1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * plancache.c |
4 | * Plan cache management. |
5 | * |
6 | * The plan cache manager has two principal responsibilities: deciding when |
7 | * to use a generic plan versus a custom (parameter-value-specific) plan, |
8 | * and tracking whether cached plans need to be invalidated because of schema |
9 | * changes in the objects they depend on. |
10 | * |
11 | * The logic for choosing generic or custom plans is in choose_custom_plan, |
12 | * which see for comments. |
13 | * |
14 | * Cache invalidation is driven off sinval events. Any CachedPlanSource |
15 | * that matches the event is marked invalid, as is its generic CachedPlan |
16 | * if it has one. When (and if) the next demand for a cached plan occurs, |
17 | * parse analysis and rewrite is repeated to build a new valid query tree, |
18 | * and then planning is performed as normal. We also force re-analysis and |
19 | * re-planning if the active search_path is different from the previous time |
20 | * or, if RLS is involved, if the user changes or the RLS environment changes. |
21 | * |
22 | * Note that if the sinval was a result of user DDL actions, parse analysis |
23 | * could throw an error, for example if a column referenced by the query is |
24 | * no longer present. Another possibility is for the query's output tupdesc |
25 | * to change (for instance "SELECT *" might expand differently than before). |
26 | * The creator of a cached plan can specify whether it is allowable for the |
27 | * query to change output tupdesc on replan --- if so, it's up to the |
28 | * caller to notice changes and cope with them. |
29 | * |
30 | * Currently, we track exactly the dependencies of plans on relations, |
31 | * user-defined functions, and domains. On relcache invalidation events or |
32 | * pg_proc or pg_type syscache invalidation events, we invalidate just those |
33 | * plans that depend on the particular object being modified. (Note: this |
34 | * scheme assumes that any table modification that requires replanning will |
35 | * generate a relcache inval event.) We also watch for inval events on |
36 | * certain other system catalogs, such as pg_namespace; but for them, our |
37 | * response is just to invalidate all plans. We expect updates on those |
38 | * catalogs to be infrequent enough that more-detailed tracking is not worth |
39 | * the effort. |
40 | * |
41 | * In addition to full-fledged query plans, we provide a facility for |
42 | * detecting invalidations of simple scalar expressions. This is fairly |
43 | * bare-bones; it's the caller's responsibility to build a new expression |
44 | * if the old one gets invalidated. |
45 | * |
46 | * |
47 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
48 | * Portions Copyright (c) 1994, Regents of the University of California |
49 | * |
50 | * IDENTIFICATION |
51 | * src/backend/utils/cache/plancache.c |
52 | * |
53 | *------------------------------------------------------------------------- |
54 | */ |
55 | #include "postgres.h" |
56 | |
57 | #include <limits.h> |
58 | |
59 | #include "access/transam.h" |
60 | #include "catalog/namespace.h" |
61 | #include "executor/executor.h" |
62 | #include "miscadmin.h" |
63 | #include "nodes/nodeFuncs.h" |
64 | #include "optimizer/optimizer.h" |
65 | #include "parser/analyze.h" |
66 | #include "parser/parsetree.h" |
67 | #include "storage/lmgr.h" |
68 | #include "tcop/pquery.h" |
69 | #include "tcop/utility.h" |
70 | #include "utils/inval.h" |
71 | #include "utils/memutils.h" |
72 | #include "utils/resowner_private.h" |
73 | #include "utils/rls.h" |
74 | #include "utils/snapmgr.h" |
75 | #include "utils/syscache.h" |
76 | |
77 | |
78 | /* |
79 | * We must skip "overhead" operations that involve database access when the |
80 | * cached plan's subject statement is a transaction control command. |
81 | */ |
82 | #define IsTransactionStmtPlan(plansource) \ |
83 | ((plansource)->raw_parse_tree && \ |
84 | IsA((plansource)->raw_parse_tree->stmt, TransactionStmt)) |
85 | |
86 | /* |
87 | * This is the head of the backend's list of "saved" CachedPlanSources (i.e., |
88 | * those that are in long-lived storage and are examined for sinval events). |
89 | * We use a dlist instead of separate List cells so that we can guarantee |
90 | * to save a CachedPlanSource without error. |
91 | */ |
92 | static dlist_head saved_plan_list = DLIST_STATIC_INIT(saved_plan_list); |
93 | |
94 | /* |
95 | * This is the head of the backend's list of CachedExpressions. |
96 | */ |
97 | static dlist_head cached_expression_list = DLIST_STATIC_INIT(cached_expression_list); |
98 | |
99 | static void ReleaseGenericPlan(CachedPlanSource *plansource); |
100 | static List *RevalidateCachedQuery(CachedPlanSource *plansource, |
101 | QueryEnvironment *queryEnv); |
102 | static bool CheckCachedPlan(CachedPlanSource *plansource); |
103 | static CachedPlan *BuildCachedPlan(CachedPlanSource *plansource, List *qlist, |
104 | ParamListInfo boundParams, QueryEnvironment *queryEnv); |
105 | static bool choose_custom_plan(CachedPlanSource *plansource, |
106 | ParamListInfo boundParams); |
107 | static double cached_plan_cost(CachedPlan *plan, bool include_planner); |
108 | static Query *QueryListGetPrimaryStmt(List *stmts); |
109 | static void AcquireExecutorLocks(List *stmt_list, bool acquire); |
110 | static void AcquirePlannerLocks(List *stmt_list, bool acquire); |
111 | static void ScanQueryForLocks(Query *parsetree, bool acquire); |
112 | static bool ScanQueryWalker(Node *node, bool *acquire); |
113 | static TupleDesc PlanCacheComputeResultDesc(List *stmt_list); |
114 | static void PlanCacheRelCallback(Datum arg, Oid relid); |
115 | static void PlanCacheObjectCallback(Datum arg, int cacheid, uint32 hashvalue); |
116 | static void PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue); |
117 | |
118 | /* GUC parameter */ |
119 | int plan_cache_mode; |
120 | |
121 | /* |
122 | * InitPlanCache: initialize module during InitPostgres. |
123 | * |
124 | * All we need to do is hook into inval.c's callback lists. |
125 | */ |
126 | void |
127 | InitPlanCache(void) |
128 | { |
129 | CacheRegisterRelcacheCallback(PlanCacheRelCallback, (Datum) 0); |
130 | CacheRegisterSyscacheCallback(PROCOID, PlanCacheObjectCallback, (Datum) 0); |
131 | CacheRegisterSyscacheCallback(TYPEOID, PlanCacheObjectCallback, (Datum) 0); |
132 | CacheRegisterSyscacheCallback(NAMESPACEOID, PlanCacheSysCallback, (Datum) 0); |
133 | CacheRegisterSyscacheCallback(OPEROID, PlanCacheSysCallback, (Datum) 0); |
134 | CacheRegisterSyscacheCallback(AMOPOPID, PlanCacheSysCallback, (Datum) 0); |
135 | CacheRegisterSyscacheCallback(FOREIGNSERVEROID, PlanCacheSysCallback, (Datum) 0); |
136 | CacheRegisterSyscacheCallback(FOREIGNDATAWRAPPEROID, PlanCacheSysCallback, (Datum) 0); |
137 | } |
138 | |
139 | /* |
140 | * CreateCachedPlan: initially create a plan cache entry. |
141 | * |
142 | * Creation of a cached plan is divided into two steps, CreateCachedPlan and |
143 | * CompleteCachedPlan. CreateCachedPlan should be called after running the |
144 | * query through raw_parser, but before doing parse analysis and rewrite; |
145 | * CompleteCachedPlan is called after that. The reason for this arrangement |
146 | * is that it can save one round of copying of the raw parse tree, since |
147 | * the parser will normally scribble on the raw parse tree. Callers would |
148 | * otherwise need to make an extra copy of the parse tree to ensure they |
149 | * still had a clean copy to present at plan cache creation time. |
150 | * |
151 | * All arguments presented to CreateCachedPlan are copied into a memory |
152 | * context created as a child of the call-time CurrentMemoryContext, which |
153 | * should be a reasonably short-lived working context that will go away in |
154 | * event of an error. This ensures that the cached plan data structure will |
155 | * likewise disappear if an error occurs before we have fully constructed it. |
156 | * Once constructed, the cached plan can be made longer-lived, if needed, |
157 | * by calling SaveCachedPlan. |
158 | * |
159 | * raw_parse_tree: output of raw_parser(), or NULL if empty query |
160 | * query_string: original query text |
161 | * commandTag: compile-time-constant tag for query, or NULL if empty query |
162 | */ |
163 | CachedPlanSource * |
164 | CreateCachedPlan(RawStmt *raw_parse_tree, |
165 | const char *query_string, |
166 | const char *commandTag) |
167 | { |
168 | CachedPlanSource *plansource; |
169 | MemoryContext source_context; |
170 | MemoryContext oldcxt; |
171 | |
172 | Assert(query_string != NULL); /* required as of 8.4 */ |
173 | |
174 | /* |
175 | * Make a dedicated memory context for the CachedPlanSource and its |
176 | * permanent subsidiary data. It's probably not going to be large, but |
177 | * just in case, allow it to grow large. Initially it's a child of the |
178 | * caller's context (which we assume to be transient), so that it will be |
179 | * cleaned up on error. |
180 | */ |
181 | source_context = AllocSetContextCreate(CurrentMemoryContext, |
182 | "CachedPlanSource" , |
183 | ALLOCSET_START_SMALL_SIZES); |
184 | |
185 | /* |
186 | * Create and fill the CachedPlanSource struct within the new context. |
187 | * Most fields are just left empty for the moment. |
188 | */ |
189 | oldcxt = MemoryContextSwitchTo(source_context); |
190 | |
191 | plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
192 | plansource->magic = CACHEDPLANSOURCE_MAGIC; |
193 | plansource->raw_parse_tree = copyObject(raw_parse_tree); |
194 | plansource->query_string = pstrdup(query_string); |
195 | MemoryContextSetIdentifier(source_context, plansource->query_string); |
196 | plansource->commandTag = commandTag; |
197 | plansource->param_types = NULL; |
198 | plansource->num_params = 0; |
199 | plansource->parserSetup = NULL; |
200 | plansource->parserSetupArg = NULL; |
201 | plansource->cursor_options = 0; |
202 | plansource->fixed_result = false; |
203 | plansource->resultDesc = NULL; |
204 | plansource->context = source_context; |
205 | plansource->query_list = NIL; |
206 | plansource->relationOids = NIL; |
207 | plansource->invalItems = NIL; |
208 | plansource->search_path = NULL; |
209 | plansource->query_context = NULL; |
210 | plansource->rewriteRoleId = InvalidOid; |
211 | plansource->rewriteRowSecurity = false; |
212 | plansource->dependsOnRLS = false; |
213 | plansource->gplan = NULL; |
214 | plansource->is_oneshot = false; |
215 | plansource->is_complete = false; |
216 | plansource->is_saved = false; |
217 | plansource->is_valid = false; |
218 | plansource->generation = 0; |
219 | plansource->generic_cost = -1; |
220 | plansource->total_custom_cost = 0; |
221 | plansource->num_custom_plans = 0; |
222 | |
223 | MemoryContextSwitchTo(oldcxt); |
224 | |
225 | return plansource; |
226 | } |
227 | |
228 | /* |
229 | * CreateOneShotCachedPlan: initially create a one-shot plan cache entry. |
230 | * |
231 | * This variant of CreateCachedPlan creates a plan cache entry that is meant |
232 | * to be used only once. No data copying occurs: all data structures remain |
233 | * in the caller's memory context (which typically should get cleared after |
234 | * completing execution). The CachedPlanSource struct itself is also created |
235 | * in that context. |
236 | * |
237 | * A one-shot plan cannot be saved or copied, since we make no effort to |
238 | * preserve the raw parse tree unmodified. There is also no support for |
239 | * invalidation, so plan use must be completed in the current transaction, |
240 | * and DDL that might invalidate the querytree_list must be avoided as well. |
241 | * |
242 | * raw_parse_tree: output of raw_parser(), or NULL if empty query |
243 | * query_string: original query text |
244 | * commandTag: compile-time-constant tag for query, or NULL if empty query |
245 | */ |
246 | CachedPlanSource * |
247 | CreateOneShotCachedPlan(RawStmt *raw_parse_tree, |
248 | const char *query_string, |
249 | const char *commandTag) |
250 | { |
251 | CachedPlanSource *plansource; |
252 | |
253 | Assert(query_string != NULL); /* required as of 8.4 */ |
254 | |
255 | /* |
256 | * Create and fill the CachedPlanSource struct within the caller's memory |
257 | * context. Most fields are just left empty for the moment. |
258 | */ |
259 | plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
260 | plansource->magic = CACHEDPLANSOURCE_MAGIC; |
261 | plansource->raw_parse_tree = raw_parse_tree; |
262 | plansource->query_string = query_string; |
263 | plansource->commandTag = commandTag; |
264 | plansource->param_types = NULL; |
265 | plansource->num_params = 0; |
266 | plansource->parserSetup = NULL; |
267 | plansource->parserSetupArg = NULL; |
268 | plansource->cursor_options = 0; |
269 | plansource->fixed_result = false; |
270 | plansource->resultDesc = NULL; |
271 | plansource->context = CurrentMemoryContext; |
272 | plansource->query_list = NIL; |
273 | plansource->relationOids = NIL; |
274 | plansource->invalItems = NIL; |
275 | plansource->search_path = NULL; |
276 | plansource->query_context = NULL; |
277 | plansource->rewriteRoleId = InvalidOid; |
278 | plansource->rewriteRowSecurity = false; |
279 | plansource->dependsOnRLS = false; |
280 | plansource->gplan = NULL; |
281 | plansource->is_oneshot = true; |
282 | plansource->is_complete = false; |
283 | plansource->is_saved = false; |
284 | plansource->is_valid = false; |
285 | plansource->generation = 0; |
286 | plansource->generic_cost = -1; |
287 | plansource->total_custom_cost = 0; |
288 | plansource->num_custom_plans = 0; |
289 | |
290 | return plansource; |
291 | } |
292 | |
293 | /* |
294 | * CompleteCachedPlan: second step of creating a plan cache entry. |
295 | * |
296 | * Pass in the analyzed-and-rewritten form of the query, as well as the |
297 | * required subsidiary data about parameters and such. All passed values will |
298 | * be copied into the CachedPlanSource's memory, except as specified below. |
299 | * After this is called, GetCachedPlan can be called to obtain a plan, and |
300 | * optionally the CachedPlanSource can be saved using SaveCachedPlan. |
301 | * |
302 | * If querytree_context is not NULL, the querytree_list must be stored in that |
303 | * context (but the other parameters need not be). The querytree_list is not |
304 | * copied, rather the given context is kept as the initial query_context of |
305 | * the CachedPlanSource. (It should have been created as a child of the |
306 | * caller's working memory context, but it will now be reparented to belong |
307 | * to the CachedPlanSource.) The querytree_context is normally the context in |
308 | * which the caller did raw parsing and parse analysis. This approach saves |
309 | * one tree copying step compared to passing NULL, but leaves lots of extra |
310 | * cruft in the query_context, namely whatever extraneous stuff parse analysis |
311 | * created, as well as whatever went unused from the raw parse tree. Using |
312 | * this option is a space-for-time tradeoff that is appropriate if the |
313 | * CachedPlanSource is not expected to survive long. |
314 | * |
315 | * plancache.c cannot know how to copy the data referenced by parserSetupArg, |
316 | * and it would often be inappropriate to do so anyway. When using that |
317 | * option, it is caller's responsibility that the referenced data remains |
318 | * valid for as long as the CachedPlanSource exists. |
319 | * |
320 | * If the CachedPlanSource is a "oneshot" plan, then no querytree copying |
321 | * occurs at all, and querytree_context is ignored; it is caller's |
322 | * responsibility that the passed querytree_list is sufficiently long-lived. |
323 | * |
324 | * plansource: structure returned by CreateCachedPlan |
325 | * querytree_list: analyzed-and-rewritten form of query (list of Query nodes) |
326 | * querytree_context: memory context containing querytree_list, |
327 | * or NULL to copy querytree_list into a fresh context |
328 | * param_types: array of fixed parameter type OIDs, or NULL if none |
329 | * num_params: number of fixed parameters |
330 | * parserSetup: alternate method for handling query parameters |
331 | * parserSetupArg: data to pass to parserSetup |
332 | * cursor_options: options bitmask to pass to planner |
333 | * fixed_result: true to disallow future changes in query's result tupdesc |
334 | */ |
335 | void |
336 | CompleteCachedPlan(CachedPlanSource *plansource, |
337 | List *querytree_list, |
338 | MemoryContext querytree_context, |
339 | Oid *param_types, |
340 | int num_params, |
341 | ParserSetupHook parserSetup, |
342 | void *parserSetupArg, |
343 | int cursor_options, |
344 | bool fixed_result) |
345 | { |
346 | MemoryContext source_context = plansource->context; |
347 | MemoryContext oldcxt = CurrentMemoryContext; |
348 | |
349 | /* Assert caller is doing things in a sane order */ |
350 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
351 | Assert(!plansource->is_complete); |
352 | |
353 | /* |
354 | * If caller supplied a querytree_context, reparent it underneath the |
355 | * CachedPlanSource's context; otherwise, create a suitable context and |
356 | * copy the querytree_list into it. But no data copying should be done |
357 | * for one-shot plans; for those, assume the passed querytree_list is |
358 | * sufficiently long-lived. |
359 | */ |
360 | if (plansource->is_oneshot) |
361 | { |
362 | querytree_context = CurrentMemoryContext; |
363 | } |
364 | else if (querytree_context != NULL) |
365 | { |
366 | MemoryContextSetParent(querytree_context, source_context); |
367 | MemoryContextSwitchTo(querytree_context); |
368 | } |
369 | else |
370 | { |
371 | /* Again, it's a good bet the querytree_context can be small */ |
372 | querytree_context = AllocSetContextCreate(source_context, |
373 | "CachedPlanQuery" , |
374 | ALLOCSET_START_SMALL_SIZES); |
375 | MemoryContextSwitchTo(querytree_context); |
376 | querytree_list = copyObject(querytree_list); |
377 | } |
378 | |
379 | plansource->query_context = querytree_context; |
380 | plansource->query_list = querytree_list; |
381 | |
382 | if (!plansource->is_oneshot && !IsTransactionStmtPlan(plansource)) |
383 | { |
384 | /* |
385 | * Use the planner machinery to extract dependencies. Data is saved |
386 | * in query_context. (We assume that not a lot of extra cruft is |
387 | * created by this call.) We can skip this for one-shot plans, and |
388 | * transaction control commands have no such dependencies anyway. |
389 | */ |
390 | extract_query_dependencies((Node *) querytree_list, |
391 | &plansource->relationOids, |
392 | &plansource->invalItems, |
393 | &plansource->dependsOnRLS); |
394 | |
395 | /* Update RLS info as well. */ |
396 | plansource->rewriteRoleId = GetUserId(); |
397 | plansource->rewriteRowSecurity = row_security; |
398 | |
399 | /* |
400 | * Also save the current search_path in the query_context. (This |
401 | * should not generate much extra cruft either, since almost certainly |
402 | * the path is already valid.) Again, we don't really need this for |
403 | * one-shot plans; and we *must* skip this for transaction control |
404 | * commands, because this could result in catalog accesses. |
405 | */ |
406 | plansource->search_path = GetOverrideSearchPath(querytree_context); |
407 | } |
408 | |
409 | /* |
410 | * Save the final parameter types (or other parameter specification data) |
411 | * into the source_context, as well as our other parameters. Also save |
412 | * the result tuple descriptor. |
413 | */ |
414 | MemoryContextSwitchTo(source_context); |
415 | |
416 | if (num_params > 0) |
417 | { |
418 | plansource->param_types = (Oid *) palloc(num_params * sizeof(Oid)); |
419 | memcpy(plansource->param_types, param_types, num_params * sizeof(Oid)); |
420 | } |
421 | else |
422 | plansource->param_types = NULL; |
423 | plansource->num_params = num_params; |
424 | plansource->parserSetup = parserSetup; |
425 | plansource->parserSetupArg = parserSetupArg; |
426 | plansource->cursor_options = cursor_options; |
427 | plansource->fixed_result = fixed_result; |
428 | plansource->resultDesc = PlanCacheComputeResultDesc(querytree_list); |
429 | |
430 | MemoryContextSwitchTo(oldcxt); |
431 | |
432 | plansource->is_complete = true; |
433 | plansource->is_valid = true; |
434 | } |
435 | |
436 | /* |
437 | * SaveCachedPlan: save a cached plan permanently |
438 | * |
439 | * This function moves the cached plan underneath CacheMemoryContext (making |
440 | * it live for the life of the backend, unless explicitly dropped), and adds |
441 | * it to the list of cached plans that are checked for invalidation when an |
442 | * sinval event occurs. |
443 | * |
444 | * This is guaranteed not to throw error, except for the caller-error case |
445 | * of trying to save a one-shot plan. Callers typically depend on that |
446 | * since this is called just before or just after adding a pointer to the |
447 | * CachedPlanSource to some permanent data structure of their own. Up until |
448 | * this is done, a CachedPlanSource is just transient data that will go away |
449 | * automatically on transaction abort. |
450 | */ |
451 | void |
452 | SaveCachedPlan(CachedPlanSource *plansource) |
453 | { |
454 | /* Assert caller is doing things in a sane order */ |
455 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
456 | Assert(plansource->is_complete); |
457 | Assert(!plansource->is_saved); |
458 | |
459 | /* This seems worth a real test, though */ |
460 | if (plansource->is_oneshot) |
461 | elog(ERROR, "cannot save one-shot cached plan" ); |
462 | |
463 | /* |
464 | * In typical use, this function would be called before generating any |
465 | * plans from the CachedPlanSource. If there is a generic plan, moving it |
466 | * into CacheMemoryContext would be pretty risky since it's unclear |
467 | * whether the caller has taken suitable care with making references |
468 | * long-lived. Best thing to do seems to be to discard the plan. |
469 | */ |
470 | ReleaseGenericPlan(plansource); |
471 | |
472 | /* |
473 | * Reparent the source memory context under CacheMemoryContext so that it |
474 | * will live indefinitely. The query_context follows along since it's |
475 | * already a child of the other one. |
476 | */ |
477 | MemoryContextSetParent(plansource->context, CacheMemoryContext); |
478 | |
479 | /* |
480 | * Add the entry to the global list of cached plans. |
481 | */ |
482 | dlist_push_tail(&saved_plan_list, &plansource->node); |
483 | |
484 | plansource->is_saved = true; |
485 | } |
486 | |
487 | /* |
488 | * DropCachedPlan: destroy a cached plan. |
489 | * |
490 | * Actually this only destroys the CachedPlanSource: any referenced CachedPlan |
491 | * is released, but not destroyed until its refcount goes to zero. That |
492 | * handles the situation where DropCachedPlan is called while the plan is |
493 | * still in use. |
494 | */ |
495 | void |
496 | DropCachedPlan(CachedPlanSource *plansource) |
497 | { |
498 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
499 | |
500 | /* If it's been saved, remove it from the list */ |
501 | if (plansource->is_saved) |
502 | { |
503 | dlist_delete(&plansource->node); |
504 | plansource->is_saved = false; |
505 | } |
506 | |
507 | /* Decrement generic CachedPlan's refcount and drop if no longer needed */ |
508 | ReleaseGenericPlan(plansource); |
509 | |
510 | /* Mark it no longer valid */ |
511 | plansource->magic = 0; |
512 | |
513 | /* |
514 | * Remove the CachedPlanSource and all subsidiary data (including the |
515 | * query_context if any). But if it's a one-shot we can't free anything. |
516 | */ |
517 | if (!plansource->is_oneshot) |
518 | MemoryContextDelete(plansource->context); |
519 | } |
520 | |
521 | /* |
522 | * ReleaseGenericPlan: release a CachedPlanSource's generic plan, if any. |
523 | */ |
524 | static void |
525 | ReleaseGenericPlan(CachedPlanSource *plansource) |
526 | { |
527 | /* Be paranoid about the possibility that ReleaseCachedPlan fails */ |
528 | if (plansource->gplan) |
529 | { |
530 | CachedPlan *plan = plansource->gplan; |
531 | |
532 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
533 | plansource->gplan = NULL; |
534 | ReleaseCachedPlan(plan, false); |
535 | } |
536 | } |
537 | |
538 | /* |
539 | * RevalidateCachedQuery: ensure validity of analyzed-and-rewritten query tree. |
540 | * |
541 | * What we do here is re-acquire locks and redo parse analysis if necessary. |
542 | * On return, the query_list is valid and we have sufficient locks to begin |
543 | * planning. |
544 | * |
545 | * If any parse analysis activity is required, the caller's memory context is |
546 | * used for that work. |
547 | * |
548 | * The result value is the transient analyzed-and-rewritten query tree if we |
549 | * had to do re-analysis, and NIL otherwise. (This is returned just to save |
550 | * a tree copying step in a subsequent BuildCachedPlan call.) |
551 | */ |
552 | static List * |
553 | RevalidateCachedQuery(CachedPlanSource *plansource, |
554 | QueryEnvironment *queryEnv) |
555 | { |
556 | bool snapshot_set; |
557 | RawStmt *rawtree; |
558 | List *tlist; /* transient query-tree list */ |
559 | List *qlist; /* permanent query-tree list */ |
560 | TupleDesc resultDesc; |
561 | MemoryContext querytree_context; |
562 | MemoryContext oldcxt; |
563 | |
564 | /* |
565 | * For one-shot plans, we do not support revalidation checking; it's |
566 | * assumed the query is parsed, planned, and executed in one transaction, |
567 | * so that no lock re-acquisition is necessary. Also, there is never any |
568 | * need to revalidate plans for transaction control commands (and we |
569 | * mustn't risk any catalog accesses when handling those). |
570 | */ |
571 | if (plansource->is_oneshot || IsTransactionStmtPlan(plansource)) |
572 | { |
573 | Assert(plansource->is_valid); |
574 | return NIL; |
575 | } |
576 | |
577 | /* |
578 | * If the query is currently valid, we should have a saved search_path --- |
579 | * check to see if that matches the current environment. If not, we want |
580 | * to force replan. |
581 | */ |
582 | if (plansource->is_valid) |
583 | { |
584 | Assert(plansource->search_path != NULL); |
585 | if (!OverrideSearchPathMatchesCurrent(plansource->search_path)) |
586 | { |
587 | /* Invalidate the querytree and generic plan */ |
588 | plansource->is_valid = false; |
589 | if (plansource->gplan) |
590 | plansource->gplan->is_valid = false; |
591 | } |
592 | } |
593 | |
594 | /* |
595 | * If the query rewrite phase had a possible RLS dependency, we must redo |
596 | * it if either the role or the row_security setting has changed. |
597 | */ |
598 | if (plansource->is_valid && plansource->dependsOnRLS && |
599 | (plansource->rewriteRoleId != GetUserId() || |
600 | plansource->rewriteRowSecurity != row_security)) |
601 | plansource->is_valid = false; |
602 | |
603 | /* |
604 | * If the query is currently valid, acquire locks on the referenced |
605 | * objects; then check again. We need to do it this way to cover the race |
606 | * condition that an invalidation message arrives before we get the locks. |
607 | */ |
608 | if (plansource->is_valid) |
609 | { |
610 | AcquirePlannerLocks(plansource->query_list, true); |
611 | |
612 | /* |
613 | * By now, if any invalidation has happened, the inval callback |
614 | * functions will have marked the query invalid. |
615 | */ |
616 | if (plansource->is_valid) |
617 | { |
618 | /* Successfully revalidated and locked the query. */ |
619 | return NIL; |
620 | } |
621 | |
622 | /* Oops, the race case happened. Release useless locks. */ |
623 | AcquirePlannerLocks(plansource->query_list, false); |
624 | } |
625 | |
626 | /* |
627 | * Discard the no-longer-useful query tree. (Note: we don't want to do |
628 | * this any earlier, else we'd not have been able to release locks |
629 | * correctly in the race condition case.) |
630 | */ |
631 | plansource->is_valid = false; |
632 | plansource->query_list = NIL; |
633 | plansource->relationOids = NIL; |
634 | plansource->invalItems = NIL; |
635 | plansource->search_path = NULL; |
636 | |
637 | /* |
638 | * Free the query_context. We don't really expect MemoryContextDelete to |
639 | * fail, but just in case, make sure the CachedPlanSource is left in a |
640 | * reasonably sane state. (The generic plan won't get unlinked yet, but |
641 | * that's acceptable.) |
642 | */ |
643 | if (plansource->query_context) |
644 | { |
645 | MemoryContext qcxt = plansource->query_context; |
646 | |
647 | plansource->query_context = NULL; |
648 | MemoryContextDelete(qcxt); |
649 | } |
650 | |
651 | /* Drop the generic plan reference if any */ |
652 | ReleaseGenericPlan(plansource); |
653 | |
654 | /* |
655 | * Now re-do parse analysis and rewrite. This not incidentally acquires |
656 | * the locks we need to do planning safely. |
657 | */ |
658 | Assert(plansource->is_complete); |
659 | |
660 | /* |
661 | * If a snapshot is already set (the normal case), we can just use that |
662 | * for parsing/planning. But if it isn't, install one. Note: no point in |
663 | * checking whether parse analysis requires a snapshot; utility commands |
664 | * don't have invalidatable plans, so we'd not get here for such a |
665 | * command. |
666 | */ |
667 | snapshot_set = false; |
668 | if (!ActiveSnapshotSet()) |
669 | { |
670 | PushActiveSnapshot(GetTransactionSnapshot()); |
671 | snapshot_set = true; |
672 | } |
673 | |
674 | /* |
675 | * Run parse analysis and rule rewriting. The parser tends to scribble on |
676 | * its input, so we must copy the raw parse tree to prevent corruption of |
677 | * the cache. |
678 | */ |
679 | rawtree = copyObject(plansource->raw_parse_tree); |
680 | if (rawtree == NULL) |
681 | tlist = NIL; |
682 | else if (plansource->parserSetup != NULL) |
683 | tlist = pg_analyze_and_rewrite_params(rawtree, |
684 | plansource->query_string, |
685 | plansource->parserSetup, |
686 | plansource->parserSetupArg, |
687 | queryEnv); |
688 | else |
689 | tlist = pg_analyze_and_rewrite(rawtree, |
690 | plansource->query_string, |
691 | plansource->param_types, |
692 | plansource->num_params, |
693 | queryEnv); |
694 | |
695 | /* Release snapshot if we got one */ |
696 | if (snapshot_set) |
697 | PopActiveSnapshot(); |
698 | |
699 | /* |
700 | * Check or update the result tupdesc. XXX should we use a weaker |
701 | * condition than equalTupleDescs() here? |
702 | * |
703 | * We assume the parameter types didn't change from the first time, so no |
704 | * need to update that. |
705 | */ |
706 | resultDesc = PlanCacheComputeResultDesc(tlist); |
707 | if (resultDesc == NULL && plansource->resultDesc == NULL) |
708 | { |
709 | /* OK, doesn't return tuples */ |
710 | } |
711 | else if (resultDesc == NULL || plansource->resultDesc == NULL || |
712 | !equalTupleDescs(resultDesc, plansource->resultDesc)) |
713 | { |
714 | /* can we give a better error message? */ |
715 | if (plansource->fixed_result) |
716 | ereport(ERROR, |
717 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
718 | errmsg("cached plan must not change result type" ))); |
719 | oldcxt = MemoryContextSwitchTo(plansource->context); |
720 | if (resultDesc) |
721 | resultDesc = CreateTupleDescCopy(resultDesc); |
722 | if (plansource->resultDesc) |
723 | FreeTupleDesc(plansource->resultDesc); |
724 | plansource->resultDesc = resultDesc; |
725 | MemoryContextSwitchTo(oldcxt); |
726 | } |
727 | |
728 | /* |
729 | * Allocate new query_context and copy the completed querytree into it. |
730 | * It's transient until we complete the copying and dependency extraction. |
731 | */ |
732 | querytree_context = AllocSetContextCreate(CurrentMemoryContext, |
733 | "CachedPlanQuery" , |
734 | ALLOCSET_START_SMALL_SIZES); |
735 | oldcxt = MemoryContextSwitchTo(querytree_context); |
736 | |
737 | qlist = copyObject(tlist); |
738 | |
739 | /* |
740 | * Use the planner machinery to extract dependencies. Data is saved in |
741 | * query_context. (We assume that not a lot of extra cruft is created by |
742 | * this call.) |
743 | */ |
744 | extract_query_dependencies((Node *) qlist, |
745 | &plansource->relationOids, |
746 | &plansource->invalItems, |
747 | &plansource->dependsOnRLS); |
748 | |
749 | /* Update RLS info as well. */ |
750 | plansource->rewriteRoleId = GetUserId(); |
751 | plansource->rewriteRowSecurity = row_security; |
752 | |
753 | /* |
754 | * Also save the current search_path in the query_context. (This should |
755 | * not generate much extra cruft either, since almost certainly the path |
756 | * is already valid.) |
757 | */ |
758 | plansource->search_path = GetOverrideSearchPath(querytree_context); |
759 | |
760 | MemoryContextSwitchTo(oldcxt); |
761 | |
762 | /* Now reparent the finished query_context and save the links */ |
763 | MemoryContextSetParent(querytree_context, plansource->context); |
764 | |
765 | plansource->query_context = querytree_context; |
766 | plansource->query_list = qlist; |
767 | |
768 | /* |
769 | * Note: we do not reset generic_cost or total_custom_cost, although we |
770 | * could choose to do so. If the DDL or statistics change that prompted |
771 | * the invalidation meant a significant change in the cost estimates, it |
772 | * would be better to reset those variables and start fresh; but often it |
773 | * doesn't, and we're better retaining our hard-won knowledge about the |
774 | * relative costs. |
775 | */ |
776 | |
777 | plansource->is_valid = true; |
778 | |
779 | /* Return transient copy of querytrees for possible use in planning */ |
780 | return tlist; |
781 | } |
782 | |
783 | /* |
784 | * CheckCachedPlan: see if the CachedPlanSource's generic plan is valid. |
785 | * |
786 | * Caller must have already called RevalidateCachedQuery to verify that the |
787 | * querytree is up to date. |
788 | * |
789 | * On a "true" return, we have acquired the locks needed to run the plan. |
790 | * (We must do this for the "true" result to be race-condition-free.) |
791 | */ |
792 | static bool |
793 | CheckCachedPlan(CachedPlanSource *plansource) |
794 | { |
795 | CachedPlan *plan = plansource->gplan; |
796 | |
797 | /* Assert that caller checked the querytree */ |
798 | Assert(plansource->is_valid); |
799 | |
800 | /* If there's no generic plan, just say "false" */ |
801 | if (!plan) |
802 | return false; |
803 | |
804 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
805 | /* Generic plans are never one-shot */ |
806 | Assert(!plan->is_oneshot); |
807 | |
808 | /* |
809 | * If plan isn't valid for current role, we can't use it. |
810 | */ |
811 | if (plan->is_valid && plan->dependsOnRole && |
812 | plan->planRoleId != GetUserId()) |
813 | plan->is_valid = false; |
814 | |
815 | /* |
816 | * If it appears valid, acquire locks and recheck; this is much the same |
817 | * logic as in RevalidateCachedQuery, but for a plan. |
818 | */ |
819 | if (plan->is_valid) |
820 | { |
821 | /* |
822 | * Plan must have positive refcount because it is referenced by |
823 | * plansource; so no need to fear it disappears under us here. |
824 | */ |
825 | Assert(plan->refcount > 0); |
826 | |
827 | AcquireExecutorLocks(plan->stmt_list, true); |
828 | |
829 | /* |
830 | * If plan was transient, check to see if TransactionXmin has |
831 | * advanced, and if so invalidate it. |
832 | */ |
833 | if (plan->is_valid && |
834 | TransactionIdIsValid(plan->saved_xmin) && |
835 | !TransactionIdEquals(plan->saved_xmin, TransactionXmin)) |
836 | plan->is_valid = false; |
837 | |
838 | /* |
839 | * By now, if any invalidation has happened, the inval callback |
840 | * functions will have marked the plan invalid. |
841 | */ |
842 | if (plan->is_valid) |
843 | { |
844 | /* Successfully revalidated and locked the query. */ |
845 | return true; |
846 | } |
847 | |
848 | /* Oops, the race case happened. Release useless locks. */ |
849 | AcquireExecutorLocks(plan->stmt_list, false); |
850 | } |
851 | |
852 | /* |
853 | * Plan has been invalidated, so unlink it from the parent and release it. |
854 | */ |
855 | ReleaseGenericPlan(plansource); |
856 | |
857 | return false; |
858 | } |
859 | |
860 | /* |
861 | * BuildCachedPlan: construct a new CachedPlan from a CachedPlanSource. |
862 | * |
863 | * qlist should be the result value from a previous RevalidateCachedQuery, |
864 | * or it can be set to NIL if we need to re-copy the plansource's query_list. |
865 | * |
866 | * To build a generic, parameter-value-independent plan, pass NULL for |
867 | * boundParams. To build a custom plan, pass the actual parameter values via |
868 | * boundParams. For best effect, the PARAM_FLAG_CONST flag should be set on |
869 | * each parameter value; otherwise the planner will treat the value as a |
870 | * hint rather than a hard constant. |
871 | * |
872 | * Planning work is done in the caller's memory context. The finished plan |
873 | * is in a child memory context, which typically should get reparented |
874 | * (unless this is a one-shot plan, in which case we don't copy the plan). |
875 | */ |
876 | static CachedPlan * |
877 | BuildCachedPlan(CachedPlanSource *plansource, List *qlist, |
878 | ParamListInfo boundParams, QueryEnvironment *queryEnv) |
879 | { |
880 | CachedPlan *plan; |
881 | List *plist; |
882 | bool snapshot_set; |
883 | bool is_transient; |
884 | MemoryContext plan_context; |
885 | MemoryContext oldcxt = CurrentMemoryContext; |
886 | ListCell *lc; |
887 | |
888 | /* |
889 | * Normally the querytree should be valid already, but if it's not, |
890 | * rebuild it. |
891 | * |
892 | * NOTE: GetCachedPlan should have called RevalidateCachedQuery first, so |
893 | * we ought to be holding sufficient locks to prevent any invalidation. |
894 | * However, if we're building a custom plan after having built and |
895 | * rejected a generic plan, it's possible to reach here with is_valid |
896 | * false due to an invalidation while making the generic plan. In theory |
897 | * the invalidation must be a false positive, perhaps a consequence of an |
898 | * sinval reset event or the CLOBBER_CACHE_ALWAYS debug code. But for |
899 | * safety, let's treat it as real and redo the RevalidateCachedQuery call. |
900 | */ |
901 | if (!plansource->is_valid) |
902 | qlist = RevalidateCachedQuery(plansource, queryEnv); |
903 | |
904 | /* |
905 | * If we don't already have a copy of the querytree list that can be |
906 | * scribbled on by the planner, make one. For a one-shot plan, we assume |
907 | * it's okay to scribble on the original query_list. |
908 | */ |
909 | if (qlist == NIL) |
910 | { |
911 | if (!plansource->is_oneshot) |
912 | qlist = copyObject(plansource->query_list); |
913 | else |
914 | qlist = plansource->query_list; |
915 | } |
916 | |
917 | /* |
918 | * If a snapshot is already set (the normal case), we can just use that |
919 | * for planning. But if it isn't, and we need one, install one. |
920 | */ |
921 | snapshot_set = false; |
922 | if (!ActiveSnapshotSet() && |
923 | plansource->raw_parse_tree && |
924 | analyze_requires_snapshot(plansource->raw_parse_tree)) |
925 | { |
926 | PushActiveSnapshot(GetTransactionSnapshot()); |
927 | snapshot_set = true; |
928 | } |
929 | |
930 | /* |
931 | * Generate the plan. |
932 | */ |
933 | plist = pg_plan_queries(qlist, plansource->cursor_options, boundParams); |
934 | |
935 | /* Release snapshot if we got one */ |
936 | if (snapshot_set) |
937 | PopActiveSnapshot(); |
938 | |
939 | /* |
940 | * Normally we make a dedicated memory context for the CachedPlan and its |
941 | * subsidiary data. (It's probably not going to be large, but just in |
942 | * case, allow it to grow large. It's transient for the moment.) But for |
943 | * a one-shot plan, we just leave it in the caller's memory context. |
944 | */ |
945 | if (!plansource->is_oneshot) |
946 | { |
947 | plan_context = AllocSetContextCreate(CurrentMemoryContext, |
948 | "CachedPlan" , |
949 | ALLOCSET_START_SMALL_SIZES); |
950 | MemoryContextCopyAndSetIdentifier(plan_context, plansource->query_string); |
951 | |
952 | /* |
953 | * Copy plan into the new context. |
954 | */ |
955 | MemoryContextSwitchTo(plan_context); |
956 | |
957 | plist = copyObject(plist); |
958 | } |
959 | else |
960 | plan_context = CurrentMemoryContext; |
961 | |
962 | /* |
963 | * Create and fill the CachedPlan struct within the new context. |
964 | */ |
965 | plan = (CachedPlan *) palloc(sizeof(CachedPlan)); |
966 | plan->magic = CACHEDPLAN_MAGIC; |
967 | plan->stmt_list = plist; |
968 | |
969 | /* |
970 | * CachedPlan is dependent on role either if RLS affected the rewrite |
971 | * phase or if a role dependency was injected during planning. And it's |
972 | * transient if any plan is marked so. |
973 | */ |
974 | plan->planRoleId = GetUserId(); |
975 | plan->dependsOnRole = plansource->dependsOnRLS; |
976 | is_transient = false; |
977 | foreach(lc, plist) |
978 | { |
979 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
980 | |
981 | if (plannedstmt->commandType == CMD_UTILITY) |
982 | continue; /* Ignore utility statements */ |
983 | |
984 | if (plannedstmt->transientPlan) |
985 | is_transient = true; |
986 | if (plannedstmt->dependsOnRole) |
987 | plan->dependsOnRole = true; |
988 | } |
989 | if (is_transient) |
990 | { |
991 | Assert(TransactionIdIsNormal(TransactionXmin)); |
992 | plan->saved_xmin = TransactionXmin; |
993 | } |
994 | else |
995 | plan->saved_xmin = InvalidTransactionId; |
996 | plan->refcount = 0; |
997 | plan->context = plan_context; |
998 | plan->is_oneshot = plansource->is_oneshot; |
999 | plan->is_saved = false; |
1000 | plan->is_valid = true; |
1001 | |
1002 | /* assign generation number to new plan */ |
1003 | plan->generation = ++(plansource->generation); |
1004 | |
1005 | MemoryContextSwitchTo(oldcxt); |
1006 | |
1007 | return plan; |
1008 | } |
1009 | |
1010 | /* |
1011 | * choose_custom_plan: choose whether to use custom or generic plan |
1012 | * |
1013 | * This defines the policy followed by GetCachedPlan. |
1014 | */ |
1015 | static bool |
1016 | choose_custom_plan(CachedPlanSource *plansource, ParamListInfo boundParams) |
1017 | { |
1018 | double avg_custom_cost; |
1019 | |
1020 | /* One-shot plans will always be considered custom */ |
1021 | if (plansource->is_oneshot) |
1022 | return true; |
1023 | |
1024 | /* Otherwise, never any point in a custom plan if there's no parameters */ |
1025 | if (boundParams == NULL) |
1026 | return false; |
1027 | /* ... nor for transaction control statements */ |
1028 | if (IsTransactionStmtPlan(plansource)) |
1029 | return false; |
1030 | |
1031 | /* Let settings force the decision */ |
1032 | if (plan_cache_mode == PLAN_CACHE_MODE_FORCE_GENERIC_PLAN) |
1033 | return false; |
1034 | if (plan_cache_mode == PLAN_CACHE_MODE_FORCE_CUSTOM_PLAN) |
1035 | return true; |
1036 | |
1037 | /* See if caller wants to force the decision */ |
1038 | if (plansource->cursor_options & CURSOR_OPT_GENERIC_PLAN) |
1039 | return false; |
1040 | if (plansource->cursor_options & CURSOR_OPT_CUSTOM_PLAN) |
1041 | return true; |
1042 | |
1043 | /* Generate custom plans until we have done at least 5 (arbitrary) */ |
1044 | if (plansource->num_custom_plans < 5) |
1045 | return true; |
1046 | |
1047 | avg_custom_cost = plansource->total_custom_cost / plansource->num_custom_plans; |
1048 | |
1049 | /* |
1050 | * Prefer generic plan if it's less expensive than the average custom |
1051 | * plan. (Because we include a charge for cost of planning in the |
1052 | * custom-plan costs, this means the generic plan only has to be less |
1053 | * expensive than the execution cost plus replan cost of the custom |
1054 | * plans.) |
1055 | * |
1056 | * Note that if generic_cost is -1 (indicating we've not yet determined |
1057 | * the generic plan cost), we'll always prefer generic at this point. |
1058 | */ |
1059 | if (plansource->generic_cost < avg_custom_cost) |
1060 | return false; |
1061 | |
1062 | return true; |
1063 | } |
1064 | |
1065 | /* |
1066 | * cached_plan_cost: calculate estimated cost of a plan |
1067 | * |
1068 | * If include_planner is true, also include the estimated cost of constructing |
1069 | * the plan. (We must factor that into the cost of using a custom plan, but |
1070 | * we don't count it for a generic plan.) |
1071 | */ |
1072 | static double |
1073 | cached_plan_cost(CachedPlan *plan, bool include_planner) |
1074 | { |
1075 | double result = 0; |
1076 | ListCell *lc; |
1077 | |
1078 | foreach(lc, plan->stmt_list) |
1079 | { |
1080 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
1081 | |
1082 | if (plannedstmt->commandType == CMD_UTILITY) |
1083 | continue; /* Ignore utility statements */ |
1084 | |
1085 | result += plannedstmt->planTree->total_cost; |
1086 | |
1087 | if (include_planner) |
1088 | { |
1089 | /* |
1090 | * Currently we use a very crude estimate of planning effort based |
1091 | * on the number of relations in the finished plan's rangetable. |
1092 | * Join planning effort actually scales much worse than linearly |
1093 | * in the number of relations --- but only until the join collapse |
1094 | * limits kick in. Also, while inheritance child relations surely |
1095 | * add to planning effort, they don't make the join situation |
1096 | * worse. So the actual shape of the planning cost curve versus |
1097 | * number of relations isn't all that obvious. It will take |
1098 | * considerable work to arrive at a less crude estimate, and for |
1099 | * now it's not clear that's worth doing. |
1100 | * |
1101 | * The other big difficulty here is that we don't have any very |
1102 | * good model of how planning cost compares to execution costs. |
1103 | * The current multiplier of 1000 * cpu_operator_cost is probably |
1104 | * on the low side, but we'll try this for awhile before making a |
1105 | * more aggressive correction. |
1106 | * |
1107 | * If we ever do write a more complicated estimator, it should |
1108 | * probably live in src/backend/optimizer/ not here. |
1109 | */ |
1110 | int nrelations = list_length(plannedstmt->rtable); |
1111 | |
1112 | result += 1000.0 * cpu_operator_cost * (nrelations + 1); |
1113 | } |
1114 | } |
1115 | |
1116 | return result; |
1117 | } |
1118 | |
1119 | /* |
1120 | * GetCachedPlan: get a cached plan from a CachedPlanSource. |
1121 | * |
1122 | * This function hides the logic that decides whether to use a generic |
1123 | * plan or a custom plan for the given parameters: the caller does not know |
1124 | * which it will get. |
1125 | * |
1126 | * On return, the plan is valid and we have sufficient locks to begin |
1127 | * execution. |
1128 | * |
1129 | * On return, the refcount of the plan has been incremented; a later |
1130 | * ReleaseCachedPlan() call is expected. The refcount has been reported |
1131 | * to the CurrentResourceOwner if useResOwner is true (note that that must |
1132 | * only be true if it's a "saved" CachedPlanSource). |
1133 | * |
1134 | * Note: if any replanning activity is required, the caller's memory context |
1135 | * is used for that work. |
1136 | */ |
1137 | CachedPlan * |
1138 | GetCachedPlan(CachedPlanSource *plansource, ParamListInfo boundParams, |
1139 | bool useResOwner, QueryEnvironment *queryEnv) |
1140 | { |
1141 | CachedPlan *plan = NULL; |
1142 | List *qlist; |
1143 | bool customplan; |
1144 | |
1145 | /* Assert caller is doing things in a sane order */ |
1146 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1147 | Assert(plansource->is_complete); |
1148 | /* This seems worth a real test, though */ |
1149 | if (useResOwner && !plansource->is_saved) |
1150 | elog(ERROR, "cannot apply ResourceOwner to non-saved cached plan" ); |
1151 | |
1152 | /* Make sure the querytree list is valid and we have parse-time locks */ |
1153 | qlist = RevalidateCachedQuery(plansource, queryEnv); |
1154 | |
1155 | /* Decide whether to use a custom plan */ |
1156 | customplan = choose_custom_plan(plansource, boundParams); |
1157 | |
1158 | if (!customplan) |
1159 | { |
1160 | if (CheckCachedPlan(plansource)) |
1161 | { |
1162 | /* We want a generic plan, and we already have a valid one */ |
1163 | plan = plansource->gplan; |
1164 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
1165 | } |
1166 | else |
1167 | { |
1168 | /* Build a new generic plan */ |
1169 | plan = BuildCachedPlan(plansource, qlist, NULL, queryEnv); |
1170 | /* Just make real sure plansource->gplan is clear */ |
1171 | ReleaseGenericPlan(plansource); |
1172 | /* Link the new generic plan into the plansource */ |
1173 | plansource->gplan = plan; |
1174 | plan->refcount++; |
1175 | /* Immediately reparent into appropriate context */ |
1176 | if (plansource->is_saved) |
1177 | { |
1178 | /* saved plans all live under CacheMemoryContext */ |
1179 | MemoryContextSetParent(plan->context, CacheMemoryContext); |
1180 | plan->is_saved = true; |
1181 | } |
1182 | else |
1183 | { |
1184 | /* otherwise, it should be a sibling of the plansource */ |
1185 | MemoryContextSetParent(plan->context, |
1186 | MemoryContextGetParent(plansource->context)); |
1187 | } |
1188 | /* Update generic_cost whenever we make a new generic plan */ |
1189 | plansource->generic_cost = cached_plan_cost(plan, false); |
1190 | |
1191 | /* |
1192 | * If, based on the now-known value of generic_cost, we'd not have |
1193 | * chosen to use a generic plan, then forget it and make a custom |
1194 | * plan. This is a bit of a wart but is necessary to avoid a |
1195 | * glitch in behavior when the custom plans are consistently big |
1196 | * winners; at some point we'll experiment with a generic plan and |
1197 | * find it's a loser, but we don't want to actually execute that |
1198 | * plan. |
1199 | */ |
1200 | customplan = choose_custom_plan(plansource, boundParams); |
1201 | |
1202 | /* |
1203 | * If we choose to plan again, we need to re-copy the query_list, |
1204 | * since the planner probably scribbled on it. We can force |
1205 | * BuildCachedPlan to do that by passing NIL. |
1206 | */ |
1207 | qlist = NIL; |
1208 | } |
1209 | } |
1210 | |
1211 | if (customplan) |
1212 | { |
1213 | /* Build a custom plan */ |
1214 | plan = BuildCachedPlan(plansource, qlist, boundParams, queryEnv); |
1215 | /* Accumulate total costs of custom plans, but 'ware overflow */ |
1216 | if (plansource->num_custom_plans < INT_MAX) |
1217 | { |
1218 | plansource->total_custom_cost += cached_plan_cost(plan, true); |
1219 | plansource->num_custom_plans++; |
1220 | } |
1221 | } |
1222 | |
1223 | Assert(plan != NULL); |
1224 | |
1225 | /* Flag the plan as in use by caller */ |
1226 | if (useResOwner) |
1227 | ResourceOwnerEnlargePlanCacheRefs(CurrentResourceOwner); |
1228 | plan->refcount++; |
1229 | if (useResOwner) |
1230 | ResourceOwnerRememberPlanCacheRef(CurrentResourceOwner, plan); |
1231 | |
1232 | /* |
1233 | * Saved plans should be under CacheMemoryContext so they will not go away |
1234 | * until their reference count goes to zero. In the generic-plan cases we |
1235 | * already took care of that, but for a custom plan, do it as soon as we |
1236 | * have created a reference-counted link. |
1237 | */ |
1238 | if (customplan && plansource->is_saved) |
1239 | { |
1240 | MemoryContextSetParent(plan->context, CacheMemoryContext); |
1241 | plan->is_saved = true; |
1242 | } |
1243 | |
1244 | return plan; |
1245 | } |
1246 | |
1247 | /* |
1248 | * ReleaseCachedPlan: release active use of a cached plan. |
1249 | * |
1250 | * This decrements the reference count, and frees the plan if the count |
1251 | * has thereby gone to zero. If useResOwner is true, it is assumed that |
1252 | * the reference count is managed by the CurrentResourceOwner. |
1253 | * |
1254 | * Note: useResOwner = false is used for releasing references that are in |
1255 | * persistent data structures, such as the parent CachedPlanSource or a |
1256 | * Portal. Transient references should be protected by a resource owner. |
1257 | */ |
1258 | void |
1259 | ReleaseCachedPlan(CachedPlan *plan, bool useResOwner) |
1260 | { |
1261 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
1262 | if (useResOwner) |
1263 | { |
1264 | Assert(plan->is_saved); |
1265 | ResourceOwnerForgetPlanCacheRef(CurrentResourceOwner, plan); |
1266 | } |
1267 | Assert(plan->refcount > 0); |
1268 | plan->refcount--; |
1269 | if (plan->refcount == 0) |
1270 | { |
1271 | /* Mark it no longer valid */ |
1272 | plan->magic = 0; |
1273 | |
1274 | /* One-shot plans do not own their context, so we can't free them */ |
1275 | if (!plan->is_oneshot) |
1276 | MemoryContextDelete(plan->context); |
1277 | } |
1278 | } |
1279 | |
1280 | /* |
1281 | * CachedPlanSetParentContext: move a CachedPlanSource to a new memory context |
1282 | * |
1283 | * This can only be applied to unsaved plans; once saved, a plan always |
1284 | * lives underneath CacheMemoryContext. |
1285 | */ |
1286 | void |
1287 | CachedPlanSetParentContext(CachedPlanSource *plansource, |
1288 | MemoryContext newcontext) |
1289 | { |
1290 | /* Assert caller is doing things in a sane order */ |
1291 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1292 | Assert(plansource->is_complete); |
1293 | |
1294 | /* These seem worth real tests, though */ |
1295 | if (plansource->is_saved) |
1296 | elog(ERROR, "cannot move a saved cached plan to another context" ); |
1297 | if (plansource->is_oneshot) |
1298 | elog(ERROR, "cannot move a one-shot cached plan to another context" ); |
1299 | |
1300 | /* OK, let the caller keep the plan where he wishes */ |
1301 | MemoryContextSetParent(plansource->context, newcontext); |
1302 | |
1303 | /* |
1304 | * The query_context needs no special handling, since it's a child of |
1305 | * plansource->context. But if there's a generic plan, it should be |
1306 | * maintained as a sibling of plansource->context. |
1307 | */ |
1308 | if (plansource->gplan) |
1309 | { |
1310 | Assert(plansource->gplan->magic == CACHEDPLAN_MAGIC); |
1311 | MemoryContextSetParent(plansource->gplan->context, newcontext); |
1312 | } |
1313 | } |
1314 | |
1315 | /* |
1316 | * CopyCachedPlan: make a copy of a CachedPlanSource |
1317 | * |
1318 | * This is a convenience routine that does the equivalent of |
1319 | * CreateCachedPlan + CompleteCachedPlan, using the data stored in the |
1320 | * input CachedPlanSource. The result is therefore "unsaved" (regardless |
1321 | * of the state of the source), and we don't copy any generic plan either. |
1322 | * The result will be currently valid, or not, the same as the source. |
1323 | */ |
1324 | CachedPlanSource * |
1325 | CopyCachedPlan(CachedPlanSource *plansource) |
1326 | { |
1327 | CachedPlanSource *newsource; |
1328 | MemoryContext source_context; |
1329 | MemoryContext querytree_context; |
1330 | MemoryContext oldcxt; |
1331 | |
1332 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1333 | Assert(plansource->is_complete); |
1334 | |
1335 | /* |
1336 | * One-shot plans can't be copied, because we haven't taken care that |
1337 | * parsing/planning didn't scribble on the raw parse tree or querytrees. |
1338 | */ |
1339 | if (plansource->is_oneshot) |
1340 | elog(ERROR, "cannot copy a one-shot cached plan" ); |
1341 | |
1342 | source_context = AllocSetContextCreate(CurrentMemoryContext, |
1343 | "CachedPlanSource" , |
1344 | ALLOCSET_START_SMALL_SIZES); |
1345 | |
1346 | oldcxt = MemoryContextSwitchTo(source_context); |
1347 | |
1348 | newsource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
1349 | newsource->magic = CACHEDPLANSOURCE_MAGIC; |
1350 | newsource->raw_parse_tree = copyObject(plansource->raw_parse_tree); |
1351 | newsource->query_string = pstrdup(plansource->query_string); |
1352 | MemoryContextSetIdentifier(source_context, newsource->query_string); |
1353 | newsource->commandTag = plansource->commandTag; |
1354 | if (plansource->num_params > 0) |
1355 | { |
1356 | newsource->param_types = (Oid *) |
1357 | palloc(plansource->num_params * sizeof(Oid)); |
1358 | memcpy(newsource->param_types, plansource->param_types, |
1359 | plansource->num_params * sizeof(Oid)); |
1360 | } |
1361 | else |
1362 | newsource->param_types = NULL; |
1363 | newsource->num_params = plansource->num_params; |
1364 | newsource->parserSetup = plansource->parserSetup; |
1365 | newsource->parserSetupArg = plansource->parserSetupArg; |
1366 | newsource->cursor_options = plansource->cursor_options; |
1367 | newsource->fixed_result = plansource->fixed_result; |
1368 | if (plansource->resultDesc) |
1369 | newsource->resultDesc = CreateTupleDescCopy(plansource->resultDesc); |
1370 | else |
1371 | newsource->resultDesc = NULL; |
1372 | newsource->context = source_context; |
1373 | |
1374 | querytree_context = AllocSetContextCreate(source_context, |
1375 | "CachedPlanQuery" , |
1376 | ALLOCSET_START_SMALL_SIZES); |
1377 | MemoryContextSwitchTo(querytree_context); |
1378 | newsource->query_list = copyObject(plansource->query_list); |
1379 | newsource->relationOids = copyObject(plansource->relationOids); |
1380 | newsource->invalItems = copyObject(plansource->invalItems); |
1381 | if (plansource->search_path) |
1382 | newsource->search_path = CopyOverrideSearchPath(plansource->search_path); |
1383 | newsource->query_context = querytree_context; |
1384 | newsource->rewriteRoleId = plansource->rewriteRoleId; |
1385 | newsource->rewriteRowSecurity = plansource->rewriteRowSecurity; |
1386 | newsource->dependsOnRLS = plansource->dependsOnRLS; |
1387 | |
1388 | newsource->gplan = NULL; |
1389 | |
1390 | newsource->is_oneshot = false; |
1391 | newsource->is_complete = true; |
1392 | newsource->is_saved = false; |
1393 | newsource->is_valid = plansource->is_valid; |
1394 | newsource->generation = plansource->generation; |
1395 | |
1396 | /* We may as well copy any acquired cost knowledge */ |
1397 | newsource->generic_cost = plansource->generic_cost; |
1398 | newsource->total_custom_cost = plansource->total_custom_cost; |
1399 | newsource->num_custom_plans = plansource->num_custom_plans; |
1400 | |
1401 | MemoryContextSwitchTo(oldcxt); |
1402 | |
1403 | return newsource; |
1404 | } |
1405 | |
1406 | /* |
1407 | * CachedPlanIsValid: test whether the rewritten querytree within a |
1408 | * CachedPlanSource is currently valid (that is, not marked as being in need |
1409 | * of revalidation). |
1410 | * |
1411 | * This result is only trustworthy (ie, free from race conditions) if |
1412 | * the caller has acquired locks on all the relations used in the plan. |
1413 | */ |
1414 | bool |
1415 | CachedPlanIsValid(CachedPlanSource *plansource) |
1416 | { |
1417 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1418 | return plansource->is_valid; |
1419 | } |
1420 | |
1421 | /* |
1422 | * CachedPlanGetTargetList: return tlist, if any, describing plan's output |
1423 | * |
1424 | * The result is guaranteed up-to-date. However, it is local storage |
1425 | * within the cached plan, and may disappear next time the plan is updated. |
1426 | */ |
1427 | List * |
1428 | CachedPlanGetTargetList(CachedPlanSource *plansource, |
1429 | QueryEnvironment *queryEnv) |
1430 | { |
1431 | Query *pstmt; |
1432 | |
1433 | /* Assert caller is doing things in a sane order */ |
1434 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1435 | Assert(plansource->is_complete); |
1436 | |
1437 | /* |
1438 | * No work needed if statement doesn't return tuples (we assume this |
1439 | * feature cannot be changed by an invalidation) |
1440 | */ |
1441 | if (plansource->resultDesc == NULL) |
1442 | return NIL; |
1443 | |
1444 | /* Make sure the querytree list is valid and we have parse-time locks */ |
1445 | RevalidateCachedQuery(plansource, queryEnv); |
1446 | |
1447 | /* Get the primary statement and find out what it returns */ |
1448 | pstmt = QueryListGetPrimaryStmt(plansource->query_list); |
1449 | |
1450 | return FetchStatementTargetList((Node *) pstmt); |
1451 | } |
1452 | |
1453 | /* |
1454 | * GetCachedExpression: construct a CachedExpression for an expression. |
1455 | * |
1456 | * This performs the same transformations on the expression as |
1457 | * expression_planner(), ie, convert an expression as emitted by parse |
1458 | * analysis to be ready to pass to the executor. |
1459 | * |
1460 | * The result is stashed in a private, long-lived memory context. |
1461 | * (Note that this might leak a good deal of memory in the caller's |
1462 | * context before that.) The passed-in expr tree is not modified. |
1463 | */ |
1464 | CachedExpression * |
1465 | GetCachedExpression(Node *expr) |
1466 | { |
1467 | CachedExpression *cexpr; |
1468 | List *relationOids; |
1469 | List *invalItems; |
1470 | MemoryContext cexpr_context; |
1471 | MemoryContext oldcxt; |
1472 | |
1473 | /* |
1474 | * Pass the expression through the planner, and collect dependencies. |
1475 | * Everything built here is leaked in the caller's context; that's |
1476 | * intentional to minimize the size of the permanent data structure. |
1477 | */ |
1478 | expr = (Node *) expression_planner_with_deps((Expr *) expr, |
1479 | &relationOids, |
1480 | &invalItems); |
1481 | |
1482 | /* |
1483 | * Make a private memory context, and copy what we need into that. To |
1484 | * avoid leaking a long-lived context if we fail while copying data, we |
1485 | * initially make the context under the caller's context. |
1486 | */ |
1487 | cexpr_context = AllocSetContextCreate(CurrentMemoryContext, |
1488 | "CachedExpression" , |
1489 | ALLOCSET_SMALL_SIZES); |
1490 | |
1491 | oldcxt = MemoryContextSwitchTo(cexpr_context); |
1492 | |
1493 | cexpr = (CachedExpression *) palloc(sizeof(CachedExpression)); |
1494 | cexpr->magic = CACHEDEXPR_MAGIC; |
1495 | cexpr->expr = copyObject(expr); |
1496 | cexpr->is_valid = true; |
1497 | cexpr->relationOids = copyObject(relationOids); |
1498 | cexpr->invalItems = copyObject(invalItems); |
1499 | cexpr->context = cexpr_context; |
1500 | |
1501 | MemoryContextSwitchTo(oldcxt); |
1502 | |
1503 | /* |
1504 | * Reparent the expr's memory context under CacheMemoryContext so that it |
1505 | * will live indefinitely. |
1506 | */ |
1507 | MemoryContextSetParent(cexpr_context, CacheMemoryContext); |
1508 | |
1509 | /* |
1510 | * Add the entry to the global list of cached expressions. |
1511 | */ |
1512 | dlist_push_tail(&cached_expression_list, &cexpr->node); |
1513 | |
1514 | return cexpr; |
1515 | } |
1516 | |
1517 | /* |
1518 | * FreeCachedExpression |
1519 | * Delete a CachedExpression. |
1520 | */ |
1521 | void |
1522 | FreeCachedExpression(CachedExpression *cexpr) |
1523 | { |
1524 | /* Sanity check */ |
1525 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
1526 | /* Unlink from global list */ |
1527 | dlist_delete(&cexpr->node); |
1528 | /* Free all storage associated with CachedExpression */ |
1529 | MemoryContextDelete(cexpr->context); |
1530 | } |
1531 | |
1532 | /* |
1533 | * QueryListGetPrimaryStmt |
1534 | * Get the "primary" stmt within a list, ie, the one marked canSetTag. |
1535 | * |
1536 | * Returns NULL if no such stmt. If multiple queries within the list are |
1537 | * marked canSetTag, returns the first one. Neither of these cases should |
1538 | * occur in present usages of this function. |
1539 | */ |
1540 | static Query * |
1541 | QueryListGetPrimaryStmt(List *stmts) |
1542 | { |
1543 | ListCell *lc; |
1544 | |
1545 | foreach(lc, stmts) |
1546 | { |
1547 | Query *stmt = lfirst_node(Query, lc); |
1548 | |
1549 | if (stmt->canSetTag) |
1550 | return stmt; |
1551 | } |
1552 | return NULL; |
1553 | } |
1554 | |
1555 | /* |
1556 | * AcquireExecutorLocks: acquire locks needed for execution of a cached plan; |
1557 | * or release them if acquire is false. |
1558 | */ |
1559 | static void |
1560 | AcquireExecutorLocks(List *stmt_list, bool acquire) |
1561 | { |
1562 | ListCell *lc1; |
1563 | |
1564 | foreach(lc1, stmt_list) |
1565 | { |
1566 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc1); |
1567 | ListCell *lc2; |
1568 | |
1569 | if (plannedstmt->commandType == CMD_UTILITY) |
1570 | { |
1571 | /* |
1572 | * Ignore utility statements, except those (such as EXPLAIN) that |
1573 | * contain a parsed-but-not-planned query. Note: it's okay to use |
1574 | * ScanQueryForLocks, even though the query hasn't been through |
1575 | * rule rewriting, because rewriting doesn't change the query |
1576 | * representation. |
1577 | */ |
1578 | Query *query = UtilityContainsQuery(plannedstmt->utilityStmt); |
1579 | |
1580 | if (query) |
1581 | ScanQueryForLocks(query, acquire); |
1582 | continue; |
1583 | } |
1584 | |
1585 | foreach(lc2, plannedstmt->rtable) |
1586 | { |
1587 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2); |
1588 | |
1589 | if (rte->rtekind != RTE_RELATION) |
1590 | continue; |
1591 | |
1592 | /* |
1593 | * Acquire the appropriate type of lock on each relation OID. Note |
1594 | * that we don't actually try to open the rel, and hence will not |
1595 | * fail if it's been dropped entirely --- we'll just transiently |
1596 | * acquire a non-conflicting lock. |
1597 | */ |
1598 | if (acquire) |
1599 | LockRelationOid(rte->relid, rte->rellockmode); |
1600 | else |
1601 | UnlockRelationOid(rte->relid, rte->rellockmode); |
1602 | } |
1603 | } |
1604 | } |
1605 | |
1606 | /* |
1607 | * AcquirePlannerLocks: acquire locks needed for planning of a querytree list; |
1608 | * or release them if acquire is false. |
1609 | * |
1610 | * Note that we don't actually try to open the relations, and hence will not |
1611 | * fail if one has been dropped entirely --- we'll just transiently acquire |
1612 | * a non-conflicting lock. |
1613 | */ |
1614 | static void |
1615 | AcquirePlannerLocks(List *stmt_list, bool acquire) |
1616 | { |
1617 | ListCell *lc; |
1618 | |
1619 | foreach(lc, stmt_list) |
1620 | { |
1621 | Query *query = lfirst_node(Query, lc); |
1622 | |
1623 | if (query->commandType == CMD_UTILITY) |
1624 | { |
1625 | /* Ignore utility statements, unless they contain a Query */ |
1626 | query = UtilityContainsQuery(query->utilityStmt); |
1627 | if (query) |
1628 | ScanQueryForLocks(query, acquire); |
1629 | continue; |
1630 | } |
1631 | |
1632 | ScanQueryForLocks(query, acquire); |
1633 | } |
1634 | } |
1635 | |
1636 | /* |
1637 | * ScanQueryForLocks: recursively scan one Query for AcquirePlannerLocks. |
1638 | */ |
1639 | static void |
1640 | ScanQueryForLocks(Query *parsetree, bool acquire) |
1641 | { |
1642 | ListCell *lc; |
1643 | |
1644 | /* Shouldn't get called on utility commands */ |
1645 | Assert(parsetree->commandType != CMD_UTILITY); |
1646 | |
1647 | /* |
1648 | * First, process RTEs of the current query level. |
1649 | */ |
1650 | foreach(lc, parsetree->rtable) |
1651 | { |
1652 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
1653 | |
1654 | switch (rte->rtekind) |
1655 | { |
1656 | case RTE_RELATION: |
1657 | /* Acquire or release the appropriate type of lock */ |
1658 | if (acquire) |
1659 | LockRelationOid(rte->relid, rte->rellockmode); |
1660 | else |
1661 | UnlockRelationOid(rte->relid, rte->rellockmode); |
1662 | break; |
1663 | |
1664 | case RTE_SUBQUERY: |
1665 | /* Recurse into subquery-in-FROM */ |
1666 | ScanQueryForLocks(rte->subquery, acquire); |
1667 | break; |
1668 | |
1669 | default: |
1670 | /* ignore other types of RTEs */ |
1671 | break; |
1672 | } |
1673 | } |
1674 | |
1675 | /* Recurse into subquery-in-WITH */ |
1676 | foreach(lc, parsetree->cteList) |
1677 | { |
1678 | CommonTableExpr *cte = lfirst_node(CommonTableExpr, lc); |
1679 | |
1680 | ScanQueryForLocks(castNode(Query, cte->ctequery), acquire); |
1681 | } |
1682 | |
1683 | /* |
1684 | * Recurse into sublink subqueries, too. But we already did the ones in |
1685 | * the rtable and cteList. |
1686 | */ |
1687 | if (parsetree->hasSubLinks) |
1688 | { |
1689 | query_tree_walker(parsetree, ScanQueryWalker, |
1690 | (void *) &acquire, |
1691 | QTW_IGNORE_RC_SUBQUERIES); |
1692 | } |
1693 | } |
1694 | |
1695 | /* |
1696 | * Walker to find sublink subqueries for ScanQueryForLocks |
1697 | */ |
1698 | static bool |
1699 | ScanQueryWalker(Node *node, bool *acquire) |
1700 | { |
1701 | if (node == NULL) |
1702 | return false; |
1703 | if (IsA(node, SubLink)) |
1704 | { |
1705 | SubLink *sub = (SubLink *) node; |
1706 | |
1707 | /* Do what we came for */ |
1708 | ScanQueryForLocks(castNode(Query, sub->subselect), *acquire); |
1709 | /* Fall through to process lefthand args of SubLink */ |
1710 | } |
1711 | |
1712 | /* |
1713 | * Do NOT recurse into Query nodes, because ScanQueryForLocks already |
1714 | * processed subselects of subselects for us. |
1715 | */ |
1716 | return expression_tree_walker(node, ScanQueryWalker, |
1717 | (void *) acquire); |
1718 | } |
1719 | |
1720 | /* |
1721 | * PlanCacheComputeResultDesc: given a list of analyzed-and-rewritten Queries, |
1722 | * determine the result tupledesc it will produce. Returns NULL if the |
1723 | * execution will not return tuples. |
1724 | * |
1725 | * Note: the result is created or copied into current memory context. |
1726 | */ |
1727 | static TupleDesc |
1728 | PlanCacheComputeResultDesc(List *stmt_list) |
1729 | { |
1730 | Query *query; |
1731 | |
1732 | switch (ChoosePortalStrategy(stmt_list)) |
1733 | { |
1734 | case PORTAL_ONE_SELECT: |
1735 | case PORTAL_ONE_MOD_WITH: |
1736 | query = linitial_node(Query, stmt_list); |
1737 | return ExecCleanTypeFromTL(query->targetList); |
1738 | |
1739 | case PORTAL_ONE_RETURNING: |
1740 | query = QueryListGetPrimaryStmt(stmt_list); |
1741 | Assert(query->returningList); |
1742 | return ExecCleanTypeFromTL(query->returningList); |
1743 | |
1744 | case PORTAL_UTIL_SELECT: |
1745 | query = linitial_node(Query, stmt_list); |
1746 | Assert(query->utilityStmt); |
1747 | return UtilityTupleDescriptor(query->utilityStmt); |
1748 | |
1749 | case PORTAL_MULTI_QUERY: |
1750 | /* will not return tuples */ |
1751 | break; |
1752 | } |
1753 | return NULL; |
1754 | } |
1755 | |
1756 | /* |
1757 | * PlanCacheRelCallback |
1758 | * Relcache inval callback function |
1759 | * |
1760 | * Invalidate all plans mentioning the given rel, or all plans mentioning |
1761 | * any rel at all if relid == InvalidOid. |
1762 | */ |
1763 | static void |
1764 | PlanCacheRelCallback(Datum arg, Oid relid) |
1765 | { |
1766 | dlist_iter iter; |
1767 | |
1768 | dlist_foreach(iter, &saved_plan_list) |
1769 | { |
1770 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
1771 | node, iter.cur); |
1772 | |
1773 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1774 | |
1775 | /* No work if it's already invalidated */ |
1776 | if (!plansource->is_valid) |
1777 | continue; |
1778 | |
1779 | /* Never invalidate transaction control commands */ |
1780 | if (IsTransactionStmtPlan(plansource)) |
1781 | continue; |
1782 | |
1783 | /* |
1784 | * Check the dependency list for the rewritten querytree. |
1785 | */ |
1786 | if ((relid == InvalidOid) ? plansource->relationOids != NIL : |
1787 | list_member_oid(plansource->relationOids, relid)) |
1788 | { |
1789 | /* Invalidate the querytree and generic plan */ |
1790 | plansource->is_valid = false; |
1791 | if (plansource->gplan) |
1792 | plansource->gplan->is_valid = false; |
1793 | } |
1794 | |
1795 | /* |
1796 | * The generic plan, if any, could have more dependencies than the |
1797 | * querytree does, so we have to check it too. |
1798 | */ |
1799 | if (plansource->gplan && plansource->gplan->is_valid) |
1800 | { |
1801 | ListCell *lc; |
1802 | |
1803 | foreach(lc, plansource->gplan->stmt_list) |
1804 | { |
1805 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
1806 | |
1807 | if (plannedstmt->commandType == CMD_UTILITY) |
1808 | continue; /* Ignore utility statements */ |
1809 | if ((relid == InvalidOid) ? plannedstmt->relationOids != NIL : |
1810 | list_member_oid(plannedstmt->relationOids, relid)) |
1811 | { |
1812 | /* Invalidate the generic plan only */ |
1813 | plansource->gplan->is_valid = false; |
1814 | break; /* out of stmt_list scan */ |
1815 | } |
1816 | } |
1817 | } |
1818 | } |
1819 | |
1820 | /* Likewise check cached expressions */ |
1821 | dlist_foreach(iter, &cached_expression_list) |
1822 | { |
1823 | CachedExpression *cexpr = dlist_container(CachedExpression, |
1824 | node, iter.cur); |
1825 | |
1826 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
1827 | |
1828 | /* No work if it's already invalidated */ |
1829 | if (!cexpr->is_valid) |
1830 | continue; |
1831 | |
1832 | if ((relid == InvalidOid) ? cexpr->relationOids != NIL : |
1833 | list_member_oid(cexpr->relationOids, relid)) |
1834 | { |
1835 | cexpr->is_valid = false; |
1836 | } |
1837 | } |
1838 | } |
1839 | |
1840 | /* |
1841 | * PlanCacheObjectCallback |
1842 | * Syscache inval callback function for PROCOID and TYPEOID caches |
1843 | * |
1844 | * Invalidate all plans mentioning the object with the specified hash value, |
1845 | * or all plans mentioning any member of this cache if hashvalue == 0. |
1846 | */ |
1847 | static void |
1848 | PlanCacheObjectCallback(Datum arg, int cacheid, uint32 hashvalue) |
1849 | { |
1850 | dlist_iter iter; |
1851 | |
1852 | dlist_foreach(iter, &saved_plan_list) |
1853 | { |
1854 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
1855 | node, iter.cur); |
1856 | ListCell *lc; |
1857 | |
1858 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1859 | |
1860 | /* No work if it's already invalidated */ |
1861 | if (!plansource->is_valid) |
1862 | continue; |
1863 | |
1864 | /* Never invalidate transaction control commands */ |
1865 | if (IsTransactionStmtPlan(plansource)) |
1866 | continue; |
1867 | |
1868 | /* |
1869 | * Check the dependency list for the rewritten querytree. |
1870 | */ |
1871 | foreach(lc, plansource->invalItems) |
1872 | { |
1873 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc); |
1874 | |
1875 | if (item->cacheId != cacheid) |
1876 | continue; |
1877 | if (hashvalue == 0 || |
1878 | item->hashValue == hashvalue) |
1879 | { |
1880 | /* Invalidate the querytree and generic plan */ |
1881 | plansource->is_valid = false; |
1882 | if (plansource->gplan) |
1883 | plansource->gplan->is_valid = false; |
1884 | break; |
1885 | } |
1886 | } |
1887 | |
1888 | /* |
1889 | * The generic plan, if any, could have more dependencies than the |
1890 | * querytree does, so we have to check it too. |
1891 | */ |
1892 | if (plansource->gplan && plansource->gplan->is_valid) |
1893 | { |
1894 | foreach(lc, plansource->gplan->stmt_list) |
1895 | { |
1896 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
1897 | ListCell *lc3; |
1898 | |
1899 | if (plannedstmt->commandType == CMD_UTILITY) |
1900 | continue; /* Ignore utility statements */ |
1901 | foreach(lc3, plannedstmt->invalItems) |
1902 | { |
1903 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc3); |
1904 | |
1905 | if (item->cacheId != cacheid) |
1906 | continue; |
1907 | if (hashvalue == 0 || |
1908 | item->hashValue == hashvalue) |
1909 | { |
1910 | /* Invalidate the generic plan only */ |
1911 | plansource->gplan->is_valid = false; |
1912 | break; /* out of invalItems scan */ |
1913 | } |
1914 | } |
1915 | if (!plansource->gplan->is_valid) |
1916 | break; /* out of stmt_list scan */ |
1917 | } |
1918 | } |
1919 | } |
1920 | |
1921 | /* Likewise check cached expressions */ |
1922 | dlist_foreach(iter, &cached_expression_list) |
1923 | { |
1924 | CachedExpression *cexpr = dlist_container(CachedExpression, |
1925 | node, iter.cur); |
1926 | ListCell *lc; |
1927 | |
1928 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
1929 | |
1930 | /* No work if it's already invalidated */ |
1931 | if (!cexpr->is_valid) |
1932 | continue; |
1933 | |
1934 | foreach(lc, cexpr->invalItems) |
1935 | { |
1936 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc); |
1937 | |
1938 | if (item->cacheId != cacheid) |
1939 | continue; |
1940 | if (hashvalue == 0 || |
1941 | item->hashValue == hashvalue) |
1942 | { |
1943 | cexpr->is_valid = false; |
1944 | break; |
1945 | } |
1946 | } |
1947 | } |
1948 | } |
1949 | |
1950 | /* |
1951 | * PlanCacheSysCallback |
1952 | * Syscache inval callback function for other caches |
1953 | * |
1954 | * Just invalidate everything... |
1955 | */ |
1956 | static void |
1957 | PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue) |
1958 | { |
1959 | ResetPlanCache(); |
1960 | } |
1961 | |
1962 | /* |
1963 | * ResetPlanCache: invalidate all cached plans. |
1964 | */ |
1965 | void |
1966 | ResetPlanCache(void) |
1967 | { |
1968 | dlist_iter iter; |
1969 | |
1970 | dlist_foreach(iter, &saved_plan_list) |
1971 | { |
1972 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
1973 | node, iter.cur); |
1974 | ListCell *lc; |
1975 | |
1976 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
1977 | |
1978 | /* No work if it's already invalidated */ |
1979 | if (!plansource->is_valid) |
1980 | continue; |
1981 | |
1982 | /* |
1983 | * We *must not* mark transaction control statements as invalid, |
1984 | * particularly not ROLLBACK, because they may need to be executed in |
1985 | * aborted transactions when we can't revalidate them (cf bug #5269). |
1986 | */ |
1987 | if (IsTransactionStmtPlan(plansource)) |
1988 | continue; |
1989 | |
1990 | /* |
1991 | * In general there is no point in invalidating utility statements |
1992 | * since they have no plans anyway. So invalidate it only if it |
1993 | * contains at least one non-utility statement, or contains a utility |
1994 | * statement that contains a pre-analyzed query (which could have |
1995 | * dependencies.) |
1996 | */ |
1997 | foreach(lc, plansource->query_list) |
1998 | { |
1999 | Query *query = lfirst_node(Query, lc); |
2000 | |
2001 | if (query->commandType != CMD_UTILITY || |
2002 | UtilityContainsQuery(query->utilityStmt)) |
2003 | { |
2004 | /* non-utility statement, so invalidate */ |
2005 | plansource->is_valid = false; |
2006 | if (plansource->gplan) |
2007 | plansource->gplan->is_valid = false; |
2008 | /* no need to look further */ |
2009 | break; |
2010 | } |
2011 | } |
2012 | } |
2013 | |
2014 | /* Likewise invalidate cached expressions */ |
2015 | dlist_foreach(iter, &cached_expression_list) |
2016 | { |
2017 | CachedExpression *cexpr = dlist_container(CachedExpression, |
2018 | node, iter.cur); |
2019 | |
2020 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
2021 | |
2022 | cexpr->is_valid = false; |
2023 | } |
2024 | } |
2025 | |