| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * regexp.c |
| 4 | * Postgres' interface to the regular expression package. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/regexp.c |
| 12 | * |
| 13 | * Alistair Crooks added the code for the regex caching |
| 14 | * agc - cached the regular expressions used - there's a good chance |
| 15 | * that we'll get a hit, so this saves a compile step for every |
| 16 | * attempted match. I haven't actually measured the speed improvement, |
| 17 | * but it `looks' a lot quicker visually when watching regression |
| 18 | * test output. |
| 19 | * |
| 20 | * agc - incorporated Keith Bostic's Berkeley regex code into |
| 21 | * the tree for all ports. To distinguish this regex code from any that |
| 22 | * is existent on a platform, I've prepended the string "pg_" to |
| 23 | * the functions regcomp, regerror, regexec and regfree. |
| 24 | * Fixed a bug that was originally a typo by me, where `i' was used |
| 25 | * instead of `oldest' when compiling regular expressions - benign |
| 26 | * results mostly, although occasionally it bit you... |
| 27 | * |
| 28 | *------------------------------------------------------------------------- |
| 29 | */ |
| 30 | #include "postgres.h" |
| 31 | |
| 32 | #include "catalog/pg_type.h" |
| 33 | #include "funcapi.h" |
| 34 | #include "miscadmin.h" |
| 35 | #include "regex/regex.h" |
| 36 | #include "utils/array.h" |
| 37 | #include "utils/builtins.h" |
| 38 | #include "utils/memutils.h" |
| 39 | #include "utils/varlena.h" |
| 40 | |
| 41 | #define PG_GETARG_TEXT_PP_IF_EXISTS(_n) \ |
| 42 | (PG_NARGS() > (_n) ? PG_GETARG_TEXT_PP(_n) : NULL) |
| 43 | |
| 44 | |
| 45 | /* all the options of interest for regex functions */ |
| 46 | typedef struct pg_re_flags |
| 47 | { |
| 48 | int cflags; /* compile flags for Spencer's regex code */ |
| 49 | bool glob; /* do it globally (for each occurrence) */ |
| 50 | } pg_re_flags; |
| 51 | |
| 52 | /* cross-call state for regexp_match and regexp_split functions */ |
| 53 | typedef struct regexp_matches_ctx |
| 54 | { |
| 55 | text *orig_str; /* data string in original TEXT form */ |
| 56 | int nmatches; /* number of places where pattern matched */ |
| 57 | int npatterns; /* number of capturing subpatterns */ |
| 58 | /* We store start char index and end+1 char index for each match */ |
| 59 | /* so the number of entries in match_locs is nmatches * npatterns * 2 */ |
| 60 | int *match_locs; /* 0-based character indexes */ |
| 61 | int next_match; /* 0-based index of next match to process */ |
| 62 | /* workspace for build_regexp_match_result() */ |
| 63 | Datum *elems; /* has npatterns elements */ |
| 64 | bool *nulls; /* has npatterns elements */ |
| 65 | pg_wchar *wide_str; /* wide-char version of original string */ |
| 66 | char *conv_buf; /* conversion buffer */ |
| 67 | int conv_bufsiz; /* size thereof */ |
| 68 | } regexp_matches_ctx; |
| 69 | |
| 70 | /* |
| 71 | * We cache precompiled regular expressions using a "self organizing list" |
| 72 | * structure, in which recently-used items tend to be near the front. |
| 73 | * Whenever we use an entry, it's moved up to the front of the list. |
| 74 | * Over time, an item's average position corresponds to its frequency of use. |
| 75 | * |
| 76 | * When we first create an entry, it's inserted at the front of |
| 77 | * the array, dropping the entry at the end of the array if necessary to |
| 78 | * make room. (This might seem to be weighting the new entry too heavily, |
| 79 | * but if we insert new entries further back, we'll be unable to adjust to |
| 80 | * a sudden shift in the query mix where we are presented with MAX_CACHED_RES |
| 81 | * never-before-seen items used circularly. We ought to be able to handle |
| 82 | * that case, so we have to insert at the front.) |
| 83 | * |
| 84 | * Knuth mentions a variant strategy in which a used item is moved up just |
| 85 | * one place in the list. Although he says this uses fewer comparisons on |
| 86 | * average, it seems not to adapt very well to the situation where you have |
| 87 | * both some reusable patterns and a steady stream of non-reusable patterns. |
| 88 | * A reusable pattern that isn't used at least as often as non-reusable |
| 89 | * patterns are seen will "fail to keep up" and will drop off the end of the |
| 90 | * cache. With move-to-front, a reusable pattern is guaranteed to stay in |
| 91 | * the cache as long as it's used at least once in every MAX_CACHED_RES uses. |
| 92 | */ |
| 93 | |
| 94 | /* this is the maximum number of cached regular expressions */ |
| 95 | #ifndef MAX_CACHED_RES |
| 96 | #define MAX_CACHED_RES 32 |
| 97 | #endif |
| 98 | |
| 99 | /* this structure describes one cached regular expression */ |
| 100 | typedef struct cached_re_str |
| 101 | { |
| 102 | char *cre_pat; /* original RE (not null terminated!) */ |
| 103 | int cre_pat_len; /* length of original RE, in bytes */ |
| 104 | int cre_flags; /* compile flags: extended,icase etc */ |
| 105 | Oid cre_collation; /* collation to use */ |
| 106 | regex_t cre_re; /* the compiled regular expression */ |
| 107 | } cached_re_str; |
| 108 | |
| 109 | static int num_res = 0; /* # of cached re's */ |
| 110 | static cached_re_str re_array[MAX_CACHED_RES]; /* cached re's */ |
| 111 | |
| 112 | |
| 113 | /* Local functions */ |
| 114 | static regexp_matches_ctx *setup_regexp_matches(text *orig_str, text *pattern, |
| 115 | pg_re_flags *flags, |
| 116 | Oid collation, |
| 117 | bool use_subpatterns, |
| 118 | bool ignore_degenerate, |
| 119 | bool fetching_unmatched); |
| 120 | static ArrayType *build_regexp_match_result(regexp_matches_ctx *matchctx); |
| 121 | static Datum build_regexp_split_result(regexp_matches_ctx *splitctx); |
| 122 | |
| 123 | |
| 124 | /* |
| 125 | * RE_compile_and_cache - compile a RE, caching if possible |
| 126 | * |
| 127 | * Returns regex_t * |
| 128 | * |
| 129 | * text_re --- the pattern, expressed as a TEXT object |
| 130 | * cflags --- compile options for the pattern |
| 131 | * collation --- collation to use for LC_CTYPE-dependent behavior |
| 132 | * |
| 133 | * Pattern is given in the database encoding. We internally convert to |
| 134 | * an array of pg_wchar, which is what Spencer's regex package wants. |
| 135 | */ |
| 136 | regex_t * |
| 137 | RE_compile_and_cache(text *text_re, int cflags, Oid collation) |
| 138 | { |
| 139 | int text_re_len = VARSIZE_ANY_EXHDR(text_re); |
| 140 | char *text_re_val = VARDATA_ANY(text_re); |
| 141 | pg_wchar *pattern; |
| 142 | int pattern_len; |
| 143 | int i; |
| 144 | int regcomp_result; |
| 145 | cached_re_str re_temp; |
| 146 | char errMsg[100]; |
| 147 | |
| 148 | /* |
| 149 | * Look for a match among previously compiled REs. Since the data |
| 150 | * structure is self-organizing with most-used entries at the front, our |
| 151 | * search strategy can just be to scan from the front. |
| 152 | */ |
| 153 | for (i = 0; i < num_res; i++) |
| 154 | { |
| 155 | if (re_array[i].cre_pat_len == text_re_len && |
| 156 | re_array[i].cre_flags == cflags && |
| 157 | re_array[i].cre_collation == collation && |
| 158 | memcmp(re_array[i].cre_pat, text_re_val, text_re_len) == 0) |
| 159 | { |
| 160 | /* |
| 161 | * Found a match; move it to front if not there already. |
| 162 | */ |
| 163 | if (i > 0) |
| 164 | { |
| 165 | re_temp = re_array[i]; |
| 166 | memmove(&re_array[1], &re_array[0], i * sizeof(cached_re_str)); |
| 167 | re_array[0] = re_temp; |
| 168 | } |
| 169 | |
| 170 | return &re_array[0].cre_re; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Couldn't find it, so try to compile the new RE. To avoid leaking |
| 176 | * resources on failure, we build into the re_temp local. |
| 177 | */ |
| 178 | |
| 179 | /* Convert pattern string to wide characters */ |
| 180 | pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar)); |
| 181 | pattern_len = pg_mb2wchar_with_len(text_re_val, |
| 182 | pattern, |
| 183 | text_re_len); |
| 184 | |
| 185 | regcomp_result = pg_regcomp(&re_temp.cre_re, |
| 186 | pattern, |
| 187 | pattern_len, |
| 188 | cflags, |
| 189 | collation); |
| 190 | |
| 191 | pfree(pattern); |
| 192 | |
| 193 | if (regcomp_result != REG_OKAY) |
| 194 | { |
| 195 | /* re didn't compile (no need for pg_regfree, if so) */ |
| 196 | |
| 197 | /* |
| 198 | * Here and in other places in this file, do CHECK_FOR_INTERRUPTS |
| 199 | * before reporting a regex error. This is so that if the regex |
| 200 | * library aborts and returns REG_CANCEL, we don't print an error |
| 201 | * message that implies the regex was invalid. |
| 202 | */ |
| 203 | CHECK_FOR_INTERRUPTS(); |
| 204 | |
| 205 | pg_regerror(regcomp_result, &re_temp.cre_re, errMsg, sizeof(errMsg)); |
| 206 | ereport(ERROR, |
| 207 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
| 208 | errmsg("invalid regular expression: %s" , errMsg))); |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * We use malloc/free for the cre_pat field because the storage has to |
| 213 | * persist across transactions, and because we want to get control back on |
| 214 | * out-of-memory. The Max() is because some malloc implementations return |
| 215 | * NULL for malloc(0). |
| 216 | */ |
| 217 | re_temp.cre_pat = malloc(Max(text_re_len, 1)); |
| 218 | if (re_temp.cre_pat == NULL) |
| 219 | { |
| 220 | pg_regfree(&re_temp.cre_re); |
| 221 | ereport(ERROR, |
| 222 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 223 | errmsg("out of memory" ))); |
| 224 | } |
| 225 | memcpy(re_temp.cre_pat, text_re_val, text_re_len); |
| 226 | re_temp.cre_pat_len = text_re_len; |
| 227 | re_temp.cre_flags = cflags; |
| 228 | re_temp.cre_collation = collation; |
| 229 | |
| 230 | /* |
| 231 | * Okay, we have a valid new item in re_temp; insert it into the storage |
| 232 | * array. Discard last entry if needed. |
| 233 | */ |
| 234 | if (num_res >= MAX_CACHED_RES) |
| 235 | { |
| 236 | --num_res; |
| 237 | Assert(num_res < MAX_CACHED_RES); |
| 238 | pg_regfree(&re_array[num_res].cre_re); |
| 239 | free(re_array[num_res].cre_pat); |
| 240 | } |
| 241 | |
| 242 | if (num_res > 0) |
| 243 | memmove(&re_array[1], &re_array[0], num_res * sizeof(cached_re_str)); |
| 244 | |
| 245 | re_array[0] = re_temp; |
| 246 | num_res++; |
| 247 | |
| 248 | return &re_array[0].cre_re; |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * RE_wchar_execute - execute a RE on pg_wchar data |
| 253 | * |
| 254 | * Returns true on match, false on no match |
| 255 | * |
| 256 | * re --- the compiled pattern as returned by RE_compile_and_cache |
| 257 | * data --- the data to match against (need not be null-terminated) |
| 258 | * data_len --- the length of the data string |
| 259 | * start_search -- the offset in the data to start searching |
| 260 | * nmatch, pmatch --- optional return area for match details |
| 261 | * |
| 262 | * Data is given as array of pg_wchar which is what Spencer's regex package |
| 263 | * wants. |
| 264 | */ |
| 265 | static bool |
| 266 | RE_wchar_execute(regex_t *re, pg_wchar *data, int data_len, |
| 267 | int start_search, int nmatch, regmatch_t *pmatch) |
| 268 | { |
| 269 | int regexec_result; |
| 270 | char errMsg[100]; |
| 271 | |
| 272 | /* Perform RE match and return result */ |
| 273 | regexec_result = pg_regexec(re, |
| 274 | data, |
| 275 | data_len, |
| 276 | start_search, |
| 277 | NULL, /* no details */ |
| 278 | nmatch, |
| 279 | pmatch, |
| 280 | 0); |
| 281 | |
| 282 | if (regexec_result != REG_OKAY && regexec_result != REG_NOMATCH) |
| 283 | { |
| 284 | /* re failed??? */ |
| 285 | CHECK_FOR_INTERRUPTS(); |
| 286 | pg_regerror(regexec_result, re, errMsg, sizeof(errMsg)); |
| 287 | ereport(ERROR, |
| 288 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
| 289 | errmsg("regular expression failed: %s" , errMsg))); |
| 290 | } |
| 291 | |
| 292 | return (regexec_result == REG_OKAY); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * RE_execute - execute a RE |
| 297 | * |
| 298 | * Returns true on match, false on no match |
| 299 | * |
| 300 | * re --- the compiled pattern as returned by RE_compile_and_cache |
| 301 | * dat --- the data to match against (need not be null-terminated) |
| 302 | * dat_len --- the length of the data string |
| 303 | * nmatch, pmatch --- optional return area for match details |
| 304 | * |
| 305 | * Data is given in the database encoding. We internally |
| 306 | * convert to array of pg_wchar which is what Spencer's regex package wants. |
| 307 | */ |
| 308 | static bool |
| 309 | RE_execute(regex_t *re, char *dat, int dat_len, |
| 310 | int nmatch, regmatch_t *pmatch) |
| 311 | { |
| 312 | pg_wchar *data; |
| 313 | int data_len; |
| 314 | bool match; |
| 315 | |
| 316 | /* Convert data string to wide characters */ |
| 317 | data = (pg_wchar *) palloc((dat_len + 1) * sizeof(pg_wchar)); |
| 318 | data_len = pg_mb2wchar_with_len(dat, data, dat_len); |
| 319 | |
| 320 | /* Perform RE match and return result */ |
| 321 | match = RE_wchar_execute(re, data, data_len, 0, nmatch, pmatch); |
| 322 | |
| 323 | pfree(data); |
| 324 | return match; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * RE_compile_and_execute - compile and execute a RE |
| 329 | * |
| 330 | * Returns true on match, false on no match |
| 331 | * |
| 332 | * text_re --- the pattern, expressed as a TEXT object |
| 333 | * dat --- the data to match against (need not be null-terminated) |
| 334 | * dat_len --- the length of the data string |
| 335 | * cflags --- compile options for the pattern |
| 336 | * collation --- collation to use for LC_CTYPE-dependent behavior |
| 337 | * nmatch, pmatch --- optional return area for match details |
| 338 | * |
| 339 | * Both pattern and data are given in the database encoding. We internally |
| 340 | * convert to array of pg_wchar which is what Spencer's regex package wants. |
| 341 | */ |
| 342 | bool |
| 343 | RE_compile_and_execute(text *text_re, char *dat, int dat_len, |
| 344 | int cflags, Oid collation, |
| 345 | int nmatch, regmatch_t *pmatch) |
| 346 | { |
| 347 | regex_t *re; |
| 348 | |
| 349 | /* Compile RE */ |
| 350 | re = RE_compile_and_cache(text_re, cflags, collation); |
| 351 | |
| 352 | return RE_execute(re, dat, dat_len, nmatch, pmatch); |
| 353 | } |
| 354 | |
| 355 | |
| 356 | /* |
| 357 | * parse_re_flags - parse the options argument of regexp_match and friends |
| 358 | * |
| 359 | * flags --- output argument, filled with desired options |
| 360 | * opts --- TEXT object, or NULL for defaults |
| 361 | * |
| 362 | * This accepts all the options allowed by any of the callers; callers that |
| 363 | * don't want some have to reject them after the fact. |
| 364 | */ |
| 365 | static void |
| 366 | parse_re_flags(pg_re_flags *flags, text *opts) |
| 367 | { |
| 368 | /* regex flavor is always folded into the compile flags */ |
| 369 | flags->cflags = REG_ADVANCED; |
| 370 | flags->glob = false; |
| 371 | |
| 372 | if (opts) |
| 373 | { |
| 374 | char *opt_p = VARDATA_ANY(opts); |
| 375 | int opt_len = VARSIZE_ANY_EXHDR(opts); |
| 376 | int i; |
| 377 | |
| 378 | for (i = 0; i < opt_len; i++) |
| 379 | { |
| 380 | switch (opt_p[i]) |
| 381 | { |
| 382 | case 'g': |
| 383 | flags->glob = true; |
| 384 | break; |
| 385 | case 'b': /* BREs (but why???) */ |
| 386 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED | REG_QUOTE); |
| 387 | break; |
| 388 | case 'c': /* case sensitive */ |
| 389 | flags->cflags &= ~REG_ICASE; |
| 390 | break; |
| 391 | case 'e': /* plain EREs */ |
| 392 | flags->cflags |= REG_EXTENDED; |
| 393 | flags->cflags &= ~(REG_ADVANCED | REG_QUOTE); |
| 394 | break; |
| 395 | case 'i': /* case insensitive */ |
| 396 | flags->cflags |= REG_ICASE; |
| 397 | break; |
| 398 | case 'm': /* Perloid synonym for n */ |
| 399 | case 'n': /* \n affects ^ $ . [^ */ |
| 400 | flags->cflags |= REG_NEWLINE; |
| 401 | break; |
| 402 | case 'p': /* ~Perl, \n affects . [^ */ |
| 403 | flags->cflags |= REG_NLSTOP; |
| 404 | flags->cflags &= ~REG_NLANCH; |
| 405 | break; |
| 406 | case 'q': /* literal string */ |
| 407 | flags->cflags |= REG_QUOTE; |
| 408 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED); |
| 409 | break; |
| 410 | case 's': /* single line, \n ordinary */ |
| 411 | flags->cflags &= ~REG_NEWLINE; |
| 412 | break; |
| 413 | case 't': /* tight syntax */ |
| 414 | flags->cflags &= ~REG_EXPANDED; |
| 415 | break; |
| 416 | case 'w': /* weird, \n affects ^ $ only */ |
| 417 | flags->cflags &= ~REG_NLSTOP; |
| 418 | flags->cflags |= REG_NLANCH; |
| 419 | break; |
| 420 | case 'x': /* expanded syntax */ |
| 421 | flags->cflags |= REG_EXPANDED; |
| 422 | break; |
| 423 | default: |
| 424 | ereport(ERROR, |
| 425 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 426 | errmsg("invalid regular expression option: \"%c\"" , |
| 427 | opt_p[i]))); |
| 428 | break; |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | |
| 435 | /* |
| 436 | * interface routines called by the function manager |
| 437 | */ |
| 438 | |
| 439 | Datum |
| 440 | nameregexeq(PG_FUNCTION_ARGS) |
| 441 | { |
| 442 | Name n = PG_GETARG_NAME(0); |
| 443 | text *p = PG_GETARG_TEXT_PP(1); |
| 444 | |
| 445 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
| 446 | NameStr(*n), |
| 447 | strlen(NameStr(*n)), |
| 448 | REG_ADVANCED, |
| 449 | PG_GET_COLLATION(), |
| 450 | 0, NULL)); |
| 451 | } |
| 452 | |
| 453 | Datum |
| 454 | nameregexne(PG_FUNCTION_ARGS) |
| 455 | { |
| 456 | Name n = PG_GETARG_NAME(0); |
| 457 | text *p = PG_GETARG_TEXT_PP(1); |
| 458 | |
| 459 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
| 460 | NameStr(*n), |
| 461 | strlen(NameStr(*n)), |
| 462 | REG_ADVANCED, |
| 463 | PG_GET_COLLATION(), |
| 464 | 0, NULL)); |
| 465 | } |
| 466 | |
| 467 | Datum |
| 468 | textregexeq(PG_FUNCTION_ARGS) |
| 469 | { |
| 470 | text *s = PG_GETARG_TEXT_PP(0); |
| 471 | text *p = PG_GETARG_TEXT_PP(1); |
| 472 | |
| 473 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
| 474 | VARDATA_ANY(s), |
| 475 | VARSIZE_ANY_EXHDR(s), |
| 476 | REG_ADVANCED, |
| 477 | PG_GET_COLLATION(), |
| 478 | 0, NULL)); |
| 479 | } |
| 480 | |
| 481 | Datum |
| 482 | textregexne(PG_FUNCTION_ARGS) |
| 483 | { |
| 484 | text *s = PG_GETARG_TEXT_PP(0); |
| 485 | text *p = PG_GETARG_TEXT_PP(1); |
| 486 | |
| 487 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
| 488 | VARDATA_ANY(s), |
| 489 | VARSIZE_ANY_EXHDR(s), |
| 490 | REG_ADVANCED, |
| 491 | PG_GET_COLLATION(), |
| 492 | 0, NULL)); |
| 493 | } |
| 494 | |
| 495 | |
| 496 | /* |
| 497 | * routines that use the regexp stuff, but ignore the case. |
| 498 | * for this, we use the REG_ICASE flag to pg_regcomp |
| 499 | */ |
| 500 | |
| 501 | |
| 502 | Datum |
| 503 | nameicregexeq(PG_FUNCTION_ARGS) |
| 504 | { |
| 505 | Name n = PG_GETARG_NAME(0); |
| 506 | text *p = PG_GETARG_TEXT_PP(1); |
| 507 | |
| 508 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
| 509 | NameStr(*n), |
| 510 | strlen(NameStr(*n)), |
| 511 | REG_ADVANCED | REG_ICASE, |
| 512 | PG_GET_COLLATION(), |
| 513 | 0, NULL)); |
| 514 | } |
| 515 | |
| 516 | Datum |
| 517 | nameicregexne(PG_FUNCTION_ARGS) |
| 518 | { |
| 519 | Name n = PG_GETARG_NAME(0); |
| 520 | text *p = PG_GETARG_TEXT_PP(1); |
| 521 | |
| 522 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
| 523 | NameStr(*n), |
| 524 | strlen(NameStr(*n)), |
| 525 | REG_ADVANCED | REG_ICASE, |
| 526 | PG_GET_COLLATION(), |
| 527 | 0, NULL)); |
| 528 | } |
| 529 | |
| 530 | Datum |
| 531 | texticregexeq(PG_FUNCTION_ARGS) |
| 532 | { |
| 533 | text *s = PG_GETARG_TEXT_PP(0); |
| 534 | text *p = PG_GETARG_TEXT_PP(1); |
| 535 | |
| 536 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
| 537 | VARDATA_ANY(s), |
| 538 | VARSIZE_ANY_EXHDR(s), |
| 539 | REG_ADVANCED | REG_ICASE, |
| 540 | PG_GET_COLLATION(), |
| 541 | 0, NULL)); |
| 542 | } |
| 543 | |
| 544 | Datum |
| 545 | texticregexne(PG_FUNCTION_ARGS) |
| 546 | { |
| 547 | text *s = PG_GETARG_TEXT_PP(0); |
| 548 | text *p = PG_GETARG_TEXT_PP(1); |
| 549 | |
| 550 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
| 551 | VARDATA_ANY(s), |
| 552 | VARSIZE_ANY_EXHDR(s), |
| 553 | REG_ADVANCED | REG_ICASE, |
| 554 | PG_GET_COLLATION(), |
| 555 | 0, NULL)); |
| 556 | } |
| 557 | |
| 558 | |
| 559 | /* |
| 560 | * textregexsubstr() |
| 561 | * Return a substring matched by a regular expression. |
| 562 | */ |
| 563 | Datum |
| 564 | textregexsubstr(PG_FUNCTION_ARGS) |
| 565 | { |
| 566 | text *s = PG_GETARG_TEXT_PP(0); |
| 567 | text *p = PG_GETARG_TEXT_PP(1); |
| 568 | regex_t *re; |
| 569 | regmatch_t pmatch[2]; |
| 570 | int so, |
| 571 | eo; |
| 572 | |
| 573 | /* Compile RE */ |
| 574 | re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); |
| 575 | |
| 576 | /* |
| 577 | * We pass two regmatch_t structs to get info about the overall match and |
| 578 | * the match for the first parenthesized subexpression (if any). If there |
| 579 | * is a parenthesized subexpression, we return what it matched; else |
| 580 | * return what the whole regexp matched. |
| 581 | */ |
| 582 | if (!RE_execute(re, |
| 583 | VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), |
| 584 | 2, pmatch)) |
| 585 | PG_RETURN_NULL(); /* definitely no match */ |
| 586 | |
| 587 | if (re->re_nsub > 0) |
| 588 | { |
| 589 | /* has parenthesized subexpressions, use the first one */ |
| 590 | so = pmatch[1].rm_so; |
| 591 | eo = pmatch[1].rm_eo; |
| 592 | } |
| 593 | else |
| 594 | { |
| 595 | /* no parenthesized subexpression, use whole match */ |
| 596 | so = pmatch[0].rm_so; |
| 597 | eo = pmatch[0].rm_eo; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * It is possible to have a match to the whole pattern but no match for a |
| 602 | * subexpression; for example 'foo(bar)?' is considered to match 'foo' but |
| 603 | * there is no subexpression match. So this extra test for match failure |
| 604 | * is not redundant. |
| 605 | */ |
| 606 | if (so < 0 || eo < 0) |
| 607 | PG_RETURN_NULL(); |
| 608 | |
| 609 | return DirectFunctionCall3(text_substr, |
| 610 | PointerGetDatum(s), |
| 611 | Int32GetDatum(so + 1), |
| 612 | Int32GetDatum(eo - so)); |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * textregexreplace_noopt() |
| 617 | * Return a string matched by a regular expression, with replacement. |
| 618 | * |
| 619 | * This version doesn't have an option argument: we default to case |
| 620 | * sensitive match, replace the first instance only. |
| 621 | */ |
| 622 | Datum |
| 623 | textregexreplace_noopt(PG_FUNCTION_ARGS) |
| 624 | { |
| 625 | text *s = PG_GETARG_TEXT_PP(0); |
| 626 | text *p = PG_GETARG_TEXT_PP(1); |
| 627 | text *r = PG_GETARG_TEXT_PP(2); |
| 628 | regex_t *re; |
| 629 | |
| 630 | re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); |
| 631 | |
| 632 | PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, false)); |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * textregexreplace() |
| 637 | * Return a string matched by a regular expression, with replacement. |
| 638 | */ |
| 639 | Datum |
| 640 | textregexreplace(PG_FUNCTION_ARGS) |
| 641 | { |
| 642 | text *s = PG_GETARG_TEXT_PP(0); |
| 643 | text *p = PG_GETARG_TEXT_PP(1); |
| 644 | text *r = PG_GETARG_TEXT_PP(2); |
| 645 | text *opt = PG_GETARG_TEXT_PP(3); |
| 646 | regex_t *re; |
| 647 | pg_re_flags flags; |
| 648 | |
| 649 | parse_re_flags(&flags, opt); |
| 650 | |
| 651 | re = RE_compile_and_cache(p, flags.cflags, PG_GET_COLLATION()); |
| 652 | |
| 653 | PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, flags.glob)); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * similar_escape() |
| 658 | * Convert a SQL:2008 regexp pattern to POSIX style, so it can be used by |
| 659 | * our regexp engine. |
| 660 | */ |
| 661 | Datum |
| 662 | similar_escape(PG_FUNCTION_ARGS) |
| 663 | { |
| 664 | text *pat_text; |
| 665 | text *esc_text; |
| 666 | text *result; |
| 667 | char *p, |
| 668 | *e, |
| 669 | *r; |
| 670 | int plen, |
| 671 | elen; |
| 672 | bool afterescape = false; |
| 673 | bool incharclass = false; |
| 674 | int nquotes = 0; |
| 675 | |
| 676 | /* This function is not strict, so must test explicitly */ |
| 677 | if (PG_ARGISNULL(0)) |
| 678 | PG_RETURN_NULL(); |
| 679 | pat_text = PG_GETARG_TEXT_PP(0); |
| 680 | p = VARDATA_ANY(pat_text); |
| 681 | plen = VARSIZE_ANY_EXHDR(pat_text); |
| 682 | if (PG_ARGISNULL(1)) |
| 683 | { |
| 684 | /* No ESCAPE clause provided; default to backslash as escape */ |
| 685 | e = "\\" ; |
| 686 | elen = 1; |
| 687 | } |
| 688 | else |
| 689 | { |
| 690 | esc_text = PG_GETARG_TEXT_PP(1); |
| 691 | e = VARDATA_ANY(esc_text); |
| 692 | elen = VARSIZE_ANY_EXHDR(esc_text); |
| 693 | if (elen == 0) |
| 694 | e = NULL; /* no escape character */ |
| 695 | else |
| 696 | { |
| 697 | int escape_mblen = pg_mbstrlen_with_len(e, elen); |
| 698 | |
| 699 | if (escape_mblen > 1) |
| 700 | ereport(ERROR, |
| 701 | (errcode(ERRCODE_INVALID_ESCAPE_SEQUENCE), |
| 702 | errmsg("invalid escape string" ), |
| 703 | errhint("Escape string must be empty or one character." ))); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | /*---------- |
| 708 | * We surround the transformed input string with |
| 709 | * ^(?: ... )$ |
| 710 | * which requires some explanation. We need "^" and "$" to force |
| 711 | * the pattern to match the entire input string as per the SQL spec. |
| 712 | * The "(?:" and ")" are a non-capturing set of parens; we have to have |
| 713 | * parens in case the string contains "|", else the "^" and "$" will |
| 714 | * be bound into the first and last alternatives which is not what we |
| 715 | * want, and the parens must be non capturing because we don't want them |
| 716 | * to count when selecting output for SUBSTRING. |
| 717 | * |
| 718 | * When the pattern is divided into three parts by escape-double-quotes, |
| 719 | * what we emit is |
| 720 | * ^(?:part1){1,1}?(part2){1,1}(?:part3)$ |
| 721 | * which requires even more explanation. The "{1,1}?" on part1 makes it |
| 722 | * non-greedy so that it will match the smallest possible amount of text |
| 723 | * not the largest, as required by SQL. The plain parens around part2 |
| 724 | * are capturing parens so that that part is what controls the result of |
| 725 | * SUBSTRING. The "{1,1}" forces part2 to be greedy, so that it matches |
| 726 | * the largest possible amount of text; hence part3 must match the |
| 727 | * smallest amount of text, as required by SQL. We don't need an explicit |
| 728 | * greediness marker on part3. Note that this also confines the effects |
| 729 | * of any "|" characters to the respective part, which is what we want. |
| 730 | * |
| 731 | * The SQL spec says that SUBSTRING's pattern must contain exactly two |
| 732 | * escape-double-quotes, but we only complain if there's more than two. |
| 733 | * With none, we act as though part1 and part3 are empty; with one, we |
| 734 | * act as though part3 is empty. Both behaviors fall out of omitting |
| 735 | * the relevant part separators in the above expansion. If the result |
| 736 | * of this function is used in a plain regexp match (SIMILAR TO), the |
| 737 | * escape-double-quotes have no effect on the match behavior. |
| 738 | *---------- |
| 739 | */ |
| 740 | |
| 741 | /* |
| 742 | * We need room for the prefix/postfix and part separators, plus as many |
| 743 | * as 3 output bytes per input byte; since the input is at most 1GB this |
| 744 | * can't overflow size_t. |
| 745 | */ |
| 746 | result = (text *) palloc(VARHDRSZ + 23 + 3 * (size_t) plen); |
| 747 | r = VARDATA(result); |
| 748 | |
| 749 | *r++ = '^'; |
| 750 | *r++ = '('; |
| 751 | *r++ = '?'; |
| 752 | *r++ = ':'; |
| 753 | |
| 754 | while (plen > 0) |
| 755 | { |
| 756 | char pchar = *p; |
| 757 | |
| 758 | /* |
| 759 | * If both the escape character and the current character from the |
| 760 | * pattern are multi-byte, we need to take the slow path. |
| 761 | * |
| 762 | * But if one of them is single-byte, we can process the pattern one |
| 763 | * byte at a time, ignoring multi-byte characters. (This works |
| 764 | * because all server-encodings have the property that a valid |
| 765 | * multi-byte character representation cannot contain the |
| 766 | * representation of a valid single-byte character.) |
| 767 | */ |
| 768 | |
| 769 | if (elen > 1) |
| 770 | { |
| 771 | int mblen = pg_mblen(p); |
| 772 | |
| 773 | if (mblen > 1) |
| 774 | { |
| 775 | /* slow, multi-byte path */ |
| 776 | if (afterescape) |
| 777 | { |
| 778 | *r++ = '\\'; |
| 779 | memcpy(r, p, mblen); |
| 780 | r += mblen; |
| 781 | afterescape = false; |
| 782 | } |
| 783 | else if (e && elen == mblen && memcmp(e, p, mblen) == 0) |
| 784 | { |
| 785 | /* SQL escape character; do not send to output */ |
| 786 | afterescape = true; |
| 787 | } |
| 788 | else |
| 789 | { |
| 790 | /* |
| 791 | * We know it's a multi-byte character, so we don't need |
| 792 | * to do all the comparisons to single-byte characters |
| 793 | * that we do below. |
| 794 | */ |
| 795 | memcpy(r, p, mblen); |
| 796 | r += mblen; |
| 797 | } |
| 798 | |
| 799 | p += mblen; |
| 800 | plen -= mblen; |
| 801 | |
| 802 | continue; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | /* fast path */ |
| 807 | if (afterescape) |
| 808 | { |
| 809 | if (pchar == '"' && !incharclass) /* escape-double-quote? */ |
| 810 | { |
| 811 | /* emit appropriate part separator, per notes above */ |
| 812 | if (nquotes == 0) |
| 813 | { |
| 814 | *r++ = ')'; |
| 815 | *r++ = '{'; |
| 816 | *r++ = '1'; |
| 817 | *r++ = ','; |
| 818 | *r++ = '1'; |
| 819 | *r++ = '}'; |
| 820 | *r++ = '?'; |
| 821 | *r++ = '('; |
| 822 | } |
| 823 | else if (nquotes == 1) |
| 824 | { |
| 825 | *r++ = ')'; |
| 826 | *r++ = '{'; |
| 827 | *r++ = '1'; |
| 828 | *r++ = ','; |
| 829 | *r++ = '1'; |
| 830 | *r++ = '}'; |
| 831 | *r++ = '('; |
| 832 | *r++ = '?'; |
| 833 | *r++ = ':'; |
| 834 | } |
| 835 | else |
| 836 | ereport(ERROR, |
| 837 | (errcode(ERRCODE_INVALID_USE_OF_ESCAPE_CHARACTER), |
| 838 | errmsg("SQL regular expression may not contain more than two escape-double-quote separators" ))); |
| 839 | nquotes++; |
| 840 | } |
| 841 | else |
| 842 | { |
| 843 | /* |
| 844 | * We allow any character at all to be escaped; notably, this |
| 845 | * allows access to POSIX character-class escapes such as |
| 846 | * "\d". The SQL spec is considerably more restrictive. |
| 847 | */ |
| 848 | *r++ = '\\'; |
| 849 | *r++ = pchar; |
| 850 | } |
| 851 | afterescape = false; |
| 852 | } |
| 853 | else if (e && pchar == *e) |
| 854 | { |
| 855 | /* SQL escape character; do not send to output */ |
| 856 | afterescape = true; |
| 857 | } |
| 858 | else if (incharclass) |
| 859 | { |
| 860 | if (pchar == '\\') |
| 861 | *r++ = '\\'; |
| 862 | *r++ = pchar; |
| 863 | if (pchar == ']') |
| 864 | incharclass = false; |
| 865 | } |
| 866 | else if (pchar == '[') |
| 867 | { |
| 868 | *r++ = pchar; |
| 869 | incharclass = true; |
| 870 | } |
| 871 | else if (pchar == '%') |
| 872 | { |
| 873 | *r++ = '.'; |
| 874 | *r++ = '*'; |
| 875 | } |
| 876 | else if (pchar == '_') |
| 877 | *r++ = '.'; |
| 878 | else if (pchar == '(') |
| 879 | { |
| 880 | /* convert to non-capturing parenthesis */ |
| 881 | *r++ = '('; |
| 882 | *r++ = '?'; |
| 883 | *r++ = ':'; |
| 884 | } |
| 885 | else if (pchar == '\\' || pchar == '.' || |
| 886 | pchar == '^' || pchar == '$') |
| 887 | { |
| 888 | *r++ = '\\'; |
| 889 | *r++ = pchar; |
| 890 | } |
| 891 | else |
| 892 | *r++ = pchar; |
| 893 | p++, plen--; |
| 894 | } |
| 895 | |
| 896 | *r++ = ')'; |
| 897 | *r++ = '$'; |
| 898 | |
| 899 | SET_VARSIZE(result, r - ((char *) result)); |
| 900 | |
| 901 | PG_RETURN_TEXT_P(result); |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * regexp_match() |
| 906 | * Return the first substring(s) matching a pattern within a string. |
| 907 | */ |
| 908 | Datum |
| 909 | regexp_match(PG_FUNCTION_ARGS) |
| 910 | { |
| 911 | text *orig_str = PG_GETARG_TEXT_PP(0); |
| 912 | text *pattern = PG_GETARG_TEXT_PP(1); |
| 913 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
| 914 | pg_re_flags re_flags; |
| 915 | regexp_matches_ctx *matchctx; |
| 916 | |
| 917 | /* Determine options */ |
| 918 | parse_re_flags(&re_flags, flags); |
| 919 | /* User mustn't specify 'g' */ |
| 920 | if (re_flags.glob) |
| 921 | ereport(ERROR, |
| 922 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 923 | /* translator: %s is a SQL function name */ |
| 924 | errmsg("%s does not support the \"global\" option" , |
| 925 | "regexp_match()" ), |
| 926 | errhint("Use the regexp_matches function instead." ))); |
| 927 | |
| 928 | matchctx = setup_regexp_matches(orig_str, pattern, &re_flags, |
| 929 | PG_GET_COLLATION(), true, false, false); |
| 930 | |
| 931 | if (matchctx->nmatches == 0) |
| 932 | PG_RETURN_NULL(); |
| 933 | |
| 934 | Assert(matchctx->nmatches == 1); |
| 935 | |
| 936 | /* Create workspace that build_regexp_match_result needs */ |
| 937 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
| 938 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
| 939 | |
| 940 | PG_RETURN_DATUM(PointerGetDatum(build_regexp_match_result(matchctx))); |
| 941 | } |
| 942 | |
| 943 | /* This is separate to keep the opr_sanity regression test from complaining */ |
| 944 | Datum |
| 945 | regexp_match_no_flags(PG_FUNCTION_ARGS) |
| 946 | { |
| 947 | return regexp_match(fcinfo); |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * regexp_matches() |
| 952 | * Return a table of all matches of a pattern within a string. |
| 953 | */ |
| 954 | Datum |
| 955 | regexp_matches(PG_FUNCTION_ARGS) |
| 956 | { |
| 957 | FuncCallContext *funcctx; |
| 958 | regexp_matches_ctx *matchctx; |
| 959 | |
| 960 | if (SRF_IS_FIRSTCALL()) |
| 961 | { |
| 962 | text *pattern = PG_GETARG_TEXT_PP(1); |
| 963 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
| 964 | pg_re_flags re_flags; |
| 965 | MemoryContext oldcontext; |
| 966 | |
| 967 | funcctx = SRF_FIRSTCALL_INIT(); |
| 968 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 969 | |
| 970 | /* Determine options */ |
| 971 | parse_re_flags(&re_flags, flags); |
| 972 | |
| 973 | /* be sure to copy the input string into the multi-call ctx */ |
| 974 | matchctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
| 975 | &re_flags, |
| 976 | PG_GET_COLLATION(), |
| 977 | true, false, false); |
| 978 | |
| 979 | /* Pre-create workspace that build_regexp_match_result needs */ |
| 980 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
| 981 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
| 982 | |
| 983 | MemoryContextSwitchTo(oldcontext); |
| 984 | funcctx->user_fctx = (void *) matchctx; |
| 985 | } |
| 986 | |
| 987 | funcctx = SRF_PERCALL_SETUP(); |
| 988 | matchctx = (regexp_matches_ctx *) funcctx->user_fctx; |
| 989 | |
| 990 | if (matchctx->next_match < matchctx->nmatches) |
| 991 | { |
| 992 | ArrayType *result_ary; |
| 993 | |
| 994 | result_ary = build_regexp_match_result(matchctx); |
| 995 | matchctx->next_match++; |
| 996 | SRF_RETURN_NEXT(funcctx, PointerGetDatum(result_ary)); |
| 997 | } |
| 998 | |
| 999 | SRF_RETURN_DONE(funcctx); |
| 1000 | } |
| 1001 | |
| 1002 | /* This is separate to keep the opr_sanity regression test from complaining */ |
| 1003 | Datum |
| 1004 | regexp_matches_no_flags(PG_FUNCTION_ARGS) |
| 1005 | { |
| 1006 | return regexp_matches(fcinfo); |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * setup_regexp_matches --- do the initial matching for regexp_match |
| 1011 | * and regexp_split functions |
| 1012 | * |
| 1013 | * To avoid having to re-find the compiled pattern on each call, we do |
| 1014 | * all the matching in one swoop. The returned regexp_matches_ctx contains |
| 1015 | * the locations of all the substrings matching the pattern. |
| 1016 | * |
| 1017 | * The three bool parameters have only two patterns (one for matching, one for |
| 1018 | * splitting) but it seems clearer to distinguish the functionality this way |
| 1019 | * than to key it all off one "is_split" flag. We don't currently assume that |
| 1020 | * fetching_unmatched is exclusive of fetching the matched text too; if it's |
| 1021 | * set, the conversion buffer is large enough to fetch any single matched or |
| 1022 | * unmatched string, but not any larger substring. (In practice, when splitting |
| 1023 | * the matches are usually small anyway, and it didn't seem worth complicating |
| 1024 | * the code further.) |
| 1025 | */ |
| 1026 | static regexp_matches_ctx * |
| 1027 | setup_regexp_matches(text *orig_str, text *pattern, pg_re_flags *re_flags, |
| 1028 | Oid collation, |
| 1029 | bool use_subpatterns, |
| 1030 | bool ignore_degenerate, |
| 1031 | bool fetching_unmatched) |
| 1032 | { |
| 1033 | regexp_matches_ctx *matchctx = palloc0(sizeof(regexp_matches_ctx)); |
| 1034 | int eml = pg_database_encoding_max_length(); |
| 1035 | int orig_len; |
| 1036 | pg_wchar *wide_str; |
| 1037 | int wide_len; |
| 1038 | regex_t *cpattern; |
| 1039 | regmatch_t *pmatch; |
| 1040 | int pmatch_len; |
| 1041 | int array_len; |
| 1042 | int array_idx; |
| 1043 | int prev_match_end; |
| 1044 | int prev_valid_match_end; |
| 1045 | int start_search; |
| 1046 | int maxlen = 0; /* largest fetch length in characters */ |
| 1047 | |
| 1048 | /* save original string --- we'll extract result substrings from it */ |
| 1049 | matchctx->orig_str = orig_str; |
| 1050 | |
| 1051 | /* convert string to pg_wchar form for matching */ |
| 1052 | orig_len = VARSIZE_ANY_EXHDR(orig_str); |
| 1053 | wide_str = (pg_wchar *) palloc(sizeof(pg_wchar) * (orig_len + 1)); |
| 1054 | wide_len = pg_mb2wchar_with_len(VARDATA_ANY(orig_str), wide_str, orig_len); |
| 1055 | |
| 1056 | /* set up the compiled pattern */ |
| 1057 | cpattern = RE_compile_and_cache(pattern, re_flags->cflags, collation); |
| 1058 | |
| 1059 | /* do we want to remember subpatterns? */ |
| 1060 | if (use_subpatterns && cpattern->re_nsub > 0) |
| 1061 | { |
| 1062 | matchctx->npatterns = cpattern->re_nsub; |
| 1063 | pmatch_len = cpattern->re_nsub + 1; |
| 1064 | } |
| 1065 | else |
| 1066 | { |
| 1067 | use_subpatterns = false; |
| 1068 | matchctx->npatterns = 1; |
| 1069 | pmatch_len = 1; |
| 1070 | } |
| 1071 | |
| 1072 | /* temporary output space for RE package */ |
| 1073 | pmatch = palloc(sizeof(regmatch_t) * pmatch_len); |
| 1074 | |
| 1075 | /* |
| 1076 | * the real output space (grown dynamically if needed) |
| 1077 | * |
| 1078 | * use values 2^n-1, not 2^n, so that we hit the limit at 2^28-1 rather |
| 1079 | * than at 2^27 |
| 1080 | */ |
| 1081 | array_len = re_flags->glob ? 255 : 31; |
| 1082 | matchctx->match_locs = (int *) palloc(sizeof(int) * array_len); |
| 1083 | array_idx = 0; |
| 1084 | |
| 1085 | /* search for the pattern, perhaps repeatedly */ |
| 1086 | prev_match_end = 0; |
| 1087 | prev_valid_match_end = 0; |
| 1088 | start_search = 0; |
| 1089 | while (RE_wchar_execute(cpattern, wide_str, wide_len, start_search, |
| 1090 | pmatch_len, pmatch)) |
| 1091 | { |
| 1092 | /* |
| 1093 | * If requested, ignore degenerate matches, which are zero-length |
| 1094 | * matches occurring at the start or end of a string or just after a |
| 1095 | * previous match. |
| 1096 | */ |
| 1097 | if (!ignore_degenerate || |
| 1098 | (pmatch[0].rm_so < wide_len && |
| 1099 | pmatch[0].rm_eo > prev_match_end)) |
| 1100 | { |
| 1101 | /* enlarge output space if needed */ |
| 1102 | while (array_idx + matchctx->npatterns * 2 + 1 > array_len) |
| 1103 | { |
| 1104 | array_len += array_len + 1; /* 2^n-1 => 2^(n+1)-1 */ |
| 1105 | if (array_len > MaxAllocSize / sizeof(int)) |
| 1106 | ereport(ERROR, |
| 1107 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1108 | errmsg("too many regular expression matches" ))); |
| 1109 | matchctx->match_locs = (int *) repalloc(matchctx->match_locs, |
| 1110 | sizeof(int) * array_len); |
| 1111 | } |
| 1112 | |
| 1113 | /* save this match's locations */ |
| 1114 | if (use_subpatterns) |
| 1115 | { |
| 1116 | int i; |
| 1117 | |
| 1118 | for (i = 1; i <= matchctx->npatterns; i++) |
| 1119 | { |
| 1120 | int so = pmatch[i].rm_so; |
| 1121 | int eo = pmatch[i].rm_eo; |
| 1122 | |
| 1123 | matchctx->match_locs[array_idx++] = so; |
| 1124 | matchctx->match_locs[array_idx++] = eo; |
| 1125 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
| 1126 | maxlen = (eo - so); |
| 1127 | } |
| 1128 | } |
| 1129 | else |
| 1130 | { |
| 1131 | int so = pmatch[0].rm_so; |
| 1132 | int eo = pmatch[0].rm_eo; |
| 1133 | |
| 1134 | matchctx->match_locs[array_idx++] = so; |
| 1135 | matchctx->match_locs[array_idx++] = eo; |
| 1136 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
| 1137 | maxlen = (eo - so); |
| 1138 | } |
| 1139 | matchctx->nmatches++; |
| 1140 | |
| 1141 | /* |
| 1142 | * check length of unmatched portion between end of previous valid |
| 1143 | * (nondegenerate, or degenerate but not ignored) match and start |
| 1144 | * of current one |
| 1145 | */ |
| 1146 | if (fetching_unmatched && |
| 1147 | pmatch[0].rm_so >= 0 && |
| 1148 | (pmatch[0].rm_so - prev_valid_match_end) > maxlen) |
| 1149 | maxlen = (pmatch[0].rm_so - prev_valid_match_end); |
| 1150 | prev_valid_match_end = pmatch[0].rm_eo; |
| 1151 | } |
| 1152 | prev_match_end = pmatch[0].rm_eo; |
| 1153 | |
| 1154 | /* if not glob, stop after one match */ |
| 1155 | if (!re_flags->glob) |
| 1156 | break; |
| 1157 | |
| 1158 | /* |
| 1159 | * Advance search position. Normally we start the next search at the |
| 1160 | * end of the previous match; but if the match was of zero length, we |
| 1161 | * have to advance by one character, or we'd just find the same match |
| 1162 | * again. |
| 1163 | */ |
| 1164 | start_search = prev_match_end; |
| 1165 | if (pmatch[0].rm_so == pmatch[0].rm_eo) |
| 1166 | start_search++; |
| 1167 | if (start_search > wide_len) |
| 1168 | break; |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * check length of unmatched portion between end of last match and end of |
| 1173 | * input string |
| 1174 | */ |
| 1175 | if (fetching_unmatched && |
| 1176 | (wide_len - prev_valid_match_end) > maxlen) |
| 1177 | maxlen = (wide_len - prev_valid_match_end); |
| 1178 | |
| 1179 | /* |
| 1180 | * Keep a note of the end position of the string for the benefit of |
| 1181 | * splitting code. |
| 1182 | */ |
| 1183 | matchctx->match_locs[array_idx] = wide_len; |
| 1184 | |
| 1185 | if (eml > 1) |
| 1186 | { |
| 1187 | int64 maxsiz = eml * (int64) maxlen; |
| 1188 | int conv_bufsiz; |
| 1189 | |
| 1190 | /* |
| 1191 | * Make the conversion buffer large enough for any substring of |
| 1192 | * interest. |
| 1193 | * |
| 1194 | * Worst case: assume we need the maximum size (maxlen*eml), but take |
| 1195 | * advantage of the fact that the original string length in bytes is |
| 1196 | * an upper bound on the byte length of any fetched substring (and we |
| 1197 | * know that len+1 is safe to allocate because the varlena header is |
| 1198 | * longer than 1 byte). |
| 1199 | */ |
| 1200 | if (maxsiz > orig_len) |
| 1201 | conv_bufsiz = orig_len + 1; |
| 1202 | else |
| 1203 | conv_bufsiz = maxsiz + 1; /* safe since maxsiz < 2^30 */ |
| 1204 | |
| 1205 | matchctx->conv_buf = palloc(conv_bufsiz); |
| 1206 | matchctx->conv_bufsiz = conv_bufsiz; |
| 1207 | matchctx->wide_str = wide_str; |
| 1208 | } |
| 1209 | else |
| 1210 | { |
| 1211 | /* No need to keep the wide string if we're in a single-byte charset. */ |
| 1212 | pfree(wide_str); |
| 1213 | matchctx->wide_str = NULL; |
| 1214 | matchctx->conv_buf = NULL; |
| 1215 | matchctx->conv_bufsiz = 0; |
| 1216 | } |
| 1217 | |
| 1218 | /* Clean up temp storage */ |
| 1219 | pfree(pmatch); |
| 1220 | |
| 1221 | return matchctx; |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * build_regexp_match_result - build output array for current match |
| 1226 | */ |
| 1227 | static ArrayType * |
| 1228 | build_regexp_match_result(regexp_matches_ctx *matchctx) |
| 1229 | { |
| 1230 | char *buf = matchctx->conv_buf; |
| 1231 | int bufsiz PG_USED_FOR_ASSERTS_ONLY = matchctx->conv_bufsiz; |
| 1232 | Datum *elems = matchctx->elems; |
| 1233 | bool *nulls = matchctx->nulls; |
| 1234 | int dims[1]; |
| 1235 | int lbs[1]; |
| 1236 | int loc; |
| 1237 | int i; |
| 1238 | |
| 1239 | /* Extract matching substrings from the original string */ |
| 1240 | loc = matchctx->next_match * matchctx->npatterns * 2; |
| 1241 | for (i = 0; i < matchctx->npatterns; i++) |
| 1242 | { |
| 1243 | int so = matchctx->match_locs[loc++]; |
| 1244 | int eo = matchctx->match_locs[loc++]; |
| 1245 | |
| 1246 | if (so < 0 || eo < 0) |
| 1247 | { |
| 1248 | elems[i] = (Datum) 0; |
| 1249 | nulls[i] = true; |
| 1250 | } |
| 1251 | else if (buf) |
| 1252 | { |
| 1253 | int len = pg_wchar2mb_with_len(matchctx->wide_str + so, |
| 1254 | buf, |
| 1255 | eo - so); |
| 1256 | |
| 1257 | Assert(len < bufsiz); |
| 1258 | elems[i] = PointerGetDatum(cstring_to_text_with_len(buf, len)); |
| 1259 | nulls[i] = false; |
| 1260 | } |
| 1261 | else |
| 1262 | { |
| 1263 | elems[i] = DirectFunctionCall3(text_substr, |
| 1264 | PointerGetDatum(matchctx->orig_str), |
| 1265 | Int32GetDatum(so + 1), |
| 1266 | Int32GetDatum(eo - so)); |
| 1267 | nulls[i] = false; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | /* And form an array */ |
| 1272 | dims[0] = matchctx->npatterns; |
| 1273 | lbs[0] = 1; |
| 1274 | /* XXX: this hardcodes assumptions about the text type */ |
| 1275 | return construct_md_array(elems, nulls, 1, dims, lbs, |
| 1276 | TEXTOID, -1, false, 'i'); |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * regexp_split_to_table() |
| 1281 | * Split the string at matches of the pattern, returning the |
| 1282 | * split-out substrings as a table. |
| 1283 | */ |
| 1284 | Datum |
| 1285 | regexp_split_to_table(PG_FUNCTION_ARGS) |
| 1286 | { |
| 1287 | FuncCallContext *funcctx; |
| 1288 | regexp_matches_ctx *splitctx; |
| 1289 | |
| 1290 | if (SRF_IS_FIRSTCALL()) |
| 1291 | { |
| 1292 | text *pattern = PG_GETARG_TEXT_PP(1); |
| 1293 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
| 1294 | pg_re_flags re_flags; |
| 1295 | MemoryContext oldcontext; |
| 1296 | |
| 1297 | funcctx = SRF_FIRSTCALL_INIT(); |
| 1298 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1299 | |
| 1300 | /* Determine options */ |
| 1301 | parse_re_flags(&re_flags, flags); |
| 1302 | /* User mustn't specify 'g' */ |
| 1303 | if (re_flags.glob) |
| 1304 | ereport(ERROR, |
| 1305 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1306 | /* translator: %s is a SQL function name */ |
| 1307 | errmsg("%s does not support the \"global\" option" , |
| 1308 | "regexp_split_to_table()" ))); |
| 1309 | /* But we find all the matches anyway */ |
| 1310 | re_flags.glob = true; |
| 1311 | |
| 1312 | /* be sure to copy the input string into the multi-call ctx */ |
| 1313 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
| 1314 | &re_flags, |
| 1315 | PG_GET_COLLATION(), |
| 1316 | false, true, true); |
| 1317 | |
| 1318 | MemoryContextSwitchTo(oldcontext); |
| 1319 | funcctx->user_fctx = (void *) splitctx; |
| 1320 | } |
| 1321 | |
| 1322 | funcctx = SRF_PERCALL_SETUP(); |
| 1323 | splitctx = (regexp_matches_ctx *) funcctx->user_fctx; |
| 1324 | |
| 1325 | if (splitctx->next_match <= splitctx->nmatches) |
| 1326 | { |
| 1327 | Datum result = build_regexp_split_result(splitctx); |
| 1328 | |
| 1329 | splitctx->next_match++; |
| 1330 | SRF_RETURN_NEXT(funcctx, result); |
| 1331 | } |
| 1332 | |
| 1333 | SRF_RETURN_DONE(funcctx); |
| 1334 | } |
| 1335 | |
| 1336 | /* This is separate to keep the opr_sanity regression test from complaining */ |
| 1337 | Datum |
| 1338 | regexp_split_to_table_no_flags(PG_FUNCTION_ARGS) |
| 1339 | { |
| 1340 | return regexp_split_to_table(fcinfo); |
| 1341 | } |
| 1342 | |
| 1343 | /* |
| 1344 | * regexp_split_to_array() |
| 1345 | * Split the string at matches of the pattern, returning the |
| 1346 | * split-out substrings as an array. |
| 1347 | */ |
| 1348 | Datum |
| 1349 | regexp_split_to_array(PG_FUNCTION_ARGS) |
| 1350 | { |
| 1351 | ArrayBuildState *astate = NULL; |
| 1352 | pg_re_flags re_flags; |
| 1353 | regexp_matches_ctx *splitctx; |
| 1354 | |
| 1355 | /* Determine options */ |
| 1356 | parse_re_flags(&re_flags, PG_GETARG_TEXT_PP_IF_EXISTS(2)); |
| 1357 | /* User mustn't specify 'g' */ |
| 1358 | if (re_flags.glob) |
| 1359 | ereport(ERROR, |
| 1360 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1361 | /* translator: %s is a SQL function name */ |
| 1362 | errmsg("%s does not support the \"global\" option" , |
| 1363 | "regexp_split_to_array()" ))); |
| 1364 | /* But we find all the matches anyway */ |
| 1365 | re_flags.glob = true; |
| 1366 | |
| 1367 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_PP(0), |
| 1368 | PG_GETARG_TEXT_PP(1), |
| 1369 | &re_flags, |
| 1370 | PG_GET_COLLATION(), |
| 1371 | false, true, true); |
| 1372 | |
| 1373 | while (splitctx->next_match <= splitctx->nmatches) |
| 1374 | { |
| 1375 | astate = accumArrayResult(astate, |
| 1376 | build_regexp_split_result(splitctx), |
| 1377 | false, |
| 1378 | TEXTOID, |
| 1379 | CurrentMemoryContext); |
| 1380 | splitctx->next_match++; |
| 1381 | } |
| 1382 | |
| 1383 | PG_RETURN_ARRAYTYPE_P(makeArrayResult(astate, CurrentMemoryContext)); |
| 1384 | } |
| 1385 | |
| 1386 | /* This is separate to keep the opr_sanity regression test from complaining */ |
| 1387 | Datum |
| 1388 | regexp_split_to_array_no_flags(PG_FUNCTION_ARGS) |
| 1389 | { |
| 1390 | return regexp_split_to_array(fcinfo); |
| 1391 | } |
| 1392 | |
| 1393 | /* |
| 1394 | * build_regexp_split_result - build output string for current match |
| 1395 | * |
| 1396 | * We return the string between the current match and the previous one, |
| 1397 | * or the string after the last match when next_match == nmatches. |
| 1398 | */ |
| 1399 | static Datum |
| 1400 | build_regexp_split_result(regexp_matches_ctx *splitctx) |
| 1401 | { |
| 1402 | char *buf = splitctx->conv_buf; |
| 1403 | int startpos; |
| 1404 | int endpos; |
| 1405 | |
| 1406 | if (splitctx->next_match > 0) |
| 1407 | startpos = splitctx->match_locs[splitctx->next_match * 2 - 1]; |
| 1408 | else |
| 1409 | startpos = 0; |
| 1410 | if (startpos < 0) |
| 1411 | elog(ERROR, "invalid match ending position" ); |
| 1412 | |
| 1413 | if (buf) |
| 1414 | { |
| 1415 | int bufsiz PG_USED_FOR_ASSERTS_ONLY = splitctx->conv_bufsiz; |
| 1416 | int len; |
| 1417 | |
| 1418 | endpos = splitctx->match_locs[splitctx->next_match * 2]; |
| 1419 | if (endpos < startpos) |
| 1420 | elog(ERROR, "invalid match starting position" ); |
| 1421 | len = pg_wchar2mb_with_len(splitctx->wide_str + startpos, |
| 1422 | buf, |
| 1423 | endpos - startpos); |
| 1424 | Assert(len < bufsiz); |
| 1425 | return PointerGetDatum(cstring_to_text_with_len(buf, len)); |
| 1426 | } |
| 1427 | else |
| 1428 | { |
| 1429 | endpos = splitctx->match_locs[splitctx->next_match * 2]; |
| 1430 | if (endpos < startpos) |
| 1431 | elog(ERROR, "invalid match starting position" ); |
| 1432 | return DirectFunctionCall3(text_substr, |
| 1433 | PointerGetDatum(splitctx->orig_str), |
| 1434 | Int32GetDatum(startpos + 1), |
| 1435 | Int32GetDatum(endpos - startpos)); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | /* |
| 1440 | * regexp_fixed_prefix - extract fixed prefix, if any, for a regexp |
| 1441 | * |
| 1442 | * The result is NULL if there is no fixed prefix, else a palloc'd string. |
| 1443 | * If it is an exact match, not just a prefix, *exact is returned as true. |
| 1444 | */ |
| 1445 | char * |
| 1446 | regexp_fixed_prefix(text *text_re, bool case_insensitive, Oid collation, |
| 1447 | bool *exact) |
| 1448 | { |
| 1449 | char *result; |
| 1450 | regex_t *re; |
| 1451 | int cflags; |
| 1452 | int re_result; |
| 1453 | pg_wchar *str; |
| 1454 | size_t slen; |
| 1455 | size_t maxlen; |
| 1456 | char errMsg[100]; |
| 1457 | |
| 1458 | *exact = false; /* default result */ |
| 1459 | |
| 1460 | /* Compile RE */ |
| 1461 | cflags = REG_ADVANCED; |
| 1462 | if (case_insensitive) |
| 1463 | cflags |= REG_ICASE; |
| 1464 | |
| 1465 | re = RE_compile_and_cache(text_re, cflags, collation); |
| 1466 | |
| 1467 | /* Examine it to see if there's a fixed prefix */ |
| 1468 | re_result = pg_regprefix(re, &str, &slen); |
| 1469 | |
| 1470 | switch (re_result) |
| 1471 | { |
| 1472 | case REG_NOMATCH: |
| 1473 | return NULL; |
| 1474 | |
| 1475 | case REG_PREFIX: |
| 1476 | /* continue with wchar conversion */ |
| 1477 | break; |
| 1478 | |
| 1479 | case REG_EXACT: |
| 1480 | *exact = true; |
| 1481 | /* continue with wchar conversion */ |
| 1482 | break; |
| 1483 | |
| 1484 | default: |
| 1485 | /* re failed??? */ |
| 1486 | CHECK_FOR_INTERRUPTS(); |
| 1487 | pg_regerror(re_result, re, errMsg, sizeof(errMsg)); |
| 1488 | ereport(ERROR, |
| 1489 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
| 1490 | errmsg("regular expression failed: %s" , errMsg))); |
| 1491 | break; |
| 1492 | } |
| 1493 | |
| 1494 | /* Convert pg_wchar result back to database encoding */ |
| 1495 | maxlen = pg_database_encoding_max_length() * slen + 1; |
| 1496 | result = (char *) palloc(maxlen); |
| 1497 | slen = pg_wchar2mb_with_len(str, result, slen); |
| 1498 | Assert(slen < maxlen); |
| 1499 | |
| 1500 | free(str); |
| 1501 | |
| 1502 | return result; |
| 1503 | } |
| 1504 | |