| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * network_spgist.c |
| 4 | * SP-GiST support for network types. |
| 5 | * |
| 6 | * We split inet index entries first by address family (IPv4 or IPv6). |
| 7 | * If the entries below a given inner tuple are all of the same family, |
| 8 | * we identify their common prefix and split by the next bit of the address, |
| 9 | * and by whether their masklens exceed the length of the common prefix. |
| 10 | * |
| 11 | * An inner tuple that has both IPv4 and IPv6 children has a null prefix |
| 12 | * and exactly two nodes, the first being for IPv4 and the second for IPv6. |
| 13 | * |
| 14 | * Otherwise, the prefix is a CIDR value representing the common prefix, |
| 15 | * and there are exactly four nodes. Node numbers 0 and 1 are for addresses |
| 16 | * with the same masklen as the prefix, while node numbers 2 and 3 are for |
| 17 | * addresses with larger masklen. (We do not allow a tuple to contain |
| 18 | * entries with masklen smaller than its prefix's.) Node numbers 0 and 1 |
| 19 | * are distinguished by the next bit of the address after the common prefix, |
| 20 | * and likewise for node numbers 2 and 3. If there are no more bits in |
| 21 | * the address family, everything goes into node 0 (which will probably |
| 22 | * lead to creating an allTheSame tuple). |
| 23 | * |
| 24 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 25 | * Portions Copyright (c) 1994, Regents of the University of California |
| 26 | * |
| 27 | * IDENTIFICATION |
| 28 | * src/backend/utils/adt/network_spgist.c |
| 29 | * |
| 30 | *------------------------------------------------------------------------- |
| 31 | */ |
| 32 | #include "postgres.h" |
| 33 | |
| 34 | #include <sys/socket.h> |
| 35 | |
| 36 | #include "access/spgist.h" |
| 37 | #include "catalog/pg_type.h" |
| 38 | #include "utils/builtins.h" |
| 39 | #include "utils/inet.h" |
| 40 | |
| 41 | |
| 42 | static int inet_spg_node_number(const inet *val, int commonbits); |
| 43 | static int inet_spg_consistent_bitmap(const inet *prefix, int nkeys, |
| 44 | ScanKey scankeys, bool leaf); |
| 45 | |
| 46 | /* |
| 47 | * The SP-GiST configuration function |
| 48 | */ |
| 49 | Datum |
| 50 | inet_spg_config(PG_FUNCTION_ARGS) |
| 51 | { |
| 52 | /* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */ |
| 53 | spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1); |
| 54 | |
| 55 | cfg->prefixType = CIDROID; |
| 56 | cfg->labelType = VOIDOID; |
| 57 | cfg->canReturnData = true; |
| 58 | cfg->longValuesOK = false; |
| 59 | |
| 60 | PG_RETURN_VOID(); |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * The SP-GiST choose function |
| 65 | */ |
| 66 | Datum |
| 67 | inet_spg_choose(PG_FUNCTION_ARGS) |
| 68 | { |
| 69 | spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0); |
| 70 | spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1); |
| 71 | inet *val = DatumGetInetPP(in->datum), |
| 72 | *prefix; |
| 73 | int commonbits; |
| 74 | |
| 75 | /* |
| 76 | * If we're looking at a tuple that splits by address family, choose the |
| 77 | * appropriate subnode. |
| 78 | */ |
| 79 | if (!in->hasPrefix) |
| 80 | { |
| 81 | /* allTheSame isn't possible for such a tuple */ |
| 82 | Assert(!in->allTheSame); |
| 83 | Assert(in->nNodes == 2); |
| 84 | |
| 85 | out->resultType = spgMatchNode; |
| 86 | out->result.matchNode.nodeN = (ip_family(val) == PGSQL_AF_INET) ? 0 : 1; |
| 87 | out->result.matchNode.restDatum = InetPGetDatum(val); |
| 88 | |
| 89 | PG_RETURN_VOID(); |
| 90 | } |
| 91 | |
| 92 | /* Else it must split by prefix */ |
| 93 | Assert(in->nNodes == 4 || in->allTheSame); |
| 94 | |
| 95 | prefix = DatumGetInetPP(in->prefixDatum); |
| 96 | commonbits = ip_bits(prefix); |
| 97 | |
| 98 | /* |
| 99 | * We cannot put addresses from different families under the same inner |
| 100 | * node, so we have to split if the new value's family is different. |
| 101 | */ |
| 102 | if (ip_family(val) != ip_family(prefix)) |
| 103 | { |
| 104 | /* Set up 2-node tuple */ |
| 105 | out->resultType = spgSplitTuple; |
| 106 | out->result.splitTuple.prefixHasPrefix = false; |
| 107 | out->result.splitTuple.prefixNNodes = 2; |
| 108 | out->result.splitTuple.prefixNodeLabels = NULL; |
| 109 | |
| 110 | /* Identify which node the existing data goes into */ |
| 111 | out->result.splitTuple.childNodeN = |
| 112 | (ip_family(prefix) == PGSQL_AF_INET) ? 0 : 1; |
| 113 | |
| 114 | out->result.splitTuple.postfixHasPrefix = true; |
| 115 | out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix); |
| 116 | |
| 117 | PG_RETURN_VOID(); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * If the new value does not match the existing prefix, we have to split. |
| 122 | */ |
| 123 | if (ip_bits(val) < commonbits || |
| 124 | bitncmp(ip_addr(prefix), ip_addr(val), commonbits) != 0) |
| 125 | { |
| 126 | /* Determine new prefix length for the split tuple */ |
| 127 | commonbits = bitncommon(ip_addr(prefix), ip_addr(val), |
| 128 | Min(ip_bits(val), commonbits)); |
| 129 | |
| 130 | /* Set up 4-node tuple */ |
| 131 | out->resultType = spgSplitTuple; |
| 132 | out->result.splitTuple.prefixHasPrefix = true; |
| 133 | out->result.splitTuple.prefixPrefixDatum = |
| 134 | InetPGetDatum(cidr_set_masklen_internal(val, commonbits)); |
| 135 | out->result.splitTuple.prefixNNodes = 4; |
| 136 | out->result.splitTuple.prefixNodeLabels = NULL; |
| 137 | |
| 138 | /* Identify which node the existing data goes into */ |
| 139 | out->result.splitTuple.childNodeN = |
| 140 | inet_spg_node_number(prefix, commonbits); |
| 141 | |
| 142 | out->result.splitTuple.postfixHasPrefix = true; |
| 143 | out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix); |
| 144 | |
| 145 | PG_RETURN_VOID(); |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * All OK, choose the node to descend into. (If this tuple is marked |
| 150 | * allTheSame, the core code will ignore our choice of nodeN; but we need |
| 151 | * not account for that case explicitly here.) |
| 152 | */ |
| 153 | out->resultType = spgMatchNode; |
| 154 | out->result.matchNode.nodeN = inet_spg_node_number(val, commonbits); |
| 155 | out->result.matchNode.restDatum = InetPGetDatum(val); |
| 156 | |
| 157 | PG_RETURN_VOID(); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * The GiST PickSplit method |
| 162 | */ |
| 163 | Datum |
| 164 | inet_spg_picksplit(PG_FUNCTION_ARGS) |
| 165 | { |
| 166 | spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0); |
| 167 | spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1); |
| 168 | inet *prefix, |
| 169 | *tmp; |
| 170 | int i, |
| 171 | commonbits; |
| 172 | bool differentFamilies = false; |
| 173 | |
| 174 | /* Initialize the prefix with the first item */ |
| 175 | prefix = DatumGetInetPP(in->datums[0]); |
| 176 | commonbits = ip_bits(prefix); |
| 177 | |
| 178 | /* Examine remaining items to discover minimum common prefix length */ |
| 179 | for (i = 1; i < in->nTuples; i++) |
| 180 | { |
| 181 | tmp = DatumGetInetPP(in->datums[i]); |
| 182 | |
| 183 | if (ip_family(tmp) != ip_family(prefix)) |
| 184 | { |
| 185 | differentFamilies = true; |
| 186 | break; |
| 187 | } |
| 188 | |
| 189 | if (ip_bits(tmp) < commonbits) |
| 190 | commonbits = ip_bits(tmp); |
| 191 | commonbits = bitncommon(ip_addr(prefix), ip_addr(tmp), commonbits); |
| 192 | if (commonbits == 0) |
| 193 | break; |
| 194 | } |
| 195 | |
| 196 | /* Don't need labels; allocate output arrays */ |
| 197 | out->nodeLabels = NULL; |
| 198 | out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples); |
| 199 | out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples); |
| 200 | |
| 201 | if (differentFamilies) |
| 202 | { |
| 203 | /* Set up 2-node tuple */ |
| 204 | out->hasPrefix = false; |
| 205 | out->nNodes = 2; |
| 206 | |
| 207 | for (i = 0; i < in->nTuples; i++) |
| 208 | { |
| 209 | tmp = DatumGetInetPP(in->datums[i]); |
| 210 | out->mapTuplesToNodes[i] = |
| 211 | (ip_family(tmp) == PGSQL_AF_INET) ? 0 : 1; |
| 212 | out->leafTupleDatums[i] = InetPGetDatum(tmp); |
| 213 | } |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | /* Set up 4-node tuple */ |
| 218 | out->hasPrefix = true; |
| 219 | out->prefixDatum = |
| 220 | InetPGetDatum(cidr_set_masklen_internal(prefix, commonbits)); |
| 221 | out->nNodes = 4; |
| 222 | |
| 223 | for (i = 0; i < in->nTuples; i++) |
| 224 | { |
| 225 | tmp = DatumGetInetPP(in->datums[i]); |
| 226 | out->mapTuplesToNodes[i] = inet_spg_node_number(tmp, commonbits); |
| 227 | out->leafTupleDatums[i] = InetPGetDatum(tmp); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | PG_RETURN_VOID(); |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * The SP-GiST query consistency check for inner tuples |
| 236 | */ |
| 237 | Datum |
| 238 | inet_spg_inner_consistent(PG_FUNCTION_ARGS) |
| 239 | { |
| 240 | spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0); |
| 241 | spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1); |
| 242 | int i; |
| 243 | int which; |
| 244 | |
| 245 | if (!in->hasPrefix) |
| 246 | { |
| 247 | Assert(!in->allTheSame); |
| 248 | Assert(in->nNodes == 2); |
| 249 | |
| 250 | /* Identify which child nodes need to be visited */ |
| 251 | which = 1 | (1 << 1); |
| 252 | |
| 253 | for (i = 0; i < in->nkeys; i++) |
| 254 | { |
| 255 | StrategyNumber strategy = in->scankeys[i].sk_strategy; |
| 256 | inet *argument = DatumGetInetPP(in->scankeys[i].sk_argument); |
| 257 | |
| 258 | switch (strategy) |
| 259 | { |
| 260 | case RTLessStrategyNumber: |
| 261 | case RTLessEqualStrategyNumber: |
| 262 | if (ip_family(argument) == PGSQL_AF_INET) |
| 263 | which &= 1; |
| 264 | break; |
| 265 | |
| 266 | case RTGreaterEqualStrategyNumber: |
| 267 | case RTGreaterStrategyNumber: |
| 268 | if (ip_family(argument) == PGSQL_AF_INET6) |
| 269 | which &= (1 << 1); |
| 270 | break; |
| 271 | |
| 272 | case RTNotEqualStrategyNumber: |
| 273 | break; |
| 274 | |
| 275 | default: |
| 276 | /* all other ops can only match addrs of same family */ |
| 277 | if (ip_family(argument) == PGSQL_AF_INET) |
| 278 | which &= 1; |
| 279 | else |
| 280 | which &= (1 << 1); |
| 281 | break; |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | else if (!in->allTheSame) |
| 286 | { |
| 287 | Assert(in->nNodes == 4); |
| 288 | |
| 289 | /* Identify which child nodes need to be visited */ |
| 290 | which = inet_spg_consistent_bitmap(DatumGetInetPP(in->prefixDatum), |
| 291 | in->nkeys, in->scankeys, false); |
| 292 | } |
| 293 | else |
| 294 | { |
| 295 | /* Must visit all nodes; we assume there are less than 32 of 'em */ |
| 296 | which = ~0; |
| 297 | } |
| 298 | |
| 299 | out->nNodes = 0; |
| 300 | |
| 301 | if (which) |
| 302 | { |
| 303 | out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes); |
| 304 | |
| 305 | for (i = 0; i < in->nNodes; i++) |
| 306 | { |
| 307 | if (which & (1 << i)) |
| 308 | { |
| 309 | out->nodeNumbers[out->nNodes] = i; |
| 310 | out->nNodes++; |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | PG_RETURN_VOID(); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * The SP-GiST query consistency check for leaf tuples |
| 320 | */ |
| 321 | Datum |
| 322 | inet_spg_leaf_consistent(PG_FUNCTION_ARGS) |
| 323 | { |
| 324 | spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0); |
| 325 | spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1); |
| 326 | inet *leaf = DatumGetInetPP(in->leafDatum); |
| 327 | |
| 328 | /* All tests are exact. */ |
| 329 | out->recheck = false; |
| 330 | |
| 331 | /* Leaf is what it is... */ |
| 332 | out->leafValue = InetPGetDatum(leaf); |
| 333 | |
| 334 | /* Use common code to apply the tests. */ |
| 335 | PG_RETURN_BOOL(inet_spg_consistent_bitmap(leaf, in->nkeys, in->scankeys, |
| 336 | true)); |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * Calculate node number (within a 4-node, single-family inner index tuple) |
| 341 | * |
| 342 | * The value must have the same family as the node's prefix, and |
| 343 | * commonbits is the mask length of the prefix. We use even or odd |
| 344 | * nodes according to the next address bit after the commonbits, |
| 345 | * and low or high nodes according to whether the value's mask length |
| 346 | * is larger than commonbits. |
| 347 | */ |
| 348 | static int |
| 349 | inet_spg_node_number(const inet *val, int commonbits) |
| 350 | { |
| 351 | int nodeN = 0; |
| 352 | |
| 353 | if (commonbits < ip_maxbits(val) && |
| 354 | ip_addr(val)[commonbits / 8] & (1 << (7 - commonbits % 8))) |
| 355 | nodeN |= 1; |
| 356 | if (commonbits < ip_bits(val)) |
| 357 | nodeN |= 2; |
| 358 | |
| 359 | return nodeN; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * Calculate bitmap of node numbers that are consistent with the query |
| 364 | * |
| 365 | * This can be used either at a 4-way inner tuple, or at a leaf tuple. |
| 366 | * In the latter case, we should return a boolean result (0 or 1) |
| 367 | * not a bitmap. |
| 368 | * |
| 369 | * This definition is pretty odd, but the inner and leaf consistency checks |
| 370 | * are mostly common and it seems best to keep them in one function. |
| 371 | */ |
| 372 | static int |
| 373 | inet_spg_consistent_bitmap(const inet *prefix, int nkeys, ScanKey scankeys, |
| 374 | bool leaf) |
| 375 | { |
| 376 | int bitmap; |
| 377 | int commonbits, |
| 378 | i; |
| 379 | |
| 380 | /* Initialize result to allow visiting all children */ |
| 381 | if (leaf) |
| 382 | bitmap = 1; |
| 383 | else |
| 384 | bitmap = 1 | (1 << 1) | (1 << 2) | (1 << 3); |
| 385 | |
| 386 | commonbits = ip_bits(prefix); |
| 387 | |
| 388 | for (i = 0; i < nkeys; i++) |
| 389 | { |
| 390 | inet *argument = DatumGetInetPP(scankeys[i].sk_argument); |
| 391 | StrategyNumber strategy = scankeys[i].sk_strategy; |
| 392 | int order; |
| 393 | |
| 394 | /* |
| 395 | * Check 0: different families |
| 396 | * |
| 397 | * Matching families do not help any of the strategies. |
| 398 | */ |
| 399 | if (ip_family(argument) != ip_family(prefix)) |
| 400 | { |
| 401 | switch (strategy) |
| 402 | { |
| 403 | case RTLessStrategyNumber: |
| 404 | case RTLessEqualStrategyNumber: |
| 405 | if (ip_family(argument) < ip_family(prefix)) |
| 406 | bitmap = 0; |
| 407 | break; |
| 408 | |
| 409 | case RTGreaterEqualStrategyNumber: |
| 410 | case RTGreaterStrategyNumber: |
| 411 | if (ip_family(argument) > ip_family(prefix)) |
| 412 | bitmap = 0; |
| 413 | break; |
| 414 | |
| 415 | case RTNotEqualStrategyNumber: |
| 416 | break; |
| 417 | |
| 418 | default: |
| 419 | /* For all other cases, we can be sure there is no match */ |
| 420 | bitmap = 0; |
| 421 | break; |
| 422 | } |
| 423 | |
| 424 | if (!bitmap) |
| 425 | break; |
| 426 | |
| 427 | /* Other checks make no sense with different families. */ |
| 428 | continue; |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Check 1: network bit count |
| 433 | * |
| 434 | * Network bit count (ip_bits) helps to check leaves for sub network |
| 435 | * and sup network operators. At non-leaf nodes, we know every child |
| 436 | * value has greater ip_bits, so we can avoid descending in some cases |
| 437 | * too. |
| 438 | * |
| 439 | * This check is less expensive than checking the address bits, so we |
| 440 | * are doing this before, but it has to be done after for the basic |
| 441 | * comparison strategies, because ip_bits only affect their results |
| 442 | * when the common network bits are the same. |
| 443 | */ |
| 444 | switch (strategy) |
| 445 | { |
| 446 | case RTSubStrategyNumber: |
| 447 | if (commonbits <= ip_bits(argument)) |
| 448 | bitmap &= (1 << 2) | (1 << 3); |
| 449 | break; |
| 450 | |
| 451 | case RTSubEqualStrategyNumber: |
| 452 | if (commonbits < ip_bits(argument)) |
| 453 | bitmap &= (1 << 2) | (1 << 3); |
| 454 | break; |
| 455 | |
| 456 | case RTSuperStrategyNumber: |
| 457 | if (commonbits == ip_bits(argument) - 1) |
| 458 | bitmap &= 1 | (1 << 1); |
| 459 | else if (commonbits >= ip_bits(argument)) |
| 460 | bitmap = 0; |
| 461 | break; |
| 462 | |
| 463 | case RTSuperEqualStrategyNumber: |
| 464 | if (commonbits == ip_bits(argument)) |
| 465 | bitmap &= 1 | (1 << 1); |
| 466 | else if (commonbits > ip_bits(argument)) |
| 467 | bitmap = 0; |
| 468 | break; |
| 469 | |
| 470 | case RTEqualStrategyNumber: |
| 471 | if (commonbits < ip_bits(argument)) |
| 472 | bitmap &= (1 << 2) | (1 << 3); |
| 473 | else if (commonbits == ip_bits(argument)) |
| 474 | bitmap &= 1 | (1 << 1); |
| 475 | else |
| 476 | bitmap = 0; |
| 477 | break; |
| 478 | } |
| 479 | |
| 480 | if (!bitmap) |
| 481 | break; |
| 482 | |
| 483 | /* |
| 484 | * Check 2: common network bits |
| 485 | * |
| 486 | * Compare available common prefix bits to the query, but not beyond |
| 487 | * either the query's netmask or the minimum netmask among the |
| 488 | * represented values. If these bits don't match the query, we can |
| 489 | * eliminate some cases. |
| 490 | */ |
| 491 | order = bitncmp(ip_addr(prefix), ip_addr(argument), |
| 492 | Min(commonbits, ip_bits(argument))); |
| 493 | |
| 494 | if (order != 0) |
| 495 | { |
| 496 | switch (strategy) |
| 497 | { |
| 498 | case RTLessStrategyNumber: |
| 499 | case RTLessEqualStrategyNumber: |
| 500 | if (order > 0) |
| 501 | bitmap = 0; |
| 502 | break; |
| 503 | |
| 504 | case RTGreaterEqualStrategyNumber: |
| 505 | case RTGreaterStrategyNumber: |
| 506 | if (order < 0) |
| 507 | bitmap = 0; |
| 508 | break; |
| 509 | |
| 510 | case RTNotEqualStrategyNumber: |
| 511 | break; |
| 512 | |
| 513 | default: |
| 514 | /* For all other cases, we can be sure there is no match */ |
| 515 | bitmap = 0; |
| 516 | break; |
| 517 | } |
| 518 | |
| 519 | if (!bitmap) |
| 520 | break; |
| 521 | |
| 522 | /* |
| 523 | * Remaining checks make no sense when common bits don't match. |
| 524 | */ |
| 525 | continue; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Check 3: next network bit |
| 530 | * |
| 531 | * We can filter out branch 2 or 3 using the next network bit of the |
| 532 | * argument, if it is available. |
| 533 | * |
| 534 | * This check matters for the performance of the search. The results |
| 535 | * would be correct without it. |
| 536 | */ |
| 537 | if (bitmap & ((1 << 2) | (1 << 3)) && |
| 538 | commonbits < ip_bits(argument)) |
| 539 | { |
| 540 | int nextbit; |
| 541 | |
| 542 | nextbit = ip_addr(argument)[commonbits / 8] & |
| 543 | (1 << (7 - commonbits % 8)); |
| 544 | |
| 545 | switch (strategy) |
| 546 | { |
| 547 | case RTLessStrategyNumber: |
| 548 | case RTLessEqualStrategyNumber: |
| 549 | if (!nextbit) |
| 550 | bitmap &= 1 | (1 << 1) | (1 << 2); |
| 551 | break; |
| 552 | |
| 553 | case RTGreaterEqualStrategyNumber: |
| 554 | case RTGreaterStrategyNumber: |
| 555 | if (nextbit) |
| 556 | bitmap &= 1 | (1 << 1) | (1 << 3); |
| 557 | break; |
| 558 | |
| 559 | case RTNotEqualStrategyNumber: |
| 560 | break; |
| 561 | |
| 562 | default: |
| 563 | if (!nextbit) |
| 564 | bitmap &= 1 | (1 << 1) | (1 << 2); |
| 565 | else |
| 566 | bitmap &= 1 | (1 << 1) | (1 << 3); |
| 567 | break; |
| 568 | } |
| 569 | |
| 570 | if (!bitmap) |
| 571 | break; |
| 572 | } |
| 573 | |
| 574 | /* |
| 575 | * Remaining checks are only for the basic comparison strategies. This |
| 576 | * test relies on the strategy number ordering defined in stratnum.h. |
| 577 | */ |
| 578 | if (strategy < RTEqualStrategyNumber || |
| 579 | strategy > RTGreaterEqualStrategyNumber) |
| 580 | continue; |
| 581 | |
| 582 | /* |
| 583 | * Check 4: network bit count |
| 584 | * |
| 585 | * At this point, we know that the common network bits of the prefix |
| 586 | * and the argument are the same, so we can go forward and check the |
| 587 | * ip_bits. |
| 588 | */ |
| 589 | switch (strategy) |
| 590 | { |
| 591 | case RTLessStrategyNumber: |
| 592 | case RTLessEqualStrategyNumber: |
| 593 | if (commonbits == ip_bits(argument)) |
| 594 | bitmap &= 1 | (1 << 1); |
| 595 | else if (commonbits > ip_bits(argument)) |
| 596 | bitmap = 0; |
| 597 | break; |
| 598 | |
| 599 | case RTGreaterEqualStrategyNumber: |
| 600 | case RTGreaterStrategyNumber: |
| 601 | if (commonbits < ip_bits(argument)) |
| 602 | bitmap &= (1 << 2) | (1 << 3); |
| 603 | break; |
| 604 | } |
| 605 | |
| 606 | if (!bitmap) |
| 607 | break; |
| 608 | |
| 609 | /* Remaining checks don't make sense with different ip_bits. */ |
| 610 | if (commonbits != ip_bits(argument)) |
| 611 | continue; |
| 612 | |
| 613 | /* |
| 614 | * Check 5: next host bit |
| 615 | * |
| 616 | * We can filter out branch 0 or 1 using the next host bit of the |
| 617 | * argument, if it is available. |
| 618 | * |
| 619 | * This check matters for the performance of the search. The results |
| 620 | * would be correct without it. There is no point in running it for |
| 621 | * leafs as we have to check the whole address on the next step. |
| 622 | */ |
| 623 | if (!leaf && bitmap & (1 | (1 << 1)) && |
| 624 | commonbits < ip_maxbits(argument)) |
| 625 | { |
| 626 | int nextbit; |
| 627 | |
| 628 | nextbit = ip_addr(argument)[commonbits / 8] & |
| 629 | (1 << (7 - commonbits % 8)); |
| 630 | |
| 631 | switch (strategy) |
| 632 | { |
| 633 | case RTLessStrategyNumber: |
| 634 | case RTLessEqualStrategyNumber: |
| 635 | if (!nextbit) |
| 636 | bitmap &= 1 | (1 << 2) | (1 << 3); |
| 637 | break; |
| 638 | |
| 639 | case RTGreaterEqualStrategyNumber: |
| 640 | case RTGreaterStrategyNumber: |
| 641 | if (nextbit) |
| 642 | bitmap &= (1 << 1) | (1 << 2) | (1 << 3); |
| 643 | break; |
| 644 | |
| 645 | case RTNotEqualStrategyNumber: |
| 646 | break; |
| 647 | |
| 648 | default: |
| 649 | if (!nextbit) |
| 650 | bitmap &= 1 | (1 << 2) | (1 << 3); |
| 651 | else |
| 652 | bitmap &= (1 << 1) | (1 << 2) | (1 << 3); |
| 653 | break; |
| 654 | } |
| 655 | |
| 656 | if (!bitmap) |
| 657 | break; |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * Check 6: whole address |
| 662 | * |
| 663 | * This is the last check for correctness of the basic comparison |
| 664 | * strategies. It's only appropriate at leaf entries. |
| 665 | */ |
| 666 | if (leaf) |
| 667 | { |
| 668 | /* Redo ordering comparison using all address bits */ |
| 669 | order = bitncmp(ip_addr(prefix), ip_addr(argument), |
| 670 | ip_maxbits(prefix)); |
| 671 | |
| 672 | switch (strategy) |
| 673 | { |
| 674 | case RTLessStrategyNumber: |
| 675 | if (order >= 0) |
| 676 | bitmap = 0; |
| 677 | break; |
| 678 | |
| 679 | case RTLessEqualStrategyNumber: |
| 680 | if (order > 0) |
| 681 | bitmap = 0; |
| 682 | break; |
| 683 | |
| 684 | case RTEqualStrategyNumber: |
| 685 | if (order != 0) |
| 686 | bitmap = 0; |
| 687 | break; |
| 688 | |
| 689 | case RTGreaterEqualStrategyNumber: |
| 690 | if (order < 0) |
| 691 | bitmap = 0; |
| 692 | break; |
| 693 | |
| 694 | case RTGreaterStrategyNumber: |
| 695 | if (order <= 0) |
| 696 | bitmap = 0; |
| 697 | break; |
| 698 | |
| 699 | case RTNotEqualStrategyNumber: |
| 700 | if (order == 0) |
| 701 | bitmap = 0; |
| 702 | break; |
| 703 | } |
| 704 | |
| 705 | if (!bitmap) |
| 706 | break; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | return bitmap; |
| 711 | } |
| 712 | |