1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * regexp.c |
4 | * Postgres' interface to the regular expression package. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/utils/adt/regexp.c |
12 | * |
13 | * Alistair Crooks added the code for the regex caching |
14 | * agc - cached the regular expressions used - there's a good chance |
15 | * that we'll get a hit, so this saves a compile step for every |
16 | * attempted match. I haven't actually measured the speed improvement, |
17 | * but it `looks' a lot quicker visually when watching regression |
18 | * test output. |
19 | * |
20 | * agc - incorporated Keith Bostic's Berkeley regex code into |
21 | * the tree for all ports. To distinguish this regex code from any that |
22 | * is existent on a platform, I've prepended the string "pg_" to |
23 | * the functions regcomp, regerror, regexec and regfree. |
24 | * Fixed a bug that was originally a typo by me, where `i' was used |
25 | * instead of `oldest' when compiling regular expressions - benign |
26 | * results mostly, although occasionally it bit you... |
27 | * |
28 | *------------------------------------------------------------------------- |
29 | */ |
30 | #include "postgres.h" |
31 | |
32 | #include "catalog/pg_type.h" |
33 | #include "funcapi.h" |
34 | #include "miscadmin.h" |
35 | #include "regex/regex.h" |
36 | #include "utils/array.h" |
37 | #include "utils/builtins.h" |
38 | #include "utils/memutils.h" |
39 | #include "utils/varlena.h" |
40 | |
41 | #define PG_GETARG_TEXT_PP_IF_EXISTS(_n) \ |
42 | (PG_NARGS() > (_n) ? PG_GETARG_TEXT_PP(_n) : NULL) |
43 | |
44 | |
45 | /* all the options of interest for regex functions */ |
46 | typedef struct pg_re_flags |
47 | { |
48 | int cflags; /* compile flags for Spencer's regex code */ |
49 | bool glob; /* do it globally (for each occurrence) */ |
50 | } pg_re_flags; |
51 | |
52 | /* cross-call state for regexp_match and regexp_split functions */ |
53 | typedef struct regexp_matches_ctx |
54 | { |
55 | text *orig_str; /* data string in original TEXT form */ |
56 | int nmatches; /* number of places where pattern matched */ |
57 | int npatterns; /* number of capturing subpatterns */ |
58 | /* We store start char index and end+1 char index for each match */ |
59 | /* so the number of entries in match_locs is nmatches * npatterns * 2 */ |
60 | int *match_locs; /* 0-based character indexes */ |
61 | int next_match; /* 0-based index of next match to process */ |
62 | /* workspace for build_regexp_match_result() */ |
63 | Datum *elems; /* has npatterns elements */ |
64 | bool *nulls; /* has npatterns elements */ |
65 | pg_wchar *wide_str; /* wide-char version of original string */ |
66 | char *conv_buf; /* conversion buffer */ |
67 | int conv_bufsiz; /* size thereof */ |
68 | } regexp_matches_ctx; |
69 | |
70 | /* |
71 | * We cache precompiled regular expressions using a "self organizing list" |
72 | * structure, in which recently-used items tend to be near the front. |
73 | * Whenever we use an entry, it's moved up to the front of the list. |
74 | * Over time, an item's average position corresponds to its frequency of use. |
75 | * |
76 | * When we first create an entry, it's inserted at the front of |
77 | * the array, dropping the entry at the end of the array if necessary to |
78 | * make room. (This might seem to be weighting the new entry too heavily, |
79 | * but if we insert new entries further back, we'll be unable to adjust to |
80 | * a sudden shift in the query mix where we are presented with MAX_CACHED_RES |
81 | * never-before-seen items used circularly. We ought to be able to handle |
82 | * that case, so we have to insert at the front.) |
83 | * |
84 | * Knuth mentions a variant strategy in which a used item is moved up just |
85 | * one place in the list. Although he says this uses fewer comparisons on |
86 | * average, it seems not to adapt very well to the situation where you have |
87 | * both some reusable patterns and a steady stream of non-reusable patterns. |
88 | * A reusable pattern that isn't used at least as often as non-reusable |
89 | * patterns are seen will "fail to keep up" and will drop off the end of the |
90 | * cache. With move-to-front, a reusable pattern is guaranteed to stay in |
91 | * the cache as long as it's used at least once in every MAX_CACHED_RES uses. |
92 | */ |
93 | |
94 | /* this is the maximum number of cached regular expressions */ |
95 | #ifndef MAX_CACHED_RES |
96 | #define MAX_CACHED_RES 32 |
97 | #endif |
98 | |
99 | /* this structure describes one cached regular expression */ |
100 | typedef struct cached_re_str |
101 | { |
102 | char *cre_pat; /* original RE (not null terminated!) */ |
103 | int cre_pat_len; /* length of original RE, in bytes */ |
104 | int cre_flags; /* compile flags: extended,icase etc */ |
105 | Oid cre_collation; /* collation to use */ |
106 | regex_t cre_re; /* the compiled regular expression */ |
107 | } cached_re_str; |
108 | |
109 | static int num_res = 0; /* # of cached re's */ |
110 | static cached_re_str re_array[MAX_CACHED_RES]; /* cached re's */ |
111 | |
112 | |
113 | /* Local functions */ |
114 | static regexp_matches_ctx *setup_regexp_matches(text *orig_str, text *pattern, |
115 | pg_re_flags *flags, |
116 | Oid collation, |
117 | bool use_subpatterns, |
118 | bool ignore_degenerate, |
119 | bool fetching_unmatched); |
120 | static ArrayType *build_regexp_match_result(regexp_matches_ctx *matchctx); |
121 | static Datum build_regexp_split_result(regexp_matches_ctx *splitctx); |
122 | |
123 | |
124 | /* |
125 | * RE_compile_and_cache - compile a RE, caching if possible |
126 | * |
127 | * Returns regex_t * |
128 | * |
129 | * text_re --- the pattern, expressed as a TEXT object |
130 | * cflags --- compile options for the pattern |
131 | * collation --- collation to use for LC_CTYPE-dependent behavior |
132 | * |
133 | * Pattern is given in the database encoding. We internally convert to |
134 | * an array of pg_wchar, which is what Spencer's regex package wants. |
135 | */ |
136 | regex_t * |
137 | RE_compile_and_cache(text *text_re, int cflags, Oid collation) |
138 | { |
139 | int text_re_len = VARSIZE_ANY_EXHDR(text_re); |
140 | char *text_re_val = VARDATA_ANY(text_re); |
141 | pg_wchar *pattern; |
142 | int pattern_len; |
143 | int i; |
144 | int regcomp_result; |
145 | cached_re_str re_temp; |
146 | char errMsg[100]; |
147 | |
148 | /* |
149 | * Look for a match among previously compiled REs. Since the data |
150 | * structure is self-organizing with most-used entries at the front, our |
151 | * search strategy can just be to scan from the front. |
152 | */ |
153 | for (i = 0; i < num_res; i++) |
154 | { |
155 | if (re_array[i].cre_pat_len == text_re_len && |
156 | re_array[i].cre_flags == cflags && |
157 | re_array[i].cre_collation == collation && |
158 | memcmp(re_array[i].cre_pat, text_re_val, text_re_len) == 0) |
159 | { |
160 | /* |
161 | * Found a match; move it to front if not there already. |
162 | */ |
163 | if (i > 0) |
164 | { |
165 | re_temp = re_array[i]; |
166 | memmove(&re_array[1], &re_array[0], i * sizeof(cached_re_str)); |
167 | re_array[0] = re_temp; |
168 | } |
169 | |
170 | return &re_array[0].cre_re; |
171 | } |
172 | } |
173 | |
174 | /* |
175 | * Couldn't find it, so try to compile the new RE. To avoid leaking |
176 | * resources on failure, we build into the re_temp local. |
177 | */ |
178 | |
179 | /* Convert pattern string to wide characters */ |
180 | pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar)); |
181 | pattern_len = pg_mb2wchar_with_len(text_re_val, |
182 | pattern, |
183 | text_re_len); |
184 | |
185 | regcomp_result = pg_regcomp(&re_temp.cre_re, |
186 | pattern, |
187 | pattern_len, |
188 | cflags, |
189 | collation); |
190 | |
191 | pfree(pattern); |
192 | |
193 | if (regcomp_result != REG_OKAY) |
194 | { |
195 | /* re didn't compile (no need for pg_regfree, if so) */ |
196 | |
197 | /* |
198 | * Here and in other places in this file, do CHECK_FOR_INTERRUPTS |
199 | * before reporting a regex error. This is so that if the regex |
200 | * library aborts and returns REG_CANCEL, we don't print an error |
201 | * message that implies the regex was invalid. |
202 | */ |
203 | CHECK_FOR_INTERRUPTS(); |
204 | |
205 | pg_regerror(regcomp_result, &re_temp.cre_re, errMsg, sizeof(errMsg)); |
206 | ereport(ERROR, |
207 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
208 | errmsg("invalid regular expression: %s" , errMsg))); |
209 | } |
210 | |
211 | /* |
212 | * We use malloc/free for the cre_pat field because the storage has to |
213 | * persist across transactions, and because we want to get control back on |
214 | * out-of-memory. The Max() is because some malloc implementations return |
215 | * NULL for malloc(0). |
216 | */ |
217 | re_temp.cre_pat = malloc(Max(text_re_len, 1)); |
218 | if (re_temp.cre_pat == NULL) |
219 | { |
220 | pg_regfree(&re_temp.cre_re); |
221 | ereport(ERROR, |
222 | (errcode(ERRCODE_OUT_OF_MEMORY), |
223 | errmsg("out of memory" ))); |
224 | } |
225 | memcpy(re_temp.cre_pat, text_re_val, text_re_len); |
226 | re_temp.cre_pat_len = text_re_len; |
227 | re_temp.cre_flags = cflags; |
228 | re_temp.cre_collation = collation; |
229 | |
230 | /* |
231 | * Okay, we have a valid new item in re_temp; insert it into the storage |
232 | * array. Discard last entry if needed. |
233 | */ |
234 | if (num_res >= MAX_CACHED_RES) |
235 | { |
236 | --num_res; |
237 | Assert(num_res < MAX_CACHED_RES); |
238 | pg_regfree(&re_array[num_res].cre_re); |
239 | free(re_array[num_res].cre_pat); |
240 | } |
241 | |
242 | if (num_res > 0) |
243 | memmove(&re_array[1], &re_array[0], num_res * sizeof(cached_re_str)); |
244 | |
245 | re_array[0] = re_temp; |
246 | num_res++; |
247 | |
248 | return &re_array[0].cre_re; |
249 | } |
250 | |
251 | /* |
252 | * RE_wchar_execute - execute a RE on pg_wchar data |
253 | * |
254 | * Returns true on match, false on no match |
255 | * |
256 | * re --- the compiled pattern as returned by RE_compile_and_cache |
257 | * data --- the data to match against (need not be null-terminated) |
258 | * data_len --- the length of the data string |
259 | * start_search -- the offset in the data to start searching |
260 | * nmatch, pmatch --- optional return area for match details |
261 | * |
262 | * Data is given as array of pg_wchar which is what Spencer's regex package |
263 | * wants. |
264 | */ |
265 | static bool |
266 | RE_wchar_execute(regex_t *re, pg_wchar *data, int data_len, |
267 | int start_search, int nmatch, regmatch_t *pmatch) |
268 | { |
269 | int regexec_result; |
270 | char errMsg[100]; |
271 | |
272 | /* Perform RE match and return result */ |
273 | regexec_result = pg_regexec(re, |
274 | data, |
275 | data_len, |
276 | start_search, |
277 | NULL, /* no details */ |
278 | nmatch, |
279 | pmatch, |
280 | 0); |
281 | |
282 | if (regexec_result != REG_OKAY && regexec_result != REG_NOMATCH) |
283 | { |
284 | /* re failed??? */ |
285 | CHECK_FOR_INTERRUPTS(); |
286 | pg_regerror(regexec_result, re, errMsg, sizeof(errMsg)); |
287 | ereport(ERROR, |
288 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
289 | errmsg("regular expression failed: %s" , errMsg))); |
290 | } |
291 | |
292 | return (regexec_result == REG_OKAY); |
293 | } |
294 | |
295 | /* |
296 | * RE_execute - execute a RE |
297 | * |
298 | * Returns true on match, false on no match |
299 | * |
300 | * re --- the compiled pattern as returned by RE_compile_and_cache |
301 | * dat --- the data to match against (need not be null-terminated) |
302 | * dat_len --- the length of the data string |
303 | * nmatch, pmatch --- optional return area for match details |
304 | * |
305 | * Data is given in the database encoding. We internally |
306 | * convert to array of pg_wchar which is what Spencer's regex package wants. |
307 | */ |
308 | static bool |
309 | RE_execute(regex_t *re, char *dat, int dat_len, |
310 | int nmatch, regmatch_t *pmatch) |
311 | { |
312 | pg_wchar *data; |
313 | int data_len; |
314 | bool match; |
315 | |
316 | /* Convert data string to wide characters */ |
317 | data = (pg_wchar *) palloc((dat_len + 1) * sizeof(pg_wchar)); |
318 | data_len = pg_mb2wchar_with_len(dat, data, dat_len); |
319 | |
320 | /* Perform RE match and return result */ |
321 | match = RE_wchar_execute(re, data, data_len, 0, nmatch, pmatch); |
322 | |
323 | pfree(data); |
324 | return match; |
325 | } |
326 | |
327 | /* |
328 | * RE_compile_and_execute - compile and execute a RE |
329 | * |
330 | * Returns true on match, false on no match |
331 | * |
332 | * text_re --- the pattern, expressed as a TEXT object |
333 | * dat --- the data to match against (need not be null-terminated) |
334 | * dat_len --- the length of the data string |
335 | * cflags --- compile options for the pattern |
336 | * collation --- collation to use for LC_CTYPE-dependent behavior |
337 | * nmatch, pmatch --- optional return area for match details |
338 | * |
339 | * Both pattern and data are given in the database encoding. We internally |
340 | * convert to array of pg_wchar which is what Spencer's regex package wants. |
341 | */ |
342 | bool |
343 | RE_compile_and_execute(text *text_re, char *dat, int dat_len, |
344 | int cflags, Oid collation, |
345 | int nmatch, regmatch_t *pmatch) |
346 | { |
347 | regex_t *re; |
348 | |
349 | /* Compile RE */ |
350 | re = RE_compile_and_cache(text_re, cflags, collation); |
351 | |
352 | return RE_execute(re, dat, dat_len, nmatch, pmatch); |
353 | } |
354 | |
355 | |
356 | /* |
357 | * parse_re_flags - parse the options argument of regexp_match and friends |
358 | * |
359 | * flags --- output argument, filled with desired options |
360 | * opts --- TEXT object, or NULL for defaults |
361 | * |
362 | * This accepts all the options allowed by any of the callers; callers that |
363 | * don't want some have to reject them after the fact. |
364 | */ |
365 | static void |
366 | parse_re_flags(pg_re_flags *flags, text *opts) |
367 | { |
368 | /* regex flavor is always folded into the compile flags */ |
369 | flags->cflags = REG_ADVANCED; |
370 | flags->glob = false; |
371 | |
372 | if (opts) |
373 | { |
374 | char *opt_p = VARDATA_ANY(opts); |
375 | int opt_len = VARSIZE_ANY_EXHDR(opts); |
376 | int i; |
377 | |
378 | for (i = 0; i < opt_len; i++) |
379 | { |
380 | switch (opt_p[i]) |
381 | { |
382 | case 'g': |
383 | flags->glob = true; |
384 | break; |
385 | case 'b': /* BREs (but why???) */ |
386 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED | REG_QUOTE); |
387 | break; |
388 | case 'c': /* case sensitive */ |
389 | flags->cflags &= ~REG_ICASE; |
390 | break; |
391 | case 'e': /* plain EREs */ |
392 | flags->cflags |= REG_EXTENDED; |
393 | flags->cflags &= ~(REG_ADVANCED | REG_QUOTE); |
394 | break; |
395 | case 'i': /* case insensitive */ |
396 | flags->cflags |= REG_ICASE; |
397 | break; |
398 | case 'm': /* Perloid synonym for n */ |
399 | case 'n': /* \n affects ^ $ . [^ */ |
400 | flags->cflags |= REG_NEWLINE; |
401 | break; |
402 | case 'p': /* ~Perl, \n affects . [^ */ |
403 | flags->cflags |= REG_NLSTOP; |
404 | flags->cflags &= ~REG_NLANCH; |
405 | break; |
406 | case 'q': /* literal string */ |
407 | flags->cflags |= REG_QUOTE; |
408 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED); |
409 | break; |
410 | case 's': /* single line, \n ordinary */ |
411 | flags->cflags &= ~REG_NEWLINE; |
412 | break; |
413 | case 't': /* tight syntax */ |
414 | flags->cflags &= ~REG_EXPANDED; |
415 | break; |
416 | case 'w': /* weird, \n affects ^ $ only */ |
417 | flags->cflags &= ~REG_NLSTOP; |
418 | flags->cflags |= REG_NLANCH; |
419 | break; |
420 | case 'x': /* expanded syntax */ |
421 | flags->cflags |= REG_EXPANDED; |
422 | break; |
423 | default: |
424 | ereport(ERROR, |
425 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
426 | errmsg("invalid regular expression option: \"%c\"" , |
427 | opt_p[i]))); |
428 | break; |
429 | } |
430 | } |
431 | } |
432 | } |
433 | |
434 | |
435 | /* |
436 | * interface routines called by the function manager |
437 | */ |
438 | |
439 | Datum |
440 | nameregexeq(PG_FUNCTION_ARGS) |
441 | { |
442 | Name n = PG_GETARG_NAME(0); |
443 | text *p = PG_GETARG_TEXT_PP(1); |
444 | |
445 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
446 | NameStr(*n), |
447 | strlen(NameStr(*n)), |
448 | REG_ADVANCED, |
449 | PG_GET_COLLATION(), |
450 | 0, NULL)); |
451 | } |
452 | |
453 | Datum |
454 | nameregexne(PG_FUNCTION_ARGS) |
455 | { |
456 | Name n = PG_GETARG_NAME(0); |
457 | text *p = PG_GETARG_TEXT_PP(1); |
458 | |
459 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
460 | NameStr(*n), |
461 | strlen(NameStr(*n)), |
462 | REG_ADVANCED, |
463 | PG_GET_COLLATION(), |
464 | 0, NULL)); |
465 | } |
466 | |
467 | Datum |
468 | textregexeq(PG_FUNCTION_ARGS) |
469 | { |
470 | text *s = PG_GETARG_TEXT_PP(0); |
471 | text *p = PG_GETARG_TEXT_PP(1); |
472 | |
473 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
474 | VARDATA_ANY(s), |
475 | VARSIZE_ANY_EXHDR(s), |
476 | REG_ADVANCED, |
477 | PG_GET_COLLATION(), |
478 | 0, NULL)); |
479 | } |
480 | |
481 | Datum |
482 | textregexne(PG_FUNCTION_ARGS) |
483 | { |
484 | text *s = PG_GETARG_TEXT_PP(0); |
485 | text *p = PG_GETARG_TEXT_PP(1); |
486 | |
487 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
488 | VARDATA_ANY(s), |
489 | VARSIZE_ANY_EXHDR(s), |
490 | REG_ADVANCED, |
491 | PG_GET_COLLATION(), |
492 | 0, NULL)); |
493 | } |
494 | |
495 | |
496 | /* |
497 | * routines that use the regexp stuff, but ignore the case. |
498 | * for this, we use the REG_ICASE flag to pg_regcomp |
499 | */ |
500 | |
501 | |
502 | Datum |
503 | nameicregexeq(PG_FUNCTION_ARGS) |
504 | { |
505 | Name n = PG_GETARG_NAME(0); |
506 | text *p = PG_GETARG_TEXT_PP(1); |
507 | |
508 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
509 | NameStr(*n), |
510 | strlen(NameStr(*n)), |
511 | REG_ADVANCED | REG_ICASE, |
512 | PG_GET_COLLATION(), |
513 | 0, NULL)); |
514 | } |
515 | |
516 | Datum |
517 | nameicregexne(PG_FUNCTION_ARGS) |
518 | { |
519 | Name n = PG_GETARG_NAME(0); |
520 | text *p = PG_GETARG_TEXT_PP(1); |
521 | |
522 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
523 | NameStr(*n), |
524 | strlen(NameStr(*n)), |
525 | REG_ADVANCED | REG_ICASE, |
526 | PG_GET_COLLATION(), |
527 | 0, NULL)); |
528 | } |
529 | |
530 | Datum |
531 | texticregexeq(PG_FUNCTION_ARGS) |
532 | { |
533 | text *s = PG_GETARG_TEXT_PP(0); |
534 | text *p = PG_GETARG_TEXT_PP(1); |
535 | |
536 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
537 | VARDATA_ANY(s), |
538 | VARSIZE_ANY_EXHDR(s), |
539 | REG_ADVANCED | REG_ICASE, |
540 | PG_GET_COLLATION(), |
541 | 0, NULL)); |
542 | } |
543 | |
544 | Datum |
545 | texticregexne(PG_FUNCTION_ARGS) |
546 | { |
547 | text *s = PG_GETARG_TEXT_PP(0); |
548 | text *p = PG_GETARG_TEXT_PP(1); |
549 | |
550 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
551 | VARDATA_ANY(s), |
552 | VARSIZE_ANY_EXHDR(s), |
553 | REG_ADVANCED | REG_ICASE, |
554 | PG_GET_COLLATION(), |
555 | 0, NULL)); |
556 | } |
557 | |
558 | |
559 | /* |
560 | * textregexsubstr() |
561 | * Return a substring matched by a regular expression. |
562 | */ |
563 | Datum |
564 | textregexsubstr(PG_FUNCTION_ARGS) |
565 | { |
566 | text *s = PG_GETARG_TEXT_PP(0); |
567 | text *p = PG_GETARG_TEXT_PP(1); |
568 | regex_t *re; |
569 | regmatch_t pmatch[2]; |
570 | int so, |
571 | eo; |
572 | |
573 | /* Compile RE */ |
574 | re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); |
575 | |
576 | /* |
577 | * We pass two regmatch_t structs to get info about the overall match and |
578 | * the match for the first parenthesized subexpression (if any). If there |
579 | * is a parenthesized subexpression, we return what it matched; else |
580 | * return what the whole regexp matched. |
581 | */ |
582 | if (!RE_execute(re, |
583 | VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), |
584 | 2, pmatch)) |
585 | PG_RETURN_NULL(); /* definitely no match */ |
586 | |
587 | if (re->re_nsub > 0) |
588 | { |
589 | /* has parenthesized subexpressions, use the first one */ |
590 | so = pmatch[1].rm_so; |
591 | eo = pmatch[1].rm_eo; |
592 | } |
593 | else |
594 | { |
595 | /* no parenthesized subexpression, use whole match */ |
596 | so = pmatch[0].rm_so; |
597 | eo = pmatch[0].rm_eo; |
598 | } |
599 | |
600 | /* |
601 | * It is possible to have a match to the whole pattern but no match for a |
602 | * subexpression; for example 'foo(bar)?' is considered to match 'foo' but |
603 | * there is no subexpression match. So this extra test for match failure |
604 | * is not redundant. |
605 | */ |
606 | if (so < 0 || eo < 0) |
607 | PG_RETURN_NULL(); |
608 | |
609 | return DirectFunctionCall3(text_substr, |
610 | PointerGetDatum(s), |
611 | Int32GetDatum(so + 1), |
612 | Int32GetDatum(eo - so)); |
613 | } |
614 | |
615 | /* |
616 | * textregexreplace_noopt() |
617 | * Return a string matched by a regular expression, with replacement. |
618 | * |
619 | * This version doesn't have an option argument: we default to case |
620 | * sensitive match, replace the first instance only. |
621 | */ |
622 | Datum |
623 | textregexreplace_noopt(PG_FUNCTION_ARGS) |
624 | { |
625 | text *s = PG_GETARG_TEXT_PP(0); |
626 | text *p = PG_GETARG_TEXT_PP(1); |
627 | text *r = PG_GETARG_TEXT_PP(2); |
628 | regex_t *re; |
629 | |
630 | re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); |
631 | |
632 | PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, false)); |
633 | } |
634 | |
635 | /* |
636 | * textregexreplace() |
637 | * Return a string matched by a regular expression, with replacement. |
638 | */ |
639 | Datum |
640 | textregexreplace(PG_FUNCTION_ARGS) |
641 | { |
642 | text *s = PG_GETARG_TEXT_PP(0); |
643 | text *p = PG_GETARG_TEXT_PP(1); |
644 | text *r = PG_GETARG_TEXT_PP(2); |
645 | text *opt = PG_GETARG_TEXT_PP(3); |
646 | regex_t *re; |
647 | pg_re_flags flags; |
648 | |
649 | parse_re_flags(&flags, opt); |
650 | |
651 | re = RE_compile_and_cache(p, flags.cflags, PG_GET_COLLATION()); |
652 | |
653 | PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, flags.glob)); |
654 | } |
655 | |
656 | /* |
657 | * similar_escape() |
658 | * Convert a SQL:2008 regexp pattern to POSIX style, so it can be used by |
659 | * our regexp engine. |
660 | */ |
661 | Datum |
662 | similar_escape(PG_FUNCTION_ARGS) |
663 | { |
664 | text *pat_text; |
665 | text *esc_text; |
666 | text *result; |
667 | char *p, |
668 | *e, |
669 | *r; |
670 | int plen, |
671 | elen; |
672 | bool afterescape = false; |
673 | bool incharclass = false; |
674 | int nquotes = 0; |
675 | |
676 | /* This function is not strict, so must test explicitly */ |
677 | if (PG_ARGISNULL(0)) |
678 | PG_RETURN_NULL(); |
679 | pat_text = PG_GETARG_TEXT_PP(0); |
680 | p = VARDATA_ANY(pat_text); |
681 | plen = VARSIZE_ANY_EXHDR(pat_text); |
682 | if (PG_ARGISNULL(1)) |
683 | { |
684 | /* No ESCAPE clause provided; default to backslash as escape */ |
685 | e = "\\" ; |
686 | elen = 1; |
687 | } |
688 | else |
689 | { |
690 | esc_text = PG_GETARG_TEXT_PP(1); |
691 | e = VARDATA_ANY(esc_text); |
692 | elen = VARSIZE_ANY_EXHDR(esc_text); |
693 | if (elen == 0) |
694 | e = NULL; /* no escape character */ |
695 | else |
696 | { |
697 | int escape_mblen = pg_mbstrlen_with_len(e, elen); |
698 | |
699 | if (escape_mblen > 1) |
700 | ereport(ERROR, |
701 | (errcode(ERRCODE_INVALID_ESCAPE_SEQUENCE), |
702 | errmsg("invalid escape string" ), |
703 | errhint("Escape string must be empty or one character." ))); |
704 | } |
705 | } |
706 | |
707 | /*---------- |
708 | * We surround the transformed input string with |
709 | * ^(?: ... )$ |
710 | * which requires some explanation. We need "^" and "$" to force |
711 | * the pattern to match the entire input string as per the SQL spec. |
712 | * The "(?:" and ")" are a non-capturing set of parens; we have to have |
713 | * parens in case the string contains "|", else the "^" and "$" will |
714 | * be bound into the first and last alternatives which is not what we |
715 | * want, and the parens must be non capturing because we don't want them |
716 | * to count when selecting output for SUBSTRING. |
717 | * |
718 | * When the pattern is divided into three parts by escape-double-quotes, |
719 | * what we emit is |
720 | * ^(?:part1){1,1}?(part2){1,1}(?:part3)$ |
721 | * which requires even more explanation. The "{1,1}?" on part1 makes it |
722 | * non-greedy so that it will match the smallest possible amount of text |
723 | * not the largest, as required by SQL. The plain parens around part2 |
724 | * are capturing parens so that that part is what controls the result of |
725 | * SUBSTRING. The "{1,1}" forces part2 to be greedy, so that it matches |
726 | * the largest possible amount of text; hence part3 must match the |
727 | * smallest amount of text, as required by SQL. We don't need an explicit |
728 | * greediness marker on part3. Note that this also confines the effects |
729 | * of any "|" characters to the respective part, which is what we want. |
730 | * |
731 | * The SQL spec says that SUBSTRING's pattern must contain exactly two |
732 | * escape-double-quotes, but we only complain if there's more than two. |
733 | * With none, we act as though part1 and part3 are empty; with one, we |
734 | * act as though part3 is empty. Both behaviors fall out of omitting |
735 | * the relevant part separators in the above expansion. If the result |
736 | * of this function is used in a plain regexp match (SIMILAR TO), the |
737 | * escape-double-quotes have no effect on the match behavior. |
738 | *---------- |
739 | */ |
740 | |
741 | /* |
742 | * We need room for the prefix/postfix and part separators, plus as many |
743 | * as 3 output bytes per input byte; since the input is at most 1GB this |
744 | * can't overflow size_t. |
745 | */ |
746 | result = (text *) palloc(VARHDRSZ + 23 + 3 * (size_t) plen); |
747 | r = VARDATA(result); |
748 | |
749 | *r++ = '^'; |
750 | *r++ = '('; |
751 | *r++ = '?'; |
752 | *r++ = ':'; |
753 | |
754 | while (plen > 0) |
755 | { |
756 | char pchar = *p; |
757 | |
758 | /* |
759 | * If both the escape character and the current character from the |
760 | * pattern are multi-byte, we need to take the slow path. |
761 | * |
762 | * But if one of them is single-byte, we can process the pattern one |
763 | * byte at a time, ignoring multi-byte characters. (This works |
764 | * because all server-encodings have the property that a valid |
765 | * multi-byte character representation cannot contain the |
766 | * representation of a valid single-byte character.) |
767 | */ |
768 | |
769 | if (elen > 1) |
770 | { |
771 | int mblen = pg_mblen(p); |
772 | |
773 | if (mblen > 1) |
774 | { |
775 | /* slow, multi-byte path */ |
776 | if (afterescape) |
777 | { |
778 | *r++ = '\\'; |
779 | memcpy(r, p, mblen); |
780 | r += mblen; |
781 | afterescape = false; |
782 | } |
783 | else if (e && elen == mblen && memcmp(e, p, mblen) == 0) |
784 | { |
785 | /* SQL escape character; do not send to output */ |
786 | afterescape = true; |
787 | } |
788 | else |
789 | { |
790 | /* |
791 | * We know it's a multi-byte character, so we don't need |
792 | * to do all the comparisons to single-byte characters |
793 | * that we do below. |
794 | */ |
795 | memcpy(r, p, mblen); |
796 | r += mblen; |
797 | } |
798 | |
799 | p += mblen; |
800 | plen -= mblen; |
801 | |
802 | continue; |
803 | } |
804 | } |
805 | |
806 | /* fast path */ |
807 | if (afterescape) |
808 | { |
809 | if (pchar == '"' && !incharclass) /* escape-double-quote? */ |
810 | { |
811 | /* emit appropriate part separator, per notes above */ |
812 | if (nquotes == 0) |
813 | { |
814 | *r++ = ')'; |
815 | *r++ = '{'; |
816 | *r++ = '1'; |
817 | *r++ = ','; |
818 | *r++ = '1'; |
819 | *r++ = '}'; |
820 | *r++ = '?'; |
821 | *r++ = '('; |
822 | } |
823 | else if (nquotes == 1) |
824 | { |
825 | *r++ = ')'; |
826 | *r++ = '{'; |
827 | *r++ = '1'; |
828 | *r++ = ','; |
829 | *r++ = '1'; |
830 | *r++ = '}'; |
831 | *r++ = '('; |
832 | *r++ = '?'; |
833 | *r++ = ':'; |
834 | } |
835 | else |
836 | ereport(ERROR, |
837 | (errcode(ERRCODE_INVALID_USE_OF_ESCAPE_CHARACTER), |
838 | errmsg("SQL regular expression may not contain more than two escape-double-quote separators" ))); |
839 | nquotes++; |
840 | } |
841 | else |
842 | { |
843 | /* |
844 | * We allow any character at all to be escaped; notably, this |
845 | * allows access to POSIX character-class escapes such as |
846 | * "\d". The SQL spec is considerably more restrictive. |
847 | */ |
848 | *r++ = '\\'; |
849 | *r++ = pchar; |
850 | } |
851 | afterescape = false; |
852 | } |
853 | else if (e && pchar == *e) |
854 | { |
855 | /* SQL escape character; do not send to output */ |
856 | afterescape = true; |
857 | } |
858 | else if (incharclass) |
859 | { |
860 | if (pchar == '\\') |
861 | *r++ = '\\'; |
862 | *r++ = pchar; |
863 | if (pchar == ']') |
864 | incharclass = false; |
865 | } |
866 | else if (pchar == '[') |
867 | { |
868 | *r++ = pchar; |
869 | incharclass = true; |
870 | } |
871 | else if (pchar == '%') |
872 | { |
873 | *r++ = '.'; |
874 | *r++ = '*'; |
875 | } |
876 | else if (pchar == '_') |
877 | *r++ = '.'; |
878 | else if (pchar == '(') |
879 | { |
880 | /* convert to non-capturing parenthesis */ |
881 | *r++ = '('; |
882 | *r++ = '?'; |
883 | *r++ = ':'; |
884 | } |
885 | else if (pchar == '\\' || pchar == '.' || |
886 | pchar == '^' || pchar == '$') |
887 | { |
888 | *r++ = '\\'; |
889 | *r++ = pchar; |
890 | } |
891 | else |
892 | *r++ = pchar; |
893 | p++, plen--; |
894 | } |
895 | |
896 | *r++ = ')'; |
897 | *r++ = '$'; |
898 | |
899 | SET_VARSIZE(result, r - ((char *) result)); |
900 | |
901 | PG_RETURN_TEXT_P(result); |
902 | } |
903 | |
904 | /* |
905 | * regexp_match() |
906 | * Return the first substring(s) matching a pattern within a string. |
907 | */ |
908 | Datum |
909 | regexp_match(PG_FUNCTION_ARGS) |
910 | { |
911 | text *orig_str = PG_GETARG_TEXT_PP(0); |
912 | text *pattern = PG_GETARG_TEXT_PP(1); |
913 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
914 | pg_re_flags re_flags; |
915 | regexp_matches_ctx *matchctx; |
916 | |
917 | /* Determine options */ |
918 | parse_re_flags(&re_flags, flags); |
919 | /* User mustn't specify 'g' */ |
920 | if (re_flags.glob) |
921 | ereport(ERROR, |
922 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
923 | /* translator: %s is a SQL function name */ |
924 | errmsg("%s does not support the \"global\" option" , |
925 | "regexp_match()" ), |
926 | errhint("Use the regexp_matches function instead." ))); |
927 | |
928 | matchctx = setup_regexp_matches(orig_str, pattern, &re_flags, |
929 | PG_GET_COLLATION(), true, false, false); |
930 | |
931 | if (matchctx->nmatches == 0) |
932 | PG_RETURN_NULL(); |
933 | |
934 | Assert(matchctx->nmatches == 1); |
935 | |
936 | /* Create workspace that build_regexp_match_result needs */ |
937 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
938 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
939 | |
940 | PG_RETURN_DATUM(PointerGetDatum(build_regexp_match_result(matchctx))); |
941 | } |
942 | |
943 | /* This is separate to keep the opr_sanity regression test from complaining */ |
944 | Datum |
945 | regexp_match_no_flags(PG_FUNCTION_ARGS) |
946 | { |
947 | return regexp_match(fcinfo); |
948 | } |
949 | |
950 | /* |
951 | * regexp_matches() |
952 | * Return a table of all matches of a pattern within a string. |
953 | */ |
954 | Datum |
955 | regexp_matches(PG_FUNCTION_ARGS) |
956 | { |
957 | FuncCallContext *funcctx; |
958 | regexp_matches_ctx *matchctx; |
959 | |
960 | if (SRF_IS_FIRSTCALL()) |
961 | { |
962 | text *pattern = PG_GETARG_TEXT_PP(1); |
963 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
964 | pg_re_flags re_flags; |
965 | MemoryContext oldcontext; |
966 | |
967 | funcctx = SRF_FIRSTCALL_INIT(); |
968 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
969 | |
970 | /* Determine options */ |
971 | parse_re_flags(&re_flags, flags); |
972 | |
973 | /* be sure to copy the input string into the multi-call ctx */ |
974 | matchctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
975 | &re_flags, |
976 | PG_GET_COLLATION(), |
977 | true, false, false); |
978 | |
979 | /* Pre-create workspace that build_regexp_match_result needs */ |
980 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
981 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
982 | |
983 | MemoryContextSwitchTo(oldcontext); |
984 | funcctx->user_fctx = (void *) matchctx; |
985 | } |
986 | |
987 | funcctx = SRF_PERCALL_SETUP(); |
988 | matchctx = (regexp_matches_ctx *) funcctx->user_fctx; |
989 | |
990 | if (matchctx->next_match < matchctx->nmatches) |
991 | { |
992 | ArrayType *result_ary; |
993 | |
994 | result_ary = build_regexp_match_result(matchctx); |
995 | matchctx->next_match++; |
996 | SRF_RETURN_NEXT(funcctx, PointerGetDatum(result_ary)); |
997 | } |
998 | |
999 | SRF_RETURN_DONE(funcctx); |
1000 | } |
1001 | |
1002 | /* This is separate to keep the opr_sanity regression test from complaining */ |
1003 | Datum |
1004 | regexp_matches_no_flags(PG_FUNCTION_ARGS) |
1005 | { |
1006 | return regexp_matches(fcinfo); |
1007 | } |
1008 | |
1009 | /* |
1010 | * setup_regexp_matches --- do the initial matching for regexp_match |
1011 | * and regexp_split functions |
1012 | * |
1013 | * To avoid having to re-find the compiled pattern on each call, we do |
1014 | * all the matching in one swoop. The returned regexp_matches_ctx contains |
1015 | * the locations of all the substrings matching the pattern. |
1016 | * |
1017 | * The three bool parameters have only two patterns (one for matching, one for |
1018 | * splitting) but it seems clearer to distinguish the functionality this way |
1019 | * than to key it all off one "is_split" flag. We don't currently assume that |
1020 | * fetching_unmatched is exclusive of fetching the matched text too; if it's |
1021 | * set, the conversion buffer is large enough to fetch any single matched or |
1022 | * unmatched string, but not any larger substring. (In practice, when splitting |
1023 | * the matches are usually small anyway, and it didn't seem worth complicating |
1024 | * the code further.) |
1025 | */ |
1026 | static regexp_matches_ctx * |
1027 | setup_regexp_matches(text *orig_str, text *pattern, pg_re_flags *re_flags, |
1028 | Oid collation, |
1029 | bool use_subpatterns, |
1030 | bool ignore_degenerate, |
1031 | bool fetching_unmatched) |
1032 | { |
1033 | regexp_matches_ctx *matchctx = palloc0(sizeof(regexp_matches_ctx)); |
1034 | int eml = pg_database_encoding_max_length(); |
1035 | int orig_len; |
1036 | pg_wchar *wide_str; |
1037 | int wide_len; |
1038 | regex_t *cpattern; |
1039 | regmatch_t *pmatch; |
1040 | int pmatch_len; |
1041 | int array_len; |
1042 | int array_idx; |
1043 | int prev_match_end; |
1044 | int prev_valid_match_end; |
1045 | int start_search; |
1046 | int maxlen = 0; /* largest fetch length in characters */ |
1047 | |
1048 | /* save original string --- we'll extract result substrings from it */ |
1049 | matchctx->orig_str = orig_str; |
1050 | |
1051 | /* convert string to pg_wchar form for matching */ |
1052 | orig_len = VARSIZE_ANY_EXHDR(orig_str); |
1053 | wide_str = (pg_wchar *) palloc(sizeof(pg_wchar) * (orig_len + 1)); |
1054 | wide_len = pg_mb2wchar_with_len(VARDATA_ANY(orig_str), wide_str, orig_len); |
1055 | |
1056 | /* set up the compiled pattern */ |
1057 | cpattern = RE_compile_and_cache(pattern, re_flags->cflags, collation); |
1058 | |
1059 | /* do we want to remember subpatterns? */ |
1060 | if (use_subpatterns && cpattern->re_nsub > 0) |
1061 | { |
1062 | matchctx->npatterns = cpattern->re_nsub; |
1063 | pmatch_len = cpattern->re_nsub + 1; |
1064 | } |
1065 | else |
1066 | { |
1067 | use_subpatterns = false; |
1068 | matchctx->npatterns = 1; |
1069 | pmatch_len = 1; |
1070 | } |
1071 | |
1072 | /* temporary output space for RE package */ |
1073 | pmatch = palloc(sizeof(regmatch_t) * pmatch_len); |
1074 | |
1075 | /* |
1076 | * the real output space (grown dynamically if needed) |
1077 | * |
1078 | * use values 2^n-1, not 2^n, so that we hit the limit at 2^28-1 rather |
1079 | * than at 2^27 |
1080 | */ |
1081 | array_len = re_flags->glob ? 255 : 31; |
1082 | matchctx->match_locs = (int *) palloc(sizeof(int) * array_len); |
1083 | array_idx = 0; |
1084 | |
1085 | /* search for the pattern, perhaps repeatedly */ |
1086 | prev_match_end = 0; |
1087 | prev_valid_match_end = 0; |
1088 | start_search = 0; |
1089 | while (RE_wchar_execute(cpattern, wide_str, wide_len, start_search, |
1090 | pmatch_len, pmatch)) |
1091 | { |
1092 | /* |
1093 | * If requested, ignore degenerate matches, which are zero-length |
1094 | * matches occurring at the start or end of a string or just after a |
1095 | * previous match. |
1096 | */ |
1097 | if (!ignore_degenerate || |
1098 | (pmatch[0].rm_so < wide_len && |
1099 | pmatch[0].rm_eo > prev_match_end)) |
1100 | { |
1101 | /* enlarge output space if needed */ |
1102 | while (array_idx + matchctx->npatterns * 2 + 1 > array_len) |
1103 | { |
1104 | array_len += array_len + 1; /* 2^n-1 => 2^(n+1)-1 */ |
1105 | if (array_len > MaxAllocSize / sizeof(int)) |
1106 | ereport(ERROR, |
1107 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
1108 | errmsg("too many regular expression matches" ))); |
1109 | matchctx->match_locs = (int *) repalloc(matchctx->match_locs, |
1110 | sizeof(int) * array_len); |
1111 | } |
1112 | |
1113 | /* save this match's locations */ |
1114 | if (use_subpatterns) |
1115 | { |
1116 | int i; |
1117 | |
1118 | for (i = 1; i <= matchctx->npatterns; i++) |
1119 | { |
1120 | int so = pmatch[i].rm_so; |
1121 | int eo = pmatch[i].rm_eo; |
1122 | |
1123 | matchctx->match_locs[array_idx++] = so; |
1124 | matchctx->match_locs[array_idx++] = eo; |
1125 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
1126 | maxlen = (eo - so); |
1127 | } |
1128 | } |
1129 | else |
1130 | { |
1131 | int so = pmatch[0].rm_so; |
1132 | int eo = pmatch[0].rm_eo; |
1133 | |
1134 | matchctx->match_locs[array_idx++] = so; |
1135 | matchctx->match_locs[array_idx++] = eo; |
1136 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
1137 | maxlen = (eo - so); |
1138 | } |
1139 | matchctx->nmatches++; |
1140 | |
1141 | /* |
1142 | * check length of unmatched portion between end of previous valid |
1143 | * (nondegenerate, or degenerate but not ignored) match and start |
1144 | * of current one |
1145 | */ |
1146 | if (fetching_unmatched && |
1147 | pmatch[0].rm_so >= 0 && |
1148 | (pmatch[0].rm_so - prev_valid_match_end) > maxlen) |
1149 | maxlen = (pmatch[0].rm_so - prev_valid_match_end); |
1150 | prev_valid_match_end = pmatch[0].rm_eo; |
1151 | } |
1152 | prev_match_end = pmatch[0].rm_eo; |
1153 | |
1154 | /* if not glob, stop after one match */ |
1155 | if (!re_flags->glob) |
1156 | break; |
1157 | |
1158 | /* |
1159 | * Advance search position. Normally we start the next search at the |
1160 | * end of the previous match; but if the match was of zero length, we |
1161 | * have to advance by one character, or we'd just find the same match |
1162 | * again. |
1163 | */ |
1164 | start_search = prev_match_end; |
1165 | if (pmatch[0].rm_so == pmatch[0].rm_eo) |
1166 | start_search++; |
1167 | if (start_search > wide_len) |
1168 | break; |
1169 | } |
1170 | |
1171 | /* |
1172 | * check length of unmatched portion between end of last match and end of |
1173 | * input string |
1174 | */ |
1175 | if (fetching_unmatched && |
1176 | (wide_len - prev_valid_match_end) > maxlen) |
1177 | maxlen = (wide_len - prev_valid_match_end); |
1178 | |
1179 | /* |
1180 | * Keep a note of the end position of the string for the benefit of |
1181 | * splitting code. |
1182 | */ |
1183 | matchctx->match_locs[array_idx] = wide_len; |
1184 | |
1185 | if (eml > 1) |
1186 | { |
1187 | int64 maxsiz = eml * (int64) maxlen; |
1188 | int conv_bufsiz; |
1189 | |
1190 | /* |
1191 | * Make the conversion buffer large enough for any substring of |
1192 | * interest. |
1193 | * |
1194 | * Worst case: assume we need the maximum size (maxlen*eml), but take |
1195 | * advantage of the fact that the original string length in bytes is |
1196 | * an upper bound on the byte length of any fetched substring (and we |
1197 | * know that len+1 is safe to allocate because the varlena header is |
1198 | * longer than 1 byte). |
1199 | */ |
1200 | if (maxsiz > orig_len) |
1201 | conv_bufsiz = orig_len + 1; |
1202 | else |
1203 | conv_bufsiz = maxsiz + 1; /* safe since maxsiz < 2^30 */ |
1204 | |
1205 | matchctx->conv_buf = palloc(conv_bufsiz); |
1206 | matchctx->conv_bufsiz = conv_bufsiz; |
1207 | matchctx->wide_str = wide_str; |
1208 | } |
1209 | else |
1210 | { |
1211 | /* No need to keep the wide string if we're in a single-byte charset. */ |
1212 | pfree(wide_str); |
1213 | matchctx->wide_str = NULL; |
1214 | matchctx->conv_buf = NULL; |
1215 | matchctx->conv_bufsiz = 0; |
1216 | } |
1217 | |
1218 | /* Clean up temp storage */ |
1219 | pfree(pmatch); |
1220 | |
1221 | return matchctx; |
1222 | } |
1223 | |
1224 | /* |
1225 | * build_regexp_match_result - build output array for current match |
1226 | */ |
1227 | static ArrayType * |
1228 | build_regexp_match_result(regexp_matches_ctx *matchctx) |
1229 | { |
1230 | char *buf = matchctx->conv_buf; |
1231 | int bufsiz PG_USED_FOR_ASSERTS_ONLY = matchctx->conv_bufsiz; |
1232 | Datum *elems = matchctx->elems; |
1233 | bool *nulls = matchctx->nulls; |
1234 | int dims[1]; |
1235 | int lbs[1]; |
1236 | int loc; |
1237 | int i; |
1238 | |
1239 | /* Extract matching substrings from the original string */ |
1240 | loc = matchctx->next_match * matchctx->npatterns * 2; |
1241 | for (i = 0; i < matchctx->npatterns; i++) |
1242 | { |
1243 | int so = matchctx->match_locs[loc++]; |
1244 | int eo = matchctx->match_locs[loc++]; |
1245 | |
1246 | if (so < 0 || eo < 0) |
1247 | { |
1248 | elems[i] = (Datum) 0; |
1249 | nulls[i] = true; |
1250 | } |
1251 | else if (buf) |
1252 | { |
1253 | int len = pg_wchar2mb_with_len(matchctx->wide_str + so, |
1254 | buf, |
1255 | eo - so); |
1256 | |
1257 | Assert(len < bufsiz); |
1258 | elems[i] = PointerGetDatum(cstring_to_text_with_len(buf, len)); |
1259 | nulls[i] = false; |
1260 | } |
1261 | else |
1262 | { |
1263 | elems[i] = DirectFunctionCall3(text_substr, |
1264 | PointerGetDatum(matchctx->orig_str), |
1265 | Int32GetDatum(so + 1), |
1266 | Int32GetDatum(eo - so)); |
1267 | nulls[i] = false; |
1268 | } |
1269 | } |
1270 | |
1271 | /* And form an array */ |
1272 | dims[0] = matchctx->npatterns; |
1273 | lbs[0] = 1; |
1274 | /* XXX: this hardcodes assumptions about the text type */ |
1275 | return construct_md_array(elems, nulls, 1, dims, lbs, |
1276 | TEXTOID, -1, false, 'i'); |
1277 | } |
1278 | |
1279 | /* |
1280 | * regexp_split_to_table() |
1281 | * Split the string at matches of the pattern, returning the |
1282 | * split-out substrings as a table. |
1283 | */ |
1284 | Datum |
1285 | regexp_split_to_table(PG_FUNCTION_ARGS) |
1286 | { |
1287 | FuncCallContext *funcctx; |
1288 | regexp_matches_ctx *splitctx; |
1289 | |
1290 | if (SRF_IS_FIRSTCALL()) |
1291 | { |
1292 | text *pattern = PG_GETARG_TEXT_PP(1); |
1293 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
1294 | pg_re_flags re_flags; |
1295 | MemoryContext oldcontext; |
1296 | |
1297 | funcctx = SRF_FIRSTCALL_INIT(); |
1298 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
1299 | |
1300 | /* Determine options */ |
1301 | parse_re_flags(&re_flags, flags); |
1302 | /* User mustn't specify 'g' */ |
1303 | if (re_flags.glob) |
1304 | ereport(ERROR, |
1305 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1306 | /* translator: %s is a SQL function name */ |
1307 | errmsg("%s does not support the \"global\" option" , |
1308 | "regexp_split_to_table()" ))); |
1309 | /* But we find all the matches anyway */ |
1310 | re_flags.glob = true; |
1311 | |
1312 | /* be sure to copy the input string into the multi-call ctx */ |
1313 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
1314 | &re_flags, |
1315 | PG_GET_COLLATION(), |
1316 | false, true, true); |
1317 | |
1318 | MemoryContextSwitchTo(oldcontext); |
1319 | funcctx->user_fctx = (void *) splitctx; |
1320 | } |
1321 | |
1322 | funcctx = SRF_PERCALL_SETUP(); |
1323 | splitctx = (regexp_matches_ctx *) funcctx->user_fctx; |
1324 | |
1325 | if (splitctx->next_match <= splitctx->nmatches) |
1326 | { |
1327 | Datum result = build_regexp_split_result(splitctx); |
1328 | |
1329 | splitctx->next_match++; |
1330 | SRF_RETURN_NEXT(funcctx, result); |
1331 | } |
1332 | |
1333 | SRF_RETURN_DONE(funcctx); |
1334 | } |
1335 | |
1336 | /* This is separate to keep the opr_sanity regression test from complaining */ |
1337 | Datum |
1338 | regexp_split_to_table_no_flags(PG_FUNCTION_ARGS) |
1339 | { |
1340 | return regexp_split_to_table(fcinfo); |
1341 | } |
1342 | |
1343 | /* |
1344 | * regexp_split_to_array() |
1345 | * Split the string at matches of the pattern, returning the |
1346 | * split-out substrings as an array. |
1347 | */ |
1348 | Datum |
1349 | regexp_split_to_array(PG_FUNCTION_ARGS) |
1350 | { |
1351 | ArrayBuildState *astate = NULL; |
1352 | pg_re_flags re_flags; |
1353 | regexp_matches_ctx *splitctx; |
1354 | |
1355 | /* Determine options */ |
1356 | parse_re_flags(&re_flags, PG_GETARG_TEXT_PP_IF_EXISTS(2)); |
1357 | /* User mustn't specify 'g' */ |
1358 | if (re_flags.glob) |
1359 | ereport(ERROR, |
1360 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1361 | /* translator: %s is a SQL function name */ |
1362 | errmsg("%s does not support the \"global\" option" , |
1363 | "regexp_split_to_array()" ))); |
1364 | /* But we find all the matches anyway */ |
1365 | re_flags.glob = true; |
1366 | |
1367 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_PP(0), |
1368 | PG_GETARG_TEXT_PP(1), |
1369 | &re_flags, |
1370 | PG_GET_COLLATION(), |
1371 | false, true, true); |
1372 | |
1373 | while (splitctx->next_match <= splitctx->nmatches) |
1374 | { |
1375 | astate = accumArrayResult(astate, |
1376 | build_regexp_split_result(splitctx), |
1377 | false, |
1378 | TEXTOID, |
1379 | CurrentMemoryContext); |
1380 | splitctx->next_match++; |
1381 | } |
1382 | |
1383 | PG_RETURN_ARRAYTYPE_P(makeArrayResult(astate, CurrentMemoryContext)); |
1384 | } |
1385 | |
1386 | /* This is separate to keep the opr_sanity regression test from complaining */ |
1387 | Datum |
1388 | regexp_split_to_array_no_flags(PG_FUNCTION_ARGS) |
1389 | { |
1390 | return regexp_split_to_array(fcinfo); |
1391 | } |
1392 | |
1393 | /* |
1394 | * build_regexp_split_result - build output string for current match |
1395 | * |
1396 | * We return the string between the current match and the previous one, |
1397 | * or the string after the last match when next_match == nmatches. |
1398 | */ |
1399 | static Datum |
1400 | build_regexp_split_result(regexp_matches_ctx *splitctx) |
1401 | { |
1402 | char *buf = splitctx->conv_buf; |
1403 | int startpos; |
1404 | int endpos; |
1405 | |
1406 | if (splitctx->next_match > 0) |
1407 | startpos = splitctx->match_locs[splitctx->next_match * 2 - 1]; |
1408 | else |
1409 | startpos = 0; |
1410 | if (startpos < 0) |
1411 | elog(ERROR, "invalid match ending position" ); |
1412 | |
1413 | if (buf) |
1414 | { |
1415 | int bufsiz PG_USED_FOR_ASSERTS_ONLY = splitctx->conv_bufsiz; |
1416 | int len; |
1417 | |
1418 | endpos = splitctx->match_locs[splitctx->next_match * 2]; |
1419 | if (endpos < startpos) |
1420 | elog(ERROR, "invalid match starting position" ); |
1421 | len = pg_wchar2mb_with_len(splitctx->wide_str + startpos, |
1422 | buf, |
1423 | endpos - startpos); |
1424 | Assert(len < bufsiz); |
1425 | return PointerGetDatum(cstring_to_text_with_len(buf, len)); |
1426 | } |
1427 | else |
1428 | { |
1429 | endpos = splitctx->match_locs[splitctx->next_match * 2]; |
1430 | if (endpos < startpos) |
1431 | elog(ERROR, "invalid match starting position" ); |
1432 | return DirectFunctionCall3(text_substr, |
1433 | PointerGetDatum(splitctx->orig_str), |
1434 | Int32GetDatum(startpos + 1), |
1435 | Int32GetDatum(endpos - startpos)); |
1436 | } |
1437 | } |
1438 | |
1439 | /* |
1440 | * regexp_fixed_prefix - extract fixed prefix, if any, for a regexp |
1441 | * |
1442 | * The result is NULL if there is no fixed prefix, else a palloc'd string. |
1443 | * If it is an exact match, not just a prefix, *exact is returned as true. |
1444 | */ |
1445 | char * |
1446 | regexp_fixed_prefix(text *text_re, bool case_insensitive, Oid collation, |
1447 | bool *exact) |
1448 | { |
1449 | char *result; |
1450 | regex_t *re; |
1451 | int cflags; |
1452 | int re_result; |
1453 | pg_wchar *str; |
1454 | size_t slen; |
1455 | size_t maxlen; |
1456 | char errMsg[100]; |
1457 | |
1458 | *exact = false; /* default result */ |
1459 | |
1460 | /* Compile RE */ |
1461 | cflags = REG_ADVANCED; |
1462 | if (case_insensitive) |
1463 | cflags |= REG_ICASE; |
1464 | |
1465 | re = RE_compile_and_cache(text_re, cflags, collation); |
1466 | |
1467 | /* Examine it to see if there's a fixed prefix */ |
1468 | re_result = pg_regprefix(re, &str, &slen); |
1469 | |
1470 | switch (re_result) |
1471 | { |
1472 | case REG_NOMATCH: |
1473 | return NULL; |
1474 | |
1475 | case REG_PREFIX: |
1476 | /* continue with wchar conversion */ |
1477 | break; |
1478 | |
1479 | case REG_EXACT: |
1480 | *exact = true; |
1481 | /* continue with wchar conversion */ |
1482 | break; |
1483 | |
1484 | default: |
1485 | /* re failed??? */ |
1486 | CHECK_FOR_INTERRUPTS(); |
1487 | pg_regerror(re_result, re, errMsg, sizeof(errMsg)); |
1488 | ereport(ERROR, |
1489 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
1490 | errmsg("regular expression failed: %s" , errMsg))); |
1491 | break; |
1492 | } |
1493 | |
1494 | /* Convert pg_wchar result back to database encoding */ |
1495 | maxlen = pg_database_encoding_max_length() * slen + 1; |
1496 | result = (char *) palloc(maxlen); |
1497 | slen = pg_wchar2mb_with_len(str, result, slen); |
1498 | Assert(slen < maxlen); |
1499 | |
1500 | free(str); |
1501 | |
1502 | return result; |
1503 | } |
1504 | |