1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * deadlock.c |
4 | * POSTGRES deadlock detection code |
5 | * |
6 | * See src/backend/storage/lmgr/README for a description of the deadlock |
7 | * detection and resolution algorithms. |
8 | * |
9 | * |
10 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
11 | * Portions Copyright (c) 1994, Regents of the University of California |
12 | * |
13 | * |
14 | * IDENTIFICATION |
15 | * src/backend/storage/lmgr/deadlock.c |
16 | * |
17 | * Interface: |
18 | * |
19 | * DeadLockCheck() |
20 | * DeadLockReport() |
21 | * RememberSimpleDeadLock() |
22 | * InitDeadLockChecking() |
23 | * |
24 | *------------------------------------------------------------------------- |
25 | */ |
26 | #include "postgres.h" |
27 | |
28 | #include "miscadmin.h" |
29 | #include "pg_trace.h" |
30 | #include "pgstat.h" |
31 | #include "storage/lmgr.h" |
32 | #include "storage/proc.h" |
33 | #include "utils/memutils.h" |
34 | |
35 | |
36 | /* |
37 | * One edge in the waits-for graph. |
38 | * |
39 | * waiter and blocker may or may not be members of a lock group, but if either |
40 | * is, it will be the leader rather than any other member of the lock group. |
41 | * The group leaders act as representatives of the whole group even though |
42 | * those particular processes need not be waiting at all. There will be at |
43 | * least one member of the waiter's lock group on the wait queue for the given |
44 | * lock, maybe more. |
45 | */ |
46 | typedef struct |
47 | { |
48 | PGPROC *waiter; /* the leader of the waiting lock group */ |
49 | PGPROC *blocker; /* the leader of the group it is waiting for */ |
50 | LOCK *lock; /* the lock being waited for */ |
51 | int pred; /* workspace for TopoSort */ |
52 | int link; /* workspace for TopoSort */ |
53 | } EDGE; |
54 | |
55 | /* One potential reordering of a lock's wait queue */ |
56 | typedef struct |
57 | { |
58 | LOCK *lock; /* the lock whose wait queue is described */ |
59 | PGPROC **procs; /* array of PGPROC *'s in new wait order */ |
60 | int nProcs; |
61 | } WAIT_ORDER; |
62 | |
63 | /* |
64 | * Information saved about each edge in a detected deadlock cycle. This |
65 | * is used to print a diagnostic message upon failure. |
66 | * |
67 | * Note: because we want to examine this info after releasing the lock |
68 | * manager's partition locks, we can't just store LOCK and PGPROC pointers; |
69 | * we must extract out all the info we want to be able to print. |
70 | */ |
71 | typedef struct |
72 | { |
73 | LOCKTAG locktag; /* ID of awaited lock object */ |
74 | LOCKMODE lockmode; /* type of lock we're waiting for */ |
75 | int pid; /* PID of blocked backend */ |
76 | } DEADLOCK_INFO; |
77 | |
78 | |
79 | static bool DeadLockCheckRecurse(PGPROC *proc); |
80 | static int TestConfiguration(PGPROC *startProc); |
81 | static bool FindLockCycle(PGPROC *checkProc, |
82 | EDGE *softEdges, int *nSoftEdges); |
83 | static bool FindLockCycleRecurse(PGPROC *checkProc, int depth, |
84 | EDGE *softEdges, int *nSoftEdges); |
85 | static bool FindLockCycleRecurseMember(PGPROC *checkProc, |
86 | PGPROC *checkProcLeader, |
87 | int depth, EDGE *softEdges, int *nSoftEdges); |
88 | static bool ExpandConstraints(EDGE *constraints, int nConstraints); |
89 | static bool TopoSort(LOCK *lock, EDGE *constraints, int nConstraints, |
90 | PGPROC **ordering); |
91 | |
92 | #ifdef DEBUG_DEADLOCK |
93 | static void PrintLockQueue(LOCK *lock, const char *info); |
94 | #endif |
95 | |
96 | |
97 | /* |
98 | * Working space for the deadlock detector |
99 | */ |
100 | |
101 | /* Workspace for FindLockCycle */ |
102 | static PGPROC **visitedProcs; /* Array of visited procs */ |
103 | static int nVisitedProcs; |
104 | |
105 | /* Workspace for TopoSort */ |
106 | static PGPROC **topoProcs; /* Array of not-yet-output procs */ |
107 | static int *beforeConstraints; /* Counts of remaining before-constraints */ |
108 | static int *afterConstraints; /* List head for after-constraints */ |
109 | |
110 | /* Output area for ExpandConstraints */ |
111 | static WAIT_ORDER *waitOrders; /* Array of proposed queue rearrangements */ |
112 | static int nWaitOrders; |
113 | static PGPROC **waitOrderProcs; /* Space for waitOrders queue contents */ |
114 | |
115 | /* Current list of constraints being considered */ |
116 | static EDGE *curConstraints; |
117 | static int nCurConstraints; |
118 | static int maxCurConstraints; |
119 | |
120 | /* Storage space for results from FindLockCycle */ |
121 | static EDGE *possibleConstraints; |
122 | static int nPossibleConstraints; |
123 | static int maxPossibleConstraints; |
124 | static DEADLOCK_INFO *deadlockDetails; |
125 | static int nDeadlockDetails; |
126 | |
127 | /* PGPROC pointer of any blocking autovacuum worker found */ |
128 | static PGPROC *blocking_autovacuum_proc = NULL; |
129 | |
130 | |
131 | /* |
132 | * InitDeadLockChecking -- initialize deadlock checker during backend startup |
133 | * |
134 | * This does per-backend initialization of the deadlock checker; primarily, |
135 | * allocation of working memory for DeadLockCheck. We do this per-backend |
136 | * since there's no percentage in making the kernel do copy-on-write |
137 | * inheritance of workspace from the postmaster. We want to allocate the |
138 | * space at startup because (a) the deadlock checker might be invoked when |
139 | * there's no free memory left, and (b) the checker is normally run inside a |
140 | * signal handler, which is a very dangerous place to invoke palloc from. |
141 | */ |
142 | void |
143 | InitDeadLockChecking(void) |
144 | { |
145 | MemoryContext oldcxt; |
146 | |
147 | /* Make sure allocations are permanent */ |
148 | oldcxt = MemoryContextSwitchTo(TopMemoryContext); |
149 | |
150 | /* |
151 | * FindLockCycle needs at most MaxBackends entries in visitedProcs[] and |
152 | * deadlockDetails[]. |
153 | */ |
154 | visitedProcs = (PGPROC **) palloc(MaxBackends * sizeof(PGPROC *)); |
155 | deadlockDetails = (DEADLOCK_INFO *) palloc(MaxBackends * sizeof(DEADLOCK_INFO)); |
156 | |
157 | /* |
158 | * TopoSort needs to consider at most MaxBackends wait-queue entries, and |
159 | * it needn't run concurrently with FindLockCycle. |
160 | */ |
161 | topoProcs = visitedProcs; /* re-use this space */ |
162 | beforeConstraints = (int *) palloc(MaxBackends * sizeof(int)); |
163 | afterConstraints = (int *) palloc(MaxBackends * sizeof(int)); |
164 | |
165 | /* |
166 | * We need to consider rearranging at most MaxBackends/2 wait queues |
167 | * (since it takes at least two waiters in a queue to create a soft edge), |
168 | * and the expanded form of the wait queues can't involve more than |
169 | * MaxBackends total waiters. |
170 | */ |
171 | waitOrders = (WAIT_ORDER *) |
172 | palloc((MaxBackends / 2) * sizeof(WAIT_ORDER)); |
173 | waitOrderProcs = (PGPROC **) palloc(MaxBackends * sizeof(PGPROC *)); |
174 | |
175 | /* |
176 | * Allow at most MaxBackends distinct constraints in a configuration. (Is |
177 | * this enough? In practice it seems it should be, but I don't quite see |
178 | * how to prove it. If we run out, we might fail to find a workable wait |
179 | * queue rearrangement even though one exists.) NOTE that this number |
180 | * limits the maximum recursion depth of DeadLockCheckRecurse. Making it |
181 | * really big might potentially allow a stack-overflow problem. |
182 | */ |
183 | maxCurConstraints = MaxBackends; |
184 | curConstraints = (EDGE *) palloc(maxCurConstraints * sizeof(EDGE)); |
185 | |
186 | /* |
187 | * Allow up to 3*MaxBackends constraints to be saved without having to |
188 | * re-run TestConfiguration. (This is probably more than enough, but we |
189 | * can survive if we run low on space by doing excess runs of |
190 | * TestConfiguration to re-compute constraint lists each time needed.) The |
191 | * last MaxBackends entries in possibleConstraints[] are reserved as |
192 | * output workspace for FindLockCycle. |
193 | */ |
194 | maxPossibleConstraints = MaxBackends * 4; |
195 | possibleConstraints = |
196 | (EDGE *) palloc(maxPossibleConstraints * sizeof(EDGE)); |
197 | |
198 | MemoryContextSwitchTo(oldcxt); |
199 | } |
200 | |
201 | /* |
202 | * DeadLockCheck -- Checks for deadlocks for a given process |
203 | * |
204 | * This code looks for deadlocks involving the given process. If any |
205 | * are found, it tries to rearrange lock wait queues to resolve the |
206 | * deadlock. If resolution is impossible, return DS_HARD_DEADLOCK --- |
207 | * the caller is then expected to abort the given proc's transaction. |
208 | * |
209 | * Caller must already have locked all partitions of the lock tables. |
210 | * |
211 | * On failure, deadlock details are recorded in deadlockDetails[] for |
212 | * subsequent printing by DeadLockReport(). That activity is separate |
213 | * because (a) we don't want to do it while holding all those LWLocks, |
214 | * and (b) we are typically invoked inside a signal handler. |
215 | */ |
216 | DeadLockState |
217 | DeadLockCheck(PGPROC *proc) |
218 | { |
219 | int i, |
220 | j; |
221 | |
222 | /* Initialize to "no constraints" */ |
223 | nCurConstraints = 0; |
224 | nPossibleConstraints = 0; |
225 | nWaitOrders = 0; |
226 | |
227 | /* Initialize to not blocked by an autovacuum worker */ |
228 | blocking_autovacuum_proc = NULL; |
229 | |
230 | /* Search for deadlocks and possible fixes */ |
231 | if (DeadLockCheckRecurse(proc)) |
232 | { |
233 | /* |
234 | * Call FindLockCycle one more time, to record the correct |
235 | * deadlockDetails[] for the basic state with no rearrangements. |
236 | */ |
237 | int nSoftEdges; |
238 | |
239 | TRACE_POSTGRESQL_DEADLOCK_FOUND(); |
240 | |
241 | nWaitOrders = 0; |
242 | if (!FindLockCycle(proc, possibleConstraints, &nSoftEdges)) |
243 | elog(FATAL, "deadlock seems to have disappeared" ); |
244 | |
245 | return DS_HARD_DEADLOCK; /* cannot find a non-deadlocked state */ |
246 | } |
247 | |
248 | /* Apply any needed rearrangements of wait queues */ |
249 | for (i = 0; i < nWaitOrders; i++) |
250 | { |
251 | LOCK *lock = waitOrders[i].lock; |
252 | PGPROC **procs = waitOrders[i].procs; |
253 | int nProcs = waitOrders[i].nProcs; |
254 | PROC_QUEUE *waitQueue = &(lock->waitProcs); |
255 | |
256 | Assert(nProcs == waitQueue->size); |
257 | |
258 | #ifdef DEBUG_DEADLOCK |
259 | PrintLockQueue(lock, "DeadLockCheck:" ); |
260 | #endif |
261 | |
262 | /* Reset the queue and re-add procs in the desired order */ |
263 | ProcQueueInit(waitQueue); |
264 | for (j = 0; j < nProcs; j++) |
265 | { |
266 | SHMQueueInsertBefore(&(waitQueue->links), &(procs[j]->links)); |
267 | waitQueue->size++; |
268 | } |
269 | |
270 | #ifdef DEBUG_DEADLOCK |
271 | PrintLockQueue(lock, "rearranged to:" ); |
272 | #endif |
273 | |
274 | /* See if any waiters for the lock can be woken up now */ |
275 | ProcLockWakeup(GetLocksMethodTable(lock), lock); |
276 | } |
277 | |
278 | /* Return code tells caller if we had to escape a deadlock or not */ |
279 | if (nWaitOrders > 0) |
280 | return DS_SOFT_DEADLOCK; |
281 | else if (blocking_autovacuum_proc != NULL) |
282 | return DS_BLOCKED_BY_AUTOVACUUM; |
283 | else |
284 | return DS_NO_DEADLOCK; |
285 | } |
286 | |
287 | /* |
288 | * Return the PGPROC of the autovacuum that's blocking a process. |
289 | * |
290 | * We reset the saved pointer as soon as we pass it back. |
291 | */ |
292 | PGPROC * |
293 | GetBlockingAutoVacuumPgproc(void) |
294 | { |
295 | PGPROC *ptr; |
296 | |
297 | ptr = blocking_autovacuum_proc; |
298 | blocking_autovacuum_proc = NULL; |
299 | |
300 | return ptr; |
301 | } |
302 | |
303 | /* |
304 | * DeadLockCheckRecurse -- recursively search for valid orderings |
305 | * |
306 | * curConstraints[] holds the current set of constraints being considered |
307 | * by an outer level of recursion. Add to this each possible solution |
308 | * constraint for any cycle detected at this level. |
309 | * |
310 | * Returns true if no solution exists. Returns false if a deadlock-free |
311 | * state is attainable, in which case waitOrders[] shows the required |
312 | * rearrangements of lock wait queues (if any). |
313 | */ |
314 | static bool |
315 | DeadLockCheckRecurse(PGPROC *proc) |
316 | { |
317 | int nEdges; |
318 | int oldPossibleConstraints; |
319 | bool savedList; |
320 | int i; |
321 | |
322 | nEdges = TestConfiguration(proc); |
323 | if (nEdges < 0) |
324 | return true; /* hard deadlock --- no solution */ |
325 | if (nEdges == 0) |
326 | return false; /* good configuration found */ |
327 | if (nCurConstraints >= maxCurConstraints) |
328 | return true; /* out of room for active constraints? */ |
329 | oldPossibleConstraints = nPossibleConstraints; |
330 | if (nPossibleConstraints + nEdges + MaxBackends <= maxPossibleConstraints) |
331 | { |
332 | /* We can save the edge list in possibleConstraints[] */ |
333 | nPossibleConstraints += nEdges; |
334 | savedList = true; |
335 | } |
336 | else |
337 | { |
338 | /* Not room; will need to regenerate the edges on-the-fly */ |
339 | savedList = false; |
340 | } |
341 | |
342 | /* |
343 | * Try each available soft edge as an addition to the configuration. |
344 | */ |
345 | for (i = 0; i < nEdges; i++) |
346 | { |
347 | if (!savedList && i > 0) |
348 | { |
349 | /* Regenerate the list of possible added constraints */ |
350 | if (nEdges != TestConfiguration(proc)) |
351 | elog(FATAL, "inconsistent results during deadlock check" ); |
352 | } |
353 | curConstraints[nCurConstraints] = |
354 | possibleConstraints[oldPossibleConstraints + i]; |
355 | nCurConstraints++; |
356 | if (!DeadLockCheckRecurse(proc)) |
357 | return false; /* found a valid solution! */ |
358 | /* give up on that added constraint, try again */ |
359 | nCurConstraints--; |
360 | } |
361 | nPossibleConstraints = oldPossibleConstraints; |
362 | return true; /* no solution found */ |
363 | } |
364 | |
365 | |
366 | /*-------------------- |
367 | * Test a configuration (current set of constraints) for validity. |
368 | * |
369 | * Returns: |
370 | * 0: the configuration is good (no deadlocks) |
371 | * -1: the configuration has a hard deadlock or is not self-consistent |
372 | * >0: the configuration has one or more soft deadlocks |
373 | * |
374 | * In the soft-deadlock case, one of the soft cycles is chosen arbitrarily |
375 | * and a list of its soft edges is returned beginning at |
376 | * possibleConstraints+nPossibleConstraints. The return value is the |
377 | * number of soft edges. |
378 | *-------------------- |
379 | */ |
380 | static int |
381 | TestConfiguration(PGPROC *startProc) |
382 | { |
383 | int softFound = 0; |
384 | EDGE *softEdges = possibleConstraints + nPossibleConstraints; |
385 | int nSoftEdges; |
386 | int i; |
387 | |
388 | /* |
389 | * Make sure we have room for FindLockCycle's output. |
390 | */ |
391 | if (nPossibleConstraints + MaxBackends > maxPossibleConstraints) |
392 | return -1; |
393 | |
394 | /* |
395 | * Expand current constraint set into wait orderings. Fail if the |
396 | * constraint set is not self-consistent. |
397 | */ |
398 | if (!ExpandConstraints(curConstraints, nCurConstraints)) |
399 | return -1; |
400 | |
401 | /* |
402 | * Check for cycles involving startProc or any of the procs mentioned in |
403 | * constraints. We check startProc last because if it has a soft cycle |
404 | * still to be dealt with, we want to deal with that first. |
405 | */ |
406 | for (i = 0; i < nCurConstraints; i++) |
407 | { |
408 | if (FindLockCycle(curConstraints[i].waiter, softEdges, &nSoftEdges)) |
409 | { |
410 | if (nSoftEdges == 0) |
411 | return -1; /* hard deadlock detected */ |
412 | softFound = nSoftEdges; |
413 | } |
414 | if (FindLockCycle(curConstraints[i].blocker, softEdges, &nSoftEdges)) |
415 | { |
416 | if (nSoftEdges == 0) |
417 | return -1; /* hard deadlock detected */ |
418 | softFound = nSoftEdges; |
419 | } |
420 | } |
421 | if (FindLockCycle(startProc, softEdges, &nSoftEdges)) |
422 | { |
423 | if (nSoftEdges == 0) |
424 | return -1; /* hard deadlock detected */ |
425 | softFound = nSoftEdges; |
426 | } |
427 | return softFound; |
428 | } |
429 | |
430 | |
431 | /* |
432 | * FindLockCycle -- basic check for deadlock cycles |
433 | * |
434 | * Scan outward from the given proc to see if there is a cycle in the |
435 | * waits-for graph that includes this proc. Return true if a cycle |
436 | * is found, else false. If a cycle is found, we return a list of |
437 | * the "soft edges", if any, included in the cycle. These edges could |
438 | * potentially be eliminated by rearranging wait queues. We also fill |
439 | * deadlockDetails[] with information about the detected cycle; this info |
440 | * is not used by the deadlock algorithm itself, only to print a useful |
441 | * message after failing. |
442 | * |
443 | * Since we need to be able to check hypothetical configurations that would |
444 | * exist after wait queue rearrangement, the routine pays attention to the |
445 | * table of hypothetical queue orders in waitOrders[]. These orders will |
446 | * be believed in preference to the actual ordering seen in the locktable. |
447 | */ |
448 | static bool |
449 | FindLockCycle(PGPROC *checkProc, |
450 | EDGE *softEdges, /* output argument */ |
451 | int *nSoftEdges) /* output argument */ |
452 | { |
453 | nVisitedProcs = 0; |
454 | nDeadlockDetails = 0; |
455 | *nSoftEdges = 0; |
456 | return FindLockCycleRecurse(checkProc, 0, softEdges, nSoftEdges); |
457 | } |
458 | |
459 | static bool |
460 | FindLockCycleRecurse(PGPROC *checkProc, |
461 | int depth, |
462 | EDGE *softEdges, /* output argument */ |
463 | int *nSoftEdges) /* output argument */ |
464 | { |
465 | int i; |
466 | dlist_iter iter; |
467 | |
468 | /* |
469 | * If this process is a lock group member, check the leader instead. (Note |
470 | * that we might be the leader, in which case this is a no-op.) |
471 | */ |
472 | if (checkProc->lockGroupLeader != NULL) |
473 | checkProc = checkProc->lockGroupLeader; |
474 | |
475 | /* |
476 | * Have we already seen this proc? |
477 | */ |
478 | for (i = 0; i < nVisitedProcs; i++) |
479 | { |
480 | if (visitedProcs[i] == checkProc) |
481 | { |
482 | /* If we return to starting point, we have a deadlock cycle */ |
483 | if (i == 0) |
484 | { |
485 | /* |
486 | * record total length of cycle --- outer levels will now fill |
487 | * deadlockDetails[] |
488 | */ |
489 | Assert(depth <= MaxBackends); |
490 | nDeadlockDetails = depth; |
491 | |
492 | return true; |
493 | } |
494 | |
495 | /* |
496 | * Otherwise, we have a cycle but it does not include the start |
497 | * point, so say "no deadlock". |
498 | */ |
499 | return false; |
500 | } |
501 | } |
502 | /* Mark proc as seen */ |
503 | Assert(nVisitedProcs < MaxBackends); |
504 | visitedProcs[nVisitedProcs++] = checkProc; |
505 | |
506 | /* |
507 | * If the process is waiting, there is an outgoing waits-for edge to each |
508 | * process that blocks it. |
509 | */ |
510 | if (checkProc->links.next != NULL && checkProc->waitLock != NULL && |
511 | FindLockCycleRecurseMember(checkProc, checkProc, depth, softEdges, |
512 | nSoftEdges)) |
513 | return true; |
514 | |
515 | /* |
516 | * If the process is not waiting, there could still be outgoing waits-for |
517 | * edges if it is part of a lock group, because other members of the lock |
518 | * group might be waiting even though this process is not. (Given lock |
519 | * groups {A1, A2} and {B1, B2}, if A1 waits for B1 and B2 waits for A2, |
520 | * that is a deadlock even neither of B1 and A2 are waiting for anything.) |
521 | */ |
522 | dlist_foreach(iter, &checkProc->lockGroupMembers) |
523 | { |
524 | PGPROC *memberProc; |
525 | |
526 | memberProc = dlist_container(PGPROC, lockGroupLink, iter.cur); |
527 | |
528 | if (memberProc->links.next != NULL && memberProc->waitLock != NULL && |
529 | memberProc != checkProc && |
530 | FindLockCycleRecurseMember(memberProc, checkProc, depth, softEdges, |
531 | nSoftEdges)) |
532 | return true; |
533 | } |
534 | |
535 | return false; |
536 | } |
537 | |
538 | static bool |
539 | FindLockCycleRecurseMember(PGPROC *checkProc, |
540 | PGPROC *checkProcLeader, |
541 | int depth, |
542 | EDGE *softEdges, /* output argument */ |
543 | int *nSoftEdges) /* output argument */ |
544 | { |
545 | PGPROC *proc; |
546 | LOCK *lock = checkProc->waitLock; |
547 | PGXACT *pgxact; |
548 | PROCLOCK *proclock; |
549 | SHM_QUEUE *procLocks; |
550 | LockMethod lockMethodTable; |
551 | PROC_QUEUE *waitQueue; |
552 | int queue_size; |
553 | int conflictMask; |
554 | int i; |
555 | int numLockModes, |
556 | lm; |
557 | |
558 | lockMethodTable = GetLocksMethodTable(lock); |
559 | numLockModes = lockMethodTable->numLockModes; |
560 | conflictMask = lockMethodTable->conflictTab[checkProc->waitLockMode]; |
561 | |
562 | /* |
563 | * Scan for procs that already hold conflicting locks. These are "hard" |
564 | * edges in the waits-for graph. |
565 | */ |
566 | procLocks = &(lock->procLocks); |
567 | |
568 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
569 | offsetof(PROCLOCK, lockLink)); |
570 | |
571 | while (proclock) |
572 | { |
573 | PGPROC *leader; |
574 | |
575 | proc = proclock->tag.myProc; |
576 | pgxact = &ProcGlobal->allPgXact[proc->pgprocno]; |
577 | leader = proc->lockGroupLeader == NULL ? proc : proc->lockGroupLeader; |
578 | |
579 | /* A proc never blocks itself or any other lock group member */ |
580 | if (leader != checkProcLeader) |
581 | { |
582 | for (lm = 1; lm <= numLockModes; lm++) |
583 | { |
584 | if ((proclock->holdMask & LOCKBIT_ON(lm)) && |
585 | (conflictMask & LOCKBIT_ON(lm))) |
586 | { |
587 | /* This proc hard-blocks checkProc */ |
588 | if (FindLockCycleRecurse(proc, depth + 1, |
589 | softEdges, nSoftEdges)) |
590 | { |
591 | /* fill deadlockDetails[] */ |
592 | DEADLOCK_INFO *info = &deadlockDetails[depth]; |
593 | |
594 | info->locktag = lock->tag; |
595 | info->lockmode = checkProc->waitLockMode; |
596 | info->pid = checkProc->pid; |
597 | |
598 | return true; |
599 | } |
600 | |
601 | /* |
602 | * No deadlock here, but see if this proc is an autovacuum |
603 | * that is directly hard-blocking our own proc. If so, |
604 | * report it so that the caller can send a cancel signal |
605 | * to it, if appropriate. If there's more than one such |
606 | * proc, it's indeterminate which one will be reported. |
607 | * |
608 | * We don't touch autovacuums that are indirectly blocking |
609 | * us; it's up to the direct blockee to take action. This |
610 | * rule simplifies understanding the behavior and ensures |
611 | * that an autovacuum won't be canceled with less than |
612 | * deadlock_timeout grace period. |
613 | * |
614 | * Note we read vacuumFlags without any locking. This is |
615 | * OK only for checking the PROC_IS_AUTOVACUUM flag, |
616 | * because that flag is set at process start and never |
617 | * reset. There is logic elsewhere to avoid canceling an |
618 | * autovacuum that is working to prevent XID wraparound |
619 | * problems (which needs to read a different vacuumFlag |
620 | * bit), but we don't do that here to avoid grabbing |
621 | * ProcArrayLock. |
622 | */ |
623 | if (checkProc == MyProc && |
624 | pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) |
625 | blocking_autovacuum_proc = proc; |
626 | |
627 | /* We're done looking at this proclock */ |
628 | break; |
629 | } |
630 | } |
631 | } |
632 | |
633 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink, |
634 | offsetof(PROCLOCK, lockLink)); |
635 | } |
636 | |
637 | /* |
638 | * Scan for procs that are ahead of this one in the lock's wait queue. |
639 | * Those that have conflicting requests soft-block this one. This must be |
640 | * done after the hard-block search, since if another proc both hard- and |
641 | * soft-blocks this one, we want to call it a hard edge. |
642 | * |
643 | * If there is a proposed re-ordering of the lock's wait order, use that |
644 | * rather than the current wait order. |
645 | */ |
646 | for (i = 0; i < nWaitOrders; i++) |
647 | { |
648 | if (waitOrders[i].lock == lock) |
649 | break; |
650 | } |
651 | |
652 | if (i < nWaitOrders) |
653 | { |
654 | /* Use the given hypothetical wait queue order */ |
655 | PGPROC **procs = waitOrders[i].procs; |
656 | |
657 | queue_size = waitOrders[i].nProcs; |
658 | |
659 | for (i = 0; i < queue_size; i++) |
660 | { |
661 | PGPROC *leader; |
662 | |
663 | proc = procs[i]; |
664 | leader = proc->lockGroupLeader == NULL ? proc : |
665 | proc->lockGroupLeader; |
666 | |
667 | /* |
668 | * TopoSort will always return an ordering with group members |
669 | * adjacent to each other in the wait queue (see comments |
670 | * therein). So, as soon as we reach a process in the same lock |
671 | * group as checkProc, we know we've found all the conflicts that |
672 | * precede any member of the lock group lead by checkProcLeader. |
673 | */ |
674 | if (leader == checkProcLeader) |
675 | break; |
676 | |
677 | /* Is there a conflict with this guy's request? */ |
678 | if ((LOCKBIT_ON(proc->waitLockMode) & conflictMask) != 0) |
679 | { |
680 | /* This proc soft-blocks checkProc */ |
681 | if (FindLockCycleRecurse(proc, depth + 1, |
682 | softEdges, nSoftEdges)) |
683 | { |
684 | /* fill deadlockDetails[] */ |
685 | DEADLOCK_INFO *info = &deadlockDetails[depth]; |
686 | |
687 | info->locktag = lock->tag; |
688 | info->lockmode = checkProc->waitLockMode; |
689 | info->pid = checkProc->pid; |
690 | |
691 | /* |
692 | * Add this edge to the list of soft edges in the cycle |
693 | */ |
694 | Assert(*nSoftEdges < MaxBackends); |
695 | softEdges[*nSoftEdges].waiter = checkProcLeader; |
696 | softEdges[*nSoftEdges].blocker = leader; |
697 | softEdges[*nSoftEdges].lock = lock; |
698 | (*nSoftEdges)++; |
699 | return true; |
700 | } |
701 | } |
702 | } |
703 | } |
704 | else |
705 | { |
706 | PGPROC *lastGroupMember = NULL; |
707 | |
708 | /* Use the true lock wait queue order */ |
709 | waitQueue = &(lock->waitProcs); |
710 | |
711 | /* |
712 | * Find the last member of the lock group that is present in the wait |
713 | * queue. Anything after this is not a soft lock conflict. If group |
714 | * locking is not in use, then we know immediately which process we're |
715 | * looking for, but otherwise we've got to search the wait queue to |
716 | * find the last process actually present. |
717 | */ |
718 | if (checkProc->lockGroupLeader == NULL) |
719 | lastGroupMember = checkProc; |
720 | else |
721 | { |
722 | proc = (PGPROC *) waitQueue->links.next; |
723 | queue_size = waitQueue->size; |
724 | while (queue_size-- > 0) |
725 | { |
726 | if (proc->lockGroupLeader == checkProcLeader) |
727 | lastGroupMember = proc; |
728 | proc = (PGPROC *) proc->links.next; |
729 | } |
730 | Assert(lastGroupMember != NULL); |
731 | } |
732 | |
733 | /* |
734 | * OK, now rescan (or scan) the queue to identify the soft conflicts. |
735 | */ |
736 | queue_size = waitQueue->size; |
737 | proc = (PGPROC *) waitQueue->links.next; |
738 | while (queue_size-- > 0) |
739 | { |
740 | PGPROC *leader; |
741 | |
742 | leader = proc->lockGroupLeader == NULL ? proc : |
743 | proc->lockGroupLeader; |
744 | |
745 | /* Done when we reach the target proc */ |
746 | if (proc == lastGroupMember) |
747 | break; |
748 | |
749 | /* Is there a conflict with this guy's request? */ |
750 | if ((LOCKBIT_ON(proc->waitLockMode) & conflictMask) != 0 && |
751 | leader != checkProcLeader) |
752 | { |
753 | /* This proc soft-blocks checkProc */ |
754 | if (FindLockCycleRecurse(proc, depth + 1, |
755 | softEdges, nSoftEdges)) |
756 | { |
757 | /* fill deadlockDetails[] */ |
758 | DEADLOCK_INFO *info = &deadlockDetails[depth]; |
759 | |
760 | info->locktag = lock->tag; |
761 | info->lockmode = checkProc->waitLockMode; |
762 | info->pid = checkProc->pid; |
763 | |
764 | /* |
765 | * Add this edge to the list of soft edges in the cycle |
766 | */ |
767 | Assert(*nSoftEdges < MaxBackends); |
768 | softEdges[*nSoftEdges].waiter = checkProcLeader; |
769 | softEdges[*nSoftEdges].blocker = leader; |
770 | softEdges[*nSoftEdges].lock = lock; |
771 | (*nSoftEdges)++; |
772 | return true; |
773 | } |
774 | } |
775 | |
776 | proc = (PGPROC *) proc->links.next; |
777 | } |
778 | } |
779 | |
780 | /* |
781 | * No conflict detected here. |
782 | */ |
783 | return false; |
784 | } |
785 | |
786 | |
787 | /* |
788 | * ExpandConstraints -- expand a list of constraints into a set of |
789 | * specific new orderings for affected wait queues |
790 | * |
791 | * Input is a list of soft edges to be reversed. The output is a list |
792 | * of nWaitOrders WAIT_ORDER structs in waitOrders[], with PGPROC array |
793 | * workspace in waitOrderProcs[]. |
794 | * |
795 | * Returns true if able to build an ordering that satisfies all the |
796 | * constraints, false if not (there are contradictory constraints). |
797 | */ |
798 | static bool |
799 | ExpandConstraints(EDGE *constraints, |
800 | int nConstraints) |
801 | { |
802 | int nWaitOrderProcs = 0; |
803 | int i, |
804 | j; |
805 | |
806 | nWaitOrders = 0; |
807 | |
808 | /* |
809 | * Scan constraint list backwards. This is because the last-added |
810 | * constraint is the only one that could fail, and so we want to test it |
811 | * for inconsistency first. |
812 | */ |
813 | for (i = nConstraints; --i >= 0;) |
814 | { |
815 | LOCK *lock = constraints[i].lock; |
816 | |
817 | /* Did we already make a list for this lock? */ |
818 | for (j = nWaitOrders; --j >= 0;) |
819 | { |
820 | if (waitOrders[j].lock == lock) |
821 | break; |
822 | } |
823 | if (j >= 0) |
824 | continue; |
825 | /* No, so allocate a new list */ |
826 | waitOrders[nWaitOrders].lock = lock; |
827 | waitOrders[nWaitOrders].procs = waitOrderProcs + nWaitOrderProcs; |
828 | waitOrders[nWaitOrders].nProcs = lock->waitProcs.size; |
829 | nWaitOrderProcs += lock->waitProcs.size; |
830 | Assert(nWaitOrderProcs <= MaxBackends); |
831 | |
832 | /* |
833 | * Do the topo sort. TopoSort need not examine constraints after this |
834 | * one, since they must be for different locks. |
835 | */ |
836 | if (!TopoSort(lock, constraints, i + 1, |
837 | waitOrders[nWaitOrders].procs)) |
838 | return false; |
839 | nWaitOrders++; |
840 | } |
841 | return true; |
842 | } |
843 | |
844 | |
845 | /* |
846 | * TopoSort -- topological sort of a wait queue |
847 | * |
848 | * Generate a re-ordering of a lock's wait queue that satisfies given |
849 | * constraints about certain procs preceding others. (Each such constraint |
850 | * is a fact of a partial ordering.) Minimize rearrangement of the queue |
851 | * not needed to achieve the partial ordering. |
852 | * |
853 | * This is a lot simpler and slower than, for example, the topological sort |
854 | * algorithm shown in Knuth's Volume 1. However, Knuth's method doesn't |
855 | * try to minimize the damage to the existing order. In practice we are |
856 | * not likely to be working with more than a few constraints, so the apparent |
857 | * slowness of the algorithm won't really matter. |
858 | * |
859 | * The initial queue ordering is taken directly from the lock's wait queue. |
860 | * The output is an array of PGPROC pointers, of length equal to the lock's |
861 | * wait queue length (the caller is responsible for providing this space). |
862 | * The partial order is specified by an array of EDGE structs. Each EDGE |
863 | * is one that we need to reverse, therefore the "waiter" must appear before |
864 | * the "blocker" in the output array. The EDGE array may well contain |
865 | * edges associated with other locks; these should be ignored. |
866 | * |
867 | * Returns true if able to build an ordering that satisfies all the |
868 | * constraints, false if not (there are contradictory constraints). |
869 | */ |
870 | static bool |
871 | TopoSort(LOCK *lock, |
872 | EDGE *constraints, |
873 | int nConstraints, |
874 | PGPROC **ordering) /* output argument */ |
875 | { |
876 | PROC_QUEUE *waitQueue = &(lock->waitProcs); |
877 | int queue_size = waitQueue->size; |
878 | PGPROC *proc; |
879 | int i, |
880 | j, |
881 | jj, |
882 | k, |
883 | kk, |
884 | last; |
885 | |
886 | /* First, fill topoProcs[] array with the procs in their current order */ |
887 | proc = (PGPROC *) waitQueue->links.next; |
888 | for (i = 0; i < queue_size; i++) |
889 | { |
890 | topoProcs[i] = proc; |
891 | proc = (PGPROC *) proc->links.next; |
892 | } |
893 | |
894 | /* |
895 | * Scan the constraints, and for each proc in the array, generate a count |
896 | * of the number of constraints that say it must be before something else, |
897 | * plus a list of the constraints that say it must be after something |
898 | * else. The count for the j'th proc is stored in beforeConstraints[j], |
899 | * and the head of its list in afterConstraints[j]. Each constraint |
900 | * stores its list link in constraints[i].link (note any constraint will |
901 | * be in just one list). The array index for the before-proc of the i'th |
902 | * constraint is remembered in constraints[i].pred. |
903 | * |
904 | * Note that it's not necessarily the case that every constraint affects |
905 | * this particular wait queue. Prior to group locking, a process could be |
906 | * waiting for at most one lock. But a lock group can be waiting for |
907 | * zero, one, or multiple locks. Since topoProcs[] is an array of the |
908 | * processes actually waiting, while constraints[] is an array of group |
909 | * leaders, we've got to scan through topoProcs[] for each constraint, |
910 | * checking whether both a waiter and a blocker for that group are |
911 | * present. If so, the constraint is relevant to this wait queue; if not, |
912 | * it isn't. |
913 | */ |
914 | MemSet(beforeConstraints, 0, queue_size * sizeof(int)); |
915 | MemSet(afterConstraints, 0, queue_size * sizeof(int)); |
916 | for (i = 0; i < nConstraints; i++) |
917 | { |
918 | /* |
919 | * Find a representative process that is on the lock queue and part of |
920 | * the waiting lock group. This may or may not be the leader, which |
921 | * may or may not be waiting at all. If there are any other processes |
922 | * in the same lock group on the queue, set their number of |
923 | * beforeConstraints to -1 to indicate that they should be emitted |
924 | * with their groupmates rather than considered separately. |
925 | * |
926 | * In this loop and the similar one just below, it's critical that we |
927 | * consistently select the same representative member of any one lock |
928 | * group, so that all the constraints are associated with the same |
929 | * proc, and the -1's are only associated with not-representative |
930 | * members. We select the last one in the topoProcs array. |
931 | */ |
932 | proc = constraints[i].waiter; |
933 | Assert(proc != NULL); |
934 | jj = -1; |
935 | for (j = queue_size; --j >= 0;) |
936 | { |
937 | PGPROC *waiter = topoProcs[j]; |
938 | |
939 | if (waiter == proc || waiter->lockGroupLeader == proc) |
940 | { |
941 | Assert(waiter->waitLock == lock); |
942 | if (jj == -1) |
943 | jj = j; |
944 | else |
945 | { |
946 | Assert(beforeConstraints[j] <= 0); |
947 | beforeConstraints[j] = -1; |
948 | } |
949 | } |
950 | } |
951 | |
952 | /* If no matching waiter, constraint is not relevant to this lock. */ |
953 | if (jj < 0) |
954 | continue; |
955 | |
956 | /* |
957 | * Similarly, find a representative process that is on the lock queue |
958 | * and waiting for the blocking lock group. Again, this could be the |
959 | * leader but does not need to be. |
960 | */ |
961 | proc = constraints[i].blocker; |
962 | Assert(proc != NULL); |
963 | kk = -1; |
964 | for (k = queue_size; --k >= 0;) |
965 | { |
966 | PGPROC *blocker = topoProcs[k]; |
967 | |
968 | if (blocker == proc || blocker->lockGroupLeader == proc) |
969 | { |
970 | Assert(blocker->waitLock == lock); |
971 | if (kk == -1) |
972 | kk = k; |
973 | else |
974 | { |
975 | Assert(beforeConstraints[k] <= 0); |
976 | beforeConstraints[k] = -1; |
977 | } |
978 | } |
979 | } |
980 | |
981 | /* If no matching blocker, constraint is not relevant to this lock. */ |
982 | if (kk < 0) |
983 | continue; |
984 | |
985 | Assert(beforeConstraints[jj] >= 0); |
986 | beforeConstraints[jj]++; /* waiter must come before */ |
987 | /* add this constraint to list of after-constraints for blocker */ |
988 | constraints[i].pred = jj; |
989 | constraints[i].link = afterConstraints[kk]; |
990 | afterConstraints[kk] = i + 1; |
991 | } |
992 | |
993 | /*-------------------- |
994 | * Now scan the topoProcs array backwards. At each step, output the |
995 | * last proc that has no remaining before-constraints plus any other |
996 | * members of the same lock group; then decrease the beforeConstraints |
997 | * count of each of the procs it was constrained against. |
998 | * i = index of ordering[] entry we want to output this time |
999 | * j = search index for topoProcs[] |
1000 | * k = temp for scanning constraint list for proc j |
1001 | * last = last non-null index in topoProcs (avoid redundant searches) |
1002 | *-------------------- |
1003 | */ |
1004 | last = queue_size - 1; |
1005 | for (i = queue_size - 1; i >= 0;) |
1006 | { |
1007 | int c; |
1008 | int nmatches = 0; |
1009 | |
1010 | /* Find next candidate to output */ |
1011 | while (topoProcs[last] == NULL) |
1012 | last--; |
1013 | for (j = last; j >= 0; j--) |
1014 | { |
1015 | if (topoProcs[j] != NULL && beforeConstraints[j] == 0) |
1016 | break; |
1017 | } |
1018 | |
1019 | /* If no available candidate, topological sort fails */ |
1020 | if (j < 0) |
1021 | return false; |
1022 | |
1023 | /* |
1024 | * Output everything in the lock group. There's no point in |
1025 | * outputting an ordering where members of the same lock group are not |
1026 | * consecutive on the wait queue: if some other waiter is between two |
1027 | * requests that belong to the same group, then either it conflicts |
1028 | * with both of them and is certainly not a solution; or it conflicts |
1029 | * with at most one of them and is thus isomorphic to an ordering |
1030 | * where the group members are consecutive. |
1031 | */ |
1032 | proc = topoProcs[j]; |
1033 | if (proc->lockGroupLeader != NULL) |
1034 | proc = proc->lockGroupLeader; |
1035 | Assert(proc != NULL); |
1036 | for (c = 0; c <= last; ++c) |
1037 | { |
1038 | if (topoProcs[c] == proc || (topoProcs[c] != NULL && |
1039 | topoProcs[c]->lockGroupLeader == proc)) |
1040 | { |
1041 | ordering[i - nmatches] = topoProcs[c]; |
1042 | topoProcs[c] = NULL; |
1043 | ++nmatches; |
1044 | } |
1045 | } |
1046 | Assert(nmatches > 0); |
1047 | i -= nmatches; |
1048 | |
1049 | /* Update beforeConstraints counts of its predecessors */ |
1050 | for (k = afterConstraints[j]; k > 0; k = constraints[k - 1].link) |
1051 | beforeConstraints[constraints[k - 1].pred]--; |
1052 | } |
1053 | |
1054 | /* Done */ |
1055 | return true; |
1056 | } |
1057 | |
1058 | #ifdef DEBUG_DEADLOCK |
1059 | static void |
1060 | PrintLockQueue(LOCK *lock, const char *info) |
1061 | { |
1062 | PROC_QUEUE *waitQueue = &(lock->waitProcs); |
1063 | int queue_size = waitQueue->size; |
1064 | PGPROC *proc; |
1065 | int i; |
1066 | |
1067 | printf("%s lock %p queue " , info, lock); |
1068 | proc = (PGPROC *) waitQueue->links.next; |
1069 | for (i = 0; i < queue_size; i++) |
1070 | { |
1071 | printf(" %d" , proc->pid); |
1072 | proc = (PGPROC *) proc->links.next; |
1073 | } |
1074 | printf("\n" ); |
1075 | fflush(stdout); |
1076 | } |
1077 | #endif |
1078 | |
1079 | /* |
1080 | * Report a detected deadlock, with available details. |
1081 | */ |
1082 | void |
1083 | DeadLockReport(void) |
1084 | { |
1085 | StringInfoData clientbuf; /* errdetail for client */ |
1086 | StringInfoData logbuf; /* errdetail for server log */ |
1087 | StringInfoData locktagbuf; |
1088 | int i; |
1089 | |
1090 | initStringInfo(&clientbuf); |
1091 | initStringInfo(&logbuf); |
1092 | initStringInfo(&locktagbuf); |
1093 | |
1094 | /* Generate the "waits for" lines sent to the client */ |
1095 | for (i = 0; i < nDeadlockDetails; i++) |
1096 | { |
1097 | DEADLOCK_INFO *info = &deadlockDetails[i]; |
1098 | int nextpid; |
1099 | |
1100 | /* The last proc waits for the first one... */ |
1101 | if (i < nDeadlockDetails - 1) |
1102 | nextpid = info[1].pid; |
1103 | else |
1104 | nextpid = deadlockDetails[0].pid; |
1105 | |
1106 | /* reset locktagbuf to hold next object description */ |
1107 | resetStringInfo(&locktagbuf); |
1108 | |
1109 | DescribeLockTag(&locktagbuf, &info->locktag); |
1110 | |
1111 | if (i > 0) |
1112 | appendStringInfoChar(&clientbuf, '\n'); |
1113 | |
1114 | appendStringInfo(&clientbuf, |
1115 | _("Process %d waits for %s on %s; blocked by process %d." ), |
1116 | info->pid, |
1117 | GetLockmodeName(info->locktag.locktag_lockmethodid, |
1118 | info->lockmode), |
1119 | locktagbuf.data, |
1120 | nextpid); |
1121 | } |
1122 | |
1123 | /* Duplicate all the above for the server ... */ |
1124 | appendStringInfoString(&logbuf, clientbuf.data); |
1125 | |
1126 | /* ... and add info about query strings */ |
1127 | for (i = 0; i < nDeadlockDetails; i++) |
1128 | { |
1129 | DEADLOCK_INFO *info = &deadlockDetails[i]; |
1130 | |
1131 | appendStringInfoChar(&logbuf, '\n'); |
1132 | |
1133 | appendStringInfo(&logbuf, |
1134 | _("Process %d: %s" ), |
1135 | info->pid, |
1136 | pgstat_get_backend_current_activity(info->pid, false)); |
1137 | } |
1138 | |
1139 | pgstat_report_deadlock(); |
1140 | |
1141 | ereport(ERROR, |
1142 | (errcode(ERRCODE_T_R_DEADLOCK_DETECTED), |
1143 | errmsg("deadlock detected" ), |
1144 | errdetail_internal("%s" , clientbuf.data), |
1145 | errdetail_log("%s" , logbuf.data), |
1146 | errhint("See server log for query details." ))); |
1147 | } |
1148 | |
1149 | /* |
1150 | * RememberSimpleDeadLock: set up info for DeadLockReport when ProcSleep |
1151 | * detects a trivial (two-way) deadlock. proc1 wants to block for lockmode |
1152 | * on lock, but proc2 is already waiting and would be blocked by proc1. |
1153 | */ |
1154 | void |
1155 | RememberSimpleDeadLock(PGPROC *proc1, |
1156 | LOCKMODE lockmode, |
1157 | LOCK *lock, |
1158 | PGPROC *proc2) |
1159 | { |
1160 | DEADLOCK_INFO *info = &deadlockDetails[0]; |
1161 | |
1162 | info->locktag = lock->tag; |
1163 | info->lockmode = lockmode; |
1164 | info->pid = proc1->pid; |
1165 | info++; |
1166 | info->locktag = proc2->waitLock->tag; |
1167 | info->lockmode = proc2->waitLockMode; |
1168 | info->pid = proc2->pid; |
1169 | nDeadlockDetails = 2; |
1170 | } |
1171 | |