| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * orderedsetaggs.c |
| 4 | * Ordered-set aggregate functions. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/orderedsetaggs.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <math.h> |
| 18 | |
| 19 | #include "catalog/pg_aggregate.h" |
| 20 | #include "catalog/pg_operator.h" |
| 21 | #include "catalog/pg_type.h" |
| 22 | #include "executor/executor.h" |
| 23 | #include "miscadmin.h" |
| 24 | #include "nodes/nodeFuncs.h" |
| 25 | #include "optimizer/optimizer.h" |
| 26 | #include "utils/array.h" |
| 27 | #include "utils/builtins.h" |
| 28 | #include "utils/lsyscache.h" |
| 29 | #include "utils/memutils.h" |
| 30 | #include "utils/timestamp.h" |
| 31 | #include "utils/tuplesort.h" |
| 32 | |
| 33 | |
| 34 | /* |
| 35 | * Generic support for ordered-set aggregates |
| 36 | * |
| 37 | * The state for an ordered-set aggregate is divided into a per-group struct |
| 38 | * (which is the internal-type transition state datum returned to nodeAgg.c) |
| 39 | * and a per-query struct, which contains data and sub-objects that we can |
| 40 | * create just once per query because they will not change across groups. |
| 41 | * The per-query struct and subsidiary data live in the executor's per-query |
| 42 | * memory context, and go away implicitly at ExecutorEnd(). |
| 43 | * |
| 44 | * These structs are set up during the first call of the transition function. |
| 45 | * Because we allow nodeAgg.c to merge ordered-set aggregates (but not |
| 46 | * hypothetical aggregates) with identical inputs and transition functions, |
| 47 | * this info must not depend on the particular aggregate (ie, particular |
| 48 | * final-function), nor on the direct argument(s) of the aggregate. |
| 49 | */ |
| 50 | |
| 51 | typedef struct OSAPerQueryState |
| 52 | { |
| 53 | /* Representative Aggref for this aggregate: */ |
| 54 | Aggref *aggref; |
| 55 | /* Memory context containing this struct and other per-query data: */ |
| 56 | MemoryContext qcontext; |
| 57 | /* Context for expression evaluation */ |
| 58 | ExprContext *econtext; |
| 59 | /* Do we expect multiple final-function calls within one group? */ |
| 60 | bool rescan_needed; |
| 61 | |
| 62 | /* These fields are used only when accumulating tuples: */ |
| 63 | |
| 64 | /* Tuple descriptor for tuples inserted into sortstate: */ |
| 65 | TupleDesc tupdesc; |
| 66 | /* Tuple slot we can use for inserting/extracting tuples: */ |
| 67 | TupleTableSlot *tupslot; |
| 68 | /* Per-sort-column sorting information */ |
| 69 | int numSortCols; |
| 70 | AttrNumber *sortColIdx; |
| 71 | Oid *sortOperators; |
| 72 | Oid *eqOperators; |
| 73 | Oid *sortCollations; |
| 74 | bool *sortNullsFirsts; |
| 75 | /* Equality operator call info, created only if needed: */ |
| 76 | ExprState *compareTuple; |
| 77 | |
| 78 | /* These fields are used only when accumulating datums: */ |
| 79 | |
| 80 | /* Info about datatype of datums being sorted: */ |
| 81 | Oid sortColType; |
| 82 | int16 typLen; |
| 83 | bool typByVal; |
| 84 | char typAlign; |
| 85 | /* Info about sort ordering: */ |
| 86 | Oid sortOperator; |
| 87 | Oid eqOperator; |
| 88 | Oid sortCollation; |
| 89 | bool sortNullsFirst; |
| 90 | /* Equality operator call info, created only if needed: */ |
| 91 | FmgrInfo equalfn; |
| 92 | } OSAPerQueryState; |
| 93 | |
| 94 | typedef struct OSAPerGroupState |
| 95 | { |
| 96 | /* Link to the per-query state for this aggregate: */ |
| 97 | OSAPerQueryState *qstate; |
| 98 | /* Memory context containing per-group data: */ |
| 99 | MemoryContext gcontext; |
| 100 | /* Sort object we're accumulating data in: */ |
| 101 | Tuplesortstate *sortstate; |
| 102 | /* Number of normal rows inserted into sortstate: */ |
| 103 | int64 number_of_rows; |
| 104 | /* Have we already done tuplesort_performsort? */ |
| 105 | bool sort_done; |
| 106 | } OSAPerGroupState; |
| 107 | |
| 108 | static void ordered_set_shutdown(Datum arg); |
| 109 | |
| 110 | |
| 111 | /* |
| 112 | * Set up working state for an ordered-set aggregate |
| 113 | */ |
| 114 | static OSAPerGroupState * |
| 115 | ordered_set_startup(FunctionCallInfo fcinfo, bool use_tuples) |
| 116 | { |
| 117 | OSAPerGroupState *osastate; |
| 118 | OSAPerQueryState *qstate; |
| 119 | MemoryContext gcontext; |
| 120 | MemoryContext oldcontext; |
| 121 | |
| 122 | /* |
| 123 | * Check we're called as aggregate (and not a window function), and get |
| 124 | * the Agg node's group-lifespan context (which might change from group to |
| 125 | * group, so we shouldn't cache it in the per-query state). |
| 126 | */ |
| 127 | if (AggCheckCallContext(fcinfo, &gcontext) != AGG_CONTEXT_AGGREGATE) |
| 128 | elog(ERROR, "ordered-set aggregate called in non-aggregate context" ); |
| 129 | |
| 130 | /* |
| 131 | * We keep a link to the per-query state in fn_extra; if it's not there, |
| 132 | * create it, and do the per-query setup we need. |
| 133 | */ |
| 134 | qstate = (OSAPerQueryState *) fcinfo->flinfo->fn_extra; |
| 135 | if (qstate == NULL) |
| 136 | { |
| 137 | Aggref *aggref; |
| 138 | MemoryContext qcontext; |
| 139 | List *sortlist; |
| 140 | int numSortCols; |
| 141 | |
| 142 | /* Get the Aggref so we can examine aggregate's arguments */ |
| 143 | aggref = AggGetAggref(fcinfo); |
| 144 | if (!aggref) |
| 145 | elog(ERROR, "ordered-set aggregate called in non-aggregate context" ); |
| 146 | if (!AGGKIND_IS_ORDERED_SET(aggref->aggkind)) |
| 147 | elog(ERROR, "ordered-set aggregate support function called for non-ordered-set aggregate" ); |
| 148 | |
| 149 | /* |
| 150 | * Prepare per-query structures in the fn_mcxt, which we assume is the |
| 151 | * executor's per-query context; in any case it's the right place to |
| 152 | * keep anything found via fn_extra. |
| 153 | */ |
| 154 | qcontext = fcinfo->flinfo->fn_mcxt; |
| 155 | oldcontext = MemoryContextSwitchTo(qcontext); |
| 156 | |
| 157 | qstate = (OSAPerQueryState *) palloc0(sizeof(OSAPerQueryState)); |
| 158 | qstate->aggref = aggref; |
| 159 | qstate->qcontext = qcontext; |
| 160 | |
| 161 | /* We need to support rescans if the trans state is shared */ |
| 162 | qstate->rescan_needed = AggStateIsShared(fcinfo); |
| 163 | |
| 164 | /* Extract the sort information */ |
| 165 | sortlist = aggref->aggorder; |
| 166 | numSortCols = list_length(sortlist); |
| 167 | |
| 168 | if (use_tuples) |
| 169 | { |
| 170 | bool ishypothetical = (aggref->aggkind == AGGKIND_HYPOTHETICAL); |
| 171 | ListCell *lc; |
| 172 | int i; |
| 173 | |
| 174 | if (ishypothetical) |
| 175 | numSortCols++; /* make space for flag column */ |
| 176 | qstate->numSortCols = numSortCols; |
| 177 | qstate->sortColIdx = (AttrNumber *) palloc(numSortCols * sizeof(AttrNumber)); |
| 178 | qstate->sortOperators = (Oid *) palloc(numSortCols * sizeof(Oid)); |
| 179 | qstate->eqOperators = (Oid *) palloc(numSortCols * sizeof(Oid)); |
| 180 | qstate->sortCollations = (Oid *) palloc(numSortCols * sizeof(Oid)); |
| 181 | qstate->sortNullsFirsts = (bool *) palloc(numSortCols * sizeof(bool)); |
| 182 | |
| 183 | i = 0; |
| 184 | foreach(lc, sortlist) |
| 185 | { |
| 186 | SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc); |
| 187 | TargetEntry *tle = get_sortgroupclause_tle(sortcl, |
| 188 | aggref->args); |
| 189 | |
| 190 | /* the parser should have made sure of this */ |
| 191 | Assert(OidIsValid(sortcl->sortop)); |
| 192 | |
| 193 | qstate->sortColIdx[i] = tle->resno; |
| 194 | qstate->sortOperators[i] = sortcl->sortop; |
| 195 | qstate->eqOperators[i] = sortcl->eqop; |
| 196 | qstate->sortCollations[i] = exprCollation((Node *) tle->expr); |
| 197 | qstate->sortNullsFirsts[i] = sortcl->nulls_first; |
| 198 | i++; |
| 199 | } |
| 200 | |
| 201 | if (ishypothetical) |
| 202 | { |
| 203 | /* Add an integer flag column as the last sort column */ |
| 204 | qstate->sortColIdx[i] = list_length(aggref->args) + 1; |
| 205 | qstate->sortOperators[i] = Int4LessOperator; |
| 206 | qstate->eqOperators[i] = Int4EqualOperator; |
| 207 | qstate->sortCollations[i] = InvalidOid; |
| 208 | qstate->sortNullsFirsts[i] = false; |
| 209 | i++; |
| 210 | } |
| 211 | |
| 212 | Assert(i == numSortCols); |
| 213 | |
| 214 | /* |
| 215 | * Get a tupledesc corresponding to the aggregated inputs |
| 216 | * (including sort expressions) of the agg. |
| 217 | */ |
| 218 | qstate->tupdesc = ExecTypeFromTL(aggref->args); |
| 219 | |
| 220 | /* If we need a flag column, hack the tupledesc to include that */ |
| 221 | if (ishypothetical) |
| 222 | { |
| 223 | TupleDesc newdesc; |
| 224 | int natts = qstate->tupdesc->natts; |
| 225 | |
| 226 | newdesc = CreateTemplateTupleDesc(natts + 1); |
| 227 | for (i = 1; i <= natts; i++) |
| 228 | TupleDescCopyEntry(newdesc, i, qstate->tupdesc, i); |
| 229 | |
| 230 | TupleDescInitEntry(newdesc, |
| 231 | (AttrNumber) ++natts, |
| 232 | "flag" , |
| 233 | INT4OID, |
| 234 | -1, |
| 235 | 0); |
| 236 | |
| 237 | FreeTupleDesc(qstate->tupdesc); |
| 238 | qstate->tupdesc = newdesc; |
| 239 | } |
| 240 | |
| 241 | /* Create slot we'll use to store/retrieve rows */ |
| 242 | qstate->tupslot = MakeSingleTupleTableSlot(qstate->tupdesc, |
| 243 | &TTSOpsMinimalTuple); |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | /* Sort single datums */ |
| 248 | SortGroupClause *sortcl; |
| 249 | TargetEntry *tle; |
| 250 | |
| 251 | if (numSortCols != 1 || aggref->aggkind == AGGKIND_HYPOTHETICAL) |
| 252 | elog(ERROR, "ordered-set aggregate support function does not support multiple aggregated columns" ); |
| 253 | |
| 254 | sortcl = (SortGroupClause *) linitial(sortlist); |
| 255 | tle = get_sortgroupclause_tle(sortcl, aggref->args); |
| 256 | |
| 257 | /* the parser should have made sure of this */ |
| 258 | Assert(OidIsValid(sortcl->sortop)); |
| 259 | |
| 260 | /* Save sort ordering info */ |
| 261 | qstate->sortColType = exprType((Node *) tle->expr); |
| 262 | qstate->sortOperator = sortcl->sortop; |
| 263 | qstate->eqOperator = sortcl->eqop; |
| 264 | qstate->sortCollation = exprCollation((Node *) tle->expr); |
| 265 | qstate->sortNullsFirst = sortcl->nulls_first; |
| 266 | |
| 267 | /* Save datatype info */ |
| 268 | get_typlenbyvalalign(qstate->sortColType, |
| 269 | &qstate->typLen, |
| 270 | &qstate->typByVal, |
| 271 | &qstate->typAlign); |
| 272 | } |
| 273 | |
| 274 | fcinfo->flinfo->fn_extra = (void *) qstate; |
| 275 | |
| 276 | MemoryContextSwitchTo(oldcontext); |
| 277 | } |
| 278 | |
| 279 | /* Now build the stuff we need in group-lifespan context */ |
| 280 | oldcontext = MemoryContextSwitchTo(gcontext); |
| 281 | |
| 282 | osastate = (OSAPerGroupState *) palloc(sizeof(OSAPerGroupState)); |
| 283 | osastate->qstate = qstate; |
| 284 | osastate->gcontext = gcontext; |
| 285 | |
| 286 | /* |
| 287 | * Initialize tuplesort object. |
| 288 | */ |
| 289 | if (use_tuples) |
| 290 | osastate->sortstate = tuplesort_begin_heap(qstate->tupdesc, |
| 291 | qstate->numSortCols, |
| 292 | qstate->sortColIdx, |
| 293 | qstate->sortOperators, |
| 294 | qstate->sortCollations, |
| 295 | qstate->sortNullsFirsts, |
| 296 | work_mem, |
| 297 | NULL, |
| 298 | qstate->rescan_needed); |
| 299 | else |
| 300 | osastate->sortstate = tuplesort_begin_datum(qstate->sortColType, |
| 301 | qstate->sortOperator, |
| 302 | qstate->sortCollation, |
| 303 | qstate->sortNullsFirst, |
| 304 | work_mem, |
| 305 | NULL, |
| 306 | qstate->rescan_needed); |
| 307 | |
| 308 | osastate->number_of_rows = 0; |
| 309 | osastate->sort_done = false; |
| 310 | |
| 311 | /* Now register a shutdown callback to clean things up at end of group */ |
| 312 | AggRegisterCallback(fcinfo, |
| 313 | ordered_set_shutdown, |
| 314 | PointerGetDatum(osastate)); |
| 315 | |
| 316 | MemoryContextSwitchTo(oldcontext); |
| 317 | |
| 318 | return osastate; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Clean up when evaluation of an ordered-set aggregate is complete. |
| 323 | * |
| 324 | * We don't need to bother freeing objects in the per-group memory context, |
| 325 | * since that will get reset anyway by nodeAgg.c; nor should we free anything |
| 326 | * in the per-query context, which will get cleared (if this was the last |
| 327 | * group) by ExecutorEnd. But we must take care to release any potential |
| 328 | * non-memory resources. |
| 329 | * |
| 330 | * In the case where we're not expecting multiple finalfn calls, we could |
| 331 | * arguably rely on the finalfn to clean up; but it's easier and more testable |
| 332 | * if we just do it the same way in either case. |
| 333 | */ |
| 334 | static void |
| 335 | ordered_set_shutdown(Datum arg) |
| 336 | { |
| 337 | OSAPerGroupState *osastate = (OSAPerGroupState *) DatumGetPointer(arg); |
| 338 | |
| 339 | /* Tuplesort object might have temp files. */ |
| 340 | if (osastate->sortstate) |
| 341 | tuplesort_end(osastate->sortstate); |
| 342 | osastate->sortstate = NULL; |
| 343 | /* The tupleslot probably can't be holding a pin, but let's be safe. */ |
| 344 | if (osastate->qstate->tupslot) |
| 345 | ExecClearTuple(osastate->qstate->tupslot); |
| 346 | } |
| 347 | |
| 348 | |
| 349 | /* |
| 350 | * Generic transition function for ordered-set aggregates |
| 351 | * with a single input column in which we want to suppress nulls |
| 352 | */ |
| 353 | Datum |
| 354 | ordered_set_transition(PG_FUNCTION_ARGS) |
| 355 | { |
| 356 | OSAPerGroupState *osastate; |
| 357 | |
| 358 | /* If first call, create the transition state workspace */ |
| 359 | if (PG_ARGISNULL(0)) |
| 360 | osastate = ordered_set_startup(fcinfo, false); |
| 361 | else |
| 362 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 363 | |
| 364 | /* Load the datum into the tuplesort object, but only if it's not null */ |
| 365 | if (!PG_ARGISNULL(1)) |
| 366 | { |
| 367 | tuplesort_putdatum(osastate->sortstate, PG_GETARG_DATUM(1), false); |
| 368 | osastate->number_of_rows++; |
| 369 | } |
| 370 | |
| 371 | PG_RETURN_POINTER(osastate); |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * Generic transition function for ordered-set aggregates |
| 376 | * with (potentially) multiple aggregated input columns |
| 377 | */ |
| 378 | Datum |
| 379 | ordered_set_transition_multi(PG_FUNCTION_ARGS) |
| 380 | { |
| 381 | OSAPerGroupState *osastate; |
| 382 | TupleTableSlot *slot; |
| 383 | int nargs; |
| 384 | int i; |
| 385 | |
| 386 | /* If first call, create the transition state workspace */ |
| 387 | if (PG_ARGISNULL(0)) |
| 388 | osastate = ordered_set_startup(fcinfo, true); |
| 389 | else |
| 390 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 391 | |
| 392 | /* Form a tuple from all the other inputs besides the transition value */ |
| 393 | slot = osastate->qstate->tupslot; |
| 394 | ExecClearTuple(slot); |
| 395 | nargs = PG_NARGS() - 1; |
| 396 | for (i = 0; i < nargs; i++) |
| 397 | { |
| 398 | slot->tts_values[i] = PG_GETARG_DATUM(i + 1); |
| 399 | slot->tts_isnull[i] = PG_ARGISNULL(i + 1); |
| 400 | } |
| 401 | if (osastate->qstate->aggref->aggkind == AGGKIND_HYPOTHETICAL) |
| 402 | { |
| 403 | /* Add a zero flag value to mark this row as a normal input row */ |
| 404 | slot->tts_values[i] = Int32GetDatum(0); |
| 405 | slot->tts_isnull[i] = false; |
| 406 | i++; |
| 407 | } |
| 408 | Assert(i == slot->tts_tupleDescriptor->natts); |
| 409 | ExecStoreVirtualTuple(slot); |
| 410 | |
| 411 | /* Load the row into the tuplesort object */ |
| 412 | tuplesort_puttupleslot(osastate->sortstate, slot); |
| 413 | osastate->number_of_rows++; |
| 414 | |
| 415 | PG_RETURN_POINTER(osastate); |
| 416 | } |
| 417 | |
| 418 | |
| 419 | /* |
| 420 | * percentile_disc(float8) within group(anyelement) - discrete percentile |
| 421 | */ |
| 422 | Datum |
| 423 | percentile_disc_final(PG_FUNCTION_ARGS) |
| 424 | { |
| 425 | OSAPerGroupState *osastate; |
| 426 | double percentile; |
| 427 | Datum val; |
| 428 | bool isnull; |
| 429 | int64 rownum; |
| 430 | |
| 431 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 432 | |
| 433 | /* Get and check the percentile argument */ |
| 434 | if (PG_ARGISNULL(1)) |
| 435 | PG_RETURN_NULL(); |
| 436 | |
| 437 | percentile = PG_GETARG_FLOAT8(1); |
| 438 | |
| 439 | if (percentile < 0 || percentile > 1 || isnan(percentile)) |
| 440 | ereport(ERROR, |
| 441 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 442 | errmsg("percentile value %g is not between 0 and 1" , |
| 443 | percentile))); |
| 444 | |
| 445 | /* If there were no regular rows, the result is NULL */ |
| 446 | if (PG_ARGISNULL(0)) |
| 447 | PG_RETURN_NULL(); |
| 448 | |
| 449 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 450 | |
| 451 | /* number_of_rows could be zero if we only saw NULL input values */ |
| 452 | if (osastate->number_of_rows == 0) |
| 453 | PG_RETURN_NULL(); |
| 454 | |
| 455 | /* Finish the sort, or rescan if we already did */ |
| 456 | if (!osastate->sort_done) |
| 457 | { |
| 458 | tuplesort_performsort(osastate->sortstate); |
| 459 | osastate->sort_done = true; |
| 460 | } |
| 461 | else |
| 462 | tuplesort_rescan(osastate->sortstate); |
| 463 | |
| 464 | /*---------- |
| 465 | * We need the smallest K such that (K/N) >= percentile. |
| 466 | * N>0, therefore K >= N*percentile, therefore K = ceil(N*percentile). |
| 467 | * So we skip K-1 rows (if K>0) and return the next row fetched. |
| 468 | *---------- |
| 469 | */ |
| 470 | rownum = (int64) ceil(percentile * osastate->number_of_rows); |
| 471 | Assert(rownum <= osastate->number_of_rows); |
| 472 | |
| 473 | if (rownum > 1) |
| 474 | { |
| 475 | if (!tuplesort_skiptuples(osastate->sortstate, rownum - 1, true)) |
| 476 | elog(ERROR, "missing row in percentile_disc" ); |
| 477 | } |
| 478 | |
| 479 | if (!tuplesort_getdatum(osastate->sortstate, true, &val, &isnull, NULL)) |
| 480 | elog(ERROR, "missing row in percentile_disc" ); |
| 481 | |
| 482 | /* We shouldn't have stored any nulls, but do the right thing anyway */ |
| 483 | if (isnull) |
| 484 | PG_RETURN_NULL(); |
| 485 | else |
| 486 | PG_RETURN_DATUM(val); |
| 487 | } |
| 488 | |
| 489 | |
| 490 | /* |
| 491 | * For percentile_cont, we need a way to interpolate between consecutive |
| 492 | * values. Use a helper function for that, so that we can share the rest |
| 493 | * of the code between types. |
| 494 | */ |
| 495 | typedef Datum (*LerpFunc) (Datum lo, Datum hi, double pct); |
| 496 | |
| 497 | static Datum |
| 498 | float8_lerp(Datum lo, Datum hi, double pct) |
| 499 | { |
| 500 | double loval = DatumGetFloat8(lo); |
| 501 | double hival = DatumGetFloat8(hi); |
| 502 | |
| 503 | return Float8GetDatum(loval + (pct * (hival - loval))); |
| 504 | } |
| 505 | |
| 506 | static Datum |
| 507 | interval_lerp(Datum lo, Datum hi, double pct) |
| 508 | { |
| 509 | Datum diff_result = DirectFunctionCall2(interval_mi, hi, lo); |
| 510 | Datum mul_result = DirectFunctionCall2(interval_mul, |
| 511 | diff_result, |
| 512 | Float8GetDatumFast(pct)); |
| 513 | |
| 514 | return DirectFunctionCall2(interval_pl, mul_result, lo); |
| 515 | } |
| 516 | |
| 517 | /* |
| 518 | * Continuous percentile |
| 519 | */ |
| 520 | static Datum |
| 521 | percentile_cont_final_common(FunctionCallInfo fcinfo, |
| 522 | Oid expect_type, |
| 523 | LerpFunc lerpfunc) |
| 524 | { |
| 525 | OSAPerGroupState *osastate; |
| 526 | double percentile; |
| 527 | int64 first_row = 0; |
| 528 | int64 second_row = 0; |
| 529 | Datum val; |
| 530 | Datum first_val; |
| 531 | Datum second_val; |
| 532 | double proportion; |
| 533 | bool isnull; |
| 534 | |
| 535 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 536 | |
| 537 | /* Get and check the percentile argument */ |
| 538 | if (PG_ARGISNULL(1)) |
| 539 | PG_RETURN_NULL(); |
| 540 | |
| 541 | percentile = PG_GETARG_FLOAT8(1); |
| 542 | |
| 543 | if (percentile < 0 || percentile > 1 || isnan(percentile)) |
| 544 | ereport(ERROR, |
| 545 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 546 | errmsg("percentile value %g is not between 0 and 1" , |
| 547 | percentile))); |
| 548 | |
| 549 | /* If there were no regular rows, the result is NULL */ |
| 550 | if (PG_ARGISNULL(0)) |
| 551 | PG_RETURN_NULL(); |
| 552 | |
| 553 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 554 | |
| 555 | /* number_of_rows could be zero if we only saw NULL input values */ |
| 556 | if (osastate->number_of_rows == 0) |
| 557 | PG_RETURN_NULL(); |
| 558 | |
| 559 | Assert(expect_type == osastate->qstate->sortColType); |
| 560 | |
| 561 | /* Finish the sort, or rescan if we already did */ |
| 562 | if (!osastate->sort_done) |
| 563 | { |
| 564 | tuplesort_performsort(osastate->sortstate); |
| 565 | osastate->sort_done = true; |
| 566 | } |
| 567 | else |
| 568 | tuplesort_rescan(osastate->sortstate); |
| 569 | |
| 570 | first_row = floor(percentile * (osastate->number_of_rows - 1)); |
| 571 | second_row = ceil(percentile * (osastate->number_of_rows - 1)); |
| 572 | |
| 573 | Assert(first_row < osastate->number_of_rows); |
| 574 | |
| 575 | if (!tuplesort_skiptuples(osastate->sortstate, first_row, true)) |
| 576 | elog(ERROR, "missing row in percentile_cont" ); |
| 577 | |
| 578 | if (!tuplesort_getdatum(osastate->sortstate, true, &first_val, &isnull, NULL)) |
| 579 | elog(ERROR, "missing row in percentile_cont" ); |
| 580 | if (isnull) |
| 581 | PG_RETURN_NULL(); |
| 582 | |
| 583 | if (first_row == second_row) |
| 584 | { |
| 585 | val = first_val; |
| 586 | } |
| 587 | else |
| 588 | { |
| 589 | if (!tuplesort_getdatum(osastate->sortstate, true, &second_val, &isnull, NULL)) |
| 590 | elog(ERROR, "missing row in percentile_cont" ); |
| 591 | |
| 592 | if (isnull) |
| 593 | PG_RETURN_NULL(); |
| 594 | |
| 595 | proportion = (percentile * (osastate->number_of_rows - 1)) - first_row; |
| 596 | val = lerpfunc(first_val, second_val, proportion); |
| 597 | } |
| 598 | |
| 599 | PG_RETURN_DATUM(val); |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * percentile_cont(float8) within group (float8) - continuous percentile |
| 604 | */ |
| 605 | Datum |
| 606 | percentile_cont_float8_final(PG_FUNCTION_ARGS) |
| 607 | { |
| 608 | return percentile_cont_final_common(fcinfo, FLOAT8OID, float8_lerp); |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * percentile_cont(float8) within group (interval) - continuous percentile |
| 613 | */ |
| 614 | Datum |
| 615 | percentile_cont_interval_final(PG_FUNCTION_ARGS) |
| 616 | { |
| 617 | return percentile_cont_final_common(fcinfo, INTERVALOID, interval_lerp); |
| 618 | } |
| 619 | |
| 620 | |
| 621 | /* |
| 622 | * Support code for handling arrays of percentiles |
| 623 | * |
| 624 | * Note: in each pct_info entry, second_row should be equal to or |
| 625 | * exactly one more than first_row. |
| 626 | */ |
| 627 | struct pct_info |
| 628 | { |
| 629 | int64 first_row; /* first row to sample */ |
| 630 | int64 second_row; /* possible second row to sample */ |
| 631 | double proportion; /* interpolation fraction */ |
| 632 | int idx; /* index of this item in original array */ |
| 633 | }; |
| 634 | |
| 635 | /* |
| 636 | * Sort comparator to sort pct_infos by first_row then second_row |
| 637 | */ |
| 638 | static int |
| 639 | pct_info_cmp(const void *pa, const void *pb) |
| 640 | { |
| 641 | const struct pct_info *a = (const struct pct_info *) pa; |
| 642 | const struct pct_info *b = (const struct pct_info *) pb; |
| 643 | |
| 644 | if (a->first_row != b->first_row) |
| 645 | return (a->first_row < b->first_row) ? -1 : 1; |
| 646 | if (a->second_row != b->second_row) |
| 647 | return (a->second_row < b->second_row) ? -1 : 1; |
| 648 | return 0; |
| 649 | } |
| 650 | |
| 651 | /* |
| 652 | * Construct array showing which rows to sample for percentiles. |
| 653 | */ |
| 654 | static struct pct_info * |
| 655 | setup_pct_info(int num_percentiles, |
| 656 | Datum *percentiles_datum, |
| 657 | bool *percentiles_null, |
| 658 | int64 rowcount, |
| 659 | bool continuous) |
| 660 | { |
| 661 | struct pct_info *pct_info; |
| 662 | int i; |
| 663 | |
| 664 | pct_info = (struct pct_info *) palloc(num_percentiles * sizeof(struct pct_info)); |
| 665 | |
| 666 | for (i = 0; i < num_percentiles; i++) |
| 667 | { |
| 668 | pct_info[i].idx = i; |
| 669 | |
| 670 | if (percentiles_null[i]) |
| 671 | { |
| 672 | /* dummy entry for any NULL in array */ |
| 673 | pct_info[i].first_row = 0; |
| 674 | pct_info[i].second_row = 0; |
| 675 | pct_info[i].proportion = 0; |
| 676 | } |
| 677 | else |
| 678 | { |
| 679 | double p = DatumGetFloat8(percentiles_datum[i]); |
| 680 | |
| 681 | if (p < 0 || p > 1 || isnan(p)) |
| 682 | ereport(ERROR, |
| 683 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 684 | errmsg("percentile value %g is not between 0 and 1" , |
| 685 | p))); |
| 686 | |
| 687 | if (continuous) |
| 688 | { |
| 689 | pct_info[i].first_row = 1 + floor(p * (rowcount - 1)); |
| 690 | pct_info[i].second_row = 1 + ceil(p * (rowcount - 1)); |
| 691 | pct_info[i].proportion = (p * (rowcount - 1)) - floor(p * (rowcount - 1)); |
| 692 | } |
| 693 | else |
| 694 | { |
| 695 | /*---------- |
| 696 | * We need the smallest K such that (K/N) >= percentile. |
| 697 | * N>0, therefore K >= N*percentile, therefore |
| 698 | * K = ceil(N*percentile); but not less than 1. |
| 699 | *---------- |
| 700 | */ |
| 701 | int64 row = (int64) ceil(p * rowcount); |
| 702 | |
| 703 | row = Max(1, row); |
| 704 | pct_info[i].first_row = row; |
| 705 | pct_info[i].second_row = row; |
| 706 | pct_info[i].proportion = 0; |
| 707 | } |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * The parameter array wasn't necessarily in sorted order, but we need to |
| 713 | * visit the rows in order, so sort by first_row/second_row. |
| 714 | */ |
| 715 | qsort(pct_info, num_percentiles, sizeof(struct pct_info), pct_info_cmp); |
| 716 | |
| 717 | return pct_info; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * percentile_disc(float8[]) within group (anyelement) - discrete percentiles |
| 722 | */ |
| 723 | Datum |
| 724 | percentile_disc_multi_final(PG_FUNCTION_ARGS) |
| 725 | { |
| 726 | OSAPerGroupState *osastate; |
| 727 | ArrayType *param; |
| 728 | Datum *percentiles_datum; |
| 729 | bool *percentiles_null; |
| 730 | int num_percentiles; |
| 731 | struct pct_info *pct_info; |
| 732 | Datum *result_datum; |
| 733 | bool *result_isnull; |
| 734 | int64 rownum = 0; |
| 735 | Datum val = (Datum) 0; |
| 736 | bool isnull = true; |
| 737 | int i; |
| 738 | |
| 739 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 740 | |
| 741 | /* If there were no regular rows, the result is NULL */ |
| 742 | if (PG_ARGISNULL(0)) |
| 743 | PG_RETURN_NULL(); |
| 744 | |
| 745 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 746 | |
| 747 | /* number_of_rows could be zero if we only saw NULL input values */ |
| 748 | if (osastate->number_of_rows == 0) |
| 749 | PG_RETURN_NULL(); |
| 750 | |
| 751 | /* Deconstruct the percentile-array input */ |
| 752 | if (PG_ARGISNULL(1)) |
| 753 | PG_RETURN_NULL(); |
| 754 | param = PG_GETARG_ARRAYTYPE_P(1); |
| 755 | |
| 756 | deconstruct_array(param, FLOAT8OID, |
| 757 | /* hard-wired info on type float8 */ |
| 758 | 8, FLOAT8PASSBYVAL, 'd', |
| 759 | &percentiles_datum, |
| 760 | &percentiles_null, |
| 761 | &num_percentiles); |
| 762 | |
| 763 | if (num_percentiles == 0) |
| 764 | PG_RETURN_POINTER(construct_empty_array(osastate->qstate->sortColType)); |
| 765 | |
| 766 | pct_info = setup_pct_info(num_percentiles, |
| 767 | percentiles_datum, |
| 768 | percentiles_null, |
| 769 | osastate->number_of_rows, |
| 770 | false); |
| 771 | |
| 772 | result_datum = (Datum *) palloc(num_percentiles * sizeof(Datum)); |
| 773 | result_isnull = (bool *) palloc(num_percentiles * sizeof(bool)); |
| 774 | |
| 775 | /* |
| 776 | * Start by dealing with any nulls in the param array - those are sorted |
| 777 | * to the front on row=0, so set the corresponding result indexes to null |
| 778 | */ |
| 779 | for (i = 0; i < num_percentiles; i++) |
| 780 | { |
| 781 | int idx = pct_info[i].idx; |
| 782 | |
| 783 | if (pct_info[i].first_row > 0) |
| 784 | break; |
| 785 | |
| 786 | result_datum[idx] = (Datum) 0; |
| 787 | result_isnull[idx] = true; |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * If there's anything left after doing the nulls, then grind the input |
| 792 | * and extract the needed values |
| 793 | */ |
| 794 | if (i < num_percentiles) |
| 795 | { |
| 796 | /* Finish the sort, or rescan if we already did */ |
| 797 | if (!osastate->sort_done) |
| 798 | { |
| 799 | tuplesort_performsort(osastate->sortstate); |
| 800 | osastate->sort_done = true; |
| 801 | } |
| 802 | else |
| 803 | tuplesort_rescan(osastate->sortstate); |
| 804 | |
| 805 | for (; i < num_percentiles; i++) |
| 806 | { |
| 807 | int64 target_row = pct_info[i].first_row; |
| 808 | int idx = pct_info[i].idx; |
| 809 | |
| 810 | /* Advance to target row, if not already there */ |
| 811 | if (target_row > rownum) |
| 812 | { |
| 813 | if (!tuplesort_skiptuples(osastate->sortstate, target_row - rownum - 1, true)) |
| 814 | elog(ERROR, "missing row in percentile_disc" ); |
| 815 | |
| 816 | if (!tuplesort_getdatum(osastate->sortstate, true, &val, &isnull, NULL)) |
| 817 | elog(ERROR, "missing row in percentile_disc" ); |
| 818 | |
| 819 | rownum = target_row; |
| 820 | } |
| 821 | |
| 822 | result_datum[idx] = val; |
| 823 | result_isnull[idx] = isnull; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | /* We make the output array the same shape as the input */ |
| 828 | PG_RETURN_POINTER(construct_md_array(result_datum, result_isnull, |
| 829 | ARR_NDIM(param), |
| 830 | ARR_DIMS(param), |
| 831 | ARR_LBOUND(param), |
| 832 | osastate->qstate->sortColType, |
| 833 | osastate->qstate->typLen, |
| 834 | osastate->qstate->typByVal, |
| 835 | osastate->qstate->typAlign)); |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * percentile_cont(float8[]) within group () - continuous percentiles |
| 840 | */ |
| 841 | static Datum |
| 842 | percentile_cont_multi_final_common(FunctionCallInfo fcinfo, |
| 843 | Oid expect_type, |
| 844 | int16 typLen, bool typByVal, char typAlign, |
| 845 | LerpFunc lerpfunc) |
| 846 | { |
| 847 | OSAPerGroupState *osastate; |
| 848 | ArrayType *param; |
| 849 | Datum *percentiles_datum; |
| 850 | bool *percentiles_null; |
| 851 | int num_percentiles; |
| 852 | struct pct_info *pct_info; |
| 853 | Datum *result_datum; |
| 854 | bool *result_isnull; |
| 855 | int64 rownum = 0; |
| 856 | Datum first_val = (Datum) 0; |
| 857 | Datum second_val = (Datum) 0; |
| 858 | bool isnull; |
| 859 | int i; |
| 860 | |
| 861 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 862 | |
| 863 | /* If there were no regular rows, the result is NULL */ |
| 864 | if (PG_ARGISNULL(0)) |
| 865 | PG_RETURN_NULL(); |
| 866 | |
| 867 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 868 | |
| 869 | /* number_of_rows could be zero if we only saw NULL input values */ |
| 870 | if (osastate->number_of_rows == 0) |
| 871 | PG_RETURN_NULL(); |
| 872 | |
| 873 | Assert(expect_type == osastate->qstate->sortColType); |
| 874 | |
| 875 | /* Deconstruct the percentile-array input */ |
| 876 | if (PG_ARGISNULL(1)) |
| 877 | PG_RETURN_NULL(); |
| 878 | param = PG_GETARG_ARRAYTYPE_P(1); |
| 879 | |
| 880 | deconstruct_array(param, FLOAT8OID, |
| 881 | /* hard-wired info on type float8 */ |
| 882 | 8, FLOAT8PASSBYVAL, 'd', |
| 883 | &percentiles_datum, |
| 884 | &percentiles_null, |
| 885 | &num_percentiles); |
| 886 | |
| 887 | if (num_percentiles == 0) |
| 888 | PG_RETURN_POINTER(construct_empty_array(osastate->qstate->sortColType)); |
| 889 | |
| 890 | pct_info = setup_pct_info(num_percentiles, |
| 891 | percentiles_datum, |
| 892 | percentiles_null, |
| 893 | osastate->number_of_rows, |
| 894 | true); |
| 895 | |
| 896 | result_datum = (Datum *) palloc(num_percentiles * sizeof(Datum)); |
| 897 | result_isnull = (bool *) palloc(num_percentiles * sizeof(bool)); |
| 898 | |
| 899 | /* |
| 900 | * Start by dealing with any nulls in the param array - those are sorted |
| 901 | * to the front on row=0, so set the corresponding result indexes to null |
| 902 | */ |
| 903 | for (i = 0; i < num_percentiles; i++) |
| 904 | { |
| 905 | int idx = pct_info[i].idx; |
| 906 | |
| 907 | if (pct_info[i].first_row > 0) |
| 908 | break; |
| 909 | |
| 910 | result_datum[idx] = (Datum) 0; |
| 911 | result_isnull[idx] = true; |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * If there's anything left after doing the nulls, then grind the input |
| 916 | * and extract the needed values |
| 917 | */ |
| 918 | if (i < num_percentiles) |
| 919 | { |
| 920 | /* Finish the sort, or rescan if we already did */ |
| 921 | if (!osastate->sort_done) |
| 922 | { |
| 923 | tuplesort_performsort(osastate->sortstate); |
| 924 | osastate->sort_done = true; |
| 925 | } |
| 926 | else |
| 927 | tuplesort_rescan(osastate->sortstate); |
| 928 | |
| 929 | for (; i < num_percentiles; i++) |
| 930 | { |
| 931 | int64 first_row = pct_info[i].first_row; |
| 932 | int64 second_row = pct_info[i].second_row; |
| 933 | int idx = pct_info[i].idx; |
| 934 | |
| 935 | /* |
| 936 | * Advance to first_row, if not already there. Note that we might |
| 937 | * already have rownum beyond first_row, in which case first_val |
| 938 | * is already correct. (This occurs when interpolating between |
| 939 | * the same two input rows as for the previous percentile.) |
| 940 | */ |
| 941 | if (first_row > rownum) |
| 942 | { |
| 943 | if (!tuplesort_skiptuples(osastate->sortstate, first_row - rownum - 1, true)) |
| 944 | elog(ERROR, "missing row in percentile_cont" ); |
| 945 | |
| 946 | if (!tuplesort_getdatum(osastate->sortstate, true, &first_val, |
| 947 | &isnull, NULL) || isnull) |
| 948 | elog(ERROR, "missing row in percentile_cont" ); |
| 949 | |
| 950 | rownum = first_row; |
| 951 | /* Always advance second_val to be latest input value */ |
| 952 | second_val = first_val; |
| 953 | } |
| 954 | else if (first_row == rownum) |
| 955 | { |
| 956 | /* |
| 957 | * We are already at the desired row, so we must previously |
| 958 | * have read its value into second_val (and perhaps first_val |
| 959 | * as well, but this assignment is harmless in that case). |
| 960 | */ |
| 961 | first_val = second_val; |
| 962 | } |
| 963 | |
| 964 | /* Fetch second_row if needed */ |
| 965 | if (second_row > rownum) |
| 966 | { |
| 967 | if (!tuplesort_getdatum(osastate->sortstate, true, &second_val, |
| 968 | &isnull, NULL) || isnull) |
| 969 | elog(ERROR, "missing row in percentile_cont" ); |
| 970 | rownum++; |
| 971 | } |
| 972 | /* We should now certainly be on second_row exactly */ |
| 973 | Assert(second_row == rownum); |
| 974 | |
| 975 | /* Compute appropriate result */ |
| 976 | if (second_row > first_row) |
| 977 | result_datum[idx] = lerpfunc(first_val, second_val, |
| 978 | pct_info[i].proportion); |
| 979 | else |
| 980 | result_datum[idx] = first_val; |
| 981 | |
| 982 | result_isnull[idx] = false; |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | /* We make the output array the same shape as the input */ |
| 987 | PG_RETURN_POINTER(construct_md_array(result_datum, result_isnull, |
| 988 | ARR_NDIM(param), |
| 989 | ARR_DIMS(param), ARR_LBOUND(param), |
| 990 | expect_type, |
| 991 | typLen, |
| 992 | typByVal, |
| 993 | typAlign)); |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * percentile_cont(float8[]) within group (float8) - continuous percentiles |
| 998 | */ |
| 999 | Datum |
| 1000 | percentile_cont_float8_multi_final(PG_FUNCTION_ARGS) |
| 1001 | { |
| 1002 | return percentile_cont_multi_final_common(fcinfo, |
| 1003 | FLOAT8OID, |
| 1004 | /* hard-wired info on type float8 */ |
| 1005 | 8, FLOAT8PASSBYVAL, 'd', |
| 1006 | float8_lerp); |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * percentile_cont(float8[]) within group (interval) - continuous percentiles |
| 1011 | */ |
| 1012 | Datum |
| 1013 | percentile_cont_interval_multi_final(PG_FUNCTION_ARGS) |
| 1014 | { |
| 1015 | return percentile_cont_multi_final_common(fcinfo, |
| 1016 | INTERVALOID, |
| 1017 | /* hard-wired info on type interval */ |
| 1018 | 16, false, 'd', |
| 1019 | interval_lerp); |
| 1020 | } |
| 1021 | |
| 1022 | |
| 1023 | /* |
| 1024 | * mode() within group (anyelement) - most common value |
| 1025 | */ |
| 1026 | Datum |
| 1027 | mode_final(PG_FUNCTION_ARGS) |
| 1028 | { |
| 1029 | OSAPerGroupState *osastate; |
| 1030 | Datum val; |
| 1031 | bool isnull; |
| 1032 | Datum mode_val = (Datum) 0; |
| 1033 | int64 mode_freq = 0; |
| 1034 | Datum last_val = (Datum) 0; |
| 1035 | int64 last_val_freq = 0; |
| 1036 | bool last_val_is_mode = false; |
| 1037 | FmgrInfo *equalfn; |
| 1038 | Datum abbrev_val = (Datum) 0; |
| 1039 | Datum last_abbrev_val = (Datum) 0; |
| 1040 | bool shouldfree; |
| 1041 | |
| 1042 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 1043 | |
| 1044 | /* If there were no regular rows, the result is NULL */ |
| 1045 | if (PG_ARGISNULL(0)) |
| 1046 | PG_RETURN_NULL(); |
| 1047 | |
| 1048 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 1049 | |
| 1050 | /* number_of_rows could be zero if we only saw NULL input values */ |
| 1051 | if (osastate->number_of_rows == 0) |
| 1052 | PG_RETURN_NULL(); |
| 1053 | |
| 1054 | /* Look up the equality function for the datatype, if we didn't already */ |
| 1055 | equalfn = &(osastate->qstate->equalfn); |
| 1056 | if (!OidIsValid(equalfn->fn_oid)) |
| 1057 | fmgr_info_cxt(get_opcode(osastate->qstate->eqOperator), equalfn, |
| 1058 | osastate->qstate->qcontext); |
| 1059 | |
| 1060 | shouldfree = !(osastate->qstate->typByVal); |
| 1061 | |
| 1062 | /* Finish the sort, or rescan if we already did */ |
| 1063 | if (!osastate->sort_done) |
| 1064 | { |
| 1065 | tuplesort_performsort(osastate->sortstate); |
| 1066 | osastate->sort_done = true; |
| 1067 | } |
| 1068 | else |
| 1069 | tuplesort_rescan(osastate->sortstate); |
| 1070 | |
| 1071 | /* Scan tuples and count frequencies */ |
| 1072 | while (tuplesort_getdatum(osastate->sortstate, true, &val, &isnull, &abbrev_val)) |
| 1073 | { |
| 1074 | /* we don't expect any nulls, but ignore them if found */ |
| 1075 | if (isnull) |
| 1076 | continue; |
| 1077 | |
| 1078 | if (last_val_freq == 0) |
| 1079 | { |
| 1080 | /* first nonnull value - it's the mode for now */ |
| 1081 | mode_val = last_val = val; |
| 1082 | mode_freq = last_val_freq = 1; |
| 1083 | last_val_is_mode = true; |
| 1084 | last_abbrev_val = abbrev_val; |
| 1085 | } |
| 1086 | else if (abbrev_val == last_abbrev_val && |
| 1087 | DatumGetBool(FunctionCall2Coll(equalfn, PG_GET_COLLATION(), val, last_val))) |
| 1088 | { |
| 1089 | /* value equal to previous value, count it */ |
| 1090 | if (last_val_is_mode) |
| 1091 | mode_freq++; /* needn't maintain last_val_freq */ |
| 1092 | else if (++last_val_freq > mode_freq) |
| 1093 | { |
| 1094 | /* last_val becomes new mode */ |
| 1095 | if (shouldfree) |
| 1096 | pfree(DatumGetPointer(mode_val)); |
| 1097 | mode_val = last_val; |
| 1098 | mode_freq = last_val_freq; |
| 1099 | last_val_is_mode = true; |
| 1100 | } |
| 1101 | if (shouldfree) |
| 1102 | pfree(DatumGetPointer(val)); |
| 1103 | } |
| 1104 | else |
| 1105 | { |
| 1106 | /* val should replace last_val */ |
| 1107 | if (shouldfree && !last_val_is_mode) |
| 1108 | pfree(DatumGetPointer(last_val)); |
| 1109 | last_val = val; |
| 1110 | /* avoid equality function calls by reusing abbreviated keys */ |
| 1111 | last_abbrev_val = abbrev_val; |
| 1112 | last_val_freq = 1; |
| 1113 | last_val_is_mode = false; |
| 1114 | } |
| 1115 | |
| 1116 | CHECK_FOR_INTERRUPTS(); |
| 1117 | } |
| 1118 | |
| 1119 | if (shouldfree && !last_val_is_mode) |
| 1120 | pfree(DatumGetPointer(last_val)); |
| 1121 | |
| 1122 | if (mode_freq) |
| 1123 | PG_RETURN_DATUM(mode_val); |
| 1124 | else |
| 1125 | PG_RETURN_NULL(); |
| 1126 | } |
| 1127 | |
| 1128 | |
| 1129 | /* |
| 1130 | * Common code to sanity-check args for hypothetical-set functions. No need |
| 1131 | * for friendly errors, these can only happen if someone's messing up the |
| 1132 | * aggregate definitions. The checks are needed for security, however. |
| 1133 | */ |
| 1134 | static void |
| 1135 | hypothetical_check_argtypes(FunctionCallInfo fcinfo, int nargs, |
| 1136 | TupleDesc tupdesc) |
| 1137 | { |
| 1138 | int i; |
| 1139 | |
| 1140 | /* check that we have an int4 flag column */ |
| 1141 | if (!tupdesc || |
| 1142 | (nargs + 1) != tupdesc->natts || |
| 1143 | TupleDescAttr(tupdesc, nargs)->atttypid != INT4OID) |
| 1144 | elog(ERROR, "type mismatch in hypothetical-set function" ); |
| 1145 | |
| 1146 | /* check that direct args match in type with aggregated args */ |
| 1147 | for (i = 0; i < nargs; i++) |
| 1148 | { |
| 1149 | Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
| 1150 | |
| 1151 | if (get_fn_expr_argtype(fcinfo->flinfo, i + 1) != attr->atttypid) |
| 1152 | elog(ERROR, "type mismatch in hypothetical-set function" ); |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * compute rank of hypothetical row |
| 1158 | * |
| 1159 | * flag should be -1 to sort hypothetical row ahead of its peers, or +1 |
| 1160 | * to sort behind. |
| 1161 | * total number of regular rows is returned into *number_of_rows. |
| 1162 | */ |
| 1163 | static int64 |
| 1164 | hypothetical_rank_common(FunctionCallInfo fcinfo, int flag, |
| 1165 | int64 *number_of_rows) |
| 1166 | { |
| 1167 | int nargs = PG_NARGS() - 1; |
| 1168 | int64 rank = 1; |
| 1169 | OSAPerGroupState *osastate; |
| 1170 | TupleTableSlot *slot; |
| 1171 | int i; |
| 1172 | |
| 1173 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 1174 | |
| 1175 | /* If there were no regular rows, the rank is always 1 */ |
| 1176 | if (PG_ARGISNULL(0)) |
| 1177 | { |
| 1178 | *number_of_rows = 0; |
| 1179 | return 1; |
| 1180 | } |
| 1181 | |
| 1182 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 1183 | *number_of_rows = osastate->number_of_rows; |
| 1184 | |
| 1185 | /* Adjust nargs to be the number of direct (or aggregated) args */ |
| 1186 | if (nargs % 2 != 0) |
| 1187 | elog(ERROR, "wrong number of arguments in hypothetical-set function" ); |
| 1188 | nargs /= 2; |
| 1189 | |
| 1190 | hypothetical_check_argtypes(fcinfo, nargs, osastate->qstate->tupdesc); |
| 1191 | |
| 1192 | /* because we need a hypothetical row, we can't share transition state */ |
| 1193 | Assert(!osastate->sort_done); |
| 1194 | |
| 1195 | /* insert the hypothetical row into the sort */ |
| 1196 | slot = osastate->qstate->tupslot; |
| 1197 | ExecClearTuple(slot); |
| 1198 | for (i = 0; i < nargs; i++) |
| 1199 | { |
| 1200 | slot->tts_values[i] = PG_GETARG_DATUM(i + 1); |
| 1201 | slot->tts_isnull[i] = PG_ARGISNULL(i + 1); |
| 1202 | } |
| 1203 | slot->tts_values[i] = Int32GetDatum(flag); |
| 1204 | slot->tts_isnull[i] = false; |
| 1205 | ExecStoreVirtualTuple(slot); |
| 1206 | |
| 1207 | tuplesort_puttupleslot(osastate->sortstate, slot); |
| 1208 | |
| 1209 | /* finish the sort */ |
| 1210 | tuplesort_performsort(osastate->sortstate); |
| 1211 | osastate->sort_done = true; |
| 1212 | |
| 1213 | /* iterate till we find the hypothetical row */ |
| 1214 | while (tuplesort_gettupleslot(osastate->sortstate, true, true, slot, NULL)) |
| 1215 | { |
| 1216 | bool isnull; |
| 1217 | Datum d = slot_getattr(slot, nargs + 1, &isnull); |
| 1218 | |
| 1219 | if (!isnull && DatumGetInt32(d) != 0) |
| 1220 | break; |
| 1221 | |
| 1222 | rank++; |
| 1223 | |
| 1224 | CHECK_FOR_INTERRUPTS(); |
| 1225 | } |
| 1226 | |
| 1227 | ExecClearTuple(slot); |
| 1228 | |
| 1229 | return rank; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | /* |
| 1234 | * rank() - rank of hypothetical row |
| 1235 | */ |
| 1236 | Datum |
| 1237 | hypothetical_rank_final(PG_FUNCTION_ARGS) |
| 1238 | { |
| 1239 | int64 rank; |
| 1240 | int64 rowcount; |
| 1241 | |
| 1242 | rank = hypothetical_rank_common(fcinfo, -1, &rowcount); |
| 1243 | |
| 1244 | PG_RETURN_INT64(rank); |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * percent_rank() - percentile rank of hypothetical row |
| 1249 | */ |
| 1250 | Datum |
| 1251 | hypothetical_percent_rank_final(PG_FUNCTION_ARGS) |
| 1252 | { |
| 1253 | int64 rank; |
| 1254 | int64 rowcount; |
| 1255 | double result_val; |
| 1256 | |
| 1257 | rank = hypothetical_rank_common(fcinfo, -1, &rowcount); |
| 1258 | |
| 1259 | if (rowcount == 0) |
| 1260 | PG_RETURN_FLOAT8(0); |
| 1261 | |
| 1262 | result_val = (double) (rank - 1) / (double) (rowcount); |
| 1263 | |
| 1264 | PG_RETURN_FLOAT8(result_val); |
| 1265 | } |
| 1266 | |
| 1267 | /* |
| 1268 | * cume_dist() - cumulative distribution of hypothetical row |
| 1269 | */ |
| 1270 | Datum |
| 1271 | hypothetical_cume_dist_final(PG_FUNCTION_ARGS) |
| 1272 | { |
| 1273 | int64 rank; |
| 1274 | int64 rowcount; |
| 1275 | double result_val; |
| 1276 | |
| 1277 | rank = hypothetical_rank_common(fcinfo, 1, &rowcount); |
| 1278 | |
| 1279 | result_val = (double) (rank) / (double) (rowcount + 1); |
| 1280 | |
| 1281 | PG_RETURN_FLOAT8(result_val); |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * dense_rank() - rank of hypothetical row without gaps in ranking |
| 1286 | */ |
| 1287 | Datum |
| 1288 | hypothetical_dense_rank_final(PG_FUNCTION_ARGS) |
| 1289 | { |
| 1290 | ExprContext *econtext; |
| 1291 | ExprState *compareTuple; |
| 1292 | int nargs = PG_NARGS() - 1; |
| 1293 | int64 rank = 1; |
| 1294 | int64 duplicate_count = 0; |
| 1295 | OSAPerGroupState *osastate; |
| 1296 | int numDistinctCols; |
| 1297 | Datum abbrevVal = (Datum) 0; |
| 1298 | Datum abbrevOld = (Datum) 0; |
| 1299 | TupleTableSlot *slot; |
| 1300 | TupleTableSlot *; |
| 1301 | TupleTableSlot *slot2; |
| 1302 | int i; |
| 1303 | |
| 1304 | Assert(AggCheckCallContext(fcinfo, NULL) == AGG_CONTEXT_AGGREGATE); |
| 1305 | |
| 1306 | /* If there were no regular rows, the rank is always 1 */ |
| 1307 | if (PG_ARGISNULL(0)) |
| 1308 | PG_RETURN_INT64(rank); |
| 1309 | |
| 1310 | osastate = (OSAPerGroupState *) PG_GETARG_POINTER(0); |
| 1311 | econtext = osastate->qstate->econtext; |
| 1312 | if (!econtext) |
| 1313 | { |
| 1314 | MemoryContext oldcontext; |
| 1315 | |
| 1316 | /* Make sure to we create econtext under correct parent context. */ |
| 1317 | oldcontext = MemoryContextSwitchTo(osastate->qstate->qcontext); |
| 1318 | osastate->qstate->econtext = CreateStandaloneExprContext(); |
| 1319 | econtext = osastate->qstate->econtext; |
| 1320 | MemoryContextSwitchTo(oldcontext); |
| 1321 | } |
| 1322 | |
| 1323 | /* Adjust nargs to be the number of direct (or aggregated) args */ |
| 1324 | if (nargs % 2 != 0) |
| 1325 | elog(ERROR, "wrong number of arguments in hypothetical-set function" ); |
| 1326 | nargs /= 2; |
| 1327 | |
| 1328 | hypothetical_check_argtypes(fcinfo, nargs, osastate->qstate->tupdesc); |
| 1329 | |
| 1330 | /* |
| 1331 | * When comparing tuples, we can omit the flag column since we will only |
| 1332 | * compare rows with flag == 0. |
| 1333 | */ |
| 1334 | numDistinctCols = osastate->qstate->numSortCols - 1; |
| 1335 | |
| 1336 | /* Build tuple comparator, if we didn't already */ |
| 1337 | compareTuple = osastate->qstate->compareTuple; |
| 1338 | if (compareTuple == NULL) |
| 1339 | { |
| 1340 | AttrNumber *sortColIdx = osastate->qstate->sortColIdx; |
| 1341 | MemoryContext oldContext; |
| 1342 | |
| 1343 | oldContext = MemoryContextSwitchTo(osastate->qstate->qcontext); |
| 1344 | compareTuple = execTuplesMatchPrepare(osastate->qstate->tupdesc, |
| 1345 | numDistinctCols, |
| 1346 | sortColIdx, |
| 1347 | osastate->qstate->eqOperators, |
| 1348 | osastate->qstate->sortCollations, |
| 1349 | NULL); |
| 1350 | MemoryContextSwitchTo(oldContext); |
| 1351 | osastate->qstate->compareTuple = compareTuple; |
| 1352 | } |
| 1353 | |
| 1354 | /* because we need a hypothetical row, we can't share transition state */ |
| 1355 | Assert(!osastate->sort_done); |
| 1356 | |
| 1357 | /* insert the hypothetical row into the sort */ |
| 1358 | slot = osastate->qstate->tupslot; |
| 1359 | ExecClearTuple(slot); |
| 1360 | for (i = 0; i < nargs; i++) |
| 1361 | { |
| 1362 | slot->tts_values[i] = PG_GETARG_DATUM(i + 1); |
| 1363 | slot->tts_isnull[i] = PG_ARGISNULL(i + 1); |
| 1364 | } |
| 1365 | slot->tts_values[i] = Int32GetDatum(-1); |
| 1366 | slot->tts_isnull[i] = false; |
| 1367 | ExecStoreVirtualTuple(slot); |
| 1368 | |
| 1369 | tuplesort_puttupleslot(osastate->sortstate, slot); |
| 1370 | |
| 1371 | /* finish the sort */ |
| 1372 | tuplesort_performsort(osastate->sortstate); |
| 1373 | osastate->sort_done = true; |
| 1374 | |
| 1375 | /* |
| 1376 | * We alternate fetching into tupslot and extraslot so that we have the |
| 1377 | * previous row available for comparisons. This is accomplished by |
| 1378 | * swapping the slot pointer variables after each row. |
| 1379 | */ |
| 1380 | extraslot = MakeSingleTupleTableSlot(osastate->qstate->tupdesc, |
| 1381 | &TTSOpsMinimalTuple); |
| 1382 | slot2 = extraslot; |
| 1383 | |
| 1384 | /* iterate till we find the hypothetical row */ |
| 1385 | while (tuplesort_gettupleslot(osastate->sortstate, true, true, slot, |
| 1386 | &abbrevVal)) |
| 1387 | { |
| 1388 | bool isnull; |
| 1389 | Datum d = slot_getattr(slot, nargs + 1, &isnull); |
| 1390 | TupleTableSlot *tmpslot; |
| 1391 | |
| 1392 | if (!isnull && DatumGetInt32(d) != 0) |
| 1393 | break; |
| 1394 | |
| 1395 | /* count non-distinct tuples */ |
| 1396 | econtext->ecxt_outertuple = slot; |
| 1397 | econtext->ecxt_innertuple = slot2; |
| 1398 | |
| 1399 | if (!TupIsNull(slot2) && |
| 1400 | abbrevVal == abbrevOld && |
| 1401 | ExecQualAndReset(compareTuple, econtext)) |
| 1402 | duplicate_count++; |
| 1403 | |
| 1404 | tmpslot = slot2; |
| 1405 | slot2 = slot; |
| 1406 | slot = tmpslot; |
| 1407 | /* avoid ExecQual() calls by reusing abbreviated keys */ |
| 1408 | abbrevOld = abbrevVal; |
| 1409 | |
| 1410 | rank++; |
| 1411 | |
| 1412 | CHECK_FOR_INTERRUPTS(); |
| 1413 | } |
| 1414 | |
| 1415 | ExecClearTuple(slot); |
| 1416 | ExecClearTuple(slot2); |
| 1417 | |
| 1418 | ExecDropSingleTupleTableSlot(extraslot); |
| 1419 | |
| 1420 | rank = rank - duplicate_count; |
| 1421 | |
| 1422 | PG_RETURN_INT64(rank); |
| 1423 | } |
| 1424 | |