| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * mac.c |
| 4 | * PostgreSQL type definitions for 6 byte, EUI-48, MAC addresses. |
| 5 | * |
| 6 | * Portions Copyright (c) 1998-2019, PostgreSQL Global Development Group |
| 7 | * |
| 8 | * IDENTIFICATION |
| 9 | * src/backend/utils/adt/mac.c |
| 10 | * |
| 11 | *------------------------------------------------------------------------- |
| 12 | */ |
| 13 | |
| 14 | #include "postgres.h" |
| 15 | |
| 16 | #include "lib/hyperloglog.h" |
| 17 | #include "libpq/pqformat.h" |
| 18 | #include "port/pg_bswap.h" |
| 19 | #include "utils/builtins.h" |
| 20 | #include "utils/guc.h" |
| 21 | #include "utils/hashutils.h" |
| 22 | #include "utils/inet.h" |
| 23 | #include "utils/sortsupport.h" |
| 24 | |
| 25 | |
| 26 | /* |
| 27 | * Utility macros used for sorting and comparing: |
| 28 | */ |
| 29 | |
| 30 | #define hibits(addr) \ |
| 31 | ((unsigned long)(((addr)->a<<16)|((addr)->b<<8)|((addr)->c))) |
| 32 | |
| 33 | #define lobits(addr) \ |
| 34 | ((unsigned long)(((addr)->d<<16)|((addr)->e<<8)|((addr)->f))) |
| 35 | |
| 36 | /* sortsupport for macaddr */ |
| 37 | typedef struct |
| 38 | { |
| 39 | int64 input_count; /* number of non-null values seen */ |
| 40 | bool estimating; /* true if estimating cardinality */ |
| 41 | |
| 42 | hyperLogLogState abbr_card; /* cardinality estimator */ |
| 43 | } macaddr_sortsupport_state; |
| 44 | |
| 45 | static int macaddr_cmp_internal(macaddr *a1, macaddr *a2); |
| 46 | static int macaddr_fast_cmp(Datum x, Datum y, SortSupport ssup); |
| 47 | static int macaddr_cmp_abbrev(Datum x, Datum y, SortSupport ssup); |
| 48 | static bool macaddr_abbrev_abort(int memtupcount, SortSupport ssup); |
| 49 | static Datum macaddr_abbrev_convert(Datum original, SortSupport ssup); |
| 50 | |
| 51 | /* |
| 52 | * MAC address reader. Accepts several common notations. |
| 53 | */ |
| 54 | |
| 55 | Datum |
| 56 | macaddr_in(PG_FUNCTION_ARGS) |
| 57 | { |
| 58 | char *str = PG_GETARG_CSTRING(0); |
| 59 | macaddr *result; |
| 60 | int a, |
| 61 | b, |
| 62 | c, |
| 63 | d, |
| 64 | e, |
| 65 | f; |
| 66 | char junk[2]; |
| 67 | int count; |
| 68 | |
| 69 | /* %1s matches iff there is trailing non-whitespace garbage */ |
| 70 | |
| 71 | count = sscanf(str, "%x:%x:%x:%x:%x:%x%1s" , |
| 72 | &a, &b, &c, &d, &e, &f, junk); |
| 73 | if (count != 6) |
| 74 | count = sscanf(str, "%x-%x-%x-%x-%x-%x%1s" , |
| 75 | &a, &b, &c, &d, &e, &f, junk); |
| 76 | if (count != 6) |
| 77 | count = sscanf(str, "%2x%2x%2x:%2x%2x%2x%1s" , |
| 78 | &a, &b, &c, &d, &e, &f, junk); |
| 79 | if (count != 6) |
| 80 | count = sscanf(str, "%2x%2x%2x-%2x%2x%2x%1s" , |
| 81 | &a, &b, &c, &d, &e, &f, junk); |
| 82 | if (count != 6) |
| 83 | count = sscanf(str, "%2x%2x.%2x%2x.%2x%2x%1s" , |
| 84 | &a, &b, &c, &d, &e, &f, junk); |
| 85 | if (count != 6) |
| 86 | count = sscanf(str, "%2x%2x-%2x%2x-%2x%2x%1s" , |
| 87 | &a, &b, &c, &d, &e, &f, junk); |
| 88 | if (count != 6) |
| 89 | count = sscanf(str, "%2x%2x%2x%2x%2x%2x%1s" , |
| 90 | &a, &b, &c, &d, &e, &f, junk); |
| 91 | if (count != 6) |
| 92 | ereport(ERROR, |
| 93 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 94 | errmsg("invalid input syntax for type %s: \"%s\"" , "macaddr" , |
| 95 | str))); |
| 96 | |
| 97 | if ((a < 0) || (a > 255) || (b < 0) || (b > 255) || |
| 98 | (c < 0) || (c > 255) || (d < 0) || (d > 255) || |
| 99 | (e < 0) || (e > 255) || (f < 0) || (f > 255)) |
| 100 | ereport(ERROR, |
| 101 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 102 | errmsg("invalid octet value in \"macaddr\" value: \"%s\"" , str))); |
| 103 | |
| 104 | result = (macaddr *) palloc(sizeof(macaddr)); |
| 105 | |
| 106 | result->a = a; |
| 107 | result->b = b; |
| 108 | result->c = c; |
| 109 | result->d = d; |
| 110 | result->e = e; |
| 111 | result->f = f; |
| 112 | |
| 113 | PG_RETURN_MACADDR_P(result); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * MAC address output function. Fixed format. |
| 118 | */ |
| 119 | |
| 120 | Datum |
| 121 | macaddr_out(PG_FUNCTION_ARGS) |
| 122 | { |
| 123 | macaddr *addr = PG_GETARG_MACADDR_P(0); |
| 124 | char *result; |
| 125 | |
| 126 | result = (char *) palloc(32); |
| 127 | |
| 128 | snprintf(result, 32, "%02x:%02x:%02x:%02x:%02x:%02x" , |
| 129 | addr->a, addr->b, addr->c, addr->d, addr->e, addr->f); |
| 130 | |
| 131 | PG_RETURN_CSTRING(result); |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * macaddr_recv - converts external binary format to macaddr |
| 136 | * |
| 137 | * The external representation is just the six bytes, MSB first. |
| 138 | */ |
| 139 | Datum |
| 140 | macaddr_recv(PG_FUNCTION_ARGS) |
| 141 | { |
| 142 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 143 | macaddr *addr; |
| 144 | |
| 145 | addr = (macaddr *) palloc(sizeof(macaddr)); |
| 146 | |
| 147 | addr->a = pq_getmsgbyte(buf); |
| 148 | addr->b = pq_getmsgbyte(buf); |
| 149 | addr->c = pq_getmsgbyte(buf); |
| 150 | addr->d = pq_getmsgbyte(buf); |
| 151 | addr->e = pq_getmsgbyte(buf); |
| 152 | addr->f = pq_getmsgbyte(buf); |
| 153 | |
| 154 | PG_RETURN_MACADDR_P(addr); |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * macaddr_send - converts macaddr to binary format |
| 159 | */ |
| 160 | Datum |
| 161 | macaddr_send(PG_FUNCTION_ARGS) |
| 162 | { |
| 163 | macaddr *addr = PG_GETARG_MACADDR_P(0); |
| 164 | StringInfoData buf; |
| 165 | |
| 166 | pq_begintypsend(&buf); |
| 167 | pq_sendbyte(&buf, addr->a); |
| 168 | pq_sendbyte(&buf, addr->b); |
| 169 | pq_sendbyte(&buf, addr->c); |
| 170 | pq_sendbyte(&buf, addr->d); |
| 171 | pq_sendbyte(&buf, addr->e); |
| 172 | pq_sendbyte(&buf, addr->f); |
| 173 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 174 | } |
| 175 | |
| 176 | |
| 177 | /* |
| 178 | * Comparison function for sorting: |
| 179 | */ |
| 180 | |
| 181 | static int |
| 182 | macaddr_cmp_internal(macaddr *a1, macaddr *a2) |
| 183 | { |
| 184 | if (hibits(a1) < hibits(a2)) |
| 185 | return -1; |
| 186 | else if (hibits(a1) > hibits(a2)) |
| 187 | return 1; |
| 188 | else if (lobits(a1) < lobits(a2)) |
| 189 | return -1; |
| 190 | else if (lobits(a1) > lobits(a2)) |
| 191 | return 1; |
| 192 | else |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | Datum |
| 197 | macaddr_cmp(PG_FUNCTION_ARGS) |
| 198 | { |
| 199 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 200 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 201 | |
| 202 | PG_RETURN_INT32(macaddr_cmp_internal(a1, a2)); |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Boolean comparisons. |
| 207 | */ |
| 208 | |
| 209 | Datum |
| 210 | macaddr_lt(PG_FUNCTION_ARGS) |
| 211 | { |
| 212 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 213 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 214 | |
| 215 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) < 0); |
| 216 | } |
| 217 | |
| 218 | Datum |
| 219 | macaddr_le(PG_FUNCTION_ARGS) |
| 220 | { |
| 221 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 222 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 223 | |
| 224 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) <= 0); |
| 225 | } |
| 226 | |
| 227 | Datum |
| 228 | macaddr_eq(PG_FUNCTION_ARGS) |
| 229 | { |
| 230 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 231 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 232 | |
| 233 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) == 0); |
| 234 | } |
| 235 | |
| 236 | Datum |
| 237 | macaddr_ge(PG_FUNCTION_ARGS) |
| 238 | { |
| 239 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 240 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 241 | |
| 242 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) >= 0); |
| 243 | } |
| 244 | |
| 245 | Datum |
| 246 | macaddr_gt(PG_FUNCTION_ARGS) |
| 247 | { |
| 248 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 249 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 250 | |
| 251 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) > 0); |
| 252 | } |
| 253 | |
| 254 | Datum |
| 255 | macaddr_ne(PG_FUNCTION_ARGS) |
| 256 | { |
| 257 | macaddr *a1 = PG_GETARG_MACADDR_P(0); |
| 258 | macaddr *a2 = PG_GETARG_MACADDR_P(1); |
| 259 | |
| 260 | PG_RETURN_BOOL(macaddr_cmp_internal(a1, a2) != 0); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Support function for hash indexes on macaddr. |
| 265 | */ |
| 266 | Datum |
| 267 | hashmacaddr(PG_FUNCTION_ARGS) |
| 268 | { |
| 269 | macaddr *key = PG_GETARG_MACADDR_P(0); |
| 270 | |
| 271 | return hash_any((unsigned char *) key, sizeof(macaddr)); |
| 272 | } |
| 273 | |
| 274 | Datum |
| 275 | hashmacaddrextended(PG_FUNCTION_ARGS) |
| 276 | { |
| 277 | macaddr *key = PG_GETARG_MACADDR_P(0); |
| 278 | |
| 279 | return hash_any_extended((unsigned char *) key, sizeof(macaddr), |
| 280 | PG_GETARG_INT64(1)); |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Arithmetic functions: bitwise NOT, AND, OR. |
| 285 | */ |
| 286 | Datum |
| 287 | macaddr_not(PG_FUNCTION_ARGS) |
| 288 | { |
| 289 | macaddr *addr = PG_GETARG_MACADDR_P(0); |
| 290 | macaddr *result; |
| 291 | |
| 292 | result = (macaddr *) palloc(sizeof(macaddr)); |
| 293 | result->a = ~addr->a; |
| 294 | result->b = ~addr->b; |
| 295 | result->c = ~addr->c; |
| 296 | result->d = ~addr->d; |
| 297 | result->e = ~addr->e; |
| 298 | result->f = ~addr->f; |
| 299 | PG_RETURN_MACADDR_P(result); |
| 300 | } |
| 301 | |
| 302 | Datum |
| 303 | macaddr_and(PG_FUNCTION_ARGS) |
| 304 | { |
| 305 | macaddr *addr1 = PG_GETARG_MACADDR_P(0); |
| 306 | macaddr *addr2 = PG_GETARG_MACADDR_P(1); |
| 307 | macaddr *result; |
| 308 | |
| 309 | result = (macaddr *) palloc(sizeof(macaddr)); |
| 310 | result->a = addr1->a & addr2->a; |
| 311 | result->b = addr1->b & addr2->b; |
| 312 | result->c = addr1->c & addr2->c; |
| 313 | result->d = addr1->d & addr2->d; |
| 314 | result->e = addr1->e & addr2->e; |
| 315 | result->f = addr1->f & addr2->f; |
| 316 | PG_RETURN_MACADDR_P(result); |
| 317 | } |
| 318 | |
| 319 | Datum |
| 320 | macaddr_or(PG_FUNCTION_ARGS) |
| 321 | { |
| 322 | macaddr *addr1 = PG_GETARG_MACADDR_P(0); |
| 323 | macaddr *addr2 = PG_GETARG_MACADDR_P(1); |
| 324 | macaddr *result; |
| 325 | |
| 326 | result = (macaddr *) palloc(sizeof(macaddr)); |
| 327 | result->a = addr1->a | addr2->a; |
| 328 | result->b = addr1->b | addr2->b; |
| 329 | result->c = addr1->c | addr2->c; |
| 330 | result->d = addr1->d | addr2->d; |
| 331 | result->e = addr1->e | addr2->e; |
| 332 | result->f = addr1->f | addr2->f; |
| 333 | PG_RETURN_MACADDR_P(result); |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Truncation function to allow comparing mac manufacturers. |
| 338 | * From suggestion by Alex Pilosov <alex@pilosoft.com> |
| 339 | */ |
| 340 | Datum |
| 341 | macaddr_trunc(PG_FUNCTION_ARGS) |
| 342 | { |
| 343 | macaddr *addr = PG_GETARG_MACADDR_P(0); |
| 344 | macaddr *result; |
| 345 | |
| 346 | result = (macaddr *) palloc(sizeof(macaddr)); |
| 347 | |
| 348 | result->a = addr->a; |
| 349 | result->b = addr->b; |
| 350 | result->c = addr->c; |
| 351 | result->d = 0; |
| 352 | result->e = 0; |
| 353 | result->f = 0; |
| 354 | |
| 355 | PG_RETURN_MACADDR_P(result); |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * SortSupport strategy function. Populates a SortSupport struct with the |
| 360 | * information necessary to use comparison by abbreviated keys. |
| 361 | */ |
| 362 | Datum |
| 363 | macaddr_sortsupport(PG_FUNCTION_ARGS) |
| 364 | { |
| 365 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 366 | |
| 367 | ssup->comparator = macaddr_fast_cmp; |
| 368 | ssup->ssup_extra = NULL; |
| 369 | |
| 370 | if (ssup->abbreviate) |
| 371 | { |
| 372 | macaddr_sortsupport_state *uss; |
| 373 | MemoryContext oldcontext; |
| 374 | |
| 375 | oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt); |
| 376 | |
| 377 | uss = palloc(sizeof(macaddr_sortsupport_state)); |
| 378 | uss->input_count = 0; |
| 379 | uss->estimating = true; |
| 380 | initHyperLogLog(&uss->abbr_card, 10); |
| 381 | |
| 382 | ssup->ssup_extra = uss; |
| 383 | |
| 384 | ssup->comparator = macaddr_cmp_abbrev; |
| 385 | ssup->abbrev_converter = macaddr_abbrev_convert; |
| 386 | ssup->abbrev_abort = macaddr_abbrev_abort; |
| 387 | ssup->abbrev_full_comparator = macaddr_fast_cmp; |
| 388 | |
| 389 | MemoryContextSwitchTo(oldcontext); |
| 390 | } |
| 391 | |
| 392 | PG_RETURN_VOID(); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * SortSupport "traditional" comparison function. Pulls two MAC addresses from |
| 397 | * the heap and runs a standard comparison on them. |
| 398 | */ |
| 399 | static int |
| 400 | macaddr_fast_cmp(Datum x, Datum y, SortSupport ssup) |
| 401 | { |
| 402 | macaddr *arg1 = DatumGetMacaddrP(x); |
| 403 | macaddr *arg2 = DatumGetMacaddrP(y); |
| 404 | |
| 405 | return macaddr_cmp_internal(arg1, arg2); |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * SortSupport abbreviated key comparison function. Compares two MAC addresses |
| 410 | * quickly by treating them like integers, and without having to go to the |
| 411 | * heap. |
| 412 | */ |
| 413 | static int |
| 414 | macaddr_cmp_abbrev(Datum x, Datum y, SortSupport ssup) |
| 415 | { |
| 416 | if (x > y) |
| 417 | return 1; |
| 418 | else if (x == y) |
| 419 | return 0; |
| 420 | else |
| 421 | return -1; |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * Callback for estimating effectiveness of abbreviated key optimization. |
| 426 | * |
| 427 | * We pay no attention to the cardinality of the non-abbreviated data, because |
| 428 | * there is no equality fast-path within authoritative macaddr comparator. |
| 429 | */ |
| 430 | static bool |
| 431 | macaddr_abbrev_abort(int memtupcount, SortSupport ssup) |
| 432 | { |
| 433 | macaddr_sortsupport_state *uss = ssup->ssup_extra; |
| 434 | double abbr_card; |
| 435 | |
| 436 | if (memtupcount < 10000 || uss->input_count < 10000 || !uss->estimating) |
| 437 | return false; |
| 438 | |
| 439 | abbr_card = estimateHyperLogLog(&uss->abbr_card); |
| 440 | |
| 441 | /* |
| 442 | * If we have >100k distinct values, then even if we were sorting many |
| 443 | * billion rows we'd likely still break even, and the penalty of undoing |
| 444 | * that many rows of abbrevs would probably not be worth it. At this point |
| 445 | * we stop counting because we know that we're now fully committed. |
| 446 | */ |
| 447 | if (abbr_card > 100000.0) |
| 448 | { |
| 449 | #ifdef TRACE_SORT |
| 450 | if (trace_sort) |
| 451 | elog(LOG, |
| 452 | "macaddr_abbrev: estimation ends at cardinality %f" |
| 453 | " after " INT64_FORMAT " values (%d rows)" , |
| 454 | abbr_card, uss->input_count, memtupcount); |
| 455 | #endif |
| 456 | uss->estimating = false; |
| 457 | return false; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * Target minimum cardinality is 1 per ~2k of non-null inputs. 0.5 row |
| 462 | * fudge factor allows us to abort earlier on genuinely pathological data |
| 463 | * where we've had exactly one abbreviated value in the first 2k |
| 464 | * (non-null) rows. |
| 465 | */ |
| 466 | if (abbr_card < uss->input_count / 2000.0 + 0.5) |
| 467 | { |
| 468 | #ifdef TRACE_SORT |
| 469 | if (trace_sort) |
| 470 | elog(LOG, |
| 471 | "macaddr_abbrev: aborting abbreviation at cardinality %f" |
| 472 | " below threshold %f after " INT64_FORMAT " values (%d rows)" , |
| 473 | abbr_card, uss->input_count / 2000.0 + 0.5, uss->input_count, |
| 474 | memtupcount); |
| 475 | #endif |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | #ifdef TRACE_SORT |
| 480 | if (trace_sort) |
| 481 | elog(LOG, |
| 482 | "macaddr_abbrev: cardinality %f after " INT64_FORMAT |
| 483 | " values (%d rows)" , abbr_card, uss->input_count, memtupcount); |
| 484 | #endif |
| 485 | |
| 486 | return false; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * SortSupport conversion routine. Converts original macaddr representation |
| 491 | * to abbreviated key representation. |
| 492 | * |
| 493 | * Packs the bytes of a 6-byte MAC address into a Datum and treats it as an |
| 494 | * unsigned integer for purposes of comparison. On a 64-bit machine, there |
| 495 | * will be two zeroed bytes of padding. The integer is converted to native |
| 496 | * endianness to facilitate easy comparison. |
| 497 | */ |
| 498 | static Datum |
| 499 | macaddr_abbrev_convert(Datum original, SortSupport ssup) |
| 500 | { |
| 501 | macaddr_sortsupport_state *uss = ssup->ssup_extra; |
| 502 | macaddr *authoritative = DatumGetMacaddrP(original); |
| 503 | Datum res; |
| 504 | |
| 505 | /* |
| 506 | * On a 64-bit machine, zero out the 8-byte datum and copy the 6 bytes of |
| 507 | * the MAC address in. There will be two bytes of zero padding on the end |
| 508 | * of the least significant bits. |
| 509 | */ |
| 510 | #if SIZEOF_DATUM == 8 |
| 511 | memset(&res, 0, SIZEOF_DATUM); |
| 512 | memcpy(&res, authoritative, sizeof(macaddr)); |
| 513 | #else /* SIZEOF_DATUM != 8 */ |
| 514 | memcpy(&res, authoritative, SIZEOF_DATUM); |
| 515 | #endif |
| 516 | uss->input_count += 1; |
| 517 | |
| 518 | /* |
| 519 | * Cardinality estimation. The estimate uses uint32, so on a 64-bit |
| 520 | * architecture, XOR the two 32-bit halves together to produce slightly |
| 521 | * more entropy. The two zeroed bytes won't have any practical impact on |
| 522 | * this operation. |
| 523 | */ |
| 524 | if (uss->estimating) |
| 525 | { |
| 526 | uint32 tmp; |
| 527 | |
| 528 | #if SIZEOF_DATUM == 8 |
| 529 | tmp = (uint32) res ^ (uint32) ((uint64) res >> 32); |
| 530 | #else /* SIZEOF_DATUM != 8 */ |
| 531 | tmp = (uint32) res; |
| 532 | #endif |
| 533 | |
| 534 | addHyperLogLog(&uss->abbr_card, DatumGetUInt32(hash_uint32(tmp))); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Byteswap on little-endian machines. |
| 539 | * |
| 540 | * This is needed so that macaddr_cmp_abbrev() (an unsigned integer 3-way |
| 541 | * comparator) works correctly on all platforms. Without this, the |
| 542 | * comparator would have to call memcmp() with a pair of pointers to the |
| 543 | * first byte of each abbreviated key, which is slower. |
| 544 | */ |
| 545 | res = DatumBigEndianToNative(res); |
| 546 | |
| 547 | return res; |
| 548 | } |
| 549 | |