| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * jsonb_util.c |
| 4 | * converting between Jsonb and JsonbValues, and iterating. |
| 5 | * |
| 6 | * Copyright (c) 2014-2019, PostgreSQL Global Development Group |
| 7 | * |
| 8 | * |
| 9 | * IDENTIFICATION |
| 10 | * src/backend/utils/adt/jsonb_util.c |
| 11 | * |
| 12 | *------------------------------------------------------------------------- |
| 13 | */ |
| 14 | #include "postgres.h" |
| 15 | |
| 16 | #include "catalog/pg_collation.h" |
| 17 | #include "miscadmin.h" |
| 18 | #include "utils/builtins.h" |
| 19 | #include "utils/hashutils.h" |
| 20 | #include "utils/jsonb.h" |
| 21 | #include "utils/memutils.h" |
| 22 | #include "utils/varlena.h" |
| 23 | |
| 24 | /* |
| 25 | * Maximum number of elements in an array (or key/value pairs in an object). |
| 26 | * This is limited by two things: the size of the JEntry array must fit |
| 27 | * in MaxAllocSize, and the number of elements (or pairs) must fit in the bits |
| 28 | * reserved for that in the JsonbContainer.header field. |
| 29 | * |
| 30 | * (The total size of an array's or object's elements is also limited by |
| 31 | * JENTRY_OFFLENMASK, but we're not concerned about that here.) |
| 32 | */ |
| 33 | #define JSONB_MAX_ELEMS (Min(MaxAllocSize / sizeof(JsonbValue), JB_CMASK)) |
| 34 | #define JSONB_MAX_PAIRS (Min(MaxAllocSize / sizeof(JsonbPair), JB_CMASK)) |
| 35 | |
| 36 | static void fillJsonbValue(JsonbContainer *container, int index, |
| 37 | char *base_addr, uint32 offset, |
| 38 | JsonbValue *result); |
| 39 | static bool equalsJsonbScalarValue(JsonbValue *a, JsonbValue *b); |
| 40 | static int compareJsonbScalarValue(JsonbValue *a, JsonbValue *b); |
| 41 | static Jsonb *convertToJsonb(JsonbValue *val); |
| 42 | static void convertJsonbValue(StringInfo buffer, JEntry *, JsonbValue *val, int level); |
| 43 | static void convertJsonbArray(StringInfo buffer, JEntry *, JsonbValue *val, int level); |
| 44 | static void convertJsonbObject(StringInfo buffer, JEntry *, JsonbValue *val, int level); |
| 45 | static void convertJsonbScalar(StringInfo buffer, JEntry *, JsonbValue *scalarVal); |
| 46 | |
| 47 | static int reserveFromBuffer(StringInfo buffer, int len); |
| 48 | static void appendToBuffer(StringInfo buffer, const char *data, int len); |
| 49 | static void copyToBuffer(StringInfo buffer, int offset, const char *data, int len); |
| 50 | static short padBufferToInt(StringInfo buffer); |
| 51 | |
| 52 | static JsonbIterator *iteratorFromContainer(JsonbContainer *container, JsonbIterator *parent); |
| 53 | static JsonbIterator *freeAndGetParent(JsonbIterator *it); |
| 54 | static JsonbParseState *pushState(JsonbParseState **pstate); |
| 55 | static void appendKey(JsonbParseState *pstate, JsonbValue *scalarVal); |
| 56 | static void appendValue(JsonbParseState *pstate, JsonbValue *scalarVal); |
| 57 | static void appendElement(JsonbParseState *pstate, JsonbValue *scalarVal); |
| 58 | static int lengthCompareJsonbStringValue(const void *a, const void *b); |
| 59 | static int lengthCompareJsonbPair(const void *a, const void *b, void *arg); |
| 60 | static void uniqueifyJsonbObject(JsonbValue *object); |
| 61 | static JsonbValue *pushJsonbValueScalar(JsonbParseState **pstate, |
| 62 | JsonbIteratorToken seq, |
| 63 | JsonbValue *scalarVal); |
| 64 | |
| 65 | /* |
| 66 | * Turn an in-memory JsonbValue into a Jsonb for on-disk storage. |
| 67 | * |
| 68 | * There isn't a JsonbToJsonbValue(), because generally we find it more |
| 69 | * convenient to directly iterate through the Jsonb representation and only |
| 70 | * really convert nested scalar values. JsonbIteratorNext() does this, so that |
| 71 | * clients of the iteration code don't have to directly deal with the binary |
| 72 | * representation (JsonbDeepContains() is a notable exception, although all |
| 73 | * exceptions are internal to this module). In general, functions that accept |
| 74 | * a JsonbValue argument are concerned with the manipulation of scalar values, |
| 75 | * or simple containers of scalar values, where it would be inconvenient to |
| 76 | * deal with a great amount of other state. |
| 77 | */ |
| 78 | Jsonb * |
| 79 | JsonbValueToJsonb(JsonbValue *val) |
| 80 | { |
| 81 | Jsonb *out; |
| 82 | |
| 83 | if (IsAJsonbScalar(val)) |
| 84 | { |
| 85 | /* Scalar value */ |
| 86 | JsonbParseState *pstate = NULL; |
| 87 | JsonbValue *res; |
| 88 | JsonbValue scalarArray; |
| 89 | |
| 90 | scalarArray.type = jbvArray; |
| 91 | scalarArray.val.array.rawScalar = true; |
| 92 | scalarArray.val.array.nElems = 1; |
| 93 | |
| 94 | pushJsonbValue(&pstate, WJB_BEGIN_ARRAY, &scalarArray); |
| 95 | pushJsonbValue(&pstate, WJB_ELEM, val); |
| 96 | res = pushJsonbValue(&pstate, WJB_END_ARRAY, NULL); |
| 97 | |
| 98 | out = convertToJsonb(res); |
| 99 | } |
| 100 | else if (val->type == jbvObject || val->type == jbvArray) |
| 101 | { |
| 102 | out = convertToJsonb(val); |
| 103 | } |
| 104 | else |
| 105 | { |
| 106 | Assert(val->type == jbvBinary); |
| 107 | out = palloc(VARHDRSZ + val->val.binary.len); |
| 108 | SET_VARSIZE(out, VARHDRSZ + val->val.binary.len); |
| 109 | memcpy(VARDATA(out), val->val.binary.data, val->val.binary.len); |
| 110 | } |
| 111 | |
| 112 | return out; |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Get the offset of the variable-length portion of a Jsonb node within |
| 117 | * the variable-length-data part of its container. The node is identified |
| 118 | * by index within the container's JEntry array. |
| 119 | */ |
| 120 | uint32 |
| 121 | getJsonbOffset(const JsonbContainer *jc, int index) |
| 122 | { |
| 123 | uint32 offset = 0; |
| 124 | int i; |
| 125 | |
| 126 | /* |
| 127 | * Start offset of this entry is equal to the end offset of the previous |
| 128 | * entry. Walk backwards to the most recent entry stored as an end |
| 129 | * offset, returning that offset plus any lengths in between. |
| 130 | */ |
| 131 | for (i = index - 1; i >= 0; i--) |
| 132 | { |
| 133 | offset += JBE_OFFLENFLD(jc->children[i]); |
| 134 | if (JBE_HAS_OFF(jc->children[i])) |
| 135 | break; |
| 136 | } |
| 137 | |
| 138 | return offset; |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * Get the length of the variable-length portion of a Jsonb node. |
| 143 | * The node is identified by index within the container's JEntry array. |
| 144 | */ |
| 145 | uint32 |
| 146 | getJsonbLength(const JsonbContainer *jc, int index) |
| 147 | { |
| 148 | uint32 off; |
| 149 | uint32 len; |
| 150 | |
| 151 | /* |
| 152 | * If the length is stored directly in the JEntry, just return it. |
| 153 | * Otherwise, get the begin offset of the entry, and subtract that from |
| 154 | * the stored end+1 offset. |
| 155 | */ |
| 156 | if (JBE_HAS_OFF(jc->children[index])) |
| 157 | { |
| 158 | off = getJsonbOffset(jc, index); |
| 159 | len = JBE_OFFLENFLD(jc->children[index]) - off; |
| 160 | } |
| 161 | else |
| 162 | len = JBE_OFFLENFLD(jc->children[index]); |
| 163 | |
| 164 | return len; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * BT comparator worker function. Returns an integer less than, equal to, or |
| 169 | * greater than zero, indicating whether a is less than, equal to, or greater |
| 170 | * than b. Consistent with the requirements for a B-Tree operator class |
| 171 | * |
| 172 | * Strings are compared lexically, in contrast with other places where we use a |
| 173 | * much simpler comparator logic for searching through Strings. Since this is |
| 174 | * called from B-Tree support function 1, we're careful about not leaking |
| 175 | * memory here. |
| 176 | */ |
| 177 | int |
| 178 | compareJsonbContainers(JsonbContainer *a, JsonbContainer *b) |
| 179 | { |
| 180 | JsonbIterator *ita, |
| 181 | *itb; |
| 182 | int res = 0; |
| 183 | |
| 184 | ita = JsonbIteratorInit(a); |
| 185 | itb = JsonbIteratorInit(b); |
| 186 | |
| 187 | do |
| 188 | { |
| 189 | JsonbValue va, |
| 190 | vb; |
| 191 | JsonbIteratorToken ra, |
| 192 | rb; |
| 193 | |
| 194 | ra = JsonbIteratorNext(&ita, &va, false); |
| 195 | rb = JsonbIteratorNext(&itb, &vb, false); |
| 196 | |
| 197 | if (ra == rb) |
| 198 | { |
| 199 | if (ra == WJB_DONE) |
| 200 | { |
| 201 | /* Decisively equal */ |
| 202 | break; |
| 203 | } |
| 204 | |
| 205 | if (ra == WJB_END_ARRAY || ra == WJB_END_OBJECT) |
| 206 | { |
| 207 | /* |
| 208 | * There is no array or object to compare at this stage of |
| 209 | * processing. jbvArray/jbvObject values are compared |
| 210 | * initially, at the WJB_BEGIN_ARRAY and WJB_BEGIN_OBJECT |
| 211 | * tokens. |
| 212 | */ |
| 213 | continue; |
| 214 | } |
| 215 | |
| 216 | if (va.type == vb.type) |
| 217 | { |
| 218 | switch (va.type) |
| 219 | { |
| 220 | case jbvString: |
| 221 | case jbvNull: |
| 222 | case jbvNumeric: |
| 223 | case jbvBool: |
| 224 | res = compareJsonbScalarValue(&va, &vb); |
| 225 | break; |
| 226 | case jbvArray: |
| 227 | |
| 228 | /* |
| 229 | * This could be a "raw scalar" pseudo array. That's |
| 230 | * a special case here though, since we still want the |
| 231 | * general type-based comparisons to apply, and as far |
| 232 | * as we're concerned a pseudo array is just a scalar. |
| 233 | */ |
| 234 | if (va.val.array.rawScalar != vb.val.array.rawScalar) |
| 235 | res = (va.val.array.rawScalar) ? -1 : 1; |
| 236 | if (va.val.array.nElems != vb.val.array.nElems) |
| 237 | res = (va.val.array.nElems > vb.val.array.nElems) ? 1 : -1; |
| 238 | break; |
| 239 | case jbvObject: |
| 240 | if (va.val.object.nPairs != vb.val.object.nPairs) |
| 241 | res = (va.val.object.nPairs > vb.val.object.nPairs) ? 1 : -1; |
| 242 | break; |
| 243 | case jbvBinary: |
| 244 | elog(ERROR, "unexpected jbvBinary value" ); |
| 245 | } |
| 246 | } |
| 247 | else |
| 248 | { |
| 249 | /* Type-defined order */ |
| 250 | res = (va.type > vb.type) ? 1 : -1; |
| 251 | } |
| 252 | } |
| 253 | else |
| 254 | { |
| 255 | /* |
| 256 | * It's safe to assume that the types differed, and that the va |
| 257 | * and vb values passed were set. |
| 258 | * |
| 259 | * If the two values were of the same container type, then there'd |
| 260 | * have been a chance to observe the variation in the number of |
| 261 | * elements/pairs (when processing WJB_BEGIN_OBJECT, say). They're |
| 262 | * either two heterogeneously-typed containers, or a container and |
| 263 | * some scalar type. |
| 264 | * |
| 265 | * We don't have to consider the WJB_END_ARRAY and WJB_END_OBJECT |
| 266 | * cases here, because we would have seen the corresponding |
| 267 | * WJB_BEGIN_ARRAY and WJB_BEGIN_OBJECT tokens first, and |
| 268 | * concluded that they don't match. |
| 269 | */ |
| 270 | Assert(ra != WJB_END_ARRAY && ra != WJB_END_OBJECT); |
| 271 | Assert(rb != WJB_END_ARRAY && rb != WJB_END_OBJECT); |
| 272 | |
| 273 | Assert(va.type != vb.type); |
| 274 | Assert(va.type != jbvBinary); |
| 275 | Assert(vb.type != jbvBinary); |
| 276 | /* Type-defined order */ |
| 277 | res = (va.type > vb.type) ? 1 : -1; |
| 278 | } |
| 279 | } |
| 280 | while (res == 0); |
| 281 | |
| 282 | while (ita != NULL) |
| 283 | { |
| 284 | JsonbIterator *i = ita->parent; |
| 285 | |
| 286 | pfree(ita); |
| 287 | ita = i; |
| 288 | } |
| 289 | while (itb != NULL) |
| 290 | { |
| 291 | JsonbIterator *i = itb->parent; |
| 292 | |
| 293 | pfree(itb); |
| 294 | itb = i; |
| 295 | } |
| 296 | |
| 297 | return res; |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Find value in object (i.e. the "value" part of some key/value pair in an |
| 302 | * object), or find a matching element if we're looking through an array. Do |
| 303 | * so on the basis of equality of the object keys only, or alternatively |
| 304 | * element values only, with a caller-supplied value "key". The "flags" |
| 305 | * argument allows the caller to specify which container types are of interest. |
| 306 | * |
| 307 | * This exported utility function exists to facilitate various cases concerned |
| 308 | * with "containment". If asked to look through an object, the caller had |
| 309 | * better pass a Jsonb String, because their keys can only be strings. |
| 310 | * Otherwise, for an array, any type of JsonbValue will do. |
| 311 | * |
| 312 | * In order to proceed with the search, it is necessary for callers to have |
| 313 | * both specified an interest in exactly one particular container type with an |
| 314 | * appropriate flag, as well as having the pointed-to Jsonb container be of |
| 315 | * one of those same container types at the top level. (Actually, we just do |
| 316 | * whichever makes sense to save callers the trouble of figuring it out - at |
| 317 | * most one can make sense, because the container either points to an array |
| 318 | * (possibly a "raw scalar" pseudo array) or an object.) |
| 319 | * |
| 320 | * Note that we can return a jbvBinary JsonbValue if this is called on an |
| 321 | * object, but we never do so on an array. If the caller asks to look through |
| 322 | * a container type that is not of the type pointed to by the container, |
| 323 | * immediately fall through and return NULL. If we cannot find the value, |
| 324 | * return NULL. Otherwise, return palloc()'d copy of value. |
| 325 | */ |
| 326 | JsonbValue * |
| 327 | findJsonbValueFromContainer(JsonbContainer *container, uint32 flags, |
| 328 | JsonbValue *key) |
| 329 | { |
| 330 | JEntry *children = container->children; |
| 331 | int count = JsonContainerSize(container); |
| 332 | JsonbValue *result; |
| 333 | |
| 334 | Assert((flags & ~(JB_FARRAY | JB_FOBJECT)) == 0); |
| 335 | |
| 336 | /* Quick out without a palloc cycle if object/array is empty */ |
| 337 | if (count <= 0) |
| 338 | return NULL; |
| 339 | |
| 340 | result = palloc(sizeof(JsonbValue)); |
| 341 | |
| 342 | if ((flags & JB_FARRAY) && JsonContainerIsArray(container)) |
| 343 | { |
| 344 | char *base_addr = (char *) (children + count); |
| 345 | uint32 offset = 0; |
| 346 | int i; |
| 347 | |
| 348 | for (i = 0; i < count; i++) |
| 349 | { |
| 350 | fillJsonbValue(container, i, base_addr, offset, result); |
| 351 | |
| 352 | if (key->type == result->type) |
| 353 | { |
| 354 | if (equalsJsonbScalarValue(key, result)) |
| 355 | return result; |
| 356 | } |
| 357 | |
| 358 | JBE_ADVANCE_OFFSET(offset, children[i]); |
| 359 | } |
| 360 | } |
| 361 | else if ((flags & JB_FOBJECT) && JsonContainerIsObject(container)) |
| 362 | { |
| 363 | /* Since this is an object, account for *Pairs* of Jentrys */ |
| 364 | char *base_addr = (char *) (children + count * 2); |
| 365 | uint32 stopLow = 0, |
| 366 | stopHigh = count; |
| 367 | |
| 368 | /* Object key passed by caller must be a string */ |
| 369 | Assert(key->type == jbvString); |
| 370 | |
| 371 | /* Binary search on object/pair keys *only* */ |
| 372 | while (stopLow < stopHigh) |
| 373 | { |
| 374 | uint32 stopMiddle; |
| 375 | int difference; |
| 376 | JsonbValue candidate; |
| 377 | |
| 378 | stopMiddle = stopLow + (stopHigh - stopLow) / 2; |
| 379 | |
| 380 | candidate.type = jbvString; |
| 381 | candidate.val.string.val = |
| 382 | base_addr + getJsonbOffset(container, stopMiddle); |
| 383 | candidate.val.string.len = getJsonbLength(container, stopMiddle); |
| 384 | |
| 385 | difference = lengthCompareJsonbStringValue(&candidate, key); |
| 386 | |
| 387 | if (difference == 0) |
| 388 | { |
| 389 | /* Found our key, return corresponding value */ |
| 390 | int index = stopMiddle + count; |
| 391 | |
| 392 | fillJsonbValue(container, index, base_addr, |
| 393 | getJsonbOffset(container, index), |
| 394 | result); |
| 395 | |
| 396 | return result; |
| 397 | } |
| 398 | else |
| 399 | { |
| 400 | if (difference < 0) |
| 401 | stopLow = stopMiddle + 1; |
| 402 | else |
| 403 | stopHigh = stopMiddle; |
| 404 | } |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | /* Not found */ |
| 409 | pfree(result); |
| 410 | return NULL; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * Get i-th value of a Jsonb array. |
| 415 | * |
| 416 | * Returns palloc()'d copy of the value, or NULL if it does not exist. |
| 417 | */ |
| 418 | JsonbValue * |
| 419 | getIthJsonbValueFromContainer(JsonbContainer *container, uint32 i) |
| 420 | { |
| 421 | JsonbValue *result; |
| 422 | char *base_addr; |
| 423 | uint32 nelements; |
| 424 | |
| 425 | if (!JsonContainerIsArray(container)) |
| 426 | elog(ERROR, "not a jsonb array" ); |
| 427 | |
| 428 | nelements = JsonContainerSize(container); |
| 429 | base_addr = (char *) &container->children[nelements]; |
| 430 | |
| 431 | if (i >= nelements) |
| 432 | return NULL; |
| 433 | |
| 434 | result = palloc(sizeof(JsonbValue)); |
| 435 | |
| 436 | fillJsonbValue(container, i, base_addr, |
| 437 | getJsonbOffset(container, i), |
| 438 | result); |
| 439 | |
| 440 | return result; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * A helper function to fill in a JsonbValue to represent an element of an |
| 445 | * array, or a key or value of an object. |
| 446 | * |
| 447 | * The node's JEntry is at container->children[index], and its variable-length |
| 448 | * data is at base_addr + offset. We make the caller determine the offset |
| 449 | * since in many cases the caller can amortize that work across multiple |
| 450 | * children. When it can't, it can just call getJsonbOffset(). |
| 451 | * |
| 452 | * A nested array or object will be returned as jbvBinary, ie. it won't be |
| 453 | * expanded. |
| 454 | */ |
| 455 | static void |
| 456 | fillJsonbValue(JsonbContainer *container, int index, |
| 457 | char *base_addr, uint32 offset, |
| 458 | JsonbValue *result) |
| 459 | { |
| 460 | JEntry entry = container->children[index]; |
| 461 | |
| 462 | if (JBE_ISNULL(entry)) |
| 463 | { |
| 464 | result->type = jbvNull; |
| 465 | } |
| 466 | else if (JBE_ISSTRING(entry)) |
| 467 | { |
| 468 | result->type = jbvString; |
| 469 | result->val.string.val = base_addr + offset; |
| 470 | result->val.string.len = getJsonbLength(container, index); |
| 471 | Assert(result->val.string.len >= 0); |
| 472 | } |
| 473 | else if (JBE_ISNUMERIC(entry)) |
| 474 | { |
| 475 | result->type = jbvNumeric; |
| 476 | result->val.numeric = (Numeric) (base_addr + INTALIGN(offset)); |
| 477 | } |
| 478 | else if (JBE_ISBOOL_TRUE(entry)) |
| 479 | { |
| 480 | result->type = jbvBool; |
| 481 | result->val.boolean = true; |
| 482 | } |
| 483 | else if (JBE_ISBOOL_FALSE(entry)) |
| 484 | { |
| 485 | result->type = jbvBool; |
| 486 | result->val.boolean = false; |
| 487 | } |
| 488 | else |
| 489 | { |
| 490 | Assert(JBE_ISCONTAINER(entry)); |
| 491 | result->type = jbvBinary; |
| 492 | /* Remove alignment padding from data pointer and length */ |
| 493 | result->val.binary.data = (JsonbContainer *) (base_addr + INTALIGN(offset)); |
| 494 | result->val.binary.len = getJsonbLength(container, index) - |
| 495 | (INTALIGN(offset) - offset); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * Push JsonbValue into JsonbParseState. |
| 501 | * |
| 502 | * Used when parsing JSON tokens to form Jsonb, or when converting an in-memory |
| 503 | * JsonbValue to a Jsonb. |
| 504 | * |
| 505 | * Initial state of *JsonbParseState is NULL, since it'll be allocated here |
| 506 | * originally (caller will get JsonbParseState back by reference). |
| 507 | * |
| 508 | * Only sequential tokens pertaining to non-container types should pass a |
| 509 | * JsonbValue. There is one exception -- WJB_BEGIN_ARRAY callers may pass a |
| 510 | * "raw scalar" pseudo array to append it - the actual scalar should be passed |
| 511 | * next and it will be added as the only member of the array. |
| 512 | * |
| 513 | * Values of type jvbBinary, which are rolled up arrays and objects, |
| 514 | * are unpacked before being added to the result. |
| 515 | */ |
| 516 | JsonbValue * |
| 517 | pushJsonbValue(JsonbParseState **pstate, JsonbIteratorToken seq, |
| 518 | JsonbValue *jbval) |
| 519 | { |
| 520 | JsonbIterator *it; |
| 521 | JsonbValue *res = NULL; |
| 522 | JsonbValue v; |
| 523 | JsonbIteratorToken tok; |
| 524 | |
| 525 | if (!jbval || (seq != WJB_ELEM && seq != WJB_VALUE) || |
| 526 | jbval->type != jbvBinary) |
| 527 | { |
| 528 | /* drop through */ |
| 529 | return pushJsonbValueScalar(pstate, seq, jbval); |
| 530 | } |
| 531 | |
| 532 | /* unpack the binary and add each piece to the pstate */ |
| 533 | it = JsonbIteratorInit(jbval->val.binary.data); |
| 534 | while ((tok = JsonbIteratorNext(&it, &v, false)) != WJB_DONE) |
| 535 | res = pushJsonbValueScalar(pstate, tok, |
| 536 | tok < WJB_BEGIN_ARRAY ? &v : NULL); |
| 537 | |
| 538 | return res; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * Do the actual pushing, with only scalar or pseudo-scalar-array values |
| 543 | * accepted. |
| 544 | */ |
| 545 | static JsonbValue * |
| 546 | pushJsonbValueScalar(JsonbParseState **pstate, JsonbIteratorToken seq, |
| 547 | JsonbValue *scalarVal) |
| 548 | { |
| 549 | JsonbValue *result = NULL; |
| 550 | |
| 551 | switch (seq) |
| 552 | { |
| 553 | case WJB_BEGIN_ARRAY: |
| 554 | Assert(!scalarVal || scalarVal->val.array.rawScalar); |
| 555 | *pstate = pushState(pstate); |
| 556 | result = &(*pstate)->contVal; |
| 557 | (*pstate)->contVal.type = jbvArray; |
| 558 | (*pstate)->contVal.val.array.nElems = 0; |
| 559 | (*pstate)->contVal.val.array.rawScalar = (scalarVal && |
| 560 | scalarVal->val.array.rawScalar); |
| 561 | if (scalarVal && scalarVal->val.array.nElems > 0) |
| 562 | { |
| 563 | /* Assume that this array is still really a scalar */ |
| 564 | Assert(scalarVal->type == jbvArray); |
| 565 | (*pstate)->size = scalarVal->val.array.nElems; |
| 566 | } |
| 567 | else |
| 568 | { |
| 569 | (*pstate)->size = 4; |
| 570 | } |
| 571 | (*pstate)->contVal.val.array.elems = palloc(sizeof(JsonbValue) * |
| 572 | (*pstate)->size); |
| 573 | break; |
| 574 | case WJB_BEGIN_OBJECT: |
| 575 | Assert(!scalarVal); |
| 576 | *pstate = pushState(pstate); |
| 577 | result = &(*pstate)->contVal; |
| 578 | (*pstate)->contVal.type = jbvObject; |
| 579 | (*pstate)->contVal.val.object.nPairs = 0; |
| 580 | (*pstate)->size = 4; |
| 581 | (*pstate)->contVal.val.object.pairs = palloc(sizeof(JsonbPair) * |
| 582 | (*pstate)->size); |
| 583 | break; |
| 584 | case WJB_KEY: |
| 585 | Assert(scalarVal->type == jbvString); |
| 586 | appendKey(*pstate, scalarVal); |
| 587 | break; |
| 588 | case WJB_VALUE: |
| 589 | Assert(IsAJsonbScalar(scalarVal)); |
| 590 | appendValue(*pstate, scalarVal); |
| 591 | break; |
| 592 | case WJB_ELEM: |
| 593 | Assert(IsAJsonbScalar(scalarVal)); |
| 594 | appendElement(*pstate, scalarVal); |
| 595 | break; |
| 596 | case WJB_END_OBJECT: |
| 597 | uniqueifyJsonbObject(&(*pstate)->contVal); |
| 598 | /* fall through! */ |
| 599 | case WJB_END_ARRAY: |
| 600 | /* Steps here common to WJB_END_OBJECT case */ |
| 601 | Assert(!scalarVal); |
| 602 | result = &(*pstate)->contVal; |
| 603 | |
| 604 | /* |
| 605 | * Pop stack and push current array/object as value in parent |
| 606 | * array/object |
| 607 | */ |
| 608 | *pstate = (*pstate)->next; |
| 609 | if (*pstate) |
| 610 | { |
| 611 | switch ((*pstate)->contVal.type) |
| 612 | { |
| 613 | case jbvArray: |
| 614 | appendElement(*pstate, result); |
| 615 | break; |
| 616 | case jbvObject: |
| 617 | appendValue(*pstate, result); |
| 618 | break; |
| 619 | default: |
| 620 | elog(ERROR, "invalid jsonb container type" ); |
| 621 | } |
| 622 | } |
| 623 | break; |
| 624 | default: |
| 625 | elog(ERROR, "unrecognized jsonb sequential processing token" ); |
| 626 | } |
| 627 | |
| 628 | return result; |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * pushJsonbValue() worker: Iteration-like forming of Jsonb |
| 633 | */ |
| 634 | static JsonbParseState * |
| 635 | pushState(JsonbParseState **pstate) |
| 636 | { |
| 637 | JsonbParseState *ns = palloc(sizeof(JsonbParseState)); |
| 638 | |
| 639 | ns->next = *pstate; |
| 640 | return ns; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * pushJsonbValue() worker: Append a pair key to state when generating a Jsonb |
| 645 | */ |
| 646 | static void |
| 647 | appendKey(JsonbParseState *pstate, JsonbValue *string) |
| 648 | { |
| 649 | JsonbValue *object = &pstate->contVal; |
| 650 | |
| 651 | Assert(object->type == jbvObject); |
| 652 | Assert(string->type == jbvString); |
| 653 | |
| 654 | if (object->val.object.nPairs >= JSONB_MAX_PAIRS) |
| 655 | ereport(ERROR, |
| 656 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 657 | errmsg("number of jsonb object pairs exceeds the maximum allowed (%zu)" , |
| 658 | JSONB_MAX_PAIRS))); |
| 659 | |
| 660 | if (object->val.object.nPairs >= pstate->size) |
| 661 | { |
| 662 | pstate->size *= 2; |
| 663 | object->val.object.pairs = repalloc(object->val.object.pairs, |
| 664 | sizeof(JsonbPair) * pstate->size); |
| 665 | } |
| 666 | |
| 667 | object->val.object.pairs[object->val.object.nPairs].key = *string; |
| 668 | object->val.object.pairs[object->val.object.nPairs].order = object->val.object.nPairs; |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * pushJsonbValue() worker: Append a pair value to state when generating a |
| 673 | * Jsonb |
| 674 | */ |
| 675 | static void |
| 676 | appendValue(JsonbParseState *pstate, JsonbValue *scalarVal) |
| 677 | { |
| 678 | JsonbValue *object = &pstate->contVal; |
| 679 | |
| 680 | Assert(object->type == jbvObject); |
| 681 | |
| 682 | object->val.object.pairs[object->val.object.nPairs++].value = *scalarVal; |
| 683 | } |
| 684 | |
| 685 | /* |
| 686 | * pushJsonbValue() worker: Append an element to state when generating a Jsonb |
| 687 | */ |
| 688 | static void |
| 689 | appendElement(JsonbParseState *pstate, JsonbValue *scalarVal) |
| 690 | { |
| 691 | JsonbValue *array = &pstate->contVal; |
| 692 | |
| 693 | Assert(array->type == jbvArray); |
| 694 | |
| 695 | if (array->val.array.nElems >= JSONB_MAX_ELEMS) |
| 696 | ereport(ERROR, |
| 697 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 698 | errmsg("number of jsonb array elements exceeds the maximum allowed (%zu)" , |
| 699 | JSONB_MAX_ELEMS))); |
| 700 | |
| 701 | if (array->val.array.nElems >= pstate->size) |
| 702 | { |
| 703 | pstate->size *= 2; |
| 704 | array->val.array.elems = repalloc(array->val.array.elems, |
| 705 | sizeof(JsonbValue) * pstate->size); |
| 706 | } |
| 707 | |
| 708 | array->val.array.elems[array->val.array.nElems++] = *scalarVal; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * Given a JsonbContainer, expand to JsonbIterator to iterate over items |
| 713 | * fully expanded to in-memory representation for manipulation. |
| 714 | * |
| 715 | * See JsonbIteratorNext() for notes on memory management. |
| 716 | */ |
| 717 | JsonbIterator * |
| 718 | JsonbIteratorInit(JsonbContainer *container) |
| 719 | { |
| 720 | return iteratorFromContainer(container, NULL); |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * Get next JsonbValue while iterating |
| 725 | * |
| 726 | * Caller should initially pass their own, original iterator. They may get |
| 727 | * back a child iterator palloc()'d here instead. The function can be relied |
| 728 | * on to free those child iterators, lest the memory allocated for highly |
| 729 | * nested objects become unreasonable, but only if callers don't end iteration |
| 730 | * early (by breaking upon having found something in a search, for example). |
| 731 | * |
| 732 | * Callers in such a scenario, that are particularly sensitive to leaking |
| 733 | * memory in a long-lived context may walk the ancestral tree from the final |
| 734 | * iterator we left them with to its oldest ancestor, pfree()ing as they go. |
| 735 | * They do not have to free any other memory previously allocated for iterators |
| 736 | * but not accessible as direct ancestors of the iterator they're last passed |
| 737 | * back. |
| 738 | * |
| 739 | * Returns "Jsonb sequential processing" token value. Iterator "state" |
| 740 | * reflects the current stage of the process in a less granular fashion, and is |
| 741 | * mostly used here to track things internally with respect to particular |
| 742 | * iterators. |
| 743 | * |
| 744 | * Clients of this function should not have to handle any jbvBinary values |
| 745 | * (since recursive calls will deal with this), provided skipNested is false. |
| 746 | * It is our job to expand the jbvBinary representation without bothering them |
| 747 | * with it. However, clients should not take it upon themselves to touch array |
| 748 | * or Object element/pair buffers, since their element/pair pointers are |
| 749 | * garbage. Also, *val will not be set when returning WJB_END_ARRAY or |
| 750 | * WJB_END_OBJECT, on the assumption that it's only useful to access values |
| 751 | * when recursing in. |
| 752 | */ |
| 753 | JsonbIteratorToken |
| 754 | JsonbIteratorNext(JsonbIterator **it, JsonbValue *val, bool skipNested) |
| 755 | { |
| 756 | if (*it == NULL) |
| 757 | return WJB_DONE; |
| 758 | |
| 759 | /* |
| 760 | * When stepping into a nested container, we jump back here to start |
| 761 | * processing the child. We will not recurse further in one call, because |
| 762 | * processing the child will always begin in JBI_ARRAY_START or |
| 763 | * JBI_OBJECT_START state. |
| 764 | */ |
| 765 | recurse: |
| 766 | switch ((*it)->state) |
| 767 | { |
| 768 | case JBI_ARRAY_START: |
| 769 | /* Set v to array on first array call */ |
| 770 | val->type = jbvArray; |
| 771 | val->val.array.nElems = (*it)->nElems; |
| 772 | |
| 773 | /* |
| 774 | * v->val.array.elems is not actually set, because we aren't doing |
| 775 | * a full conversion |
| 776 | */ |
| 777 | val->val.array.rawScalar = (*it)->isScalar; |
| 778 | (*it)->curIndex = 0; |
| 779 | (*it)->curDataOffset = 0; |
| 780 | (*it)->curValueOffset = 0; /* not actually used */ |
| 781 | /* Set state for next call */ |
| 782 | (*it)->state = JBI_ARRAY_ELEM; |
| 783 | return WJB_BEGIN_ARRAY; |
| 784 | |
| 785 | case JBI_ARRAY_ELEM: |
| 786 | if ((*it)->curIndex >= (*it)->nElems) |
| 787 | { |
| 788 | /* |
| 789 | * All elements within array already processed. Report this |
| 790 | * to caller, and give it back original parent iterator (which |
| 791 | * independently tracks iteration progress at its level of |
| 792 | * nesting). |
| 793 | */ |
| 794 | *it = freeAndGetParent(*it); |
| 795 | return WJB_END_ARRAY; |
| 796 | } |
| 797 | |
| 798 | fillJsonbValue((*it)->container, (*it)->curIndex, |
| 799 | (*it)->dataProper, (*it)->curDataOffset, |
| 800 | val); |
| 801 | |
| 802 | JBE_ADVANCE_OFFSET((*it)->curDataOffset, |
| 803 | (*it)->children[(*it)->curIndex]); |
| 804 | (*it)->curIndex++; |
| 805 | |
| 806 | if (!IsAJsonbScalar(val) && !skipNested) |
| 807 | { |
| 808 | /* Recurse into container. */ |
| 809 | *it = iteratorFromContainer(val->val.binary.data, *it); |
| 810 | goto recurse; |
| 811 | } |
| 812 | else |
| 813 | { |
| 814 | /* |
| 815 | * Scalar item in array, or a container and caller didn't want |
| 816 | * us to recurse into it. |
| 817 | */ |
| 818 | return WJB_ELEM; |
| 819 | } |
| 820 | |
| 821 | case JBI_OBJECT_START: |
| 822 | /* Set v to object on first object call */ |
| 823 | val->type = jbvObject; |
| 824 | val->val.object.nPairs = (*it)->nElems; |
| 825 | |
| 826 | /* |
| 827 | * v->val.object.pairs is not actually set, because we aren't |
| 828 | * doing a full conversion |
| 829 | */ |
| 830 | (*it)->curIndex = 0; |
| 831 | (*it)->curDataOffset = 0; |
| 832 | (*it)->curValueOffset = getJsonbOffset((*it)->container, |
| 833 | (*it)->nElems); |
| 834 | /* Set state for next call */ |
| 835 | (*it)->state = JBI_OBJECT_KEY; |
| 836 | return WJB_BEGIN_OBJECT; |
| 837 | |
| 838 | case JBI_OBJECT_KEY: |
| 839 | if ((*it)->curIndex >= (*it)->nElems) |
| 840 | { |
| 841 | /* |
| 842 | * All pairs within object already processed. Report this to |
| 843 | * caller, and give it back original containing iterator |
| 844 | * (which independently tracks iteration progress at its level |
| 845 | * of nesting). |
| 846 | */ |
| 847 | *it = freeAndGetParent(*it); |
| 848 | return WJB_END_OBJECT; |
| 849 | } |
| 850 | else |
| 851 | { |
| 852 | /* Return key of a key/value pair. */ |
| 853 | fillJsonbValue((*it)->container, (*it)->curIndex, |
| 854 | (*it)->dataProper, (*it)->curDataOffset, |
| 855 | val); |
| 856 | if (val->type != jbvString) |
| 857 | elog(ERROR, "unexpected jsonb type as object key" ); |
| 858 | |
| 859 | /* Set state for next call */ |
| 860 | (*it)->state = JBI_OBJECT_VALUE; |
| 861 | return WJB_KEY; |
| 862 | } |
| 863 | |
| 864 | case JBI_OBJECT_VALUE: |
| 865 | /* Set state for next call */ |
| 866 | (*it)->state = JBI_OBJECT_KEY; |
| 867 | |
| 868 | fillJsonbValue((*it)->container, (*it)->curIndex + (*it)->nElems, |
| 869 | (*it)->dataProper, (*it)->curValueOffset, |
| 870 | val); |
| 871 | |
| 872 | JBE_ADVANCE_OFFSET((*it)->curDataOffset, |
| 873 | (*it)->children[(*it)->curIndex]); |
| 874 | JBE_ADVANCE_OFFSET((*it)->curValueOffset, |
| 875 | (*it)->children[(*it)->curIndex + (*it)->nElems]); |
| 876 | (*it)->curIndex++; |
| 877 | |
| 878 | /* |
| 879 | * Value may be a container, in which case we recurse with new, |
| 880 | * child iterator (unless the caller asked not to, by passing |
| 881 | * skipNested). |
| 882 | */ |
| 883 | if (!IsAJsonbScalar(val) && !skipNested) |
| 884 | { |
| 885 | *it = iteratorFromContainer(val->val.binary.data, *it); |
| 886 | goto recurse; |
| 887 | } |
| 888 | else |
| 889 | return WJB_VALUE; |
| 890 | } |
| 891 | |
| 892 | elog(ERROR, "invalid iterator state" ); |
| 893 | return -1; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Initialize an iterator for iterating all elements in a container. |
| 898 | */ |
| 899 | static JsonbIterator * |
| 900 | iteratorFromContainer(JsonbContainer *container, JsonbIterator *parent) |
| 901 | { |
| 902 | JsonbIterator *it; |
| 903 | |
| 904 | it = palloc0(sizeof(JsonbIterator)); |
| 905 | it->container = container; |
| 906 | it->parent = parent; |
| 907 | it->nElems = JsonContainerSize(container); |
| 908 | |
| 909 | /* Array starts just after header */ |
| 910 | it->children = container->children; |
| 911 | |
| 912 | switch (container->header & (JB_FARRAY | JB_FOBJECT)) |
| 913 | { |
| 914 | case JB_FARRAY: |
| 915 | it->dataProper = |
| 916 | (char *) it->children + it->nElems * sizeof(JEntry); |
| 917 | it->isScalar = JsonContainerIsScalar(container); |
| 918 | /* This is either a "raw scalar", or an array */ |
| 919 | Assert(!it->isScalar || it->nElems == 1); |
| 920 | |
| 921 | it->state = JBI_ARRAY_START; |
| 922 | break; |
| 923 | |
| 924 | case JB_FOBJECT: |
| 925 | it->dataProper = |
| 926 | (char *) it->children + it->nElems * sizeof(JEntry) * 2; |
| 927 | it->state = JBI_OBJECT_START; |
| 928 | break; |
| 929 | |
| 930 | default: |
| 931 | elog(ERROR, "unknown type of jsonb container" ); |
| 932 | } |
| 933 | |
| 934 | return it; |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | * JsonbIteratorNext() worker: Return parent, while freeing memory for current |
| 939 | * iterator |
| 940 | */ |
| 941 | static JsonbIterator * |
| 942 | freeAndGetParent(JsonbIterator *it) |
| 943 | { |
| 944 | JsonbIterator *v = it->parent; |
| 945 | |
| 946 | pfree(it); |
| 947 | return v; |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * Worker for "contains" operator's function |
| 952 | * |
| 953 | * Formally speaking, containment is top-down, unordered subtree isomorphism. |
| 954 | * |
| 955 | * Takes iterators that belong to some container type. These iterators |
| 956 | * "belong" to those values in the sense that they've just been initialized in |
| 957 | * respect of them by the caller (perhaps in a nested fashion). |
| 958 | * |
| 959 | * "val" is lhs Jsonb, and mContained is rhs Jsonb when called from top level. |
| 960 | * We determine if mContained is contained within val. |
| 961 | */ |
| 962 | bool |
| 963 | JsonbDeepContains(JsonbIterator **val, JsonbIterator **mContained) |
| 964 | { |
| 965 | JsonbValue vval, |
| 966 | vcontained; |
| 967 | JsonbIteratorToken rval, |
| 968 | rcont; |
| 969 | |
| 970 | /* |
| 971 | * Guard against stack overflow due to overly complex Jsonb. |
| 972 | * |
| 973 | * Functions called here independently take this precaution, but that |
| 974 | * might not be sufficient since this is also a recursive function. |
| 975 | */ |
| 976 | check_stack_depth(); |
| 977 | |
| 978 | rval = JsonbIteratorNext(val, &vval, false); |
| 979 | rcont = JsonbIteratorNext(mContained, &vcontained, false); |
| 980 | |
| 981 | if (rval != rcont) |
| 982 | { |
| 983 | /* |
| 984 | * The differing return values can immediately be taken as indicating |
| 985 | * two differing container types at this nesting level, which is |
| 986 | * sufficient reason to give up entirely (but it should be the case |
| 987 | * that they're both some container type). |
| 988 | */ |
| 989 | Assert(rval == WJB_BEGIN_OBJECT || rval == WJB_BEGIN_ARRAY); |
| 990 | Assert(rcont == WJB_BEGIN_OBJECT || rcont == WJB_BEGIN_ARRAY); |
| 991 | return false; |
| 992 | } |
| 993 | else if (rcont == WJB_BEGIN_OBJECT) |
| 994 | { |
| 995 | Assert(vval.type == jbvObject); |
| 996 | Assert(vcontained.type == jbvObject); |
| 997 | |
| 998 | /* |
| 999 | * If the lhs has fewer pairs than the rhs, it can't possibly contain |
| 1000 | * the rhs. (This conclusion is safe only because we de-duplicate |
| 1001 | * keys in all Jsonb objects; thus there can be no corresponding |
| 1002 | * optimization in the array case.) The case probably won't arise |
| 1003 | * often, but since it's such a cheap check we may as well make it. |
| 1004 | */ |
| 1005 | if (vval.val.object.nPairs < vcontained.val.object.nPairs) |
| 1006 | return false; |
| 1007 | |
| 1008 | /* Work through rhs "is it contained within?" object */ |
| 1009 | for (;;) |
| 1010 | { |
| 1011 | JsonbValue *lhsVal; /* lhsVal is from pair in lhs object */ |
| 1012 | |
| 1013 | rcont = JsonbIteratorNext(mContained, &vcontained, false); |
| 1014 | |
| 1015 | /* |
| 1016 | * When we get through caller's rhs "is it contained within?" |
| 1017 | * object without failing to find one of its values, it's |
| 1018 | * contained. |
| 1019 | */ |
| 1020 | if (rcont == WJB_END_OBJECT) |
| 1021 | return true; |
| 1022 | |
| 1023 | Assert(rcont == WJB_KEY); |
| 1024 | |
| 1025 | /* First, find value by key... */ |
| 1026 | lhsVal = findJsonbValueFromContainer((*val)->container, |
| 1027 | JB_FOBJECT, |
| 1028 | &vcontained); |
| 1029 | |
| 1030 | if (!lhsVal) |
| 1031 | return false; |
| 1032 | |
| 1033 | /* |
| 1034 | * ...at this stage it is apparent that there is at least a key |
| 1035 | * match for this rhs pair. |
| 1036 | */ |
| 1037 | rcont = JsonbIteratorNext(mContained, &vcontained, true); |
| 1038 | |
| 1039 | Assert(rcont == WJB_VALUE); |
| 1040 | |
| 1041 | /* |
| 1042 | * Compare rhs pair's value with lhs pair's value just found using |
| 1043 | * key |
| 1044 | */ |
| 1045 | if (lhsVal->type != vcontained.type) |
| 1046 | { |
| 1047 | return false; |
| 1048 | } |
| 1049 | else if (IsAJsonbScalar(lhsVal)) |
| 1050 | { |
| 1051 | if (!equalsJsonbScalarValue(lhsVal, &vcontained)) |
| 1052 | return false; |
| 1053 | } |
| 1054 | else |
| 1055 | { |
| 1056 | /* Nested container value (object or array) */ |
| 1057 | JsonbIterator *nestval, |
| 1058 | *nestContained; |
| 1059 | |
| 1060 | Assert(lhsVal->type == jbvBinary); |
| 1061 | Assert(vcontained.type == jbvBinary); |
| 1062 | |
| 1063 | nestval = JsonbIteratorInit(lhsVal->val.binary.data); |
| 1064 | nestContained = JsonbIteratorInit(vcontained.val.binary.data); |
| 1065 | |
| 1066 | /* |
| 1067 | * Match "value" side of rhs datum object's pair recursively. |
| 1068 | * It's a nested structure. |
| 1069 | * |
| 1070 | * Note that nesting still has to "match up" at the right |
| 1071 | * nesting sub-levels. However, there need only be zero or |
| 1072 | * more matching pairs (or elements) at each nesting level |
| 1073 | * (provided the *rhs* pairs/elements *all* match on each |
| 1074 | * level), which enables searching nested structures for a |
| 1075 | * single String or other primitive type sub-datum quite |
| 1076 | * effectively (provided the user constructed the rhs nested |
| 1077 | * structure such that we "know where to look"). |
| 1078 | * |
| 1079 | * In other words, the mapping of container nodes in the rhs |
| 1080 | * "vcontained" Jsonb to internal nodes on the lhs is |
| 1081 | * injective, and parent-child edges on the rhs must be mapped |
| 1082 | * to parent-child edges on the lhs to satisfy the condition |
| 1083 | * of containment (plus of course the mapped nodes must be |
| 1084 | * equal). |
| 1085 | */ |
| 1086 | if (!JsonbDeepContains(&nestval, &nestContained)) |
| 1087 | return false; |
| 1088 | } |
| 1089 | } |
| 1090 | } |
| 1091 | else if (rcont == WJB_BEGIN_ARRAY) |
| 1092 | { |
| 1093 | JsonbValue *lhsConts = NULL; |
| 1094 | uint32 nLhsElems = vval.val.array.nElems; |
| 1095 | |
| 1096 | Assert(vval.type == jbvArray); |
| 1097 | Assert(vcontained.type == jbvArray); |
| 1098 | |
| 1099 | /* |
| 1100 | * Handle distinction between "raw scalar" pseudo arrays, and real |
| 1101 | * arrays. |
| 1102 | * |
| 1103 | * A raw scalar may contain another raw scalar, and an array may |
| 1104 | * contain a raw scalar, but a raw scalar may not contain an array. We |
| 1105 | * don't do something like this for the object case, since objects can |
| 1106 | * only contain pairs, never raw scalars (a pair is represented by an |
| 1107 | * rhs object argument with a single contained pair). |
| 1108 | */ |
| 1109 | if (vval.val.array.rawScalar && !vcontained.val.array.rawScalar) |
| 1110 | return false; |
| 1111 | |
| 1112 | /* Work through rhs "is it contained within?" array */ |
| 1113 | for (;;) |
| 1114 | { |
| 1115 | rcont = JsonbIteratorNext(mContained, &vcontained, true); |
| 1116 | |
| 1117 | /* |
| 1118 | * When we get through caller's rhs "is it contained within?" |
| 1119 | * array without failing to find one of its values, it's |
| 1120 | * contained. |
| 1121 | */ |
| 1122 | if (rcont == WJB_END_ARRAY) |
| 1123 | return true; |
| 1124 | |
| 1125 | Assert(rcont == WJB_ELEM); |
| 1126 | |
| 1127 | if (IsAJsonbScalar(&vcontained)) |
| 1128 | { |
| 1129 | if (!findJsonbValueFromContainer((*val)->container, |
| 1130 | JB_FARRAY, |
| 1131 | &vcontained)) |
| 1132 | return false; |
| 1133 | } |
| 1134 | else |
| 1135 | { |
| 1136 | uint32 i; |
| 1137 | |
| 1138 | /* |
| 1139 | * If this is first container found in rhs array (at this |
| 1140 | * depth), initialize temp lhs array of containers |
| 1141 | */ |
| 1142 | if (lhsConts == NULL) |
| 1143 | { |
| 1144 | uint32 j = 0; |
| 1145 | |
| 1146 | /* Make room for all possible values */ |
| 1147 | lhsConts = palloc(sizeof(JsonbValue) * nLhsElems); |
| 1148 | |
| 1149 | for (i = 0; i < nLhsElems; i++) |
| 1150 | { |
| 1151 | /* Store all lhs elements in temp array */ |
| 1152 | rcont = JsonbIteratorNext(val, &vval, true); |
| 1153 | Assert(rcont == WJB_ELEM); |
| 1154 | |
| 1155 | if (vval.type == jbvBinary) |
| 1156 | lhsConts[j++] = vval; |
| 1157 | } |
| 1158 | |
| 1159 | /* No container elements in temp array, so give up now */ |
| 1160 | if (j == 0) |
| 1161 | return false; |
| 1162 | |
| 1163 | /* We may have only partially filled array */ |
| 1164 | nLhsElems = j; |
| 1165 | } |
| 1166 | |
| 1167 | /* XXX: Nested array containment is O(N^2) */ |
| 1168 | for (i = 0; i < nLhsElems; i++) |
| 1169 | { |
| 1170 | /* Nested container value (object or array) */ |
| 1171 | JsonbIterator *nestval, |
| 1172 | *nestContained; |
| 1173 | bool contains; |
| 1174 | |
| 1175 | nestval = JsonbIteratorInit(lhsConts[i].val.binary.data); |
| 1176 | nestContained = JsonbIteratorInit(vcontained.val.binary.data); |
| 1177 | |
| 1178 | contains = JsonbDeepContains(&nestval, &nestContained); |
| 1179 | |
| 1180 | if (nestval) |
| 1181 | pfree(nestval); |
| 1182 | if (nestContained) |
| 1183 | pfree(nestContained); |
| 1184 | if (contains) |
| 1185 | break; |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | * Report rhs container value is not contained if couldn't |
| 1190 | * match rhs container to *some* lhs cont |
| 1191 | */ |
| 1192 | if (i == nLhsElems) |
| 1193 | return false; |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | else |
| 1198 | { |
| 1199 | elog(ERROR, "invalid jsonb container type" ); |
| 1200 | } |
| 1201 | |
| 1202 | elog(ERROR, "unexpectedly fell off end of jsonb container" ); |
| 1203 | return false; |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * Hash a JsonbValue scalar value, mixing the hash value into an existing |
| 1208 | * hash provided by the caller. |
| 1209 | * |
| 1210 | * Some callers may wish to independently XOR in JB_FOBJECT and JB_FARRAY |
| 1211 | * flags. |
| 1212 | */ |
| 1213 | void |
| 1214 | JsonbHashScalarValue(const JsonbValue *scalarVal, uint32 *hash) |
| 1215 | { |
| 1216 | uint32 tmp; |
| 1217 | |
| 1218 | /* Compute hash value for scalarVal */ |
| 1219 | switch (scalarVal->type) |
| 1220 | { |
| 1221 | case jbvNull: |
| 1222 | tmp = 0x01; |
| 1223 | break; |
| 1224 | case jbvString: |
| 1225 | tmp = DatumGetUInt32(hash_any((const unsigned char *) scalarVal->val.string.val, |
| 1226 | scalarVal->val.string.len)); |
| 1227 | break; |
| 1228 | case jbvNumeric: |
| 1229 | /* Must hash equal numerics to equal hash codes */ |
| 1230 | tmp = DatumGetUInt32(DirectFunctionCall1(hash_numeric, |
| 1231 | NumericGetDatum(scalarVal->val.numeric))); |
| 1232 | break; |
| 1233 | case jbvBool: |
| 1234 | tmp = scalarVal->val.boolean ? 0x02 : 0x04; |
| 1235 | |
| 1236 | break; |
| 1237 | default: |
| 1238 | elog(ERROR, "invalid jsonb scalar type" ); |
| 1239 | tmp = 0; /* keep compiler quiet */ |
| 1240 | break; |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * Combine hash values of successive keys, values and elements by rotating |
| 1245 | * the previous value left 1 bit, then XOR'ing in the new |
| 1246 | * key/value/element's hash value. |
| 1247 | */ |
| 1248 | *hash = (*hash << 1) | (*hash >> 31); |
| 1249 | *hash ^= tmp; |
| 1250 | } |
| 1251 | |
| 1252 | /* |
| 1253 | * Hash a value to a 64-bit value, with a seed. Otherwise, similar to |
| 1254 | * JsonbHashScalarValue. |
| 1255 | */ |
| 1256 | void |
| 1257 | JsonbHashScalarValueExtended(const JsonbValue *scalarVal, uint64 *hash, |
| 1258 | uint64 seed) |
| 1259 | { |
| 1260 | uint64 tmp; |
| 1261 | |
| 1262 | switch (scalarVal->type) |
| 1263 | { |
| 1264 | case jbvNull: |
| 1265 | tmp = seed + 0x01; |
| 1266 | break; |
| 1267 | case jbvString: |
| 1268 | tmp = DatumGetUInt64(hash_any_extended((const unsigned char *) scalarVal->val.string.val, |
| 1269 | scalarVal->val.string.len, |
| 1270 | seed)); |
| 1271 | break; |
| 1272 | case jbvNumeric: |
| 1273 | tmp = DatumGetUInt64(DirectFunctionCall2(hash_numeric_extended, |
| 1274 | NumericGetDatum(scalarVal->val.numeric), |
| 1275 | UInt64GetDatum(seed))); |
| 1276 | break; |
| 1277 | case jbvBool: |
| 1278 | if (seed) |
| 1279 | tmp = DatumGetUInt64(DirectFunctionCall2(hashcharextended, |
| 1280 | BoolGetDatum(scalarVal->val.boolean), |
| 1281 | UInt64GetDatum(seed))); |
| 1282 | else |
| 1283 | tmp = scalarVal->val.boolean ? 0x02 : 0x04; |
| 1284 | |
| 1285 | break; |
| 1286 | default: |
| 1287 | elog(ERROR, "invalid jsonb scalar type" ); |
| 1288 | break; |
| 1289 | } |
| 1290 | |
| 1291 | *hash = ROTATE_HIGH_AND_LOW_32BITS(*hash); |
| 1292 | *hash ^= tmp; |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * Are two scalar JsonbValues of the same type a and b equal? |
| 1297 | */ |
| 1298 | static bool |
| 1299 | equalsJsonbScalarValue(JsonbValue *aScalar, JsonbValue *bScalar) |
| 1300 | { |
| 1301 | if (aScalar->type == bScalar->type) |
| 1302 | { |
| 1303 | switch (aScalar->type) |
| 1304 | { |
| 1305 | case jbvNull: |
| 1306 | return true; |
| 1307 | case jbvString: |
| 1308 | return lengthCompareJsonbStringValue(aScalar, bScalar) == 0; |
| 1309 | case jbvNumeric: |
| 1310 | return DatumGetBool(DirectFunctionCall2(numeric_eq, |
| 1311 | PointerGetDatum(aScalar->val.numeric), |
| 1312 | PointerGetDatum(bScalar->val.numeric))); |
| 1313 | case jbvBool: |
| 1314 | return aScalar->val.boolean == bScalar->val.boolean; |
| 1315 | |
| 1316 | default: |
| 1317 | elog(ERROR, "invalid jsonb scalar type" ); |
| 1318 | } |
| 1319 | } |
| 1320 | elog(ERROR, "jsonb scalar type mismatch" ); |
| 1321 | return false; |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Compare two scalar JsonbValues, returning -1, 0, or 1. |
| 1326 | * |
| 1327 | * Strings are compared using the default collation. Used by B-tree |
| 1328 | * operators, where a lexical sort order is generally expected. |
| 1329 | */ |
| 1330 | static int |
| 1331 | compareJsonbScalarValue(JsonbValue *aScalar, JsonbValue *bScalar) |
| 1332 | { |
| 1333 | if (aScalar->type == bScalar->type) |
| 1334 | { |
| 1335 | switch (aScalar->type) |
| 1336 | { |
| 1337 | case jbvNull: |
| 1338 | return 0; |
| 1339 | case jbvString: |
| 1340 | return varstr_cmp(aScalar->val.string.val, |
| 1341 | aScalar->val.string.len, |
| 1342 | bScalar->val.string.val, |
| 1343 | bScalar->val.string.len, |
| 1344 | DEFAULT_COLLATION_OID); |
| 1345 | case jbvNumeric: |
| 1346 | return DatumGetInt32(DirectFunctionCall2(numeric_cmp, |
| 1347 | PointerGetDatum(aScalar->val.numeric), |
| 1348 | PointerGetDatum(bScalar->val.numeric))); |
| 1349 | case jbvBool: |
| 1350 | if (aScalar->val.boolean == bScalar->val.boolean) |
| 1351 | return 0; |
| 1352 | else if (aScalar->val.boolean > bScalar->val.boolean) |
| 1353 | return 1; |
| 1354 | else |
| 1355 | return -1; |
| 1356 | default: |
| 1357 | elog(ERROR, "invalid jsonb scalar type" ); |
| 1358 | } |
| 1359 | } |
| 1360 | elog(ERROR, "jsonb scalar type mismatch" ); |
| 1361 | return -1; |
| 1362 | } |
| 1363 | |
| 1364 | |
| 1365 | /* |
| 1366 | * Functions for manipulating the resizable buffer used by convertJsonb and |
| 1367 | * its subroutines. |
| 1368 | */ |
| 1369 | |
| 1370 | /* |
| 1371 | * Reserve 'len' bytes, at the end of the buffer, enlarging it if necessary. |
| 1372 | * Returns the offset to the reserved area. The caller is expected to fill |
| 1373 | * the reserved area later with copyToBuffer(). |
| 1374 | */ |
| 1375 | static int |
| 1376 | reserveFromBuffer(StringInfo buffer, int len) |
| 1377 | { |
| 1378 | int offset; |
| 1379 | |
| 1380 | /* Make more room if needed */ |
| 1381 | enlargeStringInfo(buffer, len); |
| 1382 | |
| 1383 | /* remember current offset */ |
| 1384 | offset = buffer->len; |
| 1385 | |
| 1386 | /* reserve the space */ |
| 1387 | buffer->len += len; |
| 1388 | |
| 1389 | /* |
| 1390 | * Keep a trailing null in place, even though it's not useful for us; it |
| 1391 | * seems best to preserve the invariants of StringInfos. |
| 1392 | */ |
| 1393 | buffer->data[buffer->len] = '\0'; |
| 1394 | |
| 1395 | return offset; |
| 1396 | } |
| 1397 | |
| 1398 | /* |
| 1399 | * Copy 'len' bytes to a previously reserved area in buffer. |
| 1400 | */ |
| 1401 | static void |
| 1402 | copyToBuffer(StringInfo buffer, int offset, const char *data, int len) |
| 1403 | { |
| 1404 | memcpy(buffer->data + offset, data, len); |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | * A shorthand for reserveFromBuffer + copyToBuffer. |
| 1409 | */ |
| 1410 | static void |
| 1411 | appendToBuffer(StringInfo buffer, const char *data, int len) |
| 1412 | { |
| 1413 | int offset; |
| 1414 | |
| 1415 | offset = reserveFromBuffer(buffer, len); |
| 1416 | copyToBuffer(buffer, offset, data, len); |
| 1417 | } |
| 1418 | |
| 1419 | |
| 1420 | /* |
| 1421 | * Append padding, so that the length of the StringInfo is int-aligned. |
| 1422 | * Returns the number of padding bytes appended. |
| 1423 | */ |
| 1424 | static short |
| 1425 | padBufferToInt(StringInfo buffer) |
| 1426 | { |
| 1427 | int padlen, |
| 1428 | p, |
| 1429 | offset; |
| 1430 | |
| 1431 | padlen = INTALIGN(buffer->len) - buffer->len; |
| 1432 | |
| 1433 | offset = reserveFromBuffer(buffer, padlen); |
| 1434 | |
| 1435 | /* padlen must be small, so this is probably faster than a memset */ |
| 1436 | for (p = 0; p < padlen; p++) |
| 1437 | buffer->data[offset + p] = '\0'; |
| 1438 | |
| 1439 | return padlen; |
| 1440 | } |
| 1441 | |
| 1442 | /* |
| 1443 | * Given a JsonbValue, convert to Jsonb. The result is palloc'd. |
| 1444 | */ |
| 1445 | static Jsonb * |
| 1446 | convertToJsonb(JsonbValue *val) |
| 1447 | { |
| 1448 | StringInfoData buffer; |
| 1449 | JEntry jentry; |
| 1450 | Jsonb *res; |
| 1451 | |
| 1452 | /* Should not already have binary representation */ |
| 1453 | Assert(val->type != jbvBinary); |
| 1454 | |
| 1455 | /* Allocate an output buffer. It will be enlarged as needed */ |
| 1456 | initStringInfo(&buffer); |
| 1457 | |
| 1458 | /* Make room for the varlena header */ |
| 1459 | reserveFromBuffer(&buffer, VARHDRSZ); |
| 1460 | |
| 1461 | convertJsonbValue(&buffer, &jentry, val, 0); |
| 1462 | |
| 1463 | /* |
| 1464 | * Note: the JEntry of the root is discarded. Therefore the root |
| 1465 | * JsonbContainer struct must contain enough information to tell what kind |
| 1466 | * of value it is. |
| 1467 | */ |
| 1468 | |
| 1469 | res = (Jsonb *) buffer.data; |
| 1470 | |
| 1471 | SET_VARSIZE(res, buffer.len); |
| 1472 | |
| 1473 | return res; |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * Subroutine of convertJsonb: serialize a single JsonbValue into buffer. |
| 1478 | * |
| 1479 | * The JEntry header for this node is returned in *header. It is filled in |
| 1480 | * with the length of this value and appropriate type bits. If we wish to |
| 1481 | * store an end offset rather than a length, it is the caller's responsibility |
| 1482 | * to adjust for that. |
| 1483 | * |
| 1484 | * If the value is an array or an object, this recurses. 'level' is only used |
| 1485 | * for debugging purposes. |
| 1486 | */ |
| 1487 | static void |
| 1488 | convertJsonbValue(StringInfo buffer, JEntry *, JsonbValue *val, int level) |
| 1489 | { |
| 1490 | check_stack_depth(); |
| 1491 | |
| 1492 | if (!val) |
| 1493 | return; |
| 1494 | |
| 1495 | /* |
| 1496 | * A JsonbValue passed as val should never have a type of jbvBinary, and |
| 1497 | * neither should any of its sub-components. Those values will be produced |
| 1498 | * by convertJsonbArray and convertJsonbObject, the results of which will |
| 1499 | * not be passed back to this function as an argument. |
| 1500 | */ |
| 1501 | |
| 1502 | if (IsAJsonbScalar(val)) |
| 1503 | convertJsonbScalar(buffer, header, val); |
| 1504 | else if (val->type == jbvArray) |
| 1505 | convertJsonbArray(buffer, header, val, level); |
| 1506 | else if (val->type == jbvObject) |
| 1507 | convertJsonbObject(buffer, header, val, level); |
| 1508 | else |
| 1509 | elog(ERROR, "unknown type of jsonb container to convert" ); |
| 1510 | } |
| 1511 | |
| 1512 | static void |
| 1513 | convertJsonbArray(StringInfo buffer, JEntry *, JsonbValue *val, int level) |
| 1514 | { |
| 1515 | int base_offset; |
| 1516 | int jentry_offset; |
| 1517 | int i; |
| 1518 | int totallen; |
| 1519 | uint32 ; |
| 1520 | int nElems = val->val.array.nElems; |
| 1521 | |
| 1522 | /* Remember where in the buffer this array starts. */ |
| 1523 | base_offset = buffer->len; |
| 1524 | |
| 1525 | /* Align to 4-byte boundary (any padding counts as part of my data) */ |
| 1526 | padBufferToInt(buffer); |
| 1527 | |
| 1528 | /* |
| 1529 | * Construct the header Jentry and store it in the beginning of the |
| 1530 | * variable-length payload. |
| 1531 | */ |
| 1532 | header = nElems | JB_FARRAY; |
| 1533 | if (val->val.array.rawScalar) |
| 1534 | { |
| 1535 | Assert(nElems == 1); |
| 1536 | Assert(level == 0); |
| 1537 | header |= JB_FSCALAR; |
| 1538 | } |
| 1539 | |
| 1540 | appendToBuffer(buffer, (char *) &header, sizeof(uint32)); |
| 1541 | |
| 1542 | /* Reserve space for the JEntries of the elements. */ |
| 1543 | jentry_offset = reserveFromBuffer(buffer, sizeof(JEntry) * nElems); |
| 1544 | |
| 1545 | totallen = 0; |
| 1546 | for (i = 0; i < nElems; i++) |
| 1547 | { |
| 1548 | JsonbValue *elem = &val->val.array.elems[i]; |
| 1549 | int len; |
| 1550 | JEntry meta; |
| 1551 | |
| 1552 | /* |
| 1553 | * Convert element, producing a JEntry and appending its |
| 1554 | * variable-length data to buffer |
| 1555 | */ |
| 1556 | convertJsonbValue(buffer, &meta, elem, level + 1); |
| 1557 | |
| 1558 | len = JBE_OFFLENFLD(meta); |
| 1559 | totallen += len; |
| 1560 | |
| 1561 | /* |
| 1562 | * Bail out if total variable-length data exceeds what will fit in a |
| 1563 | * JEntry length field. We check this in each iteration, not just |
| 1564 | * once at the end, to forestall possible integer overflow. |
| 1565 | */ |
| 1566 | if (totallen > JENTRY_OFFLENMASK) |
| 1567 | ereport(ERROR, |
| 1568 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1569 | errmsg("total size of jsonb array elements exceeds the maximum of %u bytes" , |
| 1570 | JENTRY_OFFLENMASK))); |
| 1571 | |
| 1572 | /* |
| 1573 | * Convert each JB_OFFSET_STRIDE'th length to an offset. |
| 1574 | */ |
| 1575 | if ((i % JB_OFFSET_STRIDE) == 0) |
| 1576 | meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF; |
| 1577 | |
| 1578 | copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry)); |
| 1579 | jentry_offset += sizeof(JEntry); |
| 1580 | } |
| 1581 | |
| 1582 | /* Total data size is everything we've appended to buffer */ |
| 1583 | totallen = buffer->len - base_offset; |
| 1584 | |
| 1585 | /* Check length again, since we didn't include the metadata above */ |
| 1586 | if (totallen > JENTRY_OFFLENMASK) |
| 1587 | ereport(ERROR, |
| 1588 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1589 | errmsg("total size of jsonb array elements exceeds the maximum of %u bytes" , |
| 1590 | JENTRY_OFFLENMASK))); |
| 1591 | |
| 1592 | /* Initialize the header of this node in the container's JEntry array */ |
| 1593 | *pheader = JENTRY_ISCONTAINER | totallen; |
| 1594 | } |
| 1595 | |
| 1596 | static void |
| 1597 | convertJsonbObject(StringInfo buffer, JEntry *, JsonbValue *val, int level) |
| 1598 | { |
| 1599 | int base_offset; |
| 1600 | int jentry_offset; |
| 1601 | int i; |
| 1602 | int totallen; |
| 1603 | uint32 ; |
| 1604 | int nPairs = val->val.object.nPairs; |
| 1605 | |
| 1606 | /* Remember where in the buffer this object starts. */ |
| 1607 | base_offset = buffer->len; |
| 1608 | |
| 1609 | /* Align to 4-byte boundary (any padding counts as part of my data) */ |
| 1610 | padBufferToInt(buffer); |
| 1611 | |
| 1612 | /* |
| 1613 | * Construct the header Jentry and store it in the beginning of the |
| 1614 | * variable-length payload. |
| 1615 | */ |
| 1616 | header = nPairs | JB_FOBJECT; |
| 1617 | appendToBuffer(buffer, (char *) &header, sizeof(uint32)); |
| 1618 | |
| 1619 | /* Reserve space for the JEntries of the keys and values. */ |
| 1620 | jentry_offset = reserveFromBuffer(buffer, sizeof(JEntry) * nPairs * 2); |
| 1621 | |
| 1622 | /* |
| 1623 | * Iterate over the keys, then over the values, since that is the ordering |
| 1624 | * we want in the on-disk representation. |
| 1625 | */ |
| 1626 | totallen = 0; |
| 1627 | for (i = 0; i < nPairs; i++) |
| 1628 | { |
| 1629 | JsonbPair *pair = &val->val.object.pairs[i]; |
| 1630 | int len; |
| 1631 | JEntry meta; |
| 1632 | |
| 1633 | /* |
| 1634 | * Convert key, producing a JEntry and appending its variable-length |
| 1635 | * data to buffer |
| 1636 | */ |
| 1637 | convertJsonbScalar(buffer, &meta, &pair->key); |
| 1638 | |
| 1639 | len = JBE_OFFLENFLD(meta); |
| 1640 | totallen += len; |
| 1641 | |
| 1642 | /* |
| 1643 | * Bail out if total variable-length data exceeds what will fit in a |
| 1644 | * JEntry length field. We check this in each iteration, not just |
| 1645 | * once at the end, to forestall possible integer overflow. |
| 1646 | */ |
| 1647 | if (totallen > JENTRY_OFFLENMASK) |
| 1648 | ereport(ERROR, |
| 1649 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1650 | errmsg("total size of jsonb object elements exceeds the maximum of %u bytes" , |
| 1651 | JENTRY_OFFLENMASK))); |
| 1652 | |
| 1653 | /* |
| 1654 | * Convert each JB_OFFSET_STRIDE'th length to an offset. |
| 1655 | */ |
| 1656 | if ((i % JB_OFFSET_STRIDE) == 0) |
| 1657 | meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF; |
| 1658 | |
| 1659 | copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry)); |
| 1660 | jentry_offset += sizeof(JEntry); |
| 1661 | } |
| 1662 | for (i = 0; i < nPairs; i++) |
| 1663 | { |
| 1664 | JsonbPair *pair = &val->val.object.pairs[i]; |
| 1665 | int len; |
| 1666 | JEntry meta; |
| 1667 | |
| 1668 | /* |
| 1669 | * Convert value, producing a JEntry and appending its variable-length |
| 1670 | * data to buffer |
| 1671 | */ |
| 1672 | convertJsonbValue(buffer, &meta, &pair->value, level + 1); |
| 1673 | |
| 1674 | len = JBE_OFFLENFLD(meta); |
| 1675 | totallen += len; |
| 1676 | |
| 1677 | /* |
| 1678 | * Bail out if total variable-length data exceeds what will fit in a |
| 1679 | * JEntry length field. We check this in each iteration, not just |
| 1680 | * once at the end, to forestall possible integer overflow. |
| 1681 | */ |
| 1682 | if (totallen > JENTRY_OFFLENMASK) |
| 1683 | ereport(ERROR, |
| 1684 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1685 | errmsg("total size of jsonb object elements exceeds the maximum of %u bytes" , |
| 1686 | JENTRY_OFFLENMASK))); |
| 1687 | |
| 1688 | /* |
| 1689 | * Convert each JB_OFFSET_STRIDE'th length to an offset. |
| 1690 | */ |
| 1691 | if (((i + nPairs) % JB_OFFSET_STRIDE) == 0) |
| 1692 | meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF; |
| 1693 | |
| 1694 | copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry)); |
| 1695 | jentry_offset += sizeof(JEntry); |
| 1696 | } |
| 1697 | |
| 1698 | /* Total data size is everything we've appended to buffer */ |
| 1699 | totallen = buffer->len - base_offset; |
| 1700 | |
| 1701 | /* Check length again, since we didn't include the metadata above */ |
| 1702 | if (totallen > JENTRY_OFFLENMASK) |
| 1703 | ereport(ERROR, |
| 1704 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1705 | errmsg("total size of jsonb object elements exceeds the maximum of %u bytes" , |
| 1706 | JENTRY_OFFLENMASK))); |
| 1707 | |
| 1708 | /* Initialize the header of this node in the container's JEntry array */ |
| 1709 | *pheader = JENTRY_ISCONTAINER | totallen; |
| 1710 | } |
| 1711 | |
| 1712 | static void |
| 1713 | convertJsonbScalar(StringInfo buffer, JEntry *jentry, JsonbValue *scalarVal) |
| 1714 | { |
| 1715 | int numlen; |
| 1716 | short padlen; |
| 1717 | |
| 1718 | switch (scalarVal->type) |
| 1719 | { |
| 1720 | case jbvNull: |
| 1721 | *jentry = JENTRY_ISNULL; |
| 1722 | break; |
| 1723 | |
| 1724 | case jbvString: |
| 1725 | appendToBuffer(buffer, scalarVal->val.string.val, scalarVal->val.string.len); |
| 1726 | |
| 1727 | *jentry = scalarVal->val.string.len; |
| 1728 | break; |
| 1729 | |
| 1730 | case jbvNumeric: |
| 1731 | /* replace numeric NaN with string "NaN" */ |
| 1732 | if (numeric_is_nan(scalarVal->val.numeric)) |
| 1733 | { |
| 1734 | appendToBuffer(buffer, "NaN" , 3); |
| 1735 | *jentry = 3; |
| 1736 | break; |
| 1737 | } |
| 1738 | |
| 1739 | numlen = VARSIZE_ANY(scalarVal->val.numeric); |
| 1740 | padlen = padBufferToInt(buffer); |
| 1741 | |
| 1742 | appendToBuffer(buffer, (char *) scalarVal->val.numeric, numlen); |
| 1743 | |
| 1744 | *jentry = JENTRY_ISNUMERIC | (padlen + numlen); |
| 1745 | break; |
| 1746 | |
| 1747 | case jbvBool: |
| 1748 | *jentry = (scalarVal->val.boolean) ? |
| 1749 | JENTRY_ISBOOL_TRUE : JENTRY_ISBOOL_FALSE; |
| 1750 | break; |
| 1751 | |
| 1752 | default: |
| 1753 | elog(ERROR, "invalid jsonb scalar type" ); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * Compare two jbvString JsonbValue values, a and b. |
| 1759 | * |
| 1760 | * This is a special qsort() comparator used to sort strings in certain |
| 1761 | * internal contexts where it is sufficient to have a well-defined sort order. |
| 1762 | * In particular, object pair keys are sorted according to this criteria to |
| 1763 | * facilitate cheap binary searches where we don't care about lexical sort |
| 1764 | * order. |
| 1765 | * |
| 1766 | * a and b are first sorted based on their length. If a tie-breaker is |
| 1767 | * required, only then do we consider string binary equality. |
| 1768 | */ |
| 1769 | static int |
| 1770 | lengthCompareJsonbStringValue(const void *a, const void *b) |
| 1771 | { |
| 1772 | const JsonbValue *va = (const JsonbValue *) a; |
| 1773 | const JsonbValue *vb = (const JsonbValue *) b; |
| 1774 | int res; |
| 1775 | |
| 1776 | Assert(va->type == jbvString); |
| 1777 | Assert(vb->type == jbvString); |
| 1778 | |
| 1779 | if (va->val.string.len == vb->val.string.len) |
| 1780 | { |
| 1781 | res = memcmp(va->val.string.val, vb->val.string.val, va->val.string.len); |
| 1782 | } |
| 1783 | else |
| 1784 | { |
| 1785 | res = (va->val.string.len > vb->val.string.len) ? 1 : -1; |
| 1786 | } |
| 1787 | |
| 1788 | return res; |
| 1789 | } |
| 1790 | |
| 1791 | /* |
| 1792 | * qsort_arg() comparator to compare JsonbPair values. |
| 1793 | * |
| 1794 | * Third argument 'binequal' may point to a bool. If it's set, *binequal is set |
| 1795 | * to true iff a and b have full binary equality, since some callers have an |
| 1796 | * interest in whether the two values are equal or merely equivalent. |
| 1797 | * |
| 1798 | * N.B: String comparisons here are "length-wise" |
| 1799 | * |
| 1800 | * Pairs with equals keys are ordered such that the order field is respected. |
| 1801 | */ |
| 1802 | static int |
| 1803 | lengthCompareJsonbPair(const void *a, const void *b, void *binequal) |
| 1804 | { |
| 1805 | const JsonbPair *pa = (const JsonbPair *) a; |
| 1806 | const JsonbPair *pb = (const JsonbPair *) b; |
| 1807 | int res; |
| 1808 | |
| 1809 | res = lengthCompareJsonbStringValue(&pa->key, &pb->key); |
| 1810 | if (res == 0 && binequal) |
| 1811 | *((bool *) binequal) = true; |
| 1812 | |
| 1813 | /* |
| 1814 | * Guarantee keeping order of equal pair. Unique algorithm will prefer |
| 1815 | * first element as value. |
| 1816 | */ |
| 1817 | if (res == 0) |
| 1818 | res = (pa->order > pb->order) ? -1 : 1; |
| 1819 | |
| 1820 | return res; |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * Sort and unique-ify pairs in JsonbValue object |
| 1825 | */ |
| 1826 | static void |
| 1827 | uniqueifyJsonbObject(JsonbValue *object) |
| 1828 | { |
| 1829 | bool hasNonUniq = false; |
| 1830 | |
| 1831 | Assert(object->type == jbvObject); |
| 1832 | |
| 1833 | if (object->val.object.nPairs > 1) |
| 1834 | qsort_arg(object->val.object.pairs, object->val.object.nPairs, sizeof(JsonbPair), |
| 1835 | lengthCompareJsonbPair, &hasNonUniq); |
| 1836 | |
| 1837 | if (hasNonUniq) |
| 1838 | { |
| 1839 | JsonbPair *ptr = object->val.object.pairs + 1, |
| 1840 | *res = object->val.object.pairs; |
| 1841 | |
| 1842 | while (ptr - object->val.object.pairs < object->val.object.nPairs) |
| 1843 | { |
| 1844 | /* Avoid copying over duplicate */ |
| 1845 | if (lengthCompareJsonbStringValue(ptr, res) != 0) |
| 1846 | { |
| 1847 | res++; |
| 1848 | if (ptr != res) |
| 1849 | memcpy(res, ptr, sizeof(JsonbPair)); |
| 1850 | } |
| 1851 | ptr++; |
| 1852 | } |
| 1853 | |
| 1854 | object->val.object.nPairs = res + 1 - object->val.object.pairs; |
| 1855 | } |
| 1856 | } |
| 1857 | |