Expr *) |
| 1826 | coerce_to_common_type(pstate, |
| 1827 | (Node *) w->result, |
| 1828 | ptype, |
| 1829 | "CASE/WHEN" ); |
| 1830 | } |
| 1831 | |
| 1832 | /* if any subexpression contained a SRF, complain */ |
| 1833 | if (pstate->p_last_srf != last_srf) |
| 1834 | ereport(ERROR, |
| 1835 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1836 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 1837 | errmsg("set-returning functions are not allowed in %s" , |
| 1838 | "CASE" ), |
| 1839 | errhint("You might be able to move the set-returning function into a LATERAL FROM item." ), |
| 1840 | parser_errposition(pstate, |
| 1841 | exprLocation(pstate->p_last_srf)))); |
| 1842 | |
| 1843 | newc->location = c->location; |
| 1844 | |
| 1845 | return (Node *) newc; |
| 1846 | } |
| 1847 | |
| 1848 | static Node * |
| 1849 | transformSubLink(ParseState *pstate, SubLink *sublink) |
| 1850 | { |
| 1851 | Node *result = (Node *) sublink; |
| 1852 | Query *qtree; |
| 1853 | const char *err; |
| 1854 | |
| 1855 | /* |
| 1856 | * Check to see if the sublink is in an invalid place within the query. We |
| 1857 | * allow sublinks everywhere in SELECT/INSERT/UPDATE/DELETE, but generally |
| 1858 | * not in utility statements. |
| 1859 | */ |
| 1860 | err = NULL; |
| 1861 | switch (pstate->p_expr_kind) |
| 1862 | { |
| 1863 | case EXPR_KIND_NONE: |
| 1864 | Assert(false); /* can't happen */ |
| 1865 | break; |
| 1866 | case EXPR_KIND_OTHER: |
| 1867 | /* Accept sublink here; caller must throw error if wanted */ |
| 1868 | break; |
| 1869 | case EXPR_KIND_JOIN_ON: |
| 1870 | case EXPR_KIND_JOIN_USING: |
| 1871 | case EXPR_KIND_FROM_SUBSELECT: |
| 1872 | case EXPR_KIND_FROM_FUNCTION: |
| 1873 | case EXPR_KIND_WHERE: |
| 1874 | case EXPR_KIND_POLICY: |
| 1875 | case EXPR_KIND_HAVING: |
| 1876 | case EXPR_KIND_FILTER: |
| 1877 | case EXPR_KIND_WINDOW_PARTITION: |
| 1878 | case EXPR_KIND_WINDOW_ORDER: |
| 1879 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 1880 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 1881 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 1882 | case EXPR_KIND_SELECT_TARGET: |
| 1883 | case EXPR_KIND_INSERT_TARGET: |
| 1884 | case EXPR_KIND_UPDATE_SOURCE: |
| 1885 | case EXPR_KIND_UPDATE_TARGET: |
| 1886 | case EXPR_KIND_GROUP_BY: |
| 1887 | case EXPR_KIND_ORDER_BY: |
| 1888 | case EXPR_KIND_DISTINCT_ON: |
| 1889 | case EXPR_KIND_LIMIT: |
| 1890 | case EXPR_KIND_OFFSET: |
| 1891 | case EXPR_KIND_RETURNING: |
| 1892 | case EXPR_KIND_VALUES: |
| 1893 | case EXPR_KIND_VALUES_SINGLE: |
| 1894 | /* okay */ |
| 1895 | break; |
| 1896 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 1897 | case EXPR_KIND_DOMAIN_CHECK: |
| 1898 | err = _("cannot use subquery in check constraint" ); |
| 1899 | break; |
| 1900 | case EXPR_KIND_COLUMN_DEFAULT: |
| 1901 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 1902 | err = _("cannot use subquery in DEFAULT expression" ); |
| 1903 | break; |
| 1904 | case EXPR_KIND_INDEX_EXPRESSION: |
| 1905 | err = _("cannot use subquery in index expression" ); |
| 1906 | break; |
| 1907 | case EXPR_KIND_INDEX_PREDICATE: |
| 1908 | err = _("cannot use subquery in index predicate" ); |
| 1909 | break; |
| 1910 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 1911 | err = _("cannot use subquery in transform expression" ); |
| 1912 | break; |
| 1913 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 1914 | err = _("cannot use subquery in EXECUTE parameter" ); |
| 1915 | break; |
| 1916 | case EXPR_KIND_TRIGGER_WHEN: |
| 1917 | err = _("cannot use subquery in trigger WHEN condition" ); |
| 1918 | break; |
| 1919 | case EXPR_KIND_PARTITION_BOUND: |
| 1920 | err = _("cannot use subquery in partition bound" ); |
| 1921 | break; |
| 1922 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 1923 | err = _("cannot use subquery in partition key expression" ); |
| 1924 | break; |
| 1925 | case EXPR_KIND_CALL_ARGUMENT: |
| 1926 | err = _("cannot use subquery in CALL argument" ); |
| 1927 | break; |
| 1928 | case EXPR_KIND_COPY_WHERE: |
| 1929 | err = _("cannot use subquery in COPY FROM WHERE condition" ); |
| 1930 | break; |
| 1931 | case EXPR_KIND_GENERATED_COLUMN: |
| 1932 | err = _("cannot use subquery in column generation expression" ); |
| 1933 | break; |
| 1934 | |
| 1935 | /* |
| 1936 | * There is intentionally no default: case here, so that the |
| 1937 | * compiler will warn if we add a new ParseExprKind without |
| 1938 | * extending this switch. If we do see an unrecognized value at |
| 1939 | * runtime, the behavior will be the same as for EXPR_KIND_OTHER, |
| 1940 | * which is sane anyway. |
| 1941 | */ |
| 1942 | } |
| 1943 | if (err) |
| 1944 | ereport(ERROR, |
| 1945 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1946 | errmsg_internal("%s" , err), |
| 1947 | parser_errposition(pstate, sublink->location))); |
| 1948 | |
| 1949 | pstate->p_hasSubLinks = true; |
| 1950 | |
| 1951 | /* |
| 1952 | * OK, let's transform the sub-SELECT. |
| 1953 | */ |
| 1954 | qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false, true); |
| 1955 | |
| 1956 | /* |
| 1957 | * Check that we got a SELECT. Anything else should be impossible given |
| 1958 | * restrictions of the grammar, but check anyway. |
| 1959 | */ |
| 1960 | if (!IsA(qtree, Query) || |
| 1961 | qtree->commandType != CMD_SELECT) |
| 1962 | elog(ERROR, "unexpected non-SELECT command in SubLink" ); |
| 1963 | |
| 1964 | sublink->subselect = (Node *) qtree; |
| 1965 | |
| 1966 | if (sublink->subLinkType == EXISTS_SUBLINK) |
| 1967 | { |
| 1968 | /* |
| 1969 | * EXISTS needs no test expression or combining operator. These fields |
| 1970 | * should be null already, but make sure. |
| 1971 | */ |
| 1972 | sublink->testexpr = NULL; |
| 1973 | sublink->operName = NIL; |
| 1974 | } |
| 1975 | else if (sublink->subLinkType == EXPR_SUBLINK || |
| 1976 | sublink->subLinkType == ARRAY_SUBLINK) |
| 1977 | { |
| 1978 | /* |
| 1979 | * Make sure the subselect delivers a single column (ignoring resjunk |
| 1980 | * targets). |
| 1981 | */ |
| 1982 | if (count_nonjunk_tlist_entries(qtree->targetList) != 1) |
| 1983 | ereport(ERROR, |
| 1984 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1985 | errmsg("subquery must return only one column" ), |
| 1986 | parser_errposition(pstate, sublink->location))); |
| 1987 | |
| 1988 | /* |
| 1989 | * EXPR and ARRAY need no test expression or combining operator. These |
| 1990 | * fields should be null already, but make sure. |
| 1991 | */ |
| 1992 | sublink->testexpr = NULL; |
| 1993 | sublink->operName = NIL; |
| 1994 | } |
| 1995 | else if (sublink->subLinkType == MULTIEXPR_SUBLINK) |
| 1996 | { |
| 1997 | /* Same as EXPR case, except no restriction on number of columns */ |
| 1998 | sublink->testexpr = NULL; |
| 1999 | sublink->operName = NIL; |
| 2000 | } |
| 2001 | else |
| 2002 | { |
| 2003 | /* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */ |
| 2004 | Node *lefthand; |
| 2005 | List *left_list; |
| 2006 | List *right_list; |
| 2007 | ListCell *l; |
| 2008 | |
| 2009 | if (operator_precedence_warning) |
| 2010 | { |
| 2011 | if (sublink->operName == NIL) |
| 2012 | emit_precedence_warnings(pstate, PREC_GROUP_IN, "IN" , |
| 2013 | sublink->testexpr, NULL, |
| 2014 | sublink->location); |
| 2015 | else |
| 2016 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_OP, |
| 2017 | strVal(llast(sublink->operName)), |
| 2018 | sublink->testexpr, NULL, |
| 2019 | sublink->location); |
| 2020 | } |
| 2021 | |
| 2022 | /* |
| 2023 | * If the source was "x IN (select)", convert to "x = ANY (select)". |
| 2024 | */ |
| 2025 | if (sublink->operName == NIL) |
| 2026 | sublink->operName = list_make1(makeString("=" )); |
| 2027 | |
| 2028 | /* |
| 2029 | * Transform lefthand expression, and convert to a list |
| 2030 | */ |
| 2031 | lefthand = transformExprRecurse(pstate, sublink->testexpr); |
| 2032 | if (lefthand && IsA(lefthand, RowExpr)) |
| 2033 | left_list = ((RowExpr *) lefthand)->args; |
| 2034 | else |
| 2035 | left_list = list_make1(lefthand); |
| 2036 | |
| 2037 | /* |
| 2038 | * Build a list of PARAM_SUBLINK nodes representing the output columns |
| 2039 | * of the subquery. |
| 2040 | */ |
| 2041 | right_list = NIL; |
| 2042 | foreach(l, qtree->targetList) |
| 2043 | { |
| 2044 | TargetEntry *tent = (TargetEntry *) lfirst(l); |
| 2045 | Param *param; |
| 2046 | |
| 2047 | if (tent->resjunk) |
| 2048 | continue; |
| 2049 | |
| 2050 | param = makeNode(Param); |
| 2051 | param->paramkind = PARAM_SUBLINK; |
| 2052 | param->paramid = tent->resno; |
| 2053 | param->paramtype = exprType((Node *) tent->expr); |
| 2054 | param->paramtypmod = exprTypmod((Node *) tent->expr); |
| 2055 | param->paramcollid = exprCollation((Node *) tent->expr); |
| 2056 | param->location = -1; |
| 2057 | |
| 2058 | right_list = lappend(right_list, param); |
| 2059 | } |
| 2060 | |
| 2061 | /* |
| 2062 | * We could rely on make_row_comparison_op to complain if the list |
| 2063 | * lengths differ, but we prefer to generate a more specific error |
| 2064 | * message. |
| 2065 | */ |
| 2066 | if (list_length(left_list) < list_length(right_list)) |
| 2067 | ereport(ERROR, |
| 2068 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2069 | errmsg("subquery has too many columns" ), |
| 2070 | parser_errposition(pstate, sublink->location))); |
| 2071 | if (list_length(left_list) > list_length(right_list)) |
| 2072 | ereport(ERROR, |
| 2073 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2074 | errmsg("subquery has too few columns" ), |
| 2075 | parser_errposition(pstate, sublink->location))); |
| 2076 | |
| 2077 | /* |
| 2078 | * Identify the combining operator(s) and generate a suitable |
| 2079 | * row-comparison expression. |
| 2080 | */ |
| 2081 | sublink->testexpr = make_row_comparison_op(pstate, |
| 2082 | sublink->operName, |
| 2083 | left_list, |
| 2084 | right_list, |
| 2085 | sublink->location); |
| 2086 | } |
| 2087 | |
| 2088 | return result; |
| 2089 | } |
| 2090 | |
| 2091 | /* |
| 2092 | * transformArrayExpr |
| 2093 | * |
| 2094 | * If the caller specifies the target type, the resulting array will |
| 2095 | * be of exactly that type. Otherwise we try to infer a common type |
| 2096 | * for the elements using select_common_type(). |
| 2097 | */ |
| 2098 | static Node * |
| 2099 | transformArrayExpr(ParseState *pstate, A_ArrayExpr *a, |
| 2100 | Oid array_type, Oid element_type, int32 typmod) |
| 2101 | { |
| 2102 | ArrayExpr *newa = makeNode(ArrayExpr); |
| 2103 | List *newelems = NIL; |
| 2104 | List *newcoercedelems = NIL; |
| 2105 | ListCell *element; |
| 2106 | Oid coerce_type; |
| 2107 | bool coerce_hard; |
| 2108 | |
| 2109 | /* |
| 2110 | * Transform the element expressions |
| 2111 | * |
| 2112 | * Assume that the array is one-dimensional unless we find an array-type |
| 2113 | * element expression. |
| 2114 | */ |
| 2115 | newa->multidims = false; |
| 2116 | foreach(element, a->elements) |
| 2117 | { |
| 2118 | Node *e = (Node *) lfirst(element); |
| 2119 | Node *newe; |
| 2120 | |
| 2121 | /* Look through AEXPR_PAREN nodes so they don't affect test below */ |
| 2122 | while (e && IsA(e, A_Expr) && |
| 2123 | ((A_Expr *) e)->kind == AEXPR_PAREN) |
| 2124 | e = ((A_Expr *) e)->lexpr; |
| 2125 | |
| 2126 | /* |
| 2127 | * If an element is itself an A_ArrayExpr, recurse directly so that we |
| 2128 | * can pass down any target type we were given. |
| 2129 | */ |
| 2130 | if (IsA(e, A_ArrayExpr)) |
| 2131 | { |
| 2132 | newe = transformArrayExpr(pstate, |
| 2133 | (A_ArrayExpr *) e, |
| 2134 | array_type, |
| 2135 | element_type, |
| 2136 | typmod); |
| 2137 | /* we certainly have an array here */ |
| 2138 | Assert(array_type == InvalidOid || array_type == exprType(newe)); |
| 2139 | newa->multidims = true; |
| 2140 | } |
| 2141 | else |
| 2142 | { |
| 2143 | newe = transformExprRecurse(pstate, e); |
| 2144 | |
| 2145 | /* |
| 2146 | * Check for sub-array expressions, if we haven't already found |
| 2147 | * one. |
| 2148 | */ |
| 2149 | if (!newa->multidims && type_is_array(exprType(newe))) |
| 2150 | newa->multidims = true; |
| 2151 | } |
| 2152 | |
| 2153 | newelems = lappend(newelems, newe); |
| 2154 | } |
| 2155 | |
| 2156 | /* |
| 2157 | * Select a target type for the elements. |
| 2158 | * |
| 2159 | * If we haven't been given a target array type, we must try to deduce a |
| 2160 | * common type based on the types of the individual elements present. |
| 2161 | */ |
| 2162 | if (OidIsValid(array_type)) |
| 2163 | { |
| 2164 | /* Caller must ensure array_type matches element_type */ |
| 2165 | Assert(OidIsValid(element_type)); |
| 2166 | coerce_type = (newa->multidims ? array_type : element_type); |
| 2167 | coerce_hard = true; |
| 2168 | } |
| 2169 | else |
| 2170 | { |
| 2171 | /* Can't handle an empty array without a target type */ |
| 2172 | if (newelems == NIL) |
| 2173 | ereport(ERROR, |
| 2174 | (errcode(ERRCODE_INDETERMINATE_DATATYPE), |
| 2175 | errmsg("cannot determine type of empty array" ), |
| 2176 | errhint("Explicitly cast to the desired type, " |
| 2177 | "for example ARRAY[]::integer[]." ), |
| 2178 | parser_errposition(pstate, a->location))); |
| 2179 | |
| 2180 | /* Select a common type for the elements */ |
| 2181 | coerce_type = select_common_type(pstate, newelems, "ARRAY" , NULL); |
| 2182 | |
| 2183 | if (newa->multidims) |
| 2184 | { |
| 2185 | array_type = coerce_type; |
| 2186 | element_type = get_element_type(array_type); |
| 2187 | if (!OidIsValid(element_type)) |
| 2188 | ereport(ERROR, |
| 2189 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 2190 | errmsg("could not find element type for data type %s" , |
| 2191 | format_type_be(array_type)), |
| 2192 | parser_errposition(pstate, a->location))); |
| 2193 | } |
| 2194 | else |
| 2195 | { |
| 2196 | element_type = coerce_type; |
| 2197 | array_type = get_array_type(element_type); |
| 2198 | if (!OidIsValid(array_type)) |
| 2199 | ereport(ERROR, |
| 2200 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 2201 | errmsg("could not find array type for data type %s" , |
| 2202 | format_type_be(element_type)), |
| 2203 | parser_errposition(pstate, a->location))); |
| 2204 | } |
| 2205 | coerce_hard = false; |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * Coerce elements to target type |
| 2210 | * |
| 2211 | * If the array has been explicitly cast, then the elements are in turn |
| 2212 | * explicitly coerced. |
| 2213 | * |
| 2214 | * If the array's type was merely derived from the common type of its |
| 2215 | * elements, then the elements are implicitly coerced to the common type. |
| 2216 | * This is consistent with other uses of select_common_type(). |
| 2217 | */ |
| 2218 | foreach(element, newelems) |
| 2219 | { |
| 2220 | Node *e = (Node *) lfirst(element); |
| 2221 | Node *newe; |
| 2222 | |
| 2223 | if (coerce_hard) |
| 2224 | { |
| 2225 | newe = coerce_to_target_type(pstate, e, |
| 2226 | exprType(e), |
| 2227 | coerce_type, |
| 2228 | typmod, |
| 2229 | COERCION_EXPLICIT, |
| 2230 | COERCE_EXPLICIT_CAST, |
| 2231 | -1); |
| 2232 | if (newe == NULL) |
| 2233 | ereport(ERROR, |
| 2234 | (errcode(ERRCODE_CANNOT_COERCE), |
| 2235 | errmsg("cannot cast type %s to %s" , |
| 2236 | format_type_be(exprType(e)), |
| 2237 | format_type_be(coerce_type)), |
| 2238 | parser_errposition(pstate, exprLocation(e)))); |
| 2239 | } |
| 2240 | else |
| 2241 | newe = coerce_to_common_type(pstate, e, |
| 2242 | coerce_type, |
| 2243 | "ARRAY" ); |
| 2244 | newcoercedelems = lappend(newcoercedelems, newe); |
| 2245 | } |
| 2246 | |
| 2247 | newa->array_typeid = array_type; |
| 2248 | /* array_collid will be set by parse_collate.c */ |
| 2249 | newa->element_typeid = element_type; |
| 2250 | newa->elements = newcoercedelems; |
| 2251 | newa->location = a->location; |
| 2252 | |
| 2253 | return (Node *) newa; |
| 2254 | } |
| 2255 | |
| 2256 | static Node * |
| 2257 | transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault) |
| 2258 | { |
| 2259 | RowExpr *newr; |
| 2260 | char fname[16]; |
| 2261 | int fnum; |
| 2262 | ListCell *lc; |
| 2263 | |
| 2264 | newr = makeNode(RowExpr); |
| 2265 | |
| 2266 | /* Transform the field expressions */ |
| 2267 | newr->args = transformExpressionList(pstate, r->args, |
| 2268 | pstate->p_expr_kind, allowDefault); |
| 2269 | |
| 2270 | /* Barring later casting, we consider the type RECORD */ |
| 2271 | newr->row_typeid = RECORDOID; |
| 2272 | newr->row_format = COERCE_IMPLICIT_CAST; |
| 2273 | |
| 2274 | /* ROW() has anonymous columns, so invent some field names */ |
| 2275 | newr->colnames = NIL; |
| 2276 | fnum = 1; |
| 2277 | foreach(lc, newr->args) |
| 2278 | { |
| 2279 | snprintf(fname, sizeof(fname), "f%d" , fnum++); |
| 2280 | newr->colnames = lappend(newr->colnames, makeString(pstrdup(fname))); |
| 2281 | } |
| 2282 | |
| 2283 | newr->location = r->location; |
| 2284 | |
| 2285 | return (Node *) newr; |
| 2286 | } |
| 2287 | |
| 2288 | static Node * |
| 2289 | transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c) |
| 2290 | { |
| 2291 | CoalesceExpr *newc = makeNode(CoalesceExpr); |
| 2292 | Node *last_srf = pstate->p_last_srf; |
| 2293 | List *newargs = NIL; |
| 2294 | List *newcoercedargs = NIL; |
| 2295 | ListCell *args; |
| 2296 | |
| 2297 | foreach(args, c->args) |
| 2298 | { |
| 2299 | Node *e = (Node *) lfirst(args); |
| 2300 | Node *newe; |
| 2301 | |
| 2302 | newe = transformExprRecurse(pstate, e); |
| 2303 | newargs = lappend(newargs, newe); |
| 2304 | } |
| 2305 | |
| 2306 | newc->coalescetype = select_common_type(pstate, newargs, "COALESCE" , NULL); |
| 2307 | /* coalescecollid will be set by parse_collate.c */ |
| 2308 | |
| 2309 | /* Convert arguments if necessary */ |
| 2310 | foreach(args, newargs) |
| 2311 | { |
| 2312 | Node *e = (Node *) lfirst(args); |
| 2313 | Node *newe; |
| 2314 | |
| 2315 | newe = coerce_to_common_type(pstate, e, |
| 2316 | newc->coalescetype, |
| 2317 | "COALESCE" ); |
| 2318 | newcoercedargs = lappend(newcoercedargs, newe); |
| 2319 | } |
| 2320 | |
| 2321 | /* if any subexpression contained a SRF, complain */ |
| 2322 | if (pstate->p_last_srf != last_srf) |
| 2323 | ereport(ERROR, |
| 2324 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2325 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 2326 | errmsg("set-returning functions are not allowed in %s" , |
| 2327 | "COALESCE" ), |
| 2328 | errhint("You might be able to move the set-returning function into a LATERAL FROM item." ), |
| 2329 | parser_errposition(pstate, |
| 2330 | exprLocation(pstate->p_last_srf)))); |
| 2331 | |
| 2332 | newc->args = newcoercedargs; |
| 2333 | newc->location = c->location; |
| 2334 | return (Node *) newc; |
| 2335 | } |
| 2336 | |
| 2337 | static Node * |
| 2338 | transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m) |
| 2339 | { |
| 2340 | MinMaxExpr *newm = makeNode(MinMaxExpr); |
| 2341 | List *newargs = NIL; |
| 2342 | List *newcoercedargs = NIL; |
| 2343 | const char *funcname = (m->op == IS_GREATEST) ? "GREATEST" : "LEAST" ; |
| 2344 | ListCell *args; |
| 2345 | |
| 2346 | newm->op = m->op; |
| 2347 | foreach(args, m->args) |
| 2348 | { |
| 2349 | Node *e = (Node *) lfirst(args); |
| 2350 | Node *newe; |
| 2351 | |
| 2352 | newe = transformExprRecurse(pstate, e); |
| 2353 | newargs = lappend(newargs, newe); |
| 2354 | } |
| 2355 | |
| 2356 | newm->minmaxtype = select_common_type(pstate, newargs, funcname, NULL); |
| 2357 | /* minmaxcollid and inputcollid will be set by parse_collate.c */ |
| 2358 | |
| 2359 | /* Convert arguments if necessary */ |
| 2360 | foreach(args, newargs) |
| 2361 | { |
| 2362 | Node *e = (Node *) lfirst(args); |
| 2363 | Node *newe; |
| 2364 | |
| 2365 | newe = coerce_to_common_type(pstate, e, |
| 2366 | newm->minmaxtype, |
| 2367 | funcname); |
| 2368 | newcoercedargs = lappend(newcoercedargs, newe); |
| 2369 | } |
| 2370 | |
| 2371 | newm->args = newcoercedargs; |
| 2372 | newm->location = m->location; |
| 2373 | return (Node *) newm; |
| 2374 | } |
| 2375 | |
| 2376 | static Node * |
| 2377 | transformSQLValueFunction(ParseState *pstate, SQLValueFunction *svf) |
| 2378 | { |
| 2379 | /* |
| 2380 | * All we need to do is insert the correct result type and (where needed) |
| 2381 | * validate the typmod, so we just modify the node in-place. |
| 2382 | */ |
| 2383 | switch (svf->op) |
| 2384 | { |
| 2385 | case SVFOP_CURRENT_DATE: |
| 2386 | svf->type = DATEOID; |
| 2387 | break; |
| 2388 | case SVFOP_CURRENT_TIME: |
| 2389 | svf->type = TIMETZOID; |
| 2390 | break; |
| 2391 | case SVFOP_CURRENT_TIME_N: |
| 2392 | svf->type = TIMETZOID; |
| 2393 | svf->typmod = anytime_typmod_check(true, svf->typmod); |
| 2394 | break; |
| 2395 | case SVFOP_CURRENT_TIMESTAMP: |
| 2396 | svf->type = TIMESTAMPTZOID; |
| 2397 | break; |
| 2398 | case SVFOP_CURRENT_TIMESTAMP_N: |
| 2399 | svf->type = TIMESTAMPTZOID; |
| 2400 | svf->typmod = anytimestamp_typmod_check(true, svf->typmod); |
| 2401 | break; |
| 2402 | case SVFOP_LOCALTIME: |
| 2403 | svf->type = TIMEOID; |
| 2404 | break; |
| 2405 | case SVFOP_LOCALTIME_N: |
| 2406 | svf->type = TIMEOID; |
| 2407 | svf->typmod = anytime_typmod_check(false, svf->typmod); |
| 2408 | break; |
| 2409 | case SVFOP_LOCALTIMESTAMP: |
| 2410 | svf->type = TIMESTAMPOID; |
| 2411 | break; |
| 2412 | case SVFOP_LOCALTIMESTAMP_N: |
| 2413 | svf->type = TIMESTAMPOID; |
| 2414 | svf->typmod = anytimestamp_typmod_check(false, svf->typmod); |
| 2415 | break; |
| 2416 | case SVFOP_CURRENT_ROLE: |
| 2417 | case SVFOP_CURRENT_USER: |
| 2418 | case SVFOP_USER: |
| 2419 | case SVFOP_SESSION_USER: |
| 2420 | case SVFOP_CURRENT_CATALOG: |
| 2421 | case SVFOP_CURRENT_SCHEMA: |
| 2422 | svf->type = NAMEOID; |
| 2423 | break; |
| 2424 | } |
| 2425 | |
| 2426 | return (Node *) svf; |
| 2427 | } |
| 2428 | |
| 2429 | static Node * |
| 2430 | transformXmlExpr(ParseState *pstate, XmlExpr *x) |
| 2431 | { |
| 2432 | XmlExpr *newx; |
| 2433 | ListCell *lc; |
| 2434 | int i; |
| 2435 | |
| 2436 | if (operator_precedence_warning && x->op == IS_DOCUMENT) |
| 2437 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_IS, "IS" , |
| 2438 | (Node *) linitial(x->args), NULL, |
| 2439 | x->location); |
| 2440 | |
| 2441 | newx = makeNode(XmlExpr); |
| 2442 | newx->op = x->op; |
| 2443 | if (x->name) |
| 2444 | newx->name = map_sql_identifier_to_xml_name(x->name, false, false); |
| 2445 | else |
| 2446 | newx->name = NULL; |
| 2447 | newx->xmloption = x->xmloption; |
| 2448 | newx->type = XMLOID; /* this just marks the node as transformed */ |
| 2449 | newx->typmod = -1; |
| 2450 | newx->location = x->location; |
| 2451 | |
| 2452 | /* |
| 2453 | * gram.y built the named args as a list of ResTarget. Transform each, |
| 2454 | * and break the names out as a separate list. |
| 2455 | */ |
| 2456 | newx->named_args = NIL; |
| 2457 | newx->arg_names = NIL; |
| 2458 | |
| 2459 | foreach(lc, x->named_args) |
| 2460 | { |
| 2461 | ResTarget *r = lfirst_node(ResTarget, lc); |
| 2462 | Node *expr; |
| 2463 | char *argname; |
| 2464 | |
| 2465 | expr = transformExprRecurse(pstate, r->val); |
| 2466 | |
| 2467 | if (r->name) |
| 2468 | argname = map_sql_identifier_to_xml_name(r->name, false, false); |
| 2469 | else if (IsA(r->val, ColumnRef)) |
| 2470 | argname = map_sql_identifier_to_xml_name(FigureColname(r->val), |
| 2471 | true, false); |
| 2472 | else |
| 2473 | { |
| 2474 | ereport(ERROR, |
| 2475 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2476 | x->op == IS_XMLELEMENT |
| 2477 | ? errmsg("unnamed XML attribute value must be a column reference" ) |
| 2478 | : errmsg("unnamed XML element value must be a column reference" ), |
| 2479 | parser_errposition(pstate, r->location))); |
| 2480 | argname = NULL; /* keep compiler quiet */ |
| 2481 | } |
| 2482 | |
| 2483 | /* reject duplicate argnames in XMLELEMENT only */ |
| 2484 | if (x->op == IS_XMLELEMENT) |
| 2485 | { |
| 2486 | ListCell *lc2; |
| 2487 | |
| 2488 | foreach(lc2, newx->arg_names) |
| 2489 | { |
| 2490 | if (strcmp(argname, strVal(lfirst(lc2))) == 0) |
| 2491 | ereport(ERROR, |
| 2492 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2493 | errmsg("XML attribute name \"%s\" appears more than once" , |
| 2494 | argname), |
| 2495 | parser_errposition(pstate, r->location))); |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | newx->named_args = lappend(newx->named_args, expr); |
| 2500 | newx->arg_names = lappend(newx->arg_names, makeString(argname)); |
| 2501 | } |
| 2502 | |
| 2503 | /* The other arguments are of varying types depending on the function */ |
| 2504 | newx->args = NIL; |
| 2505 | i = 0; |
| 2506 | foreach(lc, x->args) |
| 2507 | { |
| 2508 | Node *e = (Node *) lfirst(lc); |
| 2509 | Node *newe; |
| 2510 | |
| 2511 | newe = transformExprRecurse(pstate, e); |
| 2512 | switch (x->op) |
| 2513 | { |
| 2514 | case IS_XMLCONCAT: |
| 2515 | newe = coerce_to_specific_type(pstate, newe, XMLOID, |
| 2516 | "XMLCONCAT" ); |
| 2517 | break; |
| 2518 | case IS_XMLELEMENT: |
| 2519 | /* no coercion necessary */ |
| 2520 | break; |
| 2521 | case IS_XMLFOREST: |
| 2522 | newe = coerce_to_specific_type(pstate, newe, XMLOID, |
| 2523 | "XMLFOREST" ); |
| 2524 | break; |
| 2525 | case IS_XMLPARSE: |
| 2526 | if (i == 0) |
| 2527 | newe = coerce_to_specific_type(pstate, newe, TEXTOID, |
| 2528 | "XMLPARSE" ); |
| 2529 | else |
| 2530 | newe = coerce_to_boolean(pstate, newe, "XMLPARSE" ); |
| 2531 | break; |
| 2532 | case IS_XMLPI: |
| 2533 | newe = coerce_to_specific_type(pstate, newe, TEXTOID, |
| 2534 | "XMLPI" ); |
| 2535 | break; |
| 2536 | case IS_XMLROOT: |
| 2537 | if (i == 0) |
| 2538 | newe = coerce_to_specific_type(pstate, newe, XMLOID, |
| 2539 | "XMLROOT" ); |
| 2540 | else if (i == 1) |
| 2541 | newe = coerce_to_specific_type(pstate, newe, TEXTOID, |
| 2542 | "XMLROOT" ); |
| 2543 | else |
| 2544 | newe = coerce_to_specific_type(pstate, newe, INT4OID, |
| 2545 | "XMLROOT" ); |
| 2546 | break; |
| 2547 | case IS_XMLSERIALIZE: |
| 2548 | /* not handled here */ |
| 2549 | Assert(false); |
| 2550 | break; |
| 2551 | case IS_DOCUMENT: |
| 2552 | newe = coerce_to_specific_type(pstate, newe, XMLOID, |
| 2553 | "IS DOCUMENT" ); |
| 2554 | break; |
| 2555 | } |
| 2556 | newx->args = lappend(newx->args, newe); |
| 2557 | i++; |
| 2558 | } |
| 2559 | |
| 2560 | return (Node *) newx; |
| 2561 | } |
| 2562 | |
| 2563 | static Node * |
| 2564 | transformXmlSerialize(ParseState *pstate, XmlSerialize *xs) |
| 2565 | { |
| 2566 | Node *result; |
| 2567 | XmlExpr *xexpr; |
| 2568 | Oid targetType; |
| 2569 | int32 targetTypmod; |
| 2570 | |
| 2571 | xexpr = makeNode(XmlExpr); |
| 2572 | xexpr->op = IS_XMLSERIALIZE; |
| 2573 | xexpr->args = list_make1(coerce_to_specific_type(pstate, |
| 2574 | transformExprRecurse(pstate, xs->expr), |
| 2575 | XMLOID, |
| 2576 | "XMLSERIALIZE" )); |
| 2577 | |
| 2578 | typenameTypeIdAndMod(pstate, xs->typeName, &targetType, &targetTypmod); |
| 2579 | |
| 2580 | xexpr->xmloption = xs->xmloption; |
| 2581 | xexpr->location = xs->location; |
| 2582 | /* We actually only need these to be able to parse back the expression. */ |
| 2583 | xexpr->type = targetType; |
| 2584 | xexpr->typmod = targetTypmod; |
| 2585 | |
| 2586 | /* |
| 2587 | * The actual target type is determined this way. SQL allows char and |
| 2588 | * varchar as target types. We allow anything that can be cast implicitly |
| 2589 | * from text. This way, user-defined text-like data types automatically |
| 2590 | * fit in. |
| 2591 | */ |
| 2592 | result = coerce_to_target_type(pstate, (Node *) xexpr, |
| 2593 | TEXTOID, targetType, targetTypmod, |
| 2594 | COERCION_IMPLICIT, |
| 2595 | COERCE_IMPLICIT_CAST, |
| 2596 | -1); |
| 2597 | if (result == NULL) |
| 2598 | ereport(ERROR, |
| 2599 | (errcode(ERRCODE_CANNOT_COERCE), |
| 2600 | errmsg("cannot cast XMLSERIALIZE result to %s" , |
| 2601 | format_type_be(targetType)), |
| 2602 | parser_errposition(pstate, xexpr->location))); |
| 2603 | return result; |
| 2604 | } |
| 2605 | |
| 2606 | static Node * |
| 2607 | transformBooleanTest(ParseState *pstate, BooleanTest *b) |
| 2608 | { |
| 2609 | const char *clausename; |
| 2610 | |
| 2611 | if (operator_precedence_warning) |
| 2612 | emit_precedence_warnings(pstate, PREC_GROUP_POSTFIX_IS, "IS" , |
| 2613 | (Node *) b->arg, NULL, |
| 2614 | b->location); |
| 2615 | |
| 2616 | switch (b->booltesttype) |
| 2617 | { |
| 2618 | case IS_TRUE: |
| 2619 | clausename = "IS TRUE" ; |
| 2620 | break; |
| 2621 | case IS_NOT_TRUE: |
| 2622 | clausename = "IS NOT TRUE" ; |
| 2623 | break; |
| 2624 | case IS_FALSE: |
| 2625 | clausename = "IS FALSE" ; |
| 2626 | break; |
| 2627 | case IS_NOT_FALSE: |
| 2628 | clausename = "IS NOT FALSE" ; |
| 2629 | break; |
| 2630 | case IS_UNKNOWN: |
| 2631 | clausename = "IS UNKNOWN" ; |
| 2632 | break; |
| 2633 | case IS_NOT_UNKNOWN: |
| 2634 | clausename = "IS NOT UNKNOWN" ; |
| 2635 | break; |
| 2636 | default: |
| 2637 | elog(ERROR, "unrecognized booltesttype: %d" , |
| 2638 | (int) b->booltesttype); |
| 2639 | clausename = NULL; /* keep compiler quiet */ |
| 2640 | } |
| 2641 | |
| 2642 | b->arg = (Expr *) transformExprRecurse(pstate, (Node *) b->arg); |
| 2643 | |
| 2644 | b->arg = (Expr *) coerce_to_boolean(pstate, |
| 2645 | (Node *) b->arg, |
| 2646 | clausename); |
| 2647 | |
| 2648 | return (Node *) b; |
| 2649 | } |
| 2650 | |
| 2651 | static Node * |
| 2652 | transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr) |
| 2653 | { |
| 2654 | int sublevels_up; |
| 2655 | |
| 2656 | /* CURRENT OF can only appear at top level of UPDATE/DELETE */ |
| 2657 | Assert(pstate->p_target_rangetblentry != NULL); |
| 2658 | cexpr->cvarno = RTERangeTablePosn(pstate, |
| 2659 | pstate->p_target_rangetblentry, |
| 2660 | &sublevels_up); |
| 2661 | Assert(sublevels_up == 0); |
| 2662 | |
| 2663 | /* |
| 2664 | * Check to see if the cursor name matches a parameter of type REFCURSOR. |
| 2665 | * If so, replace the raw name reference with a parameter reference. (This |
| 2666 | * is a hack for the convenience of plpgsql.) |
| 2667 | */ |
| 2668 | if (cexpr->cursor_name != NULL) /* in case already transformed */ |
| 2669 | { |
| 2670 | ColumnRef *cref = makeNode(ColumnRef); |
| 2671 | Node *node = NULL; |
| 2672 | |
| 2673 | /* Build an unqualified ColumnRef with the given name */ |
| 2674 | cref->fields = list_make1(makeString(cexpr->cursor_name)); |
| 2675 | cref->location = -1; |
| 2676 | |
| 2677 | /* See if there is a translation available from a parser hook */ |
| 2678 | if (pstate->p_pre_columnref_hook != NULL) |
| 2679 | node = pstate->p_pre_columnref_hook(pstate, cref); |
| 2680 | if (node == NULL && pstate->p_post_columnref_hook != NULL) |
| 2681 | node = pstate->p_post_columnref_hook(pstate, cref, NULL); |
| 2682 | |
| 2683 | /* |
| 2684 | * XXX Should we throw an error if we get a translation that isn't a |
| 2685 | * refcursor Param? For now it seems best to silently ignore false |
| 2686 | * matches. |
| 2687 | */ |
| 2688 | if (node != NULL && IsA(node, Param)) |
| 2689 | { |
| 2690 | Param *p = (Param *) node; |
| 2691 | |
| 2692 | if (p->paramkind == PARAM_EXTERN && |
| 2693 | p->paramtype == REFCURSOROID) |
| 2694 | { |
| 2695 | /* Matches, so convert CURRENT OF to a param reference */ |
| 2696 | cexpr->cursor_name = NULL; |
| 2697 | cexpr->cursor_param = p->paramid; |
| 2698 | } |
| 2699 | } |
| 2700 | } |
| 2701 | |
| 2702 | return (Node *) cexpr; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * Construct a whole-row reference to represent the notation "relation.*". |
| 2707 | */ |
| 2708 | static Node * |
| 2709 | transformWholeRowRef(ParseState *pstate, RangeTblEntry *rte, int location) |
| 2710 | { |
| 2711 | Var *result; |
| 2712 | int vnum; |
| 2713 | int sublevels_up; |
| 2714 | |
| 2715 | /* Find the RTE's rangetable location */ |
| 2716 | vnum = RTERangeTablePosn(pstate, rte, &sublevels_up); |
| 2717 | |
| 2718 | /* |
| 2719 | * Build the appropriate referencing node. Note that if the RTE is a |
| 2720 | * function returning scalar, we create just a plain reference to the |
| 2721 | * function value, not a composite containing a single column. This is |
| 2722 | * pretty inconsistent at first sight, but it's what we've done |
| 2723 | * historically. One argument for it is that "rel" and "rel.*" mean the |
| 2724 | * same thing for composite relations, so why not for scalar functions... |
| 2725 | */ |
| 2726 | result = makeWholeRowVar(rte, vnum, sublevels_up, true); |
| 2727 | |
| 2728 | /* location is not filled in by makeWholeRowVar */ |
| 2729 | result->location = location; |
| 2730 | |
| 2731 | /* mark relation as requiring whole-row SELECT access */ |
| 2732 | markVarForSelectPriv(pstate, result, rte); |
| 2733 | |
| 2734 | return (Node *) result; |
| 2735 | } |
| 2736 | |
| 2737 | /* |
| 2738 | * Handle an explicit CAST construct. |
| 2739 | * |
| 2740 | * Transform the argument, look up the type name, and apply any necessary |
| 2741 | * coercion function(s). |
| 2742 | */ |
| 2743 | static Node * |
| 2744 | transformTypeCast(ParseState *pstate, TypeCast *tc) |
| 2745 | { |
| 2746 | Node *result; |
| 2747 | Node *arg = tc->arg; |
| 2748 | Node *expr; |
| 2749 | Oid inputType; |
| 2750 | Oid targetType; |
| 2751 | int32 targetTypmod; |
| 2752 | int location; |
| 2753 | |
| 2754 | /* Look up the type name first */ |
| 2755 | typenameTypeIdAndMod(pstate, tc->typeName, &targetType, &targetTypmod); |
| 2756 | |
| 2757 | /* |
| 2758 | * Look through any AEXPR_PAREN nodes that may have been inserted thanks |
| 2759 | * to operator_precedence_warning. Otherwise, ARRAY[]::foo[] behaves |
| 2760 | * differently from (ARRAY[])::foo[]. |
| 2761 | */ |
| 2762 | while (arg && IsA(arg, A_Expr) && |
| 2763 | ((A_Expr *) arg)->kind == AEXPR_PAREN) |
| 2764 | arg = ((A_Expr *) arg)->lexpr; |
| 2765 | |
| 2766 | /* |
| 2767 | * If the subject of the typecast is an ARRAY[] construct and the target |
| 2768 | * type is an array type, we invoke transformArrayExpr() directly so that |
| 2769 | * we can pass down the type information. This avoids some cases where |
| 2770 | * transformArrayExpr() might not infer the correct type. Otherwise, just |
| 2771 | * transform the argument normally. |
| 2772 | */ |
| 2773 | if (IsA(arg, A_ArrayExpr)) |
| 2774 | { |
| 2775 | Oid targetBaseType; |
| 2776 | int32 targetBaseTypmod; |
| 2777 | Oid elementType; |
| 2778 | |
| 2779 | /* |
| 2780 | * If target is a domain over array, work with the base array type |
| 2781 | * here. Below, we'll cast the array type to the domain. In the |
| 2782 | * usual case that the target is not a domain, the remaining steps |
| 2783 | * will be a no-op. |
| 2784 | */ |
| 2785 | targetBaseTypmod = targetTypmod; |
| 2786 | targetBaseType = getBaseTypeAndTypmod(targetType, &targetBaseTypmod); |
| 2787 | elementType = get_element_type(targetBaseType); |
| 2788 | if (OidIsValid(elementType)) |
| 2789 | { |
| 2790 | expr = transformArrayExpr(pstate, |
| 2791 | (A_ArrayExpr *) arg, |
| 2792 | targetBaseType, |
| 2793 | elementType, |
| 2794 | targetBaseTypmod); |
| 2795 | } |
| 2796 | else |
| 2797 | expr = transformExprRecurse(pstate, arg); |
| 2798 | } |
| 2799 | else |
| 2800 | expr = transformExprRecurse(pstate, arg); |
| 2801 | |
| 2802 | inputType = exprType(expr); |
| 2803 | if (inputType == InvalidOid) |
| 2804 | return expr; /* do nothing if NULL input */ |
| 2805 | |
| 2806 | /* |
| 2807 | * Location of the coercion is preferentially the location of the :: or |
| 2808 | * CAST symbol, but if there is none then use the location of the type |
| 2809 | * name (this can happen in TypeName 'string' syntax, for instance). |
| 2810 | */ |
| 2811 | location = tc->location; |
| 2812 | if (location < 0) |
| 2813 | location = tc->typeName->location; |
| 2814 | |
| 2815 | result = coerce_to_target_type(pstate, expr, inputType, |
| 2816 | targetType, targetTypmod, |
| 2817 | COERCION_EXPLICIT, |
| 2818 | COERCE_EXPLICIT_CAST, |
| 2819 | location); |
| 2820 | if (result == NULL) |
| 2821 | ereport(ERROR, |
| 2822 | (errcode(ERRCODE_CANNOT_COERCE), |
| 2823 | errmsg("cannot cast type %s to %s" , |
| 2824 | format_type_be(inputType), |
| 2825 | format_type_be(targetType)), |
| 2826 | parser_coercion_errposition(pstate, location, expr))); |
| 2827 | |
| 2828 | return result; |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * Handle an explicit COLLATE clause. |
| 2833 | * |
| 2834 | * Transform the argument, and look up the collation name. |
| 2835 | */ |
| 2836 | static Node * |
| 2837 | transformCollateClause(ParseState *pstate, CollateClause *c) |
| 2838 | { |
| 2839 | CollateExpr *newc; |
| 2840 | Oid argtype; |
| 2841 | |
| 2842 | newc = makeNode(CollateExpr); |
| 2843 | newc->arg = (Expr *) transformExprRecurse(pstate, c->arg); |
| 2844 | |
| 2845 | argtype = exprType((Node *) newc->arg); |
| 2846 | |
| 2847 | /* |
| 2848 | * The unknown type is not collatable, but coerce_type() takes care of it |
| 2849 | * separately, so we'll let it go here. |
| 2850 | */ |
| 2851 | if (!type_is_collatable(argtype) && argtype != UNKNOWNOID) |
| 2852 | ereport(ERROR, |
| 2853 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2854 | errmsg("collations are not supported by type %s" , |
| 2855 | format_type_be(argtype)), |
| 2856 | parser_errposition(pstate, c->location))); |
| 2857 | |
| 2858 | newc->collOid = LookupCollation(pstate, c->collname, c->location); |
| 2859 | newc->location = c->location; |
| 2860 | |
| 2861 | return (Node *) newc; |
| 2862 | } |
| 2863 | |
| 2864 | /* |
| 2865 | * Transform a "row compare-op row" construct |
| 2866 | * |
| 2867 | * The inputs are lists of already-transformed expressions. |
| 2868 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 2869 | * processing is wanted. |
| 2870 | * |
| 2871 | * The output may be a single OpExpr, an AND or OR combination of OpExprs, |
| 2872 | * or a RowCompareExpr. In all cases it is guaranteed to return boolean. |
| 2873 | * The AND, OR, and RowCompareExpr cases further imply things about the |
| 2874 | * behavior of the operators (ie, they behave as =, <>, or < <= > >=). |
| 2875 | */ |
| 2876 | static Node * |
| 2877 | make_row_comparison_op(ParseState *pstate, List *opname, |
| 2878 | List *largs, List *rargs, int location) |
| 2879 | { |
| 2880 | RowCompareExpr *rcexpr; |
| 2881 | RowCompareType rctype; |
| 2882 | List *opexprs; |
| 2883 | List *opnos; |
| 2884 | List *opfamilies; |
| 2885 | ListCell *l, |
| 2886 | *r; |
| 2887 | List **opinfo_lists; |
| 2888 | Bitmapset *strats; |
| 2889 | int nopers; |
| 2890 | int i; |
| 2891 | |
| 2892 | nopers = list_length(largs); |
| 2893 | if (nopers != list_length(rargs)) |
| 2894 | ereport(ERROR, |
| 2895 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2896 | errmsg("unequal number of entries in row expressions" ), |
| 2897 | parser_errposition(pstate, location))); |
| 2898 | |
| 2899 | /* |
| 2900 | * We can't compare zero-length rows because there is no principled basis |
| 2901 | * for figuring out what the operator is. |
| 2902 | */ |
| 2903 | if (nopers == 0) |
| 2904 | ereport(ERROR, |
| 2905 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2906 | errmsg("cannot compare rows of zero length" ), |
| 2907 | parser_errposition(pstate, location))); |
| 2908 | |
| 2909 | /* |
| 2910 | * Identify all the pairwise operators, using make_op so that behavior is |
| 2911 | * the same as in the simple scalar case. |
| 2912 | */ |
| 2913 | opexprs = NIL; |
| 2914 | forboth(l, largs, r, rargs) |
| 2915 | { |
| 2916 | Node *larg = (Node *) lfirst(l); |
| 2917 | Node *rarg = (Node *) lfirst(r); |
| 2918 | OpExpr *cmp; |
| 2919 | |
| 2920 | cmp = castNode(OpExpr, make_op(pstate, opname, larg, rarg, |
| 2921 | pstate->p_last_srf, location)); |
| 2922 | |
| 2923 | /* |
| 2924 | * We don't use coerce_to_boolean here because we insist on the |
| 2925 | * operator yielding boolean directly, not via coercion. If it |
| 2926 | * doesn't yield bool it won't be in any index opfamilies... |
| 2927 | */ |
| 2928 | if (cmp->opresulttype != BOOLOID) |
| 2929 | ereport(ERROR, |
| 2930 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2931 | errmsg("row comparison operator must yield type boolean, " |
| 2932 | "not type %s" , |
| 2933 | format_type_be(cmp->opresulttype)), |
| 2934 | parser_errposition(pstate, location))); |
| 2935 | if (expression_returns_set((Node *) cmp)) |
| 2936 | ereport(ERROR, |
| 2937 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2938 | errmsg("row comparison operator must not return a set" ), |
| 2939 | parser_errposition(pstate, location))); |
| 2940 | opexprs = lappend(opexprs, cmp); |
| 2941 | } |
| 2942 | |
| 2943 | /* |
| 2944 | * If rows are length 1, just return the single operator. In this case we |
| 2945 | * don't insist on identifying btree semantics for the operator (but we |
| 2946 | * still require it to return boolean). |
| 2947 | */ |
| 2948 | if (nopers == 1) |
| 2949 | return (Node *) linitial(opexprs); |
| 2950 | |
| 2951 | /* |
| 2952 | * Now we must determine which row comparison semantics (= <> < <= > >=) |
| 2953 | * apply to this set of operators. We look for btree opfamilies |
| 2954 | * containing the operators, and see which interpretations (strategy |
| 2955 | * numbers) exist for each operator. |
| 2956 | */ |
| 2957 | opinfo_lists = (List **) palloc(nopers * sizeof(List *)); |
| 2958 | strats = NULL; |
| 2959 | i = 0; |
| 2960 | foreach(l, opexprs) |
| 2961 | { |
| 2962 | Oid opno = ((OpExpr *) lfirst(l))->opno; |
| 2963 | Bitmapset *this_strats; |
| 2964 | ListCell *j; |
| 2965 | |
| 2966 | opinfo_lists[i] = get_op_btree_interpretation(opno); |
| 2967 | |
| 2968 | /* |
| 2969 | * convert strategy numbers into a Bitmapset to make the intersection |
| 2970 | * calculation easy. |
| 2971 | */ |
| 2972 | this_strats = NULL; |
| 2973 | foreach(j, opinfo_lists[i]) |
| 2974 | { |
| 2975 | OpBtreeInterpretation *opinfo = lfirst(j); |
| 2976 | |
| 2977 | this_strats = bms_add_member(this_strats, opinfo->strategy); |
| 2978 | } |
| 2979 | if (i == 0) |
| 2980 | strats = this_strats; |
| 2981 | else |
| 2982 | strats = bms_int_members(strats, this_strats); |
| 2983 | i++; |
| 2984 | } |
| 2985 | |
| 2986 | /* |
| 2987 | * If there are multiple common interpretations, we may use any one of |
| 2988 | * them ... this coding arbitrarily picks the lowest btree strategy |
| 2989 | * number. |
| 2990 | */ |
| 2991 | i = bms_first_member(strats); |
| 2992 | if (i < 0) |
| 2993 | { |
| 2994 | /* No common interpretation, so fail */ |
| 2995 | ereport(ERROR, |
| 2996 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2997 | errmsg("could not determine interpretation of row comparison operator %s" , |
| 2998 | strVal(llast(opname))), |
| 2999 | errhint("Row comparison operators must be associated with btree operator families." ), |
| 3000 | parser_errposition(pstate, location))); |
| 3001 | } |
| 3002 | rctype = (RowCompareType) i; |
| 3003 | |
| 3004 | /* |
| 3005 | * For = and <> cases, we just combine the pairwise operators with AND or |
| 3006 | * OR respectively. |
| 3007 | */ |
| 3008 | if (rctype == ROWCOMPARE_EQ) |
| 3009 | return (Node *) makeBoolExpr(AND_EXPR, opexprs, location); |
| 3010 | if (rctype == ROWCOMPARE_NE) |
| 3011 | return (Node *) makeBoolExpr(OR_EXPR, opexprs, location); |
| 3012 | |
| 3013 | /* |
| 3014 | * Otherwise we need to choose exactly which opfamily to associate with |
| 3015 | * each operator. |
| 3016 | */ |
| 3017 | opfamilies = NIL; |
| 3018 | for (i = 0; i < nopers; i++) |
| 3019 | { |
| 3020 | Oid opfamily = InvalidOid; |
| 3021 | ListCell *j; |
| 3022 | |
| 3023 | foreach(j, opinfo_lists[i]) |
| 3024 | { |
| 3025 | OpBtreeInterpretation *opinfo = lfirst(j); |
| 3026 | |
| 3027 | if (opinfo->strategy == rctype) |
| 3028 | { |
| 3029 | opfamily = opinfo->opfamily_id; |
| 3030 | break; |
| 3031 | } |
| 3032 | } |
| 3033 | if (OidIsValid(opfamily)) |
| 3034 | opfamilies = lappend_oid(opfamilies, opfamily); |
| 3035 | else /* should not happen */ |
| 3036 | ereport(ERROR, |
| 3037 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3038 | errmsg("could not determine interpretation of row comparison operator %s" , |
| 3039 | strVal(llast(opname))), |
| 3040 | errdetail("There are multiple equally-plausible candidates." ), |
| 3041 | parser_errposition(pstate, location))); |
| 3042 | } |
| 3043 | |
| 3044 | /* |
| 3045 | * Now deconstruct the OpExprs and create a RowCompareExpr. |
| 3046 | * |
| 3047 | * Note: can't just reuse the passed largs/rargs lists, because of |
| 3048 | * possibility that make_op inserted coercion operations. |
| 3049 | */ |
| 3050 | opnos = NIL; |
| 3051 | largs = NIL; |
| 3052 | rargs = NIL; |
| 3053 | foreach(l, opexprs) |
| 3054 | { |
| 3055 | OpExpr *cmp = (OpExpr *) lfirst(l); |
| 3056 | |
| 3057 | opnos = lappend_oid(opnos, cmp->opno); |
| 3058 | largs = lappend(largs, linitial(cmp->args)); |
| 3059 | rargs = lappend(rargs, lsecond(cmp->args)); |
| 3060 | } |
| 3061 | |
| 3062 | rcexpr = makeNode(RowCompareExpr); |
| 3063 | rcexpr->rctype = rctype; |
| 3064 | rcexpr->opnos = opnos; |
| 3065 | rcexpr->opfamilies = opfamilies; |
| 3066 | rcexpr->inputcollids = NIL; /* assign_expr_collations will fix this */ |
| 3067 | rcexpr->largs = largs; |
| 3068 | rcexpr->rargs = rargs; |
| 3069 | |
| 3070 | return (Node *) rcexpr; |
| 3071 | } |
| 3072 | |
| 3073 | /* |
| 3074 | * Transform a "row IS DISTINCT FROM row" construct |
| 3075 | * |
| 3076 | * The input RowExprs are already transformed |
| 3077 | */ |
| 3078 | static Node * |
| 3079 | make_row_distinct_op(ParseState *pstate, List *opname, |
| 3080 | RowExpr *lrow, RowExpr *rrow, |
| 3081 | int location) |
| 3082 | { |
| 3083 | Node *result = NULL; |
| 3084 | List *largs = lrow->args; |
| 3085 | List *rargs = rrow->args; |
| 3086 | ListCell *l, |
| 3087 | *r; |
| 3088 | |
| 3089 | if (list_length(largs) != list_length(rargs)) |
| 3090 | ereport(ERROR, |
| 3091 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 3092 | errmsg("unequal number of entries in row expressions" ), |
| 3093 | parser_errposition(pstate, location))); |
| 3094 | |
| 3095 | forboth(l, largs, r, rargs) |
| 3096 | { |
| 3097 | Node *larg = (Node *) lfirst(l); |
| 3098 | Node *rarg = (Node *) lfirst(r); |
| 3099 | Node *cmp; |
| 3100 | |
| 3101 | cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg, location); |
| 3102 | if (result == NULL) |
| 3103 | result = cmp; |
| 3104 | else |
| 3105 | result = (Node *) makeBoolExpr(OR_EXPR, |
| 3106 | list_make2(result, cmp), |
| 3107 | location); |
| 3108 | } |
| 3109 | |
| 3110 | if (result == NULL) |
| 3111 | { |
| 3112 | /* zero-length rows? Generate constant FALSE */ |
| 3113 | result = makeBoolConst(false, false); |
| 3114 | } |
| 3115 | |
| 3116 | return result; |
| 3117 | } |
| 3118 | |
| 3119 | /* |
| 3120 | * make the node for an IS DISTINCT FROM operator |
| 3121 | */ |
| 3122 | static Expr * |
| 3123 | make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree, |
| 3124 | int location) |
| 3125 | { |
| 3126 | Expr *result; |
| 3127 | |
| 3128 | result = make_op(pstate, opname, ltree, rtree, |
| 3129 | pstate->p_last_srf, location); |
| 3130 | if (((OpExpr *) result)->opresulttype != BOOLOID) |
| 3131 | ereport(ERROR, |
| 3132 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3133 | errmsg("IS DISTINCT FROM requires = operator to yield boolean" ), |
| 3134 | parser_errposition(pstate, location))); |
| 3135 | if (((OpExpr *) result)->opretset) |
| 3136 | ereport(ERROR, |
| 3137 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3138 | /* translator: %s is name of a SQL construct, eg NULLIF */ |
| 3139 | errmsg("%s must not return a set" , "IS DISTINCT FROM" ), |
| 3140 | parser_errposition(pstate, location))); |
| 3141 | |
| 3142 | /* |
| 3143 | * We rely on DistinctExpr and OpExpr being same struct |
| 3144 | */ |
| 3145 | NodeSetTag(result, T_DistinctExpr); |
| 3146 | |
| 3147 | return result; |
| 3148 | } |
| 3149 | |
| 3150 | /* |
| 3151 | * Produce a NullTest node from an IS [NOT] DISTINCT FROM NULL construct |
| 3152 | * |
| 3153 | * "arg" is the untransformed other argument |
| 3154 | */ |
| 3155 | static Node * |
| 3156 | make_nulltest_from_distinct(ParseState *pstate, A_Expr *distincta, Node *arg) |
| 3157 | { |
| 3158 | NullTest *nt = makeNode(NullTest); |
| 3159 | |
| 3160 | nt->arg = (Expr *) transformExprRecurse(pstate, arg); |
| 3161 | /* the argument can be any type, so don't coerce it */ |
| 3162 | if (distincta->kind == AEXPR_NOT_DISTINCT) |
| 3163 | nt->nulltesttype = IS_NULL; |
| 3164 | else |
| 3165 | nt->nulltesttype = IS_NOT_NULL; |
| 3166 | /* argisrow = false is correct whether or not arg is composite */ |
| 3167 | nt->argisrow = false; |
| 3168 | nt->location = distincta->location; |
| 3169 | return (Node *) nt; |
| 3170 | } |
| 3171 | |
| 3172 | /* |
| 3173 | * Identify node's group for operator precedence warnings |
| 3174 | * |
| 3175 | * For items in nonzero groups, also return a suitable node name into *nodename |
| 3176 | * |
| 3177 | * Note: group zero is used for nodes that are higher or lower precedence |
| 3178 | * than everything that changed precedence; we need never issue warnings |
| 3179 | * related to such nodes. |
| 3180 | */ |
| 3181 | static int |
| 3182 | operator_precedence_group(Node *node, const char **nodename) |
| 3183 | { |
| 3184 | int group = 0; |
| 3185 | |
| 3186 | *nodename = NULL; |
| 3187 | if (node == NULL) |
| 3188 | return 0; |
| 3189 | |
| 3190 | if (IsA(node, A_Expr)) |
| 3191 | { |
| 3192 | A_Expr *aexpr = (A_Expr *) node; |
| 3193 | |
| 3194 | if (aexpr->kind == AEXPR_OP && |
| 3195 | aexpr->lexpr != NULL && |
| 3196 | aexpr->rexpr != NULL) |
| 3197 | { |
| 3198 | /* binary operator */ |
| 3199 | if (list_length(aexpr->name) == 1) |
| 3200 | { |
| 3201 | *nodename = strVal(linitial(aexpr->name)); |
| 3202 | /* Ignore if op was always higher priority than IS-tests */ |
| 3203 | if (strcmp(*nodename, "+" ) == 0 || |
| 3204 | strcmp(*nodename, "-" ) == 0 || |
| 3205 | strcmp(*nodename, "*" ) == 0 || |
| 3206 | strcmp(*nodename, "/" ) == 0 || |
| 3207 | strcmp(*nodename, "%" ) == 0 || |
| 3208 | strcmp(*nodename, "^" ) == 0) |
| 3209 | group = 0; |
| 3210 | else if (strcmp(*nodename, "<" ) == 0 || |
| 3211 | strcmp(*nodename, ">" ) == 0) |
| 3212 | group = PREC_GROUP_LESS; |
| 3213 | else if (strcmp(*nodename, "=" ) == 0) |
| 3214 | group = PREC_GROUP_EQUAL; |
| 3215 | else if (strcmp(*nodename, "<=" ) == 0 || |
| 3216 | strcmp(*nodename, ">=" ) == 0 || |
| 3217 | strcmp(*nodename, "<>" ) == 0) |
| 3218 | group = PREC_GROUP_LESS_EQUAL; |
| 3219 | else |
| 3220 | group = PREC_GROUP_INFIX_OP; |
| 3221 | } |
| 3222 | else |
| 3223 | { |
| 3224 | /* schema-qualified operator syntax */ |
| 3225 | *nodename = "OPERATOR()" ; |
| 3226 | group = PREC_GROUP_INFIX_OP; |
| 3227 | } |
| 3228 | } |
| 3229 | else if (aexpr->kind == AEXPR_OP && |
| 3230 | aexpr->lexpr == NULL && |
| 3231 | aexpr->rexpr != NULL) |
| 3232 | { |
| 3233 | /* prefix operator */ |
| 3234 | if (list_length(aexpr->name) == 1) |
| 3235 | { |
| 3236 | *nodename = strVal(linitial(aexpr->name)); |
| 3237 | /* Ignore if op was always higher priority than IS-tests */ |
| 3238 | if (strcmp(*nodename, "+" ) == 0 || |
| 3239 | strcmp(*nodename, "-" ) == 0) |
| 3240 | group = 0; |
| 3241 | else |
| 3242 | group = PREC_GROUP_PREFIX_OP; |
| 3243 | } |
| 3244 | else |
| 3245 | { |
| 3246 | /* schema-qualified operator syntax */ |
| 3247 | *nodename = "OPERATOR()" ; |
| 3248 | group = PREC_GROUP_PREFIX_OP; |
| 3249 | } |
| 3250 | } |
| 3251 | else if (aexpr->kind == AEXPR_OP && |
| 3252 | aexpr->lexpr != NULL && |
| 3253 | aexpr->rexpr == NULL) |
| 3254 | { |
| 3255 | /* postfix operator */ |
| 3256 | if (list_length(aexpr->name) == 1) |
| 3257 | { |
| 3258 | *nodename = strVal(linitial(aexpr->name)); |
| 3259 | group = PREC_GROUP_POSTFIX_OP; |
| 3260 | } |
| 3261 | else |
| 3262 | { |
| 3263 | /* schema-qualified operator syntax */ |
| 3264 | *nodename = "OPERATOR()" ; |
| 3265 | group = PREC_GROUP_POSTFIX_OP; |
| 3266 | } |
| 3267 | } |
| 3268 | else if (aexpr->kind == AEXPR_OP_ANY || |
| 3269 | aexpr->kind == AEXPR_OP_ALL) |
| 3270 | { |
| 3271 | *nodename = strVal(llast(aexpr->name)); |
| 3272 | group = PREC_GROUP_POSTFIX_OP; |
| 3273 | } |
| 3274 | else if (aexpr->kind == AEXPR_DISTINCT || |
| 3275 | aexpr->kind == AEXPR_NOT_DISTINCT) |
| 3276 | { |
| 3277 | *nodename = "IS" ; |
| 3278 | group = PREC_GROUP_INFIX_IS; |
| 3279 | } |
| 3280 | else if (aexpr->kind == AEXPR_OF) |
| 3281 | { |
| 3282 | *nodename = "IS" ; |
| 3283 | group = PREC_GROUP_POSTFIX_IS; |
| 3284 | } |
| 3285 | else if (aexpr->kind == AEXPR_IN) |
| 3286 | { |
| 3287 | *nodename = "IN" ; |
| 3288 | if (strcmp(strVal(linitial(aexpr->name)), "=" ) == 0) |
| 3289 | group = PREC_GROUP_IN; |
| 3290 | else |
| 3291 | group = PREC_GROUP_NOT_IN; |
| 3292 | } |
| 3293 | else if (aexpr->kind == AEXPR_LIKE) |
| 3294 | { |
| 3295 | *nodename = "LIKE" ; |
| 3296 | if (strcmp(strVal(linitial(aexpr->name)), "~~" ) == 0) |
| 3297 | group = PREC_GROUP_LIKE; |
| 3298 | else |
| 3299 | group = PREC_GROUP_NOT_LIKE; |
| 3300 | } |
| 3301 | else if (aexpr->kind == AEXPR_ILIKE) |
| 3302 | { |
| 3303 | *nodename = "ILIKE" ; |
| 3304 | if (strcmp(strVal(linitial(aexpr->name)), "~~*" ) == 0) |
| 3305 | group = PREC_GROUP_LIKE; |
| 3306 | else |
| 3307 | group = PREC_GROUP_NOT_LIKE; |
| 3308 | } |
| 3309 | else if (aexpr->kind == AEXPR_SIMILAR) |
| 3310 | { |
| 3311 | *nodename = "SIMILAR" ; |
| 3312 | if (strcmp(strVal(linitial(aexpr->name)), "~" ) == 0) |
| 3313 | group = PREC_GROUP_LIKE; |
| 3314 | else |
| 3315 | group = PREC_GROUP_NOT_LIKE; |
| 3316 | } |
| 3317 | else if (aexpr->kind == AEXPR_BETWEEN || |
| 3318 | aexpr->kind == AEXPR_BETWEEN_SYM) |
| 3319 | { |
| 3320 | Assert(list_length(aexpr->name) == 1); |
| 3321 | *nodename = strVal(linitial(aexpr->name)); |
| 3322 | group = PREC_GROUP_BETWEEN; |
| 3323 | } |
| 3324 | else if (aexpr->kind == AEXPR_NOT_BETWEEN || |
| 3325 | aexpr->kind == AEXPR_NOT_BETWEEN_SYM) |
| 3326 | { |
| 3327 | Assert(list_length(aexpr->name) == 1); |
| 3328 | *nodename = strVal(linitial(aexpr->name)); |
| 3329 | group = PREC_GROUP_NOT_BETWEEN; |
| 3330 | } |
| 3331 | } |
| 3332 | else if (IsA(node, NullTest) || |
| 3333 | IsA(node, BooleanTest)) |
| 3334 | { |
| 3335 | *nodename = "IS" ; |
| 3336 | group = PREC_GROUP_POSTFIX_IS; |
| 3337 | } |
| 3338 | else if (IsA(node, XmlExpr)) |
| 3339 | { |
| 3340 | XmlExpr *x = (XmlExpr *) node; |
| 3341 | |
| 3342 | if (x->op == IS_DOCUMENT) |
| 3343 | { |
| 3344 | *nodename = "IS" ; |
| 3345 | group = PREC_GROUP_POSTFIX_IS; |
| 3346 | } |
| 3347 | } |
| 3348 | else if (IsA(node, SubLink)) |
| 3349 | { |
| 3350 | SubLink *s = (SubLink *) node; |
| 3351 | |
| 3352 | if (s->subLinkType == ANY_SUBLINK || |
| 3353 | s->subLinkType == ALL_SUBLINK) |
| 3354 | { |
| 3355 | if (s->operName == NIL) |
| 3356 | { |
| 3357 | *nodename = "IN" ; |
| 3358 | group = PREC_GROUP_IN; |
| 3359 | } |
| 3360 | else |
| 3361 | { |
| 3362 | *nodename = strVal(llast(s->operName)); |
| 3363 | group = PREC_GROUP_POSTFIX_OP; |
| 3364 | } |
| 3365 | } |
| 3366 | } |
| 3367 | else if (IsA(node, BoolExpr)) |
| 3368 | { |
| 3369 | /* |
| 3370 | * Must dig into NOTs to see if it's IS NOT DOCUMENT or NOT IN. This |
| 3371 | * opens us to possibly misrecognizing, eg, NOT (x IS DOCUMENT) as a |
| 3372 | * problematic construct. We can tell the difference by checking |
| 3373 | * whether the parse locations of the two nodes are identical. |
| 3374 | * |
| 3375 | * Note that when we are comparing the child node to its own children, |
| 3376 | * we will not know that it was a NOT. Fortunately, that doesn't |
| 3377 | * matter for these cases. |
| 3378 | */ |
| 3379 | BoolExpr *b = (BoolExpr *) node; |
| 3380 | |
| 3381 | if (b->boolop == NOT_EXPR) |
| 3382 | { |
| 3383 | Node *child = (Node *) linitial(b->args); |
| 3384 | |
| 3385 | if (IsA(child, XmlExpr)) |
| 3386 | { |
| 3387 | XmlExpr *x = (XmlExpr *) child; |
| 3388 | |
| 3389 | if (x->op == IS_DOCUMENT && |
| 3390 | x->location == b->location) |
| 3391 | { |
| 3392 | *nodename = "IS" ; |
| 3393 | group = PREC_GROUP_POSTFIX_IS; |
| 3394 | } |
| 3395 | } |
| 3396 | else if (IsA(child, SubLink)) |
| 3397 | { |
| 3398 | SubLink *s = (SubLink *) child; |
| 3399 | |
| 3400 | if (s->subLinkType == ANY_SUBLINK && s->operName == NIL && |
| 3401 | s->location == b->location) |
| 3402 | { |
| 3403 | *nodename = "IN" ; |
| 3404 | group = PREC_GROUP_NOT_IN; |
| 3405 | } |
| 3406 | } |
| 3407 | } |
| 3408 | } |
| 3409 | return group; |
| 3410 | } |
| 3411 | |
| 3412 | /* |
| 3413 | * helper routine for delivering 9.4-to-9.5 operator precedence warnings |
| 3414 | * |
| 3415 | * opgroup/opname/location represent some parent node |
| 3416 | * lchild, rchild are its left and right children (either could be NULL) |
| 3417 | * |
| 3418 | * This should be called before transforming the child nodes, since if a |
| 3419 | * precedence-driven parsing change has occurred in a query that used to work, |
| 3420 | * it's quite possible that we'll get a semantic failure while analyzing the |
| 3421 | * child expression. We want to produce the warning before that happens. |
| 3422 | * In any case, operator_precedence_group() expects untransformed input. |
| 3423 | */ |
| 3424 | static void |
| 3425 | emit_precedence_warnings(ParseState *pstate, |
| 3426 | int opgroup, const char *opname, |
| 3427 | Node *lchild, Node *rchild, |
| 3428 | int location) |
| 3429 | { |
| 3430 | int cgroup; |
| 3431 | const char *copname; |
| 3432 | |
| 3433 | Assert(opgroup > 0); |
| 3434 | |
| 3435 | /* |
| 3436 | * Complain if left child, which should be same or higher precedence |
| 3437 | * according to current rules, used to be lower precedence. |
| 3438 | * |
| 3439 | * Exception to precedence rules: if left child is IN or NOT IN or a |
| 3440 | * postfix operator, the grouping is syntactically forced regardless of |
| 3441 | * precedence. |
| 3442 | */ |
| 3443 | cgroup = operator_precedence_group(lchild, &copname); |
| 3444 | if (cgroup > 0) |
| 3445 | { |
| 3446 | if (oldprecedence_l[cgroup] < oldprecedence_r[opgroup] && |
| 3447 | cgroup != PREC_GROUP_IN && |
| 3448 | cgroup != PREC_GROUP_NOT_IN && |
| 3449 | cgroup != PREC_GROUP_POSTFIX_OP && |
| 3450 | cgroup != PREC_GROUP_POSTFIX_IS) |
| 3451 | ereport(WARNING, |
| 3452 | (errmsg("operator precedence change: %s is now lower precedence than %s" , |
| 3453 | opname, copname), |
| 3454 | parser_errposition(pstate, location))); |
| 3455 | } |
| 3456 | |
| 3457 | /* |
| 3458 | * Complain if right child, which should be higher precedence according to |
| 3459 | * current rules, used to be same or lower precedence. |
| 3460 | * |
| 3461 | * Exception to precedence rules: if right child is a prefix operator, the |
| 3462 | * grouping is syntactically forced regardless of precedence. |
| 3463 | */ |
| 3464 | cgroup = operator_precedence_group(rchild, &copname); |
| 3465 | if (cgroup > 0) |
| 3466 | { |
| 3467 | if (oldprecedence_r[cgroup] <= oldprecedence_l[opgroup] && |
| 3468 | cgroup != PREC_GROUP_PREFIX_OP) |
| 3469 | ereport(WARNING, |
| 3470 | (errmsg("operator precedence change: %s is now lower precedence than %s" , |
| 3471 | opname, copname), |
| 3472 | parser_errposition(pstate, location))); |
| 3473 | } |
| 3474 | } |
| 3475 | |
| 3476 | /* |
| 3477 | * Produce a string identifying an expression by kind. |
| 3478 | * |
| 3479 | * Note: when practical, use a simple SQL keyword for the result. If that |
| 3480 | * doesn't work well, check call sites to see whether custom error message |
| 3481 | * strings are required. |
| 3482 | */ |
| 3483 | const char * |
| 3484 | ParseExprKindName(ParseExprKind exprKind) |
| 3485 | { |
| 3486 | switch (exprKind) |
| 3487 | { |
| 3488 | case EXPR_KIND_NONE: |
| 3489 | return "invalid expression context" ; |
| 3490 | case EXPR_KIND_OTHER: |
| 3491 | return "extension expression" ; |
| 3492 | case EXPR_KIND_JOIN_ON: |
| 3493 | return "JOIN/ON" ; |
| 3494 | case EXPR_KIND_JOIN_USING: |
| 3495 | return "JOIN/USING" ; |
| 3496 | case EXPR_KIND_FROM_SUBSELECT: |
| 3497 | return "sub-SELECT in FROM" ; |
| 3498 | case EXPR_KIND_FROM_FUNCTION: |
| 3499 | return "function in FROM" ; |
| 3500 | case EXPR_KIND_WHERE: |
| 3501 | return "WHERE" ; |
| 3502 | case EXPR_KIND_POLICY: |
| 3503 | return "POLICY" ; |
| 3504 | case EXPR_KIND_HAVING: |
| 3505 | return "HAVING" ; |
| 3506 | case EXPR_KIND_FILTER: |
| 3507 | return "FILTER" ; |
| 3508 | case EXPR_KIND_WINDOW_PARTITION: |
| 3509 | return "window PARTITION BY" ; |
| 3510 | case EXPR_KIND_WINDOW_ORDER: |
| 3511 | return "window ORDER BY" ; |
| 3512 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 3513 | return "window RANGE" ; |
| 3514 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 3515 | return "window ROWS" ; |
| 3516 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 3517 | return "window GROUPS" ; |
| 3518 | case EXPR_KIND_SELECT_TARGET: |
| 3519 | return "SELECT" ; |
| 3520 | case EXPR_KIND_INSERT_TARGET: |
| 3521 | return "INSERT" ; |
| 3522 | case EXPR_KIND_UPDATE_SOURCE: |
| 3523 | case EXPR_KIND_UPDATE_TARGET: |
| 3524 | return "UPDATE" ; |
| 3525 | case EXPR_KIND_GROUP_BY: |
| 3526 | return "GROUP BY" ; |
| 3527 | case EXPR_KIND_ORDER_BY: |
| 3528 | return "ORDER BY" ; |
| 3529 | case EXPR_KIND_DISTINCT_ON: |
| 3530 | return "DISTINCT ON" ; |
| 3531 | case EXPR_KIND_LIMIT: |
| 3532 | return "LIMIT" ; |
| 3533 | case EXPR_KIND_OFFSET: |
| 3534 | return "OFFSET" ; |
| 3535 | case EXPR_KIND_RETURNING: |
| 3536 | return "RETURNING" ; |
| 3537 | case EXPR_KIND_VALUES: |
| 3538 | case EXPR_KIND_VALUES_SINGLE: |
| 3539 | return "VALUES" ; |
| 3540 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 3541 | case EXPR_KIND_DOMAIN_CHECK: |
| 3542 | return "CHECK" ; |
| 3543 | case EXPR_KIND_COLUMN_DEFAULT: |
| 3544 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 3545 | return "DEFAULT" ; |
| 3546 | case EXPR_KIND_INDEX_EXPRESSION: |
| 3547 | return "index expression" ; |
| 3548 | case EXPR_KIND_INDEX_PREDICATE: |
| 3549 | return "index predicate" ; |
| 3550 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 3551 | return "USING" ; |
| 3552 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 3553 | return "EXECUTE" ; |
| 3554 | case EXPR_KIND_TRIGGER_WHEN: |
| 3555 | return "WHEN" ; |
| 3556 | case EXPR_KIND_PARTITION_BOUND: |
| 3557 | return "partition bound" ; |
| 3558 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 3559 | return "PARTITION BY" ; |
| 3560 | case EXPR_KIND_CALL_ARGUMENT: |
| 3561 | return "CALL" ; |
| 3562 | case EXPR_KIND_COPY_WHERE: |
| 3563 | return "WHERE" ; |
| 3564 | case EXPR_KIND_GENERATED_COLUMN: |
| 3565 | return "GENERATED AS" ; |
| 3566 | |
| 3567 | /* |
| 3568 | * There is intentionally no default: case here, so that the |
| 3569 | * compiler will warn if we add a new ParseExprKind without |
| 3570 | * extending this switch. If we do see an unrecognized value at |
| 3571 | * runtime, we'll fall through to the "unrecognized" return. |
| 3572 | */ |
| 3573 | } |
| 3574 | return "unrecognized expression kind" ; |
| 3575 | } |
| 3576 | |