| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * dsm_impl.c |
| 4 | * manage dynamic shared memory segments |
| 5 | * |
| 6 | * This file provides low-level APIs for creating and destroying shared |
| 7 | * memory segments using several different possible techniques. We refer |
| 8 | * to these segments as dynamic because they can be created, altered, and |
| 9 | * destroyed at any point during the server life cycle. This is unlike |
| 10 | * the main shared memory segment, of which there is always exactly one |
| 11 | * and which is always mapped at a fixed address in every PostgreSQL |
| 12 | * background process. |
| 13 | * |
| 14 | * Because not all systems provide the same primitives in this area, nor |
| 15 | * do all primitives behave the same way on all systems, we provide |
| 16 | * several implementations of this facility. Many systems implement |
| 17 | * POSIX shared memory (shm_open etc.), which is well-suited to our needs |
| 18 | * in this area, with the exception that shared memory identifiers live |
| 19 | * in a flat system-wide namespace, raising the uncomfortable prospect of |
| 20 | * name collisions with other processes (including other copies of |
| 21 | * PostgreSQL) running on the same system. Some systems only support |
| 22 | * the older System V shared memory interface (shmget etc.) which is |
| 23 | * also usable; however, the default allocation limits are often quite |
| 24 | * small, and the namespace is even more restricted. |
| 25 | * |
| 26 | * We also provide an mmap-based shared memory implementation. This may |
| 27 | * be useful on systems that provide shared memory via a special-purpose |
| 28 | * filesystem; by opting for this implementation, the user can even |
| 29 | * control precisely where their shared memory segments are placed. It |
| 30 | * can also be used as a fallback for systems where shm_open and shmget |
| 31 | * are not available or can't be used for some reason. Of course, |
| 32 | * mapping a file residing on an actual spinning disk is a fairly poor |
| 33 | * approximation for shared memory because writeback may hurt performance |
| 34 | * substantially, but there should be few systems where we must make do |
| 35 | * with such poor tools. |
| 36 | * |
| 37 | * As ever, Windows requires its own implementation. |
| 38 | * |
| 39 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 40 | * Portions Copyright (c) 1994, Regents of the University of California |
| 41 | * |
| 42 | * |
| 43 | * IDENTIFICATION |
| 44 | * src/backend/storage/ipc/dsm_impl.c |
| 45 | * |
| 46 | *------------------------------------------------------------------------- |
| 47 | */ |
| 48 | |
| 49 | #include "postgres.h" |
| 50 | #include "miscadmin.h" |
| 51 | |
| 52 | #include <fcntl.h> |
| 53 | #include <unistd.h> |
| 54 | #ifndef WIN32 |
| 55 | #include <sys/mman.h> |
| 56 | #endif |
| 57 | #include <sys/stat.h> |
| 58 | #ifdef HAVE_SYS_IPC_H |
| 59 | #include <sys/ipc.h> |
| 60 | #endif |
| 61 | #ifdef HAVE_SYS_SHM_H |
| 62 | #include <sys/shm.h> |
| 63 | #endif |
| 64 | #include "common/file_perm.h" |
| 65 | #include "pgstat.h" |
| 66 | |
| 67 | #include "portability/mem.h" |
| 68 | #include "storage/dsm_impl.h" |
| 69 | #include "storage/fd.h" |
| 70 | #include "utils/guc.h" |
| 71 | #include "utils/memutils.h" |
| 72 | #include "postmaster/postmaster.h" |
| 73 | |
| 74 | #ifdef USE_DSM_POSIX |
| 75 | static bool dsm_impl_posix(dsm_op op, dsm_handle handle, Size request_size, |
| 76 | void **impl_private, void **mapped_address, |
| 77 | Size *mapped_size, int elevel); |
| 78 | static int dsm_impl_posix_resize(int fd, off_t size); |
| 79 | #endif |
| 80 | #ifdef USE_DSM_SYSV |
| 81 | static bool dsm_impl_sysv(dsm_op op, dsm_handle handle, Size request_size, |
| 82 | void **impl_private, void **mapped_address, |
| 83 | Size *mapped_size, int elevel); |
| 84 | #endif |
| 85 | #ifdef USE_DSM_WINDOWS |
| 86 | static bool dsm_impl_windows(dsm_op op, dsm_handle handle, Size request_size, |
| 87 | void **impl_private, void **mapped_address, |
| 88 | Size *mapped_size, int elevel); |
| 89 | #endif |
| 90 | #ifdef USE_DSM_MMAP |
| 91 | static bool dsm_impl_mmap(dsm_op op, dsm_handle handle, Size request_size, |
| 92 | void **impl_private, void **mapped_address, |
| 93 | Size *mapped_size, int elevel); |
| 94 | #endif |
| 95 | static int errcode_for_dynamic_shared_memory(void); |
| 96 | |
| 97 | const struct config_enum_entry dynamic_shared_memory_options[] = { |
| 98 | #ifdef USE_DSM_POSIX |
| 99 | {"posix" , DSM_IMPL_POSIX, false}, |
| 100 | #endif |
| 101 | #ifdef USE_DSM_SYSV |
| 102 | {"sysv" , DSM_IMPL_SYSV, false}, |
| 103 | #endif |
| 104 | #ifdef USE_DSM_WINDOWS |
| 105 | {"windows" , DSM_IMPL_WINDOWS, false}, |
| 106 | #endif |
| 107 | #ifdef USE_DSM_MMAP |
| 108 | {"mmap" , DSM_IMPL_MMAP, false}, |
| 109 | #endif |
| 110 | {NULL, 0, false} |
| 111 | }; |
| 112 | |
| 113 | /* Implementation selector. */ |
| 114 | int dynamic_shared_memory_type; |
| 115 | |
| 116 | /* Size of buffer to be used for zero-filling. */ |
| 117 | #define ZBUFFER_SIZE 8192 |
| 118 | |
| 119 | #define SEGMENT_NAME_PREFIX "Global/PostgreSQL" |
| 120 | |
| 121 | /*------ |
| 122 | * Perform a low-level shared memory operation in a platform-specific way, |
| 123 | * as dictated by the selected implementation. Each implementation is |
| 124 | * required to implement the following primitives. |
| 125 | * |
| 126 | * DSM_OP_CREATE. Create a segment whose size is the request_size and |
| 127 | * map it. |
| 128 | * |
| 129 | * DSM_OP_ATTACH. Map the segment, whose size must be the request_size. |
| 130 | * |
| 131 | * DSM_OP_DETACH. Unmap the segment. |
| 132 | * |
| 133 | * DSM_OP_DESTROY. Unmap the segment, if it is mapped. Destroy the |
| 134 | * segment. |
| 135 | * |
| 136 | * Arguments: |
| 137 | * op: The operation to be performed. |
| 138 | * handle: The handle of an existing object, or for DSM_OP_CREATE, the |
| 139 | * a new handle the caller wants created. |
| 140 | * request_size: For DSM_OP_CREATE, the requested size. Otherwise, 0. |
| 141 | * impl_private: Private, implementation-specific data. Will be a pointer |
| 142 | * to NULL for the first operation on a shared memory segment within this |
| 143 | * backend; thereafter, it will point to the value to which it was set |
| 144 | * on the previous call. |
| 145 | * mapped_address: Pointer to start of current mapping; pointer to NULL |
| 146 | * if none. Updated with new mapping address. |
| 147 | * mapped_size: Pointer to size of current mapping; pointer to 0 if none. |
| 148 | * Updated with new mapped size. |
| 149 | * elevel: Level at which to log errors. |
| 150 | * |
| 151 | * Return value: true on success, false on failure. When false is returned, |
| 152 | * a message should first be logged at the specified elevel, except in the |
| 153 | * case where DSM_OP_CREATE experiences a name collision, which should |
| 154 | * silently return false. |
| 155 | *----- |
| 156 | */ |
| 157 | bool |
| 158 | dsm_impl_op(dsm_op op, dsm_handle handle, Size request_size, |
| 159 | void **impl_private, void **mapped_address, Size *mapped_size, |
| 160 | int elevel) |
| 161 | { |
| 162 | Assert(op == DSM_OP_CREATE || request_size == 0); |
| 163 | Assert((op != DSM_OP_CREATE && op != DSM_OP_ATTACH) || |
| 164 | (*mapped_address == NULL && *mapped_size == 0)); |
| 165 | |
| 166 | switch (dynamic_shared_memory_type) |
| 167 | { |
| 168 | #ifdef USE_DSM_POSIX |
| 169 | case DSM_IMPL_POSIX: |
| 170 | return dsm_impl_posix(op, handle, request_size, impl_private, |
| 171 | mapped_address, mapped_size, elevel); |
| 172 | #endif |
| 173 | #ifdef USE_DSM_SYSV |
| 174 | case DSM_IMPL_SYSV: |
| 175 | return dsm_impl_sysv(op, handle, request_size, impl_private, |
| 176 | mapped_address, mapped_size, elevel); |
| 177 | #endif |
| 178 | #ifdef USE_DSM_WINDOWS |
| 179 | case DSM_IMPL_WINDOWS: |
| 180 | return dsm_impl_windows(op, handle, request_size, impl_private, |
| 181 | mapped_address, mapped_size, elevel); |
| 182 | #endif |
| 183 | #ifdef USE_DSM_MMAP |
| 184 | case DSM_IMPL_MMAP: |
| 185 | return dsm_impl_mmap(op, handle, request_size, impl_private, |
| 186 | mapped_address, mapped_size, elevel); |
| 187 | #endif |
| 188 | default: |
| 189 | elog(ERROR, "unexpected dynamic shared memory type: %d" , |
| 190 | dynamic_shared_memory_type); |
| 191 | return false; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | #ifdef USE_DSM_POSIX |
| 196 | /* |
| 197 | * Operating system primitives to support POSIX shared memory. |
| 198 | * |
| 199 | * POSIX shared memory segments are created and attached using shm_open() |
| 200 | * and shm_unlink(); other operations, such as sizing or mapping the |
| 201 | * segment, are performed as if the shared memory segments were files. |
| 202 | * |
| 203 | * Indeed, on some platforms, they may be implemented that way. While |
| 204 | * POSIX shared memory segments seem intended to exist in a flat namespace, |
| 205 | * some operating systems may implement them as files, even going so far |
| 206 | * to treat a request for /xyz as a request to create a file by that name |
| 207 | * in the root directory. Users of such broken platforms should select |
| 208 | * a different shared memory implementation. |
| 209 | */ |
| 210 | static bool |
| 211 | dsm_impl_posix(dsm_op op, dsm_handle handle, Size request_size, |
| 212 | void **impl_private, void **mapped_address, Size *mapped_size, |
| 213 | int elevel) |
| 214 | { |
| 215 | char name[64]; |
| 216 | int flags; |
| 217 | int fd; |
| 218 | char *address; |
| 219 | |
| 220 | snprintf(name, 64, "/PostgreSQL.%u" , handle); |
| 221 | |
| 222 | /* Handle teardown cases. */ |
| 223 | if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY) |
| 224 | { |
| 225 | if (*mapped_address != NULL |
| 226 | && munmap(*mapped_address, *mapped_size) != 0) |
| 227 | { |
| 228 | ereport(elevel, |
| 229 | (errcode_for_dynamic_shared_memory(), |
| 230 | errmsg("could not unmap shared memory segment \"%s\": %m" , |
| 231 | name))); |
| 232 | return false; |
| 233 | } |
| 234 | *mapped_address = NULL; |
| 235 | *mapped_size = 0; |
| 236 | if (op == DSM_OP_DESTROY && shm_unlink(name) != 0) |
| 237 | { |
| 238 | ereport(elevel, |
| 239 | (errcode_for_dynamic_shared_memory(), |
| 240 | errmsg("could not remove shared memory segment \"%s\": %m" , |
| 241 | name))); |
| 242 | return false; |
| 243 | } |
| 244 | return true; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Create new segment or open an existing one for attach. |
| 249 | * |
| 250 | * Even though we're not going through fd.c, we should be safe against |
| 251 | * running out of file descriptors, because of NUM_RESERVED_FDS. We're |
| 252 | * only opening one extra descriptor here, and we'll close it before |
| 253 | * returning. |
| 254 | */ |
| 255 | flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0); |
| 256 | if ((fd = shm_open(name, flags, PG_FILE_MODE_OWNER)) == -1) |
| 257 | { |
| 258 | if (errno != EEXIST) |
| 259 | ereport(elevel, |
| 260 | (errcode_for_dynamic_shared_memory(), |
| 261 | errmsg("could not open shared memory segment \"%s\": %m" , |
| 262 | name))); |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * If we're attaching the segment, determine the current size; if we are |
| 268 | * creating the segment, set the size to the requested value. |
| 269 | */ |
| 270 | if (op == DSM_OP_ATTACH) |
| 271 | { |
| 272 | struct stat st; |
| 273 | |
| 274 | if (fstat(fd, &st) != 0) |
| 275 | { |
| 276 | int save_errno; |
| 277 | |
| 278 | /* Back out what's already been done. */ |
| 279 | save_errno = errno; |
| 280 | close(fd); |
| 281 | errno = save_errno; |
| 282 | |
| 283 | ereport(elevel, |
| 284 | (errcode_for_dynamic_shared_memory(), |
| 285 | errmsg("could not stat shared memory segment \"%s\": %m" , |
| 286 | name))); |
| 287 | return false; |
| 288 | } |
| 289 | request_size = st.st_size; |
| 290 | } |
| 291 | else if (dsm_impl_posix_resize(fd, request_size) != 0) |
| 292 | { |
| 293 | int save_errno; |
| 294 | |
| 295 | /* Back out what's already been done. */ |
| 296 | save_errno = errno; |
| 297 | close(fd); |
| 298 | shm_unlink(name); |
| 299 | errno = save_errno; |
| 300 | |
| 301 | /* |
| 302 | * If we received a query cancel or termination signal, we will have |
| 303 | * EINTR set here. If the caller said that errors are OK here, check |
| 304 | * for interrupts immediately. |
| 305 | */ |
| 306 | if (errno == EINTR && elevel >= ERROR) |
| 307 | CHECK_FOR_INTERRUPTS(); |
| 308 | |
| 309 | ereport(elevel, |
| 310 | (errcode_for_dynamic_shared_memory(), |
| 311 | errmsg("could not resize shared memory segment \"%s\" to %zu bytes: %m" , |
| 312 | name, request_size))); |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | /* Map it. */ |
| 317 | address = mmap(NULL, request_size, PROT_READ | PROT_WRITE, |
| 318 | MAP_SHARED | MAP_HASSEMAPHORE | MAP_NOSYNC, fd, 0); |
| 319 | if (address == MAP_FAILED) |
| 320 | { |
| 321 | int save_errno; |
| 322 | |
| 323 | /* Back out what's already been done. */ |
| 324 | save_errno = errno; |
| 325 | close(fd); |
| 326 | if (op == DSM_OP_CREATE) |
| 327 | shm_unlink(name); |
| 328 | errno = save_errno; |
| 329 | |
| 330 | ereport(elevel, |
| 331 | (errcode_for_dynamic_shared_memory(), |
| 332 | errmsg("could not map shared memory segment \"%s\": %m" , |
| 333 | name))); |
| 334 | return false; |
| 335 | } |
| 336 | *mapped_address = address; |
| 337 | *mapped_size = request_size; |
| 338 | close(fd); |
| 339 | |
| 340 | return true; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Set the size of a virtual memory region associated with a file descriptor. |
| 345 | * If necessary, also ensure that virtual memory is actually allocated by the |
| 346 | * operating system, to avoid nasty surprises later. |
| 347 | * |
| 348 | * Returns non-zero if either truncation or allocation fails, and sets errno. |
| 349 | */ |
| 350 | static int |
| 351 | dsm_impl_posix_resize(int fd, off_t size) |
| 352 | { |
| 353 | int rc; |
| 354 | |
| 355 | /* Truncate (or extend) the file to the requested size. */ |
| 356 | rc = ftruncate(fd, size); |
| 357 | |
| 358 | /* |
| 359 | * On Linux, a shm_open fd is backed by a tmpfs file. After resizing with |
| 360 | * ftruncate, the file may contain a hole. Accessing memory backed by a |
| 361 | * hole causes tmpfs to allocate pages, which fails with SIGBUS if there |
| 362 | * is no more tmpfs space available. So we ask tmpfs to allocate pages |
| 363 | * here, so we can fail gracefully with ENOSPC now rather than risking |
| 364 | * SIGBUS later. |
| 365 | */ |
| 366 | #if defined(HAVE_POSIX_FALLOCATE) && defined(__linux__) |
| 367 | if (rc == 0) |
| 368 | { |
| 369 | /* |
| 370 | * We may get interrupted. If so, just retry unless there is an |
| 371 | * interrupt pending. This avoids the possibility of looping forever |
| 372 | * if another backend is repeatedly trying to interrupt us. |
| 373 | */ |
| 374 | do |
| 375 | { |
| 376 | rc = posix_fallocate(fd, 0, size); |
| 377 | } while (rc == EINTR && !(ProcDiePending || QueryCancelPending)); |
| 378 | |
| 379 | /* |
| 380 | * The caller expects errno to be set, but posix_fallocate() doesn't |
| 381 | * set it. Instead it returns error numbers directly. So set errno, |
| 382 | * even though we'll also return rc to indicate success or failure. |
| 383 | */ |
| 384 | errno = rc; |
| 385 | } |
| 386 | #endif /* HAVE_POSIX_FALLOCATE && __linux__ */ |
| 387 | |
| 388 | return rc; |
| 389 | } |
| 390 | |
| 391 | #endif /* USE_DSM_POSIX */ |
| 392 | |
| 393 | #ifdef USE_DSM_SYSV |
| 394 | /* |
| 395 | * Operating system primitives to support System V shared memory. |
| 396 | * |
| 397 | * System V shared memory segments are manipulated using shmget(), shmat(), |
| 398 | * shmdt(), and shmctl(). As the default allocation limits for System V |
| 399 | * shared memory are usually quite low, the POSIX facilities may be |
| 400 | * preferable; but those are not supported everywhere. |
| 401 | */ |
| 402 | static bool |
| 403 | dsm_impl_sysv(dsm_op op, dsm_handle handle, Size request_size, |
| 404 | void **impl_private, void **mapped_address, Size *mapped_size, |
| 405 | int elevel) |
| 406 | { |
| 407 | key_t key; |
| 408 | int ident; |
| 409 | char *address; |
| 410 | char name[64]; |
| 411 | int *ident_cache; |
| 412 | |
| 413 | /* |
| 414 | * POSIX shared memory and mmap-based shared memory identify segments with |
| 415 | * names. To avoid needless error message variation, we use the handle as |
| 416 | * the name. |
| 417 | */ |
| 418 | snprintf(name, 64, "%u" , handle); |
| 419 | |
| 420 | /* |
| 421 | * The System V shared memory namespace is very restricted; names are of |
| 422 | * type key_t, which is expected to be some sort of integer data type, but |
| 423 | * not necessarily the same one as dsm_handle. Since we use dsm_handle to |
| 424 | * identify shared memory segments across processes, this might seem like |
| 425 | * a problem, but it's really not. If dsm_handle is bigger than key_t, |
| 426 | * the cast below might truncate away some bits from the handle the |
| 427 | * user-provided, but it'll truncate exactly the same bits away in exactly |
| 428 | * the same fashion every time we use that handle, which is all that |
| 429 | * really matters. Conversely, if dsm_handle is smaller than key_t, we |
| 430 | * won't use the full range of available key space, but that's no big deal |
| 431 | * either. |
| 432 | * |
| 433 | * We do make sure that the key isn't negative, because that might not be |
| 434 | * portable. |
| 435 | */ |
| 436 | key = (key_t) handle; |
| 437 | if (key < 1) /* avoid compiler warning if type is unsigned */ |
| 438 | key = -key; |
| 439 | |
| 440 | /* |
| 441 | * There's one special key, IPC_PRIVATE, which can't be used. If we end |
| 442 | * up with that value by chance during a create operation, just pretend it |
| 443 | * already exists, so that caller will retry. If we run into it anywhere |
| 444 | * else, the caller has passed a handle that doesn't correspond to |
| 445 | * anything we ever created, which should not happen. |
| 446 | */ |
| 447 | if (key == IPC_PRIVATE) |
| 448 | { |
| 449 | if (op != DSM_OP_CREATE) |
| 450 | elog(DEBUG4, "System V shared memory key may not be IPC_PRIVATE" ); |
| 451 | errno = EEXIST; |
| 452 | return false; |
| 453 | } |
| 454 | |
| 455 | /* |
| 456 | * Before we can do anything with a shared memory segment, we have to map |
| 457 | * the shared memory key to a shared memory identifier using shmget(). To |
| 458 | * avoid repeated lookups, we store the key using impl_private. |
| 459 | */ |
| 460 | if (*impl_private != NULL) |
| 461 | { |
| 462 | ident_cache = *impl_private; |
| 463 | ident = *ident_cache; |
| 464 | } |
| 465 | else |
| 466 | { |
| 467 | int flags = IPCProtection; |
| 468 | size_t segsize; |
| 469 | |
| 470 | /* |
| 471 | * Allocate the memory BEFORE acquiring the resource, so that we don't |
| 472 | * leak the resource if memory allocation fails. |
| 473 | */ |
| 474 | ident_cache = MemoryContextAlloc(TopMemoryContext, sizeof(int)); |
| 475 | |
| 476 | /* |
| 477 | * When using shmget to find an existing segment, we must pass the |
| 478 | * size as 0. Passing a non-zero size which is greater than the |
| 479 | * actual size will result in EINVAL. |
| 480 | */ |
| 481 | segsize = 0; |
| 482 | |
| 483 | if (op == DSM_OP_CREATE) |
| 484 | { |
| 485 | flags |= IPC_CREAT | IPC_EXCL; |
| 486 | segsize = request_size; |
| 487 | } |
| 488 | |
| 489 | if ((ident = shmget(key, segsize, flags)) == -1) |
| 490 | { |
| 491 | if (errno != EEXIST) |
| 492 | { |
| 493 | int save_errno = errno; |
| 494 | |
| 495 | pfree(ident_cache); |
| 496 | errno = save_errno; |
| 497 | ereport(elevel, |
| 498 | (errcode_for_dynamic_shared_memory(), |
| 499 | errmsg("could not get shared memory segment: %m" ))); |
| 500 | } |
| 501 | return false; |
| 502 | } |
| 503 | |
| 504 | *ident_cache = ident; |
| 505 | *impl_private = ident_cache; |
| 506 | } |
| 507 | |
| 508 | /* Handle teardown cases. */ |
| 509 | if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY) |
| 510 | { |
| 511 | pfree(ident_cache); |
| 512 | *impl_private = NULL; |
| 513 | if (*mapped_address != NULL && shmdt(*mapped_address) != 0) |
| 514 | { |
| 515 | ereport(elevel, |
| 516 | (errcode_for_dynamic_shared_memory(), |
| 517 | errmsg("could not unmap shared memory segment \"%s\": %m" , |
| 518 | name))); |
| 519 | return false; |
| 520 | } |
| 521 | *mapped_address = NULL; |
| 522 | *mapped_size = 0; |
| 523 | if (op == DSM_OP_DESTROY && shmctl(ident, IPC_RMID, NULL) < 0) |
| 524 | { |
| 525 | ereport(elevel, |
| 526 | (errcode_for_dynamic_shared_memory(), |
| 527 | errmsg("could not remove shared memory segment \"%s\": %m" , |
| 528 | name))); |
| 529 | return false; |
| 530 | } |
| 531 | return true; |
| 532 | } |
| 533 | |
| 534 | /* If we're attaching it, we must use IPC_STAT to determine the size. */ |
| 535 | if (op == DSM_OP_ATTACH) |
| 536 | { |
| 537 | struct shmid_ds shm; |
| 538 | |
| 539 | if (shmctl(ident, IPC_STAT, &shm) != 0) |
| 540 | { |
| 541 | ereport(elevel, |
| 542 | (errcode_for_dynamic_shared_memory(), |
| 543 | errmsg("could not stat shared memory segment \"%s\": %m" , |
| 544 | name))); |
| 545 | return false; |
| 546 | } |
| 547 | request_size = shm.shm_segsz; |
| 548 | } |
| 549 | |
| 550 | /* Map it. */ |
| 551 | address = shmat(ident, NULL, PG_SHMAT_FLAGS); |
| 552 | if (address == (void *) -1) |
| 553 | { |
| 554 | int save_errno; |
| 555 | |
| 556 | /* Back out what's already been done. */ |
| 557 | save_errno = errno; |
| 558 | if (op == DSM_OP_CREATE) |
| 559 | shmctl(ident, IPC_RMID, NULL); |
| 560 | errno = save_errno; |
| 561 | |
| 562 | ereport(elevel, |
| 563 | (errcode_for_dynamic_shared_memory(), |
| 564 | errmsg("could not map shared memory segment \"%s\": %m" , |
| 565 | name))); |
| 566 | return false; |
| 567 | } |
| 568 | *mapped_address = address; |
| 569 | *mapped_size = request_size; |
| 570 | |
| 571 | return true; |
| 572 | } |
| 573 | #endif |
| 574 | |
| 575 | #ifdef USE_DSM_WINDOWS |
| 576 | /* |
| 577 | * Operating system primitives to support Windows shared memory. |
| 578 | * |
| 579 | * Windows shared memory implementation is done using file mapping |
| 580 | * which can be backed by either physical file or system paging file. |
| 581 | * Current implementation uses system paging file as other effects |
| 582 | * like performance are not clear for physical file and it is used in similar |
| 583 | * way for main shared memory in windows. |
| 584 | * |
| 585 | * A memory mapping object is a kernel object - they always get deleted when |
| 586 | * the last reference to them goes away, either explicitly via a CloseHandle or |
| 587 | * when the process containing the reference exits. |
| 588 | */ |
| 589 | static bool |
| 590 | dsm_impl_windows(dsm_op op, dsm_handle handle, Size request_size, |
| 591 | void **impl_private, void **mapped_address, |
| 592 | Size *mapped_size, int elevel) |
| 593 | { |
| 594 | char *address; |
| 595 | HANDLE hmap; |
| 596 | char name[64]; |
| 597 | MEMORY_BASIC_INFORMATION info; |
| 598 | |
| 599 | /* |
| 600 | * Storing the shared memory segment in the Global\ namespace, can allow |
| 601 | * any process running in any session to access that file mapping object |
| 602 | * provided that the caller has the required access rights. But to avoid |
| 603 | * issues faced in main shared memory, we are using the naming convention |
| 604 | * similar to main shared memory. We can change here once issue mentioned |
| 605 | * in GetSharedMemName is resolved. |
| 606 | */ |
| 607 | snprintf(name, 64, "%s.%u" , SEGMENT_NAME_PREFIX, handle); |
| 608 | |
| 609 | /* |
| 610 | * Handle teardown cases. Since Windows automatically destroys the object |
| 611 | * when no references remain, we can treat it the same as detach. |
| 612 | */ |
| 613 | if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY) |
| 614 | { |
| 615 | if (*mapped_address != NULL |
| 616 | && UnmapViewOfFile(*mapped_address) == 0) |
| 617 | { |
| 618 | _dosmaperr(GetLastError()); |
| 619 | ereport(elevel, |
| 620 | (errcode_for_dynamic_shared_memory(), |
| 621 | errmsg("could not unmap shared memory segment \"%s\": %m" , |
| 622 | name))); |
| 623 | return false; |
| 624 | } |
| 625 | if (*impl_private != NULL |
| 626 | && CloseHandle(*impl_private) == 0) |
| 627 | { |
| 628 | _dosmaperr(GetLastError()); |
| 629 | ereport(elevel, |
| 630 | (errcode_for_dynamic_shared_memory(), |
| 631 | errmsg("could not remove shared memory segment \"%s\": %m" , |
| 632 | name))); |
| 633 | return false; |
| 634 | } |
| 635 | |
| 636 | *impl_private = NULL; |
| 637 | *mapped_address = NULL; |
| 638 | *mapped_size = 0; |
| 639 | return true; |
| 640 | } |
| 641 | |
| 642 | /* Create new segment or open an existing one for attach. */ |
| 643 | if (op == DSM_OP_CREATE) |
| 644 | { |
| 645 | DWORD size_high; |
| 646 | DWORD size_low; |
| 647 | DWORD errcode; |
| 648 | |
| 649 | /* Shifts >= the width of the type are undefined. */ |
| 650 | #ifdef _WIN64 |
| 651 | size_high = request_size >> 32; |
| 652 | #else |
| 653 | size_high = 0; |
| 654 | #endif |
| 655 | size_low = (DWORD) request_size; |
| 656 | |
| 657 | /* CreateFileMapping might not clear the error code on success */ |
| 658 | SetLastError(0); |
| 659 | |
| 660 | hmap = CreateFileMapping(INVALID_HANDLE_VALUE, /* Use the pagefile */ |
| 661 | NULL, /* Default security attrs */ |
| 662 | PAGE_READWRITE, /* Memory is read/write */ |
| 663 | size_high, /* Upper 32 bits of size */ |
| 664 | size_low, /* Lower 32 bits of size */ |
| 665 | name); |
| 666 | |
| 667 | errcode = GetLastError(); |
| 668 | if (errcode == ERROR_ALREADY_EXISTS || errcode == ERROR_ACCESS_DENIED) |
| 669 | { |
| 670 | /* |
| 671 | * On Windows, when the segment already exists, a handle for the |
| 672 | * existing segment is returned. We must close it before |
| 673 | * returning. However, if the existing segment is created by a |
| 674 | * service, then it returns ERROR_ACCESS_DENIED. We don't do |
| 675 | * _dosmaperr here, so errno won't be modified. |
| 676 | */ |
| 677 | if (hmap) |
| 678 | CloseHandle(hmap); |
| 679 | return false; |
| 680 | } |
| 681 | |
| 682 | if (!hmap) |
| 683 | { |
| 684 | _dosmaperr(errcode); |
| 685 | ereport(elevel, |
| 686 | (errcode_for_dynamic_shared_memory(), |
| 687 | errmsg("could not create shared memory segment \"%s\": %m" , |
| 688 | name))); |
| 689 | return false; |
| 690 | } |
| 691 | } |
| 692 | else |
| 693 | { |
| 694 | hmap = OpenFileMapping(FILE_MAP_WRITE | FILE_MAP_READ, |
| 695 | FALSE, /* do not inherit the name */ |
| 696 | name); /* name of mapping object */ |
| 697 | if (!hmap) |
| 698 | { |
| 699 | _dosmaperr(GetLastError()); |
| 700 | ereport(elevel, |
| 701 | (errcode_for_dynamic_shared_memory(), |
| 702 | errmsg("could not open shared memory segment \"%s\": %m" , |
| 703 | name))); |
| 704 | return false; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | /* Map it. */ |
| 709 | address = MapViewOfFile(hmap, FILE_MAP_WRITE | FILE_MAP_READ, |
| 710 | 0, 0, 0); |
| 711 | if (!address) |
| 712 | { |
| 713 | int save_errno; |
| 714 | |
| 715 | _dosmaperr(GetLastError()); |
| 716 | /* Back out what's already been done. */ |
| 717 | save_errno = errno; |
| 718 | CloseHandle(hmap); |
| 719 | errno = save_errno; |
| 720 | |
| 721 | ereport(elevel, |
| 722 | (errcode_for_dynamic_shared_memory(), |
| 723 | errmsg("could not map shared memory segment \"%s\": %m" , |
| 724 | name))); |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * VirtualQuery gives size in page_size units, which is 4K for Windows. We |
| 730 | * need size only when we are attaching, but it's better to get the size |
| 731 | * when creating new segment to keep size consistent both for |
| 732 | * DSM_OP_CREATE and DSM_OP_ATTACH. |
| 733 | */ |
| 734 | if (VirtualQuery(address, &info, sizeof(info)) == 0) |
| 735 | { |
| 736 | int save_errno; |
| 737 | |
| 738 | _dosmaperr(GetLastError()); |
| 739 | /* Back out what's already been done. */ |
| 740 | save_errno = errno; |
| 741 | UnmapViewOfFile(address); |
| 742 | CloseHandle(hmap); |
| 743 | errno = save_errno; |
| 744 | |
| 745 | ereport(elevel, |
| 746 | (errcode_for_dynamic_shared_memory(), |
| 747 | errmsg("could not stat shared memory segment \"%s\": %m" , |
| 748 | name))); |
| 749 | return false; |
| 750 | } |
| 751 | |
| 752 | *mapped_address = address; |
| 753 | *mapped_size = info.RegionSize; |
| 754 | *impl_private = hmap; |
| 755 | |
| 756 | return true; |
| 757 | } |
| 758 | #endif |
| 759 | |
| 760 | #ifdef USE_DSM_MMAP |
| 761 | /* |
| 762 | * Operating system primitives to support mmap-based shared memory. |
| 763 | * |
| 764 | * Calling this "shared memory" is somewhat of a misnomer, because what |
| 765 | * we're really doing is creating a bunch of files and mapping them into |
| 766 | * our address space. The operating system may feel obliged to |
| 767 | * synchronize the contents to disk even if nothing is being paged out, |
| 768 | * which will not serve us well. The user can relocate the pg_dynshmem |
| 769 | * directory to a ramdisk to avoid this problem, if available. |
| 770 | */ |
| 771 | static bool |
| 772 | dsm_impl_mmap(dsm_op op, dsm_handle handle, Size request_size, |
| 773 | void **impl_private, void **mapped_address, Size *mapped_size, |
| 774 | int elevel) |
| 775 | { |
| 776 | char name[64]; |
| 777 | int flags; |
| 778 | int fd; |
| 779 | char *address; |
| 780 | |
| 781 | snprintf(name, 64, PG_DYNSHMEM_DIR "/" PG_DYNSHMEM_MMAP_FILE_PREFIX "%u" , |
| 782 | handle); |
| 783 | |
| 784 | /* Handle teardown cases. */ |
| 785 | if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY) |
| 786 | { |
| 787 | if (*mapped_address != NULL |
| 788 | && munmap(*mapped_address, *mapped_size) != 0) |
| 789 | { |
| 790 | ereport(elevel, |
| 791 | (errcode_for_dynamic_shared_memory(), |
| 792 | errmsg("could not unmap shared memory segment \"%s\": %m" , |
| 793 | name))); |
| 794 | return false; |
| 795 | } |
| 796 | *mapped_address = NULL; |
| 797 | *mapped_size = 0; |
| 798 | if (op == DSM_OP_DESTROY && unlink(name) != 0) |
| 799 | { |
| 800 | ereport(elevel, |
| 801 | (errcode_for_dynamic_shared_memory(), |
| 802 | errmsg("could not remove shared memory segment \"%s\": %m" , |
| 803 | name))); |
| 804 | return false; |
| 805 | } |
| 806 | return true; |
| 807 | } |
| 808 | |
| 809 | /* Create new segment or open an existing one for attach. */ |
| 810 | flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0); |
| 811 | if ((fd = OpenTransientFile(name, flags)) == -1) |
| 812 | { |
| 813 | if (errno != EEXIST) |
| 814 | ereport(elevel, |
| 815 | (errcode_for_dynamic_shared_memory(), |
| 816 | errmsg("could not open shared memory segment \"%s\": %m" , |
| 817 | name))); |
| 818 | return false; |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * If we're attaching the segment, determine the current size; if we are |
| 823 | * creating the segment, set the size to the requested value. |
| 824 | */ |
| 825 | if (op == DSM_OP_ATTACH) |
| 826 | { |
| 827 | struct stat st; |
| 828 | |
| 829 | if (fstat(fd, &st) != 0) |
| 830 | { |
| 831 | int save_errno; |
| 832 | |
| 833 | /* Back out what's already been done. */ |
| 834 | save_errno = errno; |
| 835 | CloseTransientFile(fd); |
| 836 | errno = save_errno; |
| 837 | |
| 838 | ereport(elevel, |
| 839 | (errcode_for_dynamic_shared_memory(), |
| 840 | errmsg("could not stat shared memory segment \"%s\": %m" , |
| 841 | name))); |
| 842 | return false; |
| 843 | } |
| 844 | request_size = st.st_size; |
| 845 | } |
| 846 | else |
| 847 | { |
| 848 | /* |
| 849 | * Allocate a buffer full of zeros. |
| 850 | * |
| 851 | * Note: palloc zbuffer, instead of just using a local char array, to |
| 852 | * ensure it is reasonably well-aligned; this may save a few cycles |
| 853 | * transferring data to the kernel. |
| 854 | */ |
| 855 | char *zbuffer = (char *) palloc0(ZBUFFER_SIZE); |
| 856 | uint32 remaining = request_size; |
| 857 | bool success = true; |
| 858 | |
| 859 | /* |
| 860 | * Zero-fill the file. We have to do this the hard way to ensure that |
| 861 | * all the file space has really been allocated, so that we don't |
| 862 | * later seg fault when accessing the memory mapping. This is pretty |
| 863 | * pessimal. |
| 864 | */ |
| 865 | while (success && remaining > 0) |
| 866 | { |
| 867 | Size goal = remaining; |
| 868 | |
| 869 | if (goal > ZBUFFER_SIZE) |
| 870 | goal = ZBUFFER_SIZE; |
| 871 | pgstat_report_wait_start(WAIT_EVENT_DSM_FILL_ZERO_WRITE); |
| 872 | if (write(fd, zbuffer, goal) == goal) |
| 873 | remaining -= goal; |
| 874 | else |
| 875 | success = false; |
| 876 | pgstat_report_wait_end(); |
| 877 | } |
| 878 | |
| 879 | if (!success) |
| 880 | { |
| 881 | int save_errno; |
| 882 | |
| 883 | /* Back out what's already been done. */ |
| 884 | save_errno = errno; |
| 885 | CloseTransientFile(fd); |
| 886 | unlink(name); |
| 887 | errno = save_errno ? save_errno : ENOSPC; |
| 888 | |
| 889 | ereport(elevel, |
| 890 | (errcode_for_dynamic_shared_memory(), |
| 891 | errmsg("could not resize shared memory segment \"%s\" to %zu bytes: %m" , |
| 892 | name, request_size))); |
| 893 | return false; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | /* Map it. */ |
| 898 | address = mmap(NULL, request_size, PROT_READ | PROT_WRITE, |
| 899 | MAP_SHARED | MAP_HASSEMAPHORE | MAP_NOSYNC, fd, 0); |
| 900 | if (address == MAP_FAILED) |
| 901 | { |
| 902 | int save_errno; |
| 903 | |
| 904 | /* Back out what's already been done. */ |
| 905 | save_errno = errno; |
| 906 | CloseTransientFile(fd); |
| 907 | if (op == DSM_OP_CREATE) |
| 908 | unlink(name); |
| 909 | errno = save_errno; |
| 910 | |
| 911 | ereport(elevel, |
| 912 | (errcode_for_dynamic_shared_memory(), |
| 913 | errmsg("could not map shared memory segment \"%s\": %m" , |
| 914 | name))); |
| 915 | return false; |
| 916 | } |
| 917 | *mapped_address = address; |
| 918 | *mapped_size = request_size; |
| 919 | |
| 920 | if (CloseTransientFile(fd)) |
| 921 | { |
| 922 | ereport(elevel, |
| 923 | (errcode_for_file_access(), |
| 924 | errmsg("could not close shared memory segment \"%s\": %m" , |
| 925 | name))); |
| 926 | return false; |
| 927 | } |
| 928 | |
| 929 | return true; |
| 930 | } |
| 931 | #endif |
| 932 | |
| 933 | /* |
| 934 | * Implementation-specific actions that must be performed when a segment is to |
| 935 | * be preserved even when no backend has it attached. |
| 936 | * |
| 937 | * Except on Windows, we don't need to do anything at all. But since Windows |
| 938 | * cleans up segments automatically when no references remain, we duplicate |
| 939 | * the segment handle into the postmaster process. The postmaster needn't |
| 940 | * do anything to receive the handle; Windows transfers it automatically. |
| 941 | */ |
| 942 | void |
| 943 | dsm_impl_pin_segment(dsm_handle handle, void *impl_private, |
| 944 | void **impl_private_pm_handle) |
| 945 | { |
| 946 | switch (dynamic_shared_memory_type) |
| 947 | { |
| 948 | #ifdef USE_DSM_WINDOWS |
| 949 | case DSM_IMPL_WINDOWS: |
| 950 | { |
| 951 | HANDLE hmap; |
| 952 | |
| 953 | if (!DuplicateHandle(GetCurrentProcess(), impl_private, |
| 954 | PostmasterHandle, &hmap, 0, FALSE, |
| 955 | DUPLICATE_SAME_ACCESS)) |
| 956 | { |
| 957 | char name[64]; |
| 958 | |
| 959 | snprintf(name, 64, "%s.%u" , SEGMENT_NAME_PREFIX, handle); |
| 960 | _dosmaperr(GetLastError()); |
| 961 | ereport(ERROR, |
| 962 | (errcode_for_dynamic_shared_memory(), |
| 963 | errmsg("could not duplicate handle for \"%s\": %m" , |
| 964 | name))); |
| 965 | } |
| 966 | |
| 967 | /* |
| 968 | * Here, we remember the handle that we created in the |
| 969 | * postmaster process. This handle isn't actually usable in |
| 970 | * any process other than the postmaster, but that doesn't |
| 971 | * matter. We're just holding onto it so that, if the segment |
| 972 | * is unpinned, dsm_impl_unpin_segment can close it. |
| 973 | */ |
| 974 | *impl_private_pm_handle = hmap; |
| 975 | break; |
| 976 | } |
| 977 | #endif |
| 978 | default: |
| 979 | break; |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * Implementation-specific actions that must be performed when a segment is no |
| 985 | * longer to be preserved, so that it will be cleaned up when all backends |
| 986 | * have detached from it. |
| 987 | * |
| 988 | * Except on Windows, we don't need to do anything at all. For Windows, we |
| 989 | * close the extra handle that dsm_impl_pin_segment created in the |
| 990 | * postmaster's process space. |
| 991 | */ |
| 992 | void |
| 993 | dsm_impl_unpin_segment(dsm_handle handle, void **impl_private) |
| 994 | { |
| 995 | switch (dynamic_shared_memory_type) |
| 996 | { |
| 997 | #ifdef USE_DSM_WINDOWS |
| 998 | case DSM_IMPL_WINDOWS: |
| 999 | { |
| 1000 | if (*impl_private && |
| 1001 | !DuplicateHandle(PostmasterHandle, *impl_private, |
| 1002 | NULL, NULL, 0, FALSE, |
| 1003 | DUPLICATE_CLOSE_SOURCE)) |
| 1004 | { |
| 1005 | char name[64]; |
| 1006 | |
| 1007 | snprintf(name, 64, "%s.%u" , SEGMENT_NAME_PREFIX, handle); |
| 1008 | _dosmaperr(GetLastError()); |
| 1009 | ereport(ERROR, |
| 1010 | (errcode_for_dynamic_shared_memory(), |
| 1011 | errmsg("could not duplicate handle for \"%s\": %m" , |
| 1012 | name))); |
| 1013 | } |
| 1014 | |
| 1015 | *impl_private = NULL; |
| 1016 | break; |
| 1017 | } |
| 1018 | #endif |
| 1019 | default: |
| 1020 | break; |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | static int |
| 1025 | errcode_for_dynamic_shared_memory(void) |
| 1026 | { |
| 1027 | if (errno == EFBIG || errno == ENOMEM) |
| 1028 | return errcode(ERRCODE_OUT_OF_MEMORY); |
| 1029 | else |
| 1030 | return errcode_for_file_access(); |
| 1031 | } |
| 1032 | |