| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * plancache.c |
| 4 | * Plan cache management. |
| 5 | * |
| 6 | * The plan cache manager has two principal responsibilities: deciding when |
| 7 | * to use a generic plan versus a custom (parameter-value-specific) plan, |
| 8 | * and tracking whether cached plans need to be invalidated because of schema |
| 9 | * changes in the objects they depend on. |
| 10 | * |
| 11 | * The logic for choosing generic or custom plans is in choose_custom_plan, |
| 12 | * which see for comments. |
| 13 | * |
| 14 | * Cache invalidation is driven off sinval events. Any CachedPlanSource |
| 15 | * that matches the event is marked invalid, as is its generic CachedPlan |
| 16 | * if it has one. When (and if) the next demand for a cached plan occurs, |
| 17 | * parse analysis and rewrite is repeated to build a new valid query tree, |
| 18 | * and then planning is performed as normal. We also force re-analysis and |
| 19 | * re-planning if the active search_path is different from the previous time |
| 20 | * or, if RLS is involved, if the user changes or the RLS environment changes. |
| 21 | * |
| 22 | * Note that if the sinval was a result of user DDL actions, parse analysis |
| 23 | * could throw an error, for example if a column referenced by the query is |
| 24 | * no longer present. Another possibility is for the query's output tupdesc |
| 25 | * to change (for instance "SELECT *" might expand differently than before). |
| 26 | * The creator of a cached plan can specify whether it is allowable for the |
| 27 | * query to change output tupdesc on replan --- if so, it's up to the |
| 28 | * caller to notice changes and cope with them. |
| 29 | * |
| 30 | * Currently, we track exactly the dependencies of plans on relations, |
| 31 | * user-defined functions, and domains. On relcache invalidation events or |
| 32 | * pg_proc or pg_type syscache invalidation events, we invalidate just those |
| 33 | * plans that depend on the particular object being modified. (Note: this |
| 34 | * scheme assumes that any table modification that requires replanning will |
| 35 | * generate a relcache inval event.) We also watch for inval events on |
| 36 | * certain other system catalogs, such as pg_namespace; but for them, our |
| 37 | * response is just to invalidate all plans. We expect updates on those |
| 38 | * catalogs to be infrequent enough that more-detailed tracking is not worth |
| 39 | * the effort. |
| 40 | * |
| 41 | * In addition to full-fledged query plans, we provide a facility for |
| 42 | * detecting invalidations of simple scalar expressions. This is fairly |
| 43 | * bare-bones; it's the caller's responsibility to build a new expression |
| 44 | * if the old one gets invalidated. |
| 45 | * |
| 46 | * |
| 47 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 48 | * Portions Copyright (c) 1994, Regents of the University of California |
| 49 | * |
| 50 | * IDENTIFICATION |
| 51 | * src/backend/utils/cache/plancache.c |
| 52 | * |
| 53 | *------------------------------------------------------------------------- |
| 54 | */ |
| 55 | #include "postgres.h" |
| 56 | |
| 57 | #include <limits.h> |
| 58 | |
| 59 | #include "access/transam.h" |
| 60 | #include "catalog/namespace.h" |
| 61 | #include "executor/executor.h" |
| 62 | #include "miscadmin.h" |
| 63 | #include "nodes/nodeFuncs.h" |
| 64 | #include "optimizer/optimizer.h" |
| 65 | #include "parser/analyze.h" |
| 66 | #include "parser/parsetree.h" |
| 67 | #include "storage/lmgr.h" |
| 68 | #include "tcop/pquery.h" |
| 69 | #include "tcop/utility.h" |
| 70 | #include "utils/inval.h" |
| 71 | #include "utils/memutils.h" |
| 72 | #include "utils/resowner_private.h" |
| 73 | #include "utils/rls.h" |
| 74 | #include "utils/snapmgr.h" |
| 75 | #include "utils/syscache.h" |
| 76 | |
| 77 | |
| 78 | /* |
| 79 | * We must skip "overhead" operations that involve database access when the |
| 80 | * cached plan's subject statement is a transaction control command. |
| 81 | */ |
| 82 | #define IsTransactionStmtPlan(plansource) \ |
| 83 | ((plansource)->raw_parse_tree && \ |
| 84 | IsA((plansource)->raw_parse_tree->stmt, TransactionStmt)) |
| 85 | |
| 86 | /* |
| 87 | * This is the head of the backend's list of "saved" CachedPlanSources (i.e., |
| 88 | * those that are in long-lived storage and are examined for sinval events). |
| 89 | * We use a dlist instead of separate List cells so that we can guarantee |
| 90 | * to save a CachedPlanSource without error. |
| 91 | */ |
| 92 | static dlist_head saved_plan_list = DLIST_STATIC_INIT(saved_plan_list); |
| 93 | |
| 94 | /* |
| 95 | * This is the head of the backend's list of CachedExpressions. |
| 96 | */ |
| 97 | static dlist_head cached_expression_list = DLIST_STATIC_INIT(cached_expression_list); |
| 98 | |
| 99 | static void ReleaseGenericPlan(CachedPlanSource *plansource); |
| 100 | static List *RevalidateCachedQuery(CachedPlanSource *plansource, |
| 101 | QueryEnvironment *queryEnv); |
| 102 | static bool CheckCachedPlan(CachedPlanSource *plansource); |
| 103 | static CachedPlan *BuildCachedPlan(CachedPlanSource *plansource, List *qlist, |
| 104 | ParamListInfo boundParams, QueryEnvironment *queryEnv); |
| 105 | static bool choose_custom_plan(CachedPlanSource *plansource, |
| 106 | ParamListInfo boundParams); |
| 107 | static double cached_plan_cost(CachedPlan *plan, bool include_planner); |
| 108 | static Query *QueryListGetPrimaryStmt(List *stmts); |
| 109 | static void AcquireExecutorLocks(List *stmt_list, bool acquire); |
| 110 | static void AcquirePlannerLocks(List *stmt_list, bool acquire); |
| 111 | static void ScanQueryForLocks(Query *parsetree, bool acquire); |
| 112 | static bool ScanQueryWalker(Node *node, bool *acquire); |
| 113 | static TupleDesc PlanCacheComputeResultDesc(List *stmt_list); |
| 114 | static void PlanCacheRelCallback(Datum arg, Oid relid); |
| 115 | static void PlanCacheObjectCallback(Datum arg, int cacheid, uint32 hashvalue); |
| 116 | static void PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue); |
| 117 | |
| 118 | /* GUC parameter */ |
| 119 | int plan_cache_mode; |
| 120 | |
| 121 | /* |
| 122 | * InitPlanCache: initialize module during InitPostgres. |
| 123 | * |
| 124 | * All we need to do is hook into inval.c's callback lists. |
| 125 | */ |
| 126 | void |
| 127 | InitPlanCache(void) |
| 128 | { |
| 129 | CacheRegisterRelcacheCallback(PlanCacheRelCallback, (Datum) 0); |
| 130 | CacheRegisterSyscacheCallback(PROCOID, PlanCacheObjectCallback, (Datum) 0); |
| 131 | CacheRegisterSyscacheCallback(TYPEOID, PlanCacheObjectCallback, (Datum) 0); |
| 132 | CacheRegisterSyscacheCallback(NAMESPACEOID, PlanCacheSysCallback, (Datum) 0); |
| 133 | CacheRegisterSyscacheCallback(OPEROID, PlanCacheSysCallback, (Datum) 0); |
| 134 | CacheRegisterSyscacheCallback(AMOPOPID, PlanCacheSysCallback, (Datum) 0); |
| 135 | CacheRegisterSyscacheCallback(FOREIGNSERVEROID, PlanCacheSysCallback, (Datum) 0); |
| 136 | CacheRegisterSyscacheCallback(FOREIGNDATAWRAPPEROID, PlanCacheSysCallback, (Datum) 0); |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * CreateCachedPlan: initially create a plan cache entry. |
| 141 | * |
| 142 | * Creation of a cached plan is divided into two steps, CreateCachedPlan and |
| 143 | * CompleteCachedPlan. CreateCachedPlan should be called after running the |
| 144 | * query through raw_parser, but before doing parse analysis and rewrite; |
| 145 | * CompleteCachedPlan is called after that. The reason for this arrangement |
| 146 | * is that it can save one round of copying of the raw parse tree, since |
| 147 | * the parser will normally scribble on the raw parse tree. Callers would |
| 148 | * otherwise need to make an extra copy of the parse tree to ensure they |
| 149 | * still had a clean copy to present at plan cache creation time. |
| 150 | * |
| 151 | * All arguments presented to CreateCachedPlan are copied into a memory |
| 152 | * context created as a child of the call-time CurrentMemoryContext, which |
| 153 | * should be a reasonably short-lived working context that will go away in |
| 154 | * event of an error. This ensures that the cached plan data structure will |
| 155 | * likewise disappear if an error occurs before we have fully constructed it. |
| 156 | * Once constructed, the cached plan can be made longer-lived, if needed, |
| 157 | * by calling SaveCachedPlan. |
| 158 | * |
| 159 | * raw_parse_tree: output of raw_parser(), or NULL if empty query |
| 160 | * query_string: original query text |
| 161 | * commandTag: compile-time-constant tag for query, or NULL if empty query |
| 162 | */ |
| 163 | CachedPlanSource * |
| 164 | CreateCachedPlan(RawStmt *raw_parse_tree, |
| 165 | const char *query_string, |
| 166 | const char *commandTag) |
| 167 | { |
| 168 | CachedPlanSource *plansource; |
| 169 | MemoryContext source_context; |
| 170 | MemoryContext oldcxt; |
| 171 | |
| 172 | Assert(query_string != NULL); /* required as of 8.4 */ |
| 173 | |
| 174 | /* |
| 175 | * Make a dedicated memory context for the CachedPlanSource and its |
| 176 | * permanent subsidiary data. It's probably not going to be large, but |
| 177 | * just in case, allow it to grow large. Initially it's a child of the |
| 178 | * caller's context (which we assume to be transient), so that it will be |
| 179 | * cleaned up on error. |
| 180 | */ |
| 181 | source_context = AllocSetContextCreate(CurrentMemoryContext, |
| 182 | "CachedPlanSource" , |
| 183 | ALLOCSET_START_SMALL_SIZES); |
| 184 | |
| 185 | /* |
| 186 | * Create and fill the CachedPlanSource struct within the new context. |
| 187 | * Most fields are just left empty for the moment. |
| 188 | */ |
| 189 | oldcxt = MemoryContextSwitchTo(source_context); |
| 190 | |
| 191 | plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
| 192 | plansource->magic = CACHEDPLANSOURCE_MAGIC; |
| 193 | plansource->raw_parse_tree = copyObject(raw_parse_tree); |
| 194 | plansource->query_string = pstrdup(query_string); |
| 195 | MemoryContextSetIdentifier(source_context, plansource->query_string); |
| 196 | plansource->commandTag = commandTag; |
| 197 | plansource->param_types = NULL; |
| 198 | plansource->num_params = 0; |
| 199 | plansource->parserSetup = NULL; |
| 200 | plansource->parserSetupArg = NULL; |
| 201 | plansource->cursor_options = 0; |
| 202 | plansource->fixed_result = false; |
| 203 | plansource->resultDesc = NULL; |
| 204 | plansource->context = source_context; |
| 205 | plansource->query_list = NIL; |
| 206 | plansource->relationOids = NIL; |
| 207 | plansource->invalItems = NIL; |
| 208 | plansource->search_path = NULL; |
| 209 | plansource->query_context = NULL; |
| 210 | plansource->rewriteRoleId = InvalidOid; |
| 211 | plansource->rewriteRowSecurity = false; |
| 212 | plansource->dependsOnRLS = false; |
| 213 | plansource->gplan = NULL; |
| 214 | plansource->is_oneshot = false; |
| 215 | plansource->is_complete = false; |
| 216 | plansource->is_saved = false; |
| 217 | plansource->is_valid = false; |
| 218 | plansource->generation = 0; |
| 219 | plansource->generic_cost = -1; |
| 220 | plansource->total_custom_cost = 0; |
| 221 | plansource->num_custom_plans = 0; |
| 222 | |
| 223 | MemoryContextSwitchTo(oldcxt); |
| 224 | |
| 225 | return plansource; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * CreateOneShotCachedPlan: initially create a one-shot plan cache entry. |
| 230 | * |
| 231 | * This variant of CreateCachedPlan creates a plan cache entry that is meant |
| 232 | * to be used only once. No data copying occurs: all data structures remain |
| 233 | * in the caller's memory context (which typically should get cleared after |
| 234 | * completing execution). The CachedPlanSource struct itself is also created |
| 235 | * in that context. |
| 236 | * |
| 237 | * A one-shot plan cannot be saved or copied, since we make no effort to |
| 238 | * preserve the raw parse tree unmodified. There is also no support for |
| 239 | * invalidation, so plan use must be completed in the current transaction, |
| 240 | * and DDL that might invalidate the querytree_list must be avoided as well. |
| 241 | * |
| 242 | * raw_parse_tree: output of raw_parser(), or NULL if empty query |
| 243 | * query_string: original query text |
| 244 | * commandTag: compile-time-constant tag for query, or NULL if empty query |
| 245 | */ |
| 246 | CachedPlanSource * |
| 247 | CreateOneShotCachedPlan(RawStmt *raw_parse_tree, |
| 248 | const char *query_string, |
| 249 | const char *commandTag) |
| 250 | { |
| 251 | CachedPlanSource *plansource; |
| 252 | |
| 253 | Assert(query_string != NULL); /* required as of 8.4 */ |
| 254 | |
| 255 | /* |
| 256 | * Create and fill the CachedPlanSource struct within the caller's memory |
| 257 | * context. Most fields are just left empty for the moment. |
| 258 | */ |
| 259 | plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
| 260 | plansource->magic = CACHEDPLANSOURCE_MAGIC; |
| 261 | plansource->raw_parse_tree = raw_parse_tree; |
| 262 | plansource->query_string = query_string; |
| 263 | plansource->commandTag = commandTag; |
| 264 | plansource->param_types = NULL; |
| 265 | plansource->num_params = 0; |
| 266 | plansource->parserSetup = NULL; |
| 267 | plansource->parserSetupArg = NULL; |
| 268 | plansource->cursor_options = 0; |
| 269 | plansource->fixed_result = false; |
| 270 | plansource->resultDesc = NULL; |
| 271 | plansource->context = CurrentMemoryContext; |
| 272 | plansource->query_list = NIL; |
| 273 | plansource->relationOids = NIL; |
| 274 | plansource->invalItems = NIL; |
| 275 | plansource->search_path = NULL; |
| 276 | plansource->query_context = NULL; |
| 277 | plansource->rewriteRoleId = InvalidOid; |
| 278 | plansource->rewriteRowSecurity = false; |
| 279 | plansource->dependsOnRLS = false; |
| 280 | plansource->gplan = NULL; |
| 281 | plansource->is_oneshot = true; |
| 282 | plansource->is_complete = false; |
| 283 | plansource->is_saved = false; |
| 284 | plansource->is_valid = false; |
| 285 | plansource->generation = 0; |
| 286 | plansource->generic_cost = -1; |
| 287 | plansource->total_custom_cost = 0; |
| 288 | plansource->num_custom_plans = 0; |
| 289 | |
| 290 | return plansource; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * CompleteCachedPlan: second step of creating a plan cache entry. |
| 295 | * |
| 296 | * Pass in the analyzed-and-rewritten form of the query, as well as the |
| 297 | * required subsidiary data about parameters and such. All passed values will |
| 298 | * be copied into the CachedPlanSource's memory, except as specified below. |
| 299 | * After this is called, GetCachedPlan can be called to obtain a plan, and |
| 300 | * optionally the CachedPlanSource can be saved using SaveCachedPlan. |
| 301 | * |
| 302 | * If querytree_context is not NULL, the querytree_list must be stored in that |
| 303 | * context (but the other parameters need not be). The querytree_list is not |
| 304 | * copied, rather the given context is kept as the initial query_context of |
| 305 | * the CachedPlanSource. (It should have been created as a child of the |
| 306 | * caller's working memory context, but it will now be reparented to belong |
| 307 | * to the CachedPlanSource.) The querytree_context is normally the context in |
| 308 | * which the caller did raw parsing and parse analysis. This approach saves |
| 309 | * one tree copying step compared to passing NULL, but leaves lots of extra |
| 310 | * cruft in the query_context, namely whatever extraneous stuff parse analysis |
| 311 | * created, as well as whatever went unused from the raw parse tree. Using |
| 312 | * this option is a space-for-time tradeoff that is appropriate if the |
| 313 | * CachedPlanSource is not expected to survive long. |
| 314 | * |
| 315 | * plancache.c cannot know how to copy the data referenced by parserSetupArg, |
| 316 | * and it would often be inappropriate to do so anyway. When using that |
| 317 | * option, it is caller's responsibility that the referenced data remains |
| 318 | * valid for as long as the CachedPlanSource exists. |
| 319 | * |
| 320 | * If the CachedPlanSource is a "oneshot" plan, then no querytree copying |
| 321 | * occurs at all, and querytree_context is ignored; it is caller's |
| 322 | * responsibility that the passed querytree_list is sufficiently long-lived. |
| 323 | * |
| 324 | * plansource: structure returned by CreateCachedPlan |
| 325 | * querytree_list: analyzed-and-rewritten form of query (list of Query nodes) |
| 326 | * querytree_context: memory context containing querytree_list, |
| 327 | * or NULL to copy querytree_list into a fresh context |
| 328 | * param_types: array of fixed parameter type OIDs, or NULL if none |
| 329 | * num_params: number of fixed parameters |
| 330 | * parserSetup: alternate method for handling query parameters |
| 331 | * parserSetupArg: data to pass to parserSetup |
| 332 | * cursor_options: options bitmask to pass to planner |
| 333 | * fixed_result: true to disallow future changes in query's result tupdesc |
| 334 | */ |
| 335 | void |
| 336 | CompleteCachedPlan(CachedPlanSource *plansource, |
| 337 | List *querytree_list, |
| 338 | MemoryContext querytree_context, |
| 339 | Oid *param_types, |
| 340 | int num_params, |
| 341 | ParserSetupHook parserSetup, |
| 342 | void *parserSetupArg, |
| 343 | int cursor_options, |
| 344 | bool fixed_result) |
| 345 | { |
| 346 | MemoryContext source_context = plansource->context; |
| 347 | MemoryContext oldcxt = CurrentMemoryContext; |
| 348 | |
| 349 | /* Assert caller is doing things in a sane order */ |
| 350 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 351 | Assert(!plansource->is_complete); |
| 352 | |
| 353 | /* |
| 354 | * If caller supplied a querytree_context, reparent it underneath the |
| 355 | * CachedPlanSource's context; otherwise, create a suitable context and |
| 356 | * copy the querytree_list into it. But no data copying should be done |
| 357 | * for one-shot plans; for those, assume the passed querytree_list is |
| 358 | * sufficiently long-lived. |
| 359 | */ |
| 360 | if (plansource->is_oneshot) |
| 361 | { |
| 362 | querytree_context = CurrentMemoryContext; |
| 363 | } |
| 364 | else if (querytree_context != NULL) |
| 365 | { |
| 366 | MemoryContextSetParent(querytree_context, source_context); |
| 367 | MemoryContextSwitchTo(querytree_context); |
| 368 | } |
| 369 | else |
| 370 | { |
| 371 | /* Again, it's a good bet the querytree_context can be small */ |
| 372 | querytree_context = AllocSetContextCreate(source_context, |
| 373 | "CachedPlanQuery" , |
| 374 | ALLOCSET_START_SMALL_SIZES); |
| 375 | MemoryContextSwitchTo(querytree_context); |
| 376 | querytree_list = copyObject(querytree_list); |
| 377 | } |
| 378 | |
| 379 | plansource->query_context = querytree_context; |
| 380 | plansource->query_list = querytree_list; |
| 381 | |
| 382 | if (!plansource->is_oneshot && !IsTransactionStmtPlan(plansource)) |
| 383 | { |
| 384 | /* |
| 385 | * Use the planner machinery to extract dependencies. Data is saved |
| 386 | * in query_context. (We assume that not a lot of extra cruft is |
| 387 | * created by this call.) We can skip this for one-shot plans, and |
| 388 | * transaction control commands have no such dependencies anyway. |
| 389 | */ |
| 390 | extract_query_dependencies((Node *) querytree_list, |
| 391 | &plansource->relationOids, |
| 392 | &plansource->invalItems, |
| 393 | &plansource->dependsOnRLS); |
| 394 | |
| 395 | /* Update RLS info as well. */ |
| 396 | plansource->rewriteRoleId = GetUserId(); |
| 397 | plansource->rewriteRowSecurity = row_security; |
| 398 | |
| 399 | /* |
| 400 | * Also save the current search_path in the query_context. (This |
| 401 | * should not generate much extra cruft either, since almost certainly |
| 402 | * the path is already valid.) Again, we don't really need this for |
| 403 | * one-shot plans; and we *must* skip this for transaction control |
| 404 | * commands, because this could result in catalog accesses. |
| 405 | */ |
| 406 | plansource->search_path = GetOverrideSearchPath(querytree_context); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * Save the final parameter types (or other parameter specification data) |
| 411 | * into the source_context, as well as our other parameters. Also save |
| 412 | * the result tuple descriptor. |
| 413 | */ |
| 414 | MemoryContextSwitchTo(source_context); |
| 415 | |
| 416 | if (num_params > 0) |
| 417 | { |
| 418 | plansource->param_types = (Oid *) palloc(num_params * sizeof(Oid)); |
| 419 | memcpy(plansource->param_types, param_types, num_params * sizeof(Oid)); |
| 420 | } |
| 421 | else |
| 422 | plansource->param_types = NULL; |
| 423 | plansource->num_params = num_params; |
| 424 | plansource->parserSetup = parserSetup; |
| 425 | plansource->parserSetupArg = parserSetupArg; |
| 426 | plansource->cursor_options = cursor_options; |
| 427 | plansource->fixed_result = fixed_result; |
| 428 | plansource->resultDesc = PlanCacheComputeResultDesc(querytree_list); |
| 429 | |
| 430 | MemoryContextSwitchTo(oldcxt); |
| 431 | |
| 432 | plansource->is_complete = true; |
| 433 | plansource->is_valid = true; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * SaveCachedPlan: save a cached plan permanently |
| 438 | * |
| 439 | * This function moves the cached plan underneath CacheMemoryContext (making |
| 440 | * it live for the life of the backend, unless explicitly dropped), and adds |
| 441 | * it to the list of cached plans that are checked for invalidation when an |
| 442 | * sinval event occurs. |
| 443 | * |
| 444 | * This is guaranteed not to throw error, except for the caller-error case |
| 445 | * of trying to save a one-shot plan. Callers typically depend on that |
| 446 | * since this is called just before or just after adding a pointer to the |
| 447 | * CachedPlanSource to some permanent data structure of their own. Up until |
| 448 | * this is done, a CachedPlanSource is just transient data that will go away |
| 449 | * automatically on transaction abort. |
| 450 | */ |
| 451 | void |
| 452 | SaveCachedPlan(CachedPlanSource *plansource) |
| 453 | { |
| 454 | /* Assert caller is doing things in a sane order */ |
| 455 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 456 | Assert(plansource->is_complete); |
| 457 | Assert(!plansource->is_saved); |
| 458 | |
| 459 | /* This seems worth a real test, though */ |
| 460 | if (plansource->is_oneshot) |
| 461 | elog(ERROR, "cannot save one-shot cached plan" ); |
| 462 | |
| 463 | /* |
| 464 | * In typical use, this function would be called before generating any |
| 465 | * plans from the CachedPlanSource. If there is a generic plan, moving it |
| 466 | * into CacheMemoryContext would be pretty risky since it's unclear |
| 467 | * whether the caller has taken suitable care with making references |
| 468 | * long-lived. Best thing to do seems to be to discard the plan. |
| 469 | */ |
| 470 | ReleaseGenericPlan(plansource); |
| 471 | |
| 472 | /* |
| 473 | * Reparent the source memory context under CacheMemoryContext so that it |
| 474 | * will live indefinitely. The query_context follows along since it's |
| 475 | * already a child of the other one. |
| 476 | */ |
| 477 | MemoryContextSetParent(plansource->context, CacheMemoryContext); |
| 478 | |
| 479 | /* |
| 480 | * Add the entry to the global list of cached plans. |
| 481 | */ |
| 482 | dlist_push_tail(&saved_plan_list, &plansource->node); |
| 483 | |
| 484 | plansource->is_saved = true; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * DropCachedPlan: destroy a cached plan. |
| 489 | * |
| 490 | * Actually this only destroys the CachedPlanSource: any referenced CachedPlan |
| 491 | * is released, but not destroyed until its refcount goes to zero. That |
| 492 | * handles the situation where DropCachedPlan is called while the plan is |
| 493 | * still in use. |
| 494 | */ |
| 495 | void |
| 496 | DropCachedPlan(CachedPlanSource *plansource) |
| 497 | { |
| 498 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 499 | |
| 500 | /* If it's been saved, remove it from the list */ |
| 501 | if (plansource->is_saved) |
| 502 | { |
| 503 | dlist_delete(&plansource->node); |
| 504 | plansource->is_saved = false; |
| 505 | } |
| 506 | |
| 507 | /* Decrement generic CachedPlan's refcount and drop if no longer needed */ |
| 508 | ReleaseGenericPlan(plansource); |
| 509 | |
| 510 | /* Mark it no longer valid */ |
| 511 | plansource->magic = 0; |
| 512 | |
| 513 | /* |
| 514 | * Remove the CachedPlanSource and all subsidiary data (including the |
| 515 | * query_context if any). But if it's a one-shot we can't free anything. |
| 516 | */ |
| 517 | if (!plansource->is_oneshot) |
| 518 | MemoryContextDelete(plansource->context); |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * ReleaseGenericPlan: release a CachedPlanSource's generic plan, if any. |
| 523 | */ |
| 524 | static void |
| 525 | ReleaseGenericPlan(CachedPlanSource *plansource) |
| 526 | { |
| 527 | /* Be paranoid about the possibility that ReleaseCachedPlan fails */ |
| 528 | if (plansource->gplan) |
| 529 | { |
| 530 | CachedPlan *plan = plansource->gplan; |
| 531 | |
| 532 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
| 533 | plansource->gplan = NULL; |
| 534 | ReleaseCachedPlan(plan, false); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * RevalidateCachedQuery: ensure validity of analyzed-and-rewritten query tree. |
| 540 | * |
| 541 | * What we do here is re-acquire locks and redo parse analysis if necessary. |
| 542 | * On return, the query_list is valid and we have sufficient locks to begin |
| 543 | * planning. |
| 544 | * |
| 545 | * If any parse analysis activity is required, the caller's memory context is |
| 546 | * used for that work. |
| 547 | * |
| 548 | * The result value is the transient analyzed-and-rewritten query tree if we |
| 549 | * had to do re-analysis, and NIL otherwise. (This is returned just to save |
| 550 | * a tree copying step in a subsequent BuildCachedPlan call.) |
| 551 | */ |
| 552 | static List * |
| 553 | RevalidateCachedQuery(CachedPlanSource *plansource, |
| 554 | QueryEnvironment *queryEnv) |
| 555 | { |
| 556 | bool snapshot_set; |
| 557 | RawStmt *rawtree; |
| 558 | List *tlist; /* transient query-tree list */ |
| 559 | List *qlist; /* permanent query-tree list */ |
| 560 | TupleDesc resultDesc; |
| 561 | MemoryContext querytree_context; |
| 562 | MemoryContext oldcxt; |
| 563 | |
| 564 | /* |
| 565 | * For one-shot plans, we do not support revalidation checking; it's |
| 566 | * assumed the query is parsed, planned, and executed in one transaction, |
| 567 | * so that no lock re-acquisition is necessary. Also, there is never any |
| 568 | * need to revalidate plans for transaction control commands (and we |
| 569 | * mustn't risk any catalog accesses when handling those). |
| 570 | */ |
| 571 | if (plansource->is_oneshot || IsTransactionStmtPlan(plansource)) |
| 572 | { |
| 573 | Assert(plansource->is_valid); |
| 574 | return NIL; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * If the query is currently valid, we should have a saved search_path --- |
| 579 | * check to see if that matches the current environment. If not, we want |
| 580 | * to force replan. |
| 581 | */ |
| 582 | if (plansource->is_valid) |
| 583 | { |
| 584 | Assert(plansource->search_path != NULL); |
| 585 | if (!OverrideSearchPathMatchesCurrent(plansource->search_path)) |
| 586 | { |
| 587 | /* Invalidate the querytree and generic plan */ |
| 588 | plansource->is_valid = false; |
| 589 | if (plansource->gplan) |
| 590 | plansource->gplan->is_valid = false; |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * If the query rewrite phase had a possible RLS dependency, we must redo |
| 596 | * it if either the role or the row_security setting has changed. |
| 597 | */ |
| 598 | if (plansource->is_valid && plansource->dependsOnRLS && |
| 599 | (plansource->rewriteRoleId != GetUserId() || |
| 600 | plansource->rewriteRowSecurity != row_security)) |
| 601 | plansource->is_valid = false; |
| 602 | |
| 603 | /* |
| 604 | * If the query is currently valid, acquire locks on the referenced |
| 605 | * objects; then check again. We need to do it this way to cover the race |
| 606 | * condition that an invalidation message arrives before we get the locks. |
| 607 | */ |
| 608 | if (plansource->is_valid) |
| 609 | { |
| 610 | AcquirePlannerLocks(plansource->query_list, true); |
| 611 | |
| 612 | /* |
| 613 | * By now, if any invalidation has happened, the inval callback |
| 614 | * functions will have marked the query invalid. |
| 615 | */ |
| 616 | if (plansource->is_valid) |
| 617 | { |
| 618 | /* Successfully revalidated and locked the query. */ |
| 619 | return NIL; |
| 620 | } |
| 621 | |
| 622 | /* Oops, the race case happened. Release useless locks. */ |
| 623 | AcquirePlannerLocks(plansource->query_list, false); |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * Discard the no-longer-useful query tree. (Note: we don't want to do |
| 628 | * this any earlier, else we'd not have been able to release locks |
| 629 | * correctly in the race condition case.) |
| 630 | */ |
| 631 | plansource->is_valid = false; |
| 632 | plansource->query_list = NIL; |
| 633 | plansource->relationOids = NIL; |
| 634 | plansource->invalItems = NIL; |
| 635 | plansource->search_path = NULL; |
| 636 | |
| 637 | /* |
| 638 | * Free the query_context. We don't really expect MemoryContextDelete to |
| 639 | * fail, but just in case, make sure the CachedPlanSource is left in a |
| 640 | * reasonably sane state. (The generic plan won't get unlinked yet, but |
| 641 | * that's acceptable.) |
| 642 | */ |
| 643 | if (plansource->query_context) |
| 644 | { |
| 645 | MemoryContext qcxt = plansource->query_context; |
| 646 | |
| 647 | plansource->query_context = NULL; |
| 648 | MemoryContextDelete(qcxt); |
| 649 | } |
| 650 | |
| 651 | /* Drop the generic plan reference if any */ |
| 652 | ReleaseGenericPlan(plansource); |
| 653 | |
| 654 | /* |
| 655 | * Now re-do parse analysis and rewrite. This not incidentally acquires |
| 656 | * the locks we need to do planning safely. |
| 657 | */ |
| 658 | Assert(plansource->is_complete); |
| 659 | |
| 660 | /* |
| 661 | * If a snapshot is already set (the normal case), we can just use that |
| 662 | * for parsing/planning. But if it isn't, install one. Note: no point in |
| 663 | * checking whether parse analysis requires a snapshot; utility commands |
| 664 | * don't have invalidatable plans, so we'd not get here for such a |
| 665 | * command. |
| 666 | */ |
| 667 | snapshot_set = false; |
| 668 | if (!ActiveSnapshotSet()) |
| 669 | { |
| 670 | PushActiveSnapshot(GetTransactionSnapshot()); |
| 671 | snapshot_set = true; |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Run parse analysis and rule rewriting. The parser tends to scribble on |
| 676 | * its input, so we must copy the raw parse tree to prevent corruption of |
| 677 | * the cache. |
| 678 | */ |
| 679 | rawtree = copyObject(plansource->raw_parse_tree); |
| 680 | if (rawtree == NULL) |
| 681 | tlist = NIL; |
| 682 | else if (plansource->parserSetup != NULL) |
| 683 | tlist = pg_analyze_and_rewrite_params(rawtree, |
| 684 | plansource->query_string, |
| 685 | plansource->parserSetup, |
| 686 | plansource->parserSetupArg, |
| 687 | queryEnv); |
| 688 | else |
| 689 | tlist = pg_analyze_and_rewrite(rawtree, |
| 690 | plansource->query_string, |
| 691 | plansource->param_types, |
| 692 | plansource->num_params, |
| 693 | queryEnv); |
| 694 | |
| 695 | /* Release snapshot if we got one */ |
| 696 | if (snapshot_set) |
| 697 | PopActiveSnapshot(); |
| 698 | |
| 699 | /* |
| 700 | * Check or update the result tupdesc. XXX should we use a weaker |
| 701 | * condition than equalTupleDescs() here? |
| 702 | * |
| 703 | * We assume the parameter types didn't change from the first time, so no |
| 704 | * need to update that. |
| 705 | */ |
| 706 | resultDesc = PlanCacheComputeResultDesc(tlist); |
| 707 | if (resultDesc == NULL && plansource->resultDesc == NULL) |
| 708 | { |
| 709 | /* OK, doesn't return tuples */ |
| 710 | } |
| 711 | else if (resultDesc == NULL || plansource->resultDesc == NULL || |
| 712 | !equalTupleDescs(resultDesc, plansource->resultDesc)) |
| 713 | { |
| 714 | /* can we give a better error message? */ |
| 715 | if (plansource->fixed_result) |
| 716 | ereport(ERROR, |
| 717 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 718 | errmsg("cached plan must not change result type" ))); |
| 719 | oldcxt = MemoryContextSwitchTo(plansource->context); |
| 720 | if (resultDesc) |
| 721 | resultDesc = CreateTupleDescCopy(resultDesc); |
| 722 | if (plansource->resultDesc) |
| 723 | FreeTupleDesc(plansource->resultDesc); |
| 724 | plansource->resultDesc = resultDesc; |
| 725 | MemoryContextSwitchTo(oldcxt); |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Allocate new query_context and copy the completed querytree into it. |
| 730 | * It's transient until we complete the copying and dependency extraction. |
| 731 | */ |
| 732 | querytree_context = AllocSetContextCreate(CurrentMemoryContext, |
| 733 | "CachedPlanQuery" , |
| 734 | ALLOCSET_START_SMALL_SIZES); |
| 735 | oldcxt = MemoryContextSwitchTo(querytree_context); |
| 736 | |
| 737 | qlist = copyObject(tlist); |
| 738 | |
| 739 | /* |
| 740 | * Use the planner machinery to extract dependencies. Data is saved in |
| 741 | * query_context. (We assume that not a lot of extra cruft is created by |
| 742 | * this call.) |
| 743 | */ |
| 744 | extract_query_dependencies((Node *) qlist, |
| 745 | &plansource->relationOids, |
| 746 | &plansource->invalItems, |
| 747 | &plansource->dependsOnRLS); |
| 748 | |
| 749 | /* Update RLS info as well. */ |
| 750 | plansource->rewriteRoleId = GetUserId(); |
| 751 | plansource->rewriteRowSecurity = row_security; |
| 752 | |
| 753 | /* |
| 754 | * Also save the current search_path in the query_context. (This should |
| 755 | * not generate much extra cruft either, since almost certainly the path |
| 756 | * is already valid.) |
| 757 | */ |
| 758 | plansource->search_path = GetOverrideSearchPath(querytree_context); |
| 759 | |
| 760 | MemoryContextSwitchTo(oldcxt); |
| 761 | |
| 762 | /* Now reparent the finished query_context and save the links */ |
| 763 | MemoryContextSetParent(querytree_context, plansource->context); |
| 764 | |
| 765 | plansource->query_context = querytree_context; |
| 766 | plansource->query_list = qlist; |
| 767 | |
| 768 | /* |
| 769 | * Note: we do not reset generic_cost or total_custom_cost, although we |
| 770 | * could choose to do so. If the DDL or statistics change that prompted |
| 771 | * the invalidation meant a significant change in the cost estimates, it |
| 772 | * would be better to reset those variables and start fresh; but often it |
| 773 | * doesn't, and we're better retaining our hard-won knowledge about the |
| 774 | * relative costs. |
| 775 | */ |
| 776 | |
| 777 | plansource->is_valid = true; |
| 778 | |
| 779 | /* Return transient copy of querytrees for possible use in planning */ |
| 780 | return tlist; |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * CheckCachedPlan: see if the CachedPlanSource's generic plan is valid. |
| 785 | * |
| 786 | * Caller must have already called RevalidateCachedQuery to verify that the |
| 787 | * querytree is up to date. |
| 788 | * |
| 789 | * On a "true" return, we have acquired the locks needed to run the plan. |
| 790 | * (We must do this for the "true" result to be race-condition-free.) |
| 791 | */ |
| 792 | static bool |
| 793 | CheckCachedPlan(CachedPlanSource *plansource) |
| 794 | { |
| 795 | CachedPlan *plan = plansource->gplan; |
| 796 | |
| 797 | /* Assert that caller checked the querytree */ |
| 798 | Assert(plansource->is_valid); |
| 799 | |
| 800 | /* If there's no generic plan, just say "false" */ |
| 801 | if (!plan) |
| 802 | return false; |
| 803 | |
| 804 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
| 805 | /* Generic plans are never one-shot */ |
| 806 | Assert(!plan->is_oneshot); |
| 807 | |
| 808 | /* |
| 809 | * If plan isn't valid for current role, we can't use it. |
| 810 | */ |
| 811 | if (plan->is_valid && plan->dependsOnRole && |
| 812 | plan->planRoleId != GetUserId()) |
| 813 | plan->is_valid = false; |
| 814 | |
| 815 | /* |
| 816 | * If it appears valid, acquire locks and recheck; this is much the same |
| 817 | * logic as in RevalidateCachedQuery, but for a plan. |
| 818 | */ |
| 819 | if (plan->is_valid) |
| 820 | { |
| 821 | /* |
| 822 | * Plan must have positive refcount because it is referenced by |
| 823 | * plansource; so no need to fear it disappears under us here. |
| 824 | */ |
| 825 | Assert(plan->refcount > 0); |
| 826 | |
| 827 | AcquireExecutorLocks(plan->stmt_list, true); |
| 828 | |
| 829 | /* |
| 830 | * If plan was transient, check to see if TransactionXmin has |
| 831 | * advanced, and if so invalidate it. |
| 832 | */ |
| 833 | if (plan->is_valid && |
| 834 | TransactionIdIsValid(plan->saved_xmin) && |
| 835 | !TransactionIdEquals(plan->saved_xmin, TransactionXmin)) |
| 836 | plan->is_valid = false; |
| 837 | |
| 838 | /* |
| 839 | * By now, if any invalidation has happened, the inval callback |
| 840 | * functions will have marked the plan invalid. |
| 841 | */ |
| 842 | if (plan->is_valid) |
| 843 | { |
| 844 | /* Successfully revalidated and locked the query. */ |
| 845 | return true; |
| 846 | } |
| 847 | |
| 848 | /* Oops, the race case happened. Release useless locks. */ |
| 849 | AcquireExecutorLocks(plan->stmt_list, false); |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Plan has been invalidated, so unlink it from the parent and release it. |
| 854 | */ |
| 855 | ReleaseGenericPlan(plansource); |
| 856 | |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * BuildCachedPlan: construct a new CachedPlan from a CachedPlanSource. |
| 862 | * |
| 863 | * qlist should be the result value from a previous RevalidateCachedQuery, |
| 864 | * or it can be set to NIL if we need to re-copy the plansource's query_list. |
| 865 | * |
| 866 | * To build a generic, parameter-value-independent plan, pass NULL for |
| 867 | * boundParams. To build a custom plan, pass the actual parameter values via |
| 868 | * boundParams. For best effect, the PARAM_FLAG_CONST flag should be set on |
| 869 | * each parameter value; otherwise the planner will treat the value as a |
| 870 | * hint rather than a hard constant. |
| 871 | * |
| 872 | * Planning work is done in the caller's memory context. The finished plan |
| 873 | * is in a child memory context, which typically should get reparented |
| 874 | * (unless this is a one-shot plan, in which case we don't copy the plan). |
| 875 | */ |
| 876 | static CachedPlan * |
| 877 | BuildCachedPlan(CachedPlanSource *plansource, List *qlist, |
| 878 | ParamListInfo boundParams, QueryEnvironment *queryEnv) |
| 879 | { |
| 880 | CachedPlan *plan; |
| 881 | List *plist; |
| 882 | bool snapshot_set; |
| 883 | bool is_transient; |
| 884 | MemoryContext plan_context; |
| 885 | MemoryContext oldcxt = CurrentMemoryContext; |
| 886 | ListCell *lc; |
| 887 | |
| 888 | /* |
| 889 | * Normally the querytree should be valid already, but if it's not, |
| 890 | * rebuild it. |
| 891 | * |
| 892 | * NOTE: GetCachedPlan should have called RevalidateCachedQuery first, so |
| 893 | * we ought to be holding sufficient locks to prevent any invalidation. |
| 894 | * However, if we're building a custom plan after having built and |
| 895 | * rejected a generic plan, it's possible to reach here with is_valid |
| 896 | * false due to an invalidation while making the generic plan. In theory |
| 897 | * the invalidation must be a false positive, perhaps a consequence of an |
| 898 | * sinval reset event or the CLOBBER_CACHE_ALWAYS debug code. But for |
| 899 | * safety, let's treat it as real and redo the RevalidateCachedQuery call. |
| 900 | */ |
| 901 | if (!plansource->is_valid) |
| 902 | qlist = RevalidateCachedQuery(plansource, queryEnv); |
| 903 | |
| 904 | /* |
| 905 | * If we don't already have a copy of the querytree list that can be |
| 906 | * scribbled on by the planner, make one. For a one-shot plan, we assume |
| 907 | * it's okay to scribble on the original query_list. |
| 908 | */ |
| 909 | if (qlist == NIL) |
| 910 | { |
| 911 | if (!plansource->is_oneshot) |
| 912 | qlist = copyObject(plansource->query_list); |
| 913 | else |
| 914 | qlist = plansource->query_list; |
| 915 | } |
| 916 | |
| 917 | /* |
| 918 | * If a snapshot is already set (the normal case), we can just use that |
| 919 | * for planning. But if it isn't, and we need one, install one. |
| 920 | */ |
| 921 | snapshot_set = false; |
| 922 | if (!ActiveSnapshotSet() && |
| 923 | plansource->raw_parse_tree && |
| 924 | analyze_requires_snapshot(plansource->raw_parse_tree)) |
| 925 | { |
| 926 | PushActiveSnapshot(GetTransactionSnapshot()); |
| 927 | snapshot_set = true; |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * Generate the plan. |
| 932 | */ |
| 933 | plist = pg_plan_queries(qlist, plansource->cursor_options, boundParams); |
| 934 | |
| 935 | /* Release snapshot if we got one */ |
| 936 | if (snapshot_set) |
| 937 | PopActiveSnapshot(); |
| 938 | |
| 939 | /* |
| 940 | * Normally we make a dedicated memory context for the CachedPlan and its |
| 941 | * subsidiary data. (It's probably not going to be large, but just in |
| 942 | * case, allow it to grow large. It's transient for the moment.) But for |
| 943 | * a one-shot plan, we just leave it in the caller's memory context. |
| 944 | */ |
| 945 | if (!plansource->is_oneshot) |
| 946 | { |
| 947 | plan_context = AllocSetContextCreate(CurrentMemoryContext, |
| 948 | "CachedPlan" , |
| 949 | ALLOCSET_START_SMALL_SIZES); |
| 950 | MemoryContextCopyAndSetIdentifier(plan_context, plansource->query_string); |
| 951 | |
| 952 | /* |
| 953 | * Copy plan into the new context. |
| 954 | */ |
| 955 | MemoryContextSwitchTo(plan_context); |
| 956 | |
| 957 | plist = copyObject(plist); |
| 958 | } |
| 959 | else |
| 960 | plan_context = CurrentMemoryContext; |
| 961 | |
| 962 | /* |
| 963 | * Create and fill the CachedPlan struct within the new context. |
| 964 | */ |
| 965 | plan = (CachedPlan *) palloc(sizeof(CachedPlan)); |
| 966 | plan->magic = CACHEDPLAN_MAGIC; |
| 967 | plan->stmt_list = plist; |
| 968 | |
| 969 | /* |
| 970 | * CachedPlan is dependent on role either if RLS affected the rewrite |
| 971 | * phase or if a role dependency was injected during planning. And it's |
| 972 | * transient if any plan is marked so. |
| 973 | */ |
| 974 | plan->planRoleId = GetUserId(); |
| 975 | plan->dependsOnRole = plansource->dependsOnRLS; |
| 976 | is_transient = false; |
| 977 | foreach(lc, plist) |
| 978 | { |
| 979 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
| 980 | |
| 981 | if (plannedstmt->commandType == CMD_UTILITY) |
| 982 | continue; /* Ignore utility statements */ |
| 983 | |
| 984 | if (plannedstmt->transientPlan) |
| 985 | is_transient = true; |
| 986 | if (plannedstmt->dependsOnRole) |
| 987 | plan->dependsOnRole = true; |
| 988 | } |
| 989 | if (is_transient) |
| 990 | { |
| 991 | Assert(TransactionIdIsNormal(TransactionXmin)); |
| 992 | plan->saved_xmin = TransactionXmin; |
| 993 | } |
| 994 | else |
| 995 | plan->saved_xmin = InvalidTransactionId; |
| 996 | plan->refcount = 0; |
| 997 | plan->context = plan_context; |
| 998 | plan->is_oneshot = plansource->is_oneshot; |
| 999 | plan->is_saved = false; |
| 1000 | plan->is_valid = true; |
| 1001 | |
| 1002 | /* assign generation number to new plan */ |
| 1003 | plan->generation = ++(plansource->generation); |
| 1004 | |
| 1005 | MemoryContextSwitchTo(oldcxt); |
| 1006 | |
| 1007 | return plan; |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * choose_custom_plan: choose whether to use custom or generic plan |
| 1012 | * |
| 1013 | * This defines the policy followed by GetCachedPlan. |
| 1014 | */ |
| 1015 | static bool |
| 1016 | choose_custom_plan(CachedPlanSource *plansource, ParamListInfo boundParams) |
| 1017 | { |
| 1018 | double avg_custom_cost; |
| 1019 | |
| 1020 | /* One-shot plans will always be considered custom */ |
| 1021 | if (plansource->is_oneshot) |
| 1022 | return true; |
| 1023 | |
| 1024 | /* Otherwise, never any point in a custom plan if there's no parameters */ |
| 1025 | if (boundParams == NULL) |
| 1026 | return false; |
| 1027 | /* ... nor for transaction control statements */ |
| 1028 | if (IsTransactionStmtPlan(plansource)) |
| 1029 | return false; |
| 1030 | |
| 1031 | /* Let settings force the decision */ |
| 1032 | if (plan_cache_mode == PLAN_CACHE_MODE_FORCE_GENERIC_PLAN) |
| 1033 | return false; |
| 1034 | if (plan_cache_mode == PLAN_CACHE_MODE_FORCE_CUSTOM_PLAN) |
| 1035 | return true; |
| 1036 | |
| 1037 | /* See if caller wants to force the decision */ |
| 1038 | if (plansource->cursor_options & CURSOR_OPT_GENERIC_PLAN) |
| 1039 | return false; |
| 1040 | if (plansource->cursor_options & CURSOR_OPT_CUSTOM_PLAN) |
| 1041 | return true; |
| 1042 | |
| 1043 | /* Generate custom plans until we have done at least 5 (arbitrary) */ |
| 1044 | if (plansource->num_custom_plans < 5) |
| 1045 | return true; |
| 1046 | |
| 1047 | avg_custom_cost = plansource->total_custom_cost / plansource->num_custom_plans; |
| 1048 | |
| 1049 | /* |
| 1050 | * Prefer generic plan if it's less expensive than the average custom |
| 1051 | * plan. (Because we include a charge for cost of planning in the |
| 1052 | * custom-plan costs, this means the generic plan only has to be less |
| 1053 | * expensive than the execution cost plus replan cost of the custom |
| 1054 | * plans.) |
| 1055 | * |
| 1056 | * Note that if generic_cost is -1 (indicating we've not yet determined |
| 1057 | * the generic plan cost), we'll always prefer generic at this point. |
| 1058 | */ |
| 1059 | if (plansource->generic_cost < avg_custom_cost) |
| 1060 | return false; |
| 1061 | |
| 1062 | return true; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * cached_plan_cost: calculate estimated cost of a plan |
| 1067 | * |
| 1068 | * If include_planner is true, also include the estimated cost of constructing |
| 1069 | * the plan. (We must factor that into the cost of using a custom plan, but |
| 1070 | * we don't count it for a generic plan.) |
| 1071 | */ |
| 1072 | static double |
| 1073 | cached_plan_cost(CachedPlan *plan, bool include_planner) |
| 1074 | { |
| 1075 | double result = 0; |
| 1076 | ListCell *lc; |
| 1077 | |
| 1078 | foreach(lc, plan->stmt_list) |
| 1079 | { |
| 1080 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
| 1081 | |
| 1082 | if (plannedstmt->commandType == CMD_UTILITY) |
| 1083 | continue; /* Ignore utility statements */ |
| 1084 | |
| 1085 | result += plannedstmt->planTree->total_cost; |
| 1086 | |
| 1087 | if (include_planner) |
| 1088 | { |
| 1089 | /* |
| 1090 | * Currently we use a very crude estimate of planning effort based |
| 1091 | * on the number of relations in the finished plan's rangetable. |
| 1092 | * Join planning effort actually scales much worse than linearly |
| 1093 | * in the number of relations --- but only until the join collapse |
| 1094 | * limits kick in. Also, while inheritance child relations surely |
| 1095 | * add to planning effort, they don't make the join situation |
| 1096 | * worse. So the actual shape of the planning cost curve versus |
| 1097 | * number of relations isn't all that obvious. It will take |
| 1098 | * considerable work to arrive at a less crude estimate, and for |
| 1099 | * now it's not clear that's worth doing. |
| 1100 | * |
| 1101 | * The other big difficulty here is that we don't have any very |
| 1102 | * good model of how planning cost compares to execution costs. |
| 1103 | * The current multiplier of 1000 * cpu_operator_cost is probably |
| 1104 | * on the low side, but we'll try this for awhile before making a |
| 1105 | * more aggressive correction. |
| 1106 | * |
| 1107 | * If we ever do write a more complicated estimator, it should |
| 1108 | * probably live in src/backend/optimizer/ not here. |
| 1109 | */ |
| 1110 | int nrelations = list_length(plannedstmt->rtable); |
| 1111 | |
| 1112 | result += 1000.0 * cpu_operator_cost * (nrelations + 1); |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | return result; |
| 1117 | } |
| 1118 | |
| 1119 | /* |
| 1120 | * GetCachedPlan: get a cached plan from a CachedPlanSource. |
| 1121 | * |
| 1122 | * This function hides the logic that decides whether to use a generic |
| 1123 | * plan or a custom plan for the given parameters: the caller does not know |
| 1124 | * which it will get. |
| 1125 | * |
| 1126 | * On return, the plan is valid and we have sufficient locks to begin |
| 1127 | * execution. |
| 1128 | * |
| 1129 | * On return, the refcount of the plan has been incremented; a later |
| 1130 | * ReleaseCachedPlan() call is expected. The refcount has been reported |
| 1131 | * to the CurrentResourceOwner if useResOwner is true (note that that must |
| 1132 | * only be true if it's a "saved" CachedPlanSource). |
| 1133 | * |
| 1134 | * Note: if any replanning activity is required, the caller's memory context |
| 1135 | * is used for that work. |
| 1136 | */ |
| 1137 | CachedPlan * |
| 1138 | GetCachedPlan(CachedPlanSource *plansource, ParamListInfo boundParams, |
| 1139 | bool useResOwner, QueryEnvironment *queryEnv) |
| 1140 | { |
| 1141 | CachedPlan *plan = NULL; |
| 1142 | List *qlist; |
| 1143 | bool customplan; |
| 1144 | |
| 1145 | /* Assert caller is doing things in a sane order */ |
| 1146 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1147 | Assert(plansource->is_complete); |
| 1148 | /* This seems worth a real test, though */ |
| 1149 | if (useResOwner && !plansource->is_saved) |
| 1150 | elog(ERROR, "cannot apply ResourceOwner to non-saved cached plan" ); |
| 1151 | |
| 1152 | /* Make sure the querytree list is valid and we have parse-time locks */ |
| 1153 | qlist = RevalidateCachedQuery(plansource, queryEnv); |
| 1154 | |
| 1155 | /* Decide whether to use a custom plan */ |
| 1156 | customplan = choose_custom_plan(plansource, boundParams); |
| 1157 | |
| 1158 | if (!customplan) |
| 1159 | { |
| 1160 | if (CheckCachedPlan(plansource)) |
| 1161 | { |
| 1162 | /* We want a generic plan, and we already have a valid one */ |
| 1163 | plan = plansource->gplan; |
| 1164 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
| 1165 | } |
| 1166 | else |
| 1167 | { |
| 1168 | /* Build a new generic plan */ |
| 1169 | plan = BuildCachedPlan(plansource, qlist, NULL, queryEnv); |
| 1170 | /* Just make real sure plansource->gplan is clear */ |
| 1171 | ReleaseGenericPlan(plansource); |
| 1172 | /* Link the new generic plan into the plansource */ |
| 1173 | plansource->gplan = plan; |
| 1174 | plan->refcount++; |
| 1175 | /* Immediately reparent into appropriate context */ |
| 1176 | if (plansource->is_saved) |
| 1177 | { |
| 1178 | /* saved plans all live under CacheMemoryContext */ |
| 1179 | MemoryContextSetParent(plan->context, CacheMemoryContext); |
| 1180 | plan->is_saved = true; |
| 1181 | } |
| 1182 | else |
| 1183 | { |
| 1184 | /* otherwise, it should be a sibling of the plansource */ |
| 1185 | MemoryContextSetParent(plan->context, |
| 1186 | MemoryContextGetParent(plansource->context)); |
| 1187 | } |
| 1188 | /* Update generic_cost whenever we make a new generic plan */ |
| 1189 | plansource->generic_cost = cached_plan_cost(plan, false); |
| 1190 | |
| 1191 | /* |
| 1192 | * If, based on the now-known value of generic_cost, we'd not have |
| 1193 | * chosen to use a generic plan, then forget it and make a custom |
| 1194 | * plan. This is a bit of a wart but is necessary to avoid a |
| 1195 | * glitch in behavior when the custom plans are consistently big |
| 1196 | * winners; at some point we'll experiment with a generic plan and |
| 1197 | * find it's a loser, but we don't want to actually execute that |
| 1198 | * plan. |
| 1199 | */ |
| 1200 | customplan = choose_custom_plan(plansource, boundParams); |
| 1201 | |
| 1202 | /* |
| 1203 | * If we choose to plan again, we need to re-copy the query_list, |
| 1204 | * since the planner probably scribbled on it. We can force |
| 1205 | * BuildCachedPlan to do that by passing NIL. |
| 1206 | */ |
| 1207 | qlist = NIL; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | if (customplan) |
| 1212 | { |
| 1213 | /* Build a custom plan */ |
| 1214 | plan = BuildCachedPlan(plansource, qlist, boundParams, queryEnv); |
| 1215 | /* Accumulate total costs of custom plans, but 'ware overflow */ |
| 1216 | if (plansource->num_custom_plans < INT_MAX) |
| 1217 | { |
| 1218 | plansource->total_custom_cost += cached_plan_cost(plan, true); |
| 1219 | plansource->num_custom_plans++; |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | Assert(plan != NULL); |
| 1224 | |
| 1225 | /* Flag the plan as in use by caller */ |
| 1226 | if (useResOwner) |
| 1227 | ResourceOwnerEnlargePlanCacheRefs(CurrentResourceOwner); |
| 1228 | plan->refcount++; |
| 1229 | if (useResOwner) |
| 1230 | ResourceOwnerRememberPlanCacheRef(CurrentResourceOwner, plan); |
| 1231 | |
| 1232 | /* |
| 1233 | * Saved plans should be under CacheMemoryContext so they will not go away |
| 1234 | * until their reference count goes to zero. In the generic-plan cases we |
| 1235 | * already took care of that, but for a custom plan, do it as soon as we |
| 1236 | * have created a reference-counted link. |
| 1237 | */ |
| 1238 | if (customplan && plansource->is_saved) |
| 1239 | { |
| 1240 | MemoryContextSetParent(plan->context, CacheMemoryContext); |
| 1241 | plan->is_saved = true; |
| 1242 | } |
| 1243 | |
| 1244 | return plan; |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * ReleaseCachedPlan: release active use of a cached plan. |
| 1249 | * |
| 1250 | * This decrements the reference count, and frees the plan if the count |
| 1251 | * has thereby gone to zero. If useResOwner is true, it is assumed that |
| 1252 | * the reference count is managed by the CurrentResourceOwner. |
| 1253 | * |
| 1254 | * Note: useResOwner = false is used for releasing references that are in |
| 1255 | * persistent data structures, such as the parent CachedPlanSource or a |
| 1256 | * Portal. Transient references should be protected by a resource owner. |
| 1257 | */ |
| 1258 | void |
| 1259 | ReleaseCachedPlan(CachedPlan *plan, bool useResOwner) |
| 1260 | { |
| 1261 | Assert(plan->magic == CACHEDPLAN_MAGIC); |
| 1262 | if (useResOwner) |
| 1263 | { |
| 1264 | Assert(plan->is_saved); |
| 1265 | ResourceOwnerForgetPlanCacheRef(CurrentResourceOwner, plan); |
| 1266 | } |
| 1267 | Assert(plan->refcount > 0); |
| 1268 | plan->refcount--; |
| 1269 | if (plan->refcount == 0) |
| 1270 | { |
| 1271 | /* Mark it no longer valid */ |
| 1272 | plan->magic = 0; |
| 1273 | |
| 1274 | /* One-shot plans do not own their context, so we can't free them */ |
| 1275 | if (!plan->is_oneshot) |
| 1276 | MemoryContextDelete(plan->context); |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | /* |
| 1281 | * CachedPlanSetParentContext: move a CachedPlanSource to a new memory context |
| 1282 | * |
| 1283 | * This can only be applied to unsaved plans; once saved, a plan always |
| 1284 | * lives underneath CacheMemoryContext. |
| 1285 | */ |
| 1286 | void |
| 1287 | CachedPlanSetParentContext(CachedPlanSource *plansource, |
| 1288 | MemoryContext newcontext) |
| 1289 | { |
| 1290 | /* Assert caller is doing things in a sane order */ |
| 1291 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1292 | Assert(plansource->is_complete); |
| 1293 | |
| 1294 | /* These seem worth real tests, though */ |
| 1295 | if (plansource->is_saved) |
| 1296 | elog(ERROR, "cannot move a saved cached plan to another context" ); |
| 1297 | if (plansource->is_oneshot) |
| 1298 | elog(ERROR, "cannot move a one-shot cached plan to another context" ); |
| 1299 | |
| 1300 | /* OK, let the caller keep the plan where he wishes */ |
| 1301 | MemoryContextSetParent(plansource->context, newcontext); |
| 1302 | |
| 1303 | /* |
| 1304 | * The query_context needs no special handling, since it's a child of |
| 1305 | * plansource->context. But if there's a generic plan, it should be |
| 1306 | * maintained as a sibling of plansource->context. |
| 1307 | */ |
| 1308 | if (plansource->gplan) |
| 1309 | { |
| 1310 | Assert(plansource->gplan->magic == CACHEDPLAN_MAGIC); |
| 1311 | MemoryContextSetParent(plansource->gplan->context, newcontext); |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * CopyCachedPlan: make a copy of a CachedPlanSource |
| 1317 | * |
| 1318 | * This is a convenience routine that does the equivalent of |
| 1319 | * CreateCachedPlan + CompleteCachedPlan, using the data stored in the |
| 1320 | * input CachedPlanSource. The result is therefore "unsaved" (regardless |
| 1321 | * of the state of the source), and we don't copy any generic plan either. |
| 1322 | * The result will be currently valid, or not, the same as the source. |
| 1323 | */ |
| 1324 | CachedPlanSource * |
| 1325 | CopyCachedPlan(CachedPlanSource *plansource) |
| 1326 | { |
| 1327 | CachedPlanSource *newsource; |
| 1328 | MemoryContext source_context; |
| 1329 | MemoryContext querytree_context; |
| 1330 | MemoryContext oldcxt; |
| 1331 | |
| 1332 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1333 | Assert(plansource->is_complete); |
| 1334 | |
| 1335 | /* |
| 1336 | * One-shot plans can't be copied, because we haven't taken care that |
| 1337 | * parsing/planning didn't scribble on the raw parse tree or querytrees. |
| 1338 | */ |
| 1339 | if (plansource->is_oneshot) |
| 1340 | elog(ERROR, "cannot copy a one-shot cached plan" ); |
| 1341 | |
| 1342 | source_context = AllocSetContextCreate(CurrentMemoryContext, |
| 1343 | "CachedPlanSource" , |
| 1344 | ALLOCSET_START_SMALL_SIZES); |
| 1345 | |
| 1346 | oldcxt = MemoryContextSwitchTo(source_context); |
| 1347 | |
| 1348 | newsource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); |
| 1349 | newsource->magic = CACHEDPLANSOURCE_MAGIC; |
| 1350 | newsource->raw_parse_tree = copyObject(plansource->raw_parse_tree); |
| 1351 | newsource->query_string = pstrdup(plansource->query_string); |
| 1352 | MemoryContextSetIdentifier(source_context, newsource->query_string); |
| 1353 | newsource->commandTag = plansource->commandTag; |
| 1354 | if (plansource->num_params > 0) |
| 1355 | { |
| 1356 | newsource->param_types = (Oid *) |
| 1357 | palloc(plansource->num_params * sizeof(Oid)); |
| 1358 | memcpy(newsource->param_types, plansource->param_types, |
| 1359 | plansource->num_params * sizeof(Oid)); |
| 1360 | } |
| 1361 | else |
| 1362 | newsource->param_types = NULL; |
| 1363 | newsource->num_params = plansource->num_params; |
| 1364 | newsource->parserSetup = plansource->parserSetup; |
| 1365 | newsource->parserSetupArg = plansource->parserSetupArg; |
| 1366 | newsource->cursor_options = plansource->cursor_options; |
| 1367 | newsource->fixed_result = plansource->fixed_result; |
| 1368 | if (plansource->resultDesc) |
| 1369 | newsource->resultDesc = CreateTupleDescCopy(plansource->resultDesc); |
| 1370 | else |
| 1371 | newsource->resultDesc = NULL; |
| 1372 | newsource->context = source_context; |
| 1373 | |
| 1374 | querytree_context = AllocSetContextCreate(source_context, |
| 1375 | "CachedPlanQuery" , |
| 1376 | ALLOCSET_START_SMALL_SIZES); |
| 1377 | MemoryContextSwitchTo(querytree_context); |
| 1378 | newsource->query_list = copyObject(plansource->query_list); |
| 1379 | newsource->relationOids = copyObject(plansource->relationOids); |
| 1380 | newsource->invalItems = copyObject(plansource->invalItems); |
| 1381 | if (plansource->search_path) |
| 1382 | newsource->search_path = CopyOverrideSearchPath(plansource->search_path); |
| 1383 | newsource->query_context = querytree_context; |
| 1384 | newsource->rewriteRoleId = plansource->rewriteRoleId; |
| 1385 | newsource->rewriteRowSecurity = plansource->rewriteRowSecurity; |
| 1386 | newsource->dependsOnRLS = plansource->dependsOnRLS; |
| 1387 | |
| 1388 | newsource->gplan = NULL; |
| 1389 | |
| 1390 | newsource->is_oneshot = false; |
| 1391 | newsource->is_complete = true; |
| 1392 | newsource->is_saved = false; |
| 1393 | newsource->is_valid = plansource->is_valid; |
| 1394 | newsource->generation = plansource->generation; |
| 1395 | |
| 1396 | /* We may as well copy any acquired cost knowledge */ |
| 1397 | newsource->generic_cost = plansource->generic_cost; |
| 1398 | newsource->total_custom_cost = plansource->total_custom_cost; |
| 1399 | newsource->num_custom_plans = plansource->num_custom_plans; |
| 1400 | |
| 1401 | MemoryContextSwitchTo(oldcxt); |
| 1402 | |
| 1403 | return newsource; |
| 1404 | } |
| 1405 | |
| 1406 | /* |
| 1407 | * CachedPlanIsValid: test whether the rewritten querytree within a |
| 1408 | * CachedPlanSource is currently valid (that is, not marked as being in need |
| 1409 | * of revalidation). |
| 1410 | * |
| 1411 | * This result is only trustworthy (ie, free from race conditions) if |
| 1412 | * the caller has acquired locks on all the relations used in the plan. |
| 1413 | */ |
| 1414 | bool |
| 1415 | CachedPlanIsValid(CachedPlanSource *plansource) |
| 1416 | { |
| 1417 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1418 | return plansource->is_valid; |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * CachedPlanGetTargetList: return tlist, if any, describing plan's output |
| 1423 | * |
| 1424 | * The result is guaranteed up-to-date. However, it is local storage |
| 1425 | * within the cached plan, and may disappear next time the plan is updated. |
| 1426 | */ |
| 1427 | List * |
| 1428 | CachedPlanGetTargetList(CachedPlanSource *plansource, |
| 1429 | QueryEnvironment *queryEnv) |
| 1430 | { |
| 1431 | Query *pstmt; |
| 1432 | |
| 1433 | /* Assert caller is doing things in a sane order */ |
| 1434 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1435 | Assert(plansource->is_complete); |
| 1436 | |
| 1437 | /* |
| 1438 | * No work needed if statement doesn't return tuples (we assume this |
| 1439 | * feature cannot be changed by an invalidation) |
| 1440 | */ |
| 1441 | if (plansource->resultDesc == NULL) |
| 1442 | return NIL; |
| 1443 | |
| 1444 | /* Make sure the querytree list is valid and we have parse-time locks */ |
| 1445 | RevalidateCachedQuery(plansource, queryEnv); |
| 1446 | |
| 1447 | /* Get the primary statement and find out what it returns */ |
| 1448 | pstmt = QueryListGetPrimaryStmt(plansource->query_list); |
| 1449 | |
| 1450 | return FetchStatementTargetList((Node *) pstmt); |
| 1451 | } |
| 1452 | |
| 1453 | /* |
| 1454 | * GetCachedExpression: construct a CachedExpression for an expression. |
| 1455 | * |
| 1456 | * This performs the same transformations on the expression as |
| 1457 | * expression_planner(), ie, convert an expression as emitted by parse |
| 1458 | * analysis to be ready to pass to the executor. |
| 1459 | * |
| 1460 | * The result is stashed in a private, long-lived memory context. |
| 1461 | * (Note that this might leak a good deal of memory in the caller's |
| 1462 | * context before that.) The passed-in expr tree is not modified. |
| 1463 | */ |
| 1464 | CachedExpression * |
| 1465 | GetCachedExpression(Node *expr) |
| 1466 | { |
| 1467 | CachedExpression *cexpr; |
| 1468 | List *relationOids; |
| 1469 | List *invalItems; |
| 1470 | MemoryContext cexpr_context; |
| 1471 | MemoryContext oldcxt; |
| 1472 | |
| 1473 | /* |
| 1474 | * Pass the expression through the planner, and collect dependencies. |
| 1475 | * Everything built here is leaked in the caller's context; that's |
| 1476 | * intentional to minimize the size of the permanent data structure. |
| 1477 | */ |
| 1478 | expr = (Node *) expression_planner_with_deps((Expr *) expr, |
| 1479 | &relationOids, |
| 1480 | &invalItems); |
| 1481 | |
| 1482 | /* |
| 1483 | * Make a private memory context, and copy what we need into that. To |
| 1484 | * avoid leaking a long-lived context if we fail while copying data, we |
| 1485 | * initially make the context under the caller's context. |
| 1486 | */ |
| 1487 | cexpr_context = AllocSetContextCreate(CurrentMemoryContext, |
| 1488 | "CachedExpression" , |
| 1489 | ALLOCSET_SMALL_SIZES); |
| 1490 | |
| 1491 | oldcxt = MemoryContextSwitchTo(cexpr_context); |
| 1492 | |
| 1493 | cexpr = (CachedExpression *) palloc(sizeof(CachedExpression)); |
| 1494 | cexpr->magic = CACHEDEXPR_MAGIC; |
| 1495 | cexpr->expr = copyObject(expr); |
| 1496 | cexpr->is_valid = true; |
| 1497 | cexpr->relationOids = copyObject(relationOids); |
| 1498 | cexpr->invalItems = copyObject(invalItems); |
| 1499 | cexpr->context = cexpr_context; |
| 1500 | |
| 1501 | MemoryContextSwitchTo(oldcxt); |
| 1502 | |
| 1503 | /* |
| 1504 | * Reparent the expr's memory context under CacheMemoryContext so that it |
| 1505 | * will live indefinitely. |
| 1506 | */ |
| 1507 | MemoryContextSetParent(cexpr_context, CacheMemoryContext); |
| 1508 | |
| 1509 | /* |
| 1510 | * Add the entry to the global list of cached expressions. |
| 1511 | */ |
| 1512 | dlist_push_tail(&cached_expression_list, &cexpr->node); |
| 1513 | |
| 1514 | return cexpr; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * FreeCachedExpression |
| 1519 | * Delete a CachedExpression. |
| 1520 | */ |
| 1521 | void |
| 1522 | FreeCachedExpression(CachedExpression *cexpr) |
| 1523 | { |
| 1524 | /* Sanity check */ |
| 1525 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
| 1526 | /* Unlink from global list */ |
| 1527 | dlist_delete(&cexpr->node); |
| 1528 | /* Free all storage associated with CachedExpression */ |
| 1529 | MemoryContextDelete(cexpr->context); |
| 1530 | } |
| 1531 | |
| 1532 | /* |
| 1533 | * QueryListGetPrimaryStmt |
| 1534 | * Get the "primary" stmt within a list, ie, the one marked canSetTag. |
| 1535 | * |
| 1536 | * Returns NULL if no such stmt. If multiple queries within the list are |
| 1537 | * marked canSetTag, returns the first one. Neither of these cases should |
| 1538 | * occur in present usages of this function. |
| 1539 | */ |
| 1540 | static Query * |
| 1541 | QueryListGetPrimaryStmt(List *stmts) |
| 1542 | { |
| 1543 | ListCell *lc; |
| 1544 | |
| 1545 | foreach(lc, stmts) |
| 1546 | { |
| 1547 | Query *stmt = lfirst_node(Query, lc); |
| 1548 | |
| 1549 | if (stmt->canSetTag) |
| 1550 | return stmt; |
| 1551 | } |
| 1552 | return NULL; |
| 1553 | } |
| 1554 | |
| 1555 | /* |
| 1556 | * AcquireExecutorLocks: acquire locks needed for execution of a cached plan; |
| 1557 | * or release them if acquire is false. |
| 1558 | */ |
| 1559 | static void |
| 1560 | AcquireExecutorLocks(List *stmt_list, bool acquire) |
| 1561 | { |
| 1562 | ListCell *lc1; |
| 1563 | |
| 1564 | foreach(lc1, stmt_list) |
| 1565 | { |
| 1566 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc1); |
| 1567 | ListCell *lc2; |
| 1568 | |
| 1569 | if (plannedstmt->commandType == CMD_UTILITY) |
| 1570 | { |
| 1571 | /* |
| 1572 | * Ignore utility statements, except those (such as EXPLAIN) that |
| 1573 | * contain a parsed-but-not-planned query. Note: it's okay to use |
| 1574 | * ScanQueryForLocks, even though the query hasn't been through |
| 1575 | * rule rewriting, because rewriting doesn't change the query |
| 1576 | * representation. |
| 1577 | */ |
| 1578 | Query *query = UtilityContainsQuery(plannedstmt->utilityStmt); |
| 1579 | |
| 1580 | if (query) |
| 1581 | ScanQueryForLocks(query, acquire); |
| 1582 | continue; |
| 1583 | } |
| 1584 | |
| 1585 | foreach(lc2, plannedstmt->rtable) |
| 1586 | { |
| 1587 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2); |
| 1588 | |
| 1589 | if (rte->rtekind != RTE_RELATION) |
| 1590 | continue; |
| 1591 | |
| 1592 | /* |
| 1593 | * Acquire the appropriate type of lock on each relation OID. Note |
| 1594 | * that we don't actually try to open the rel, and hence will not |
| 1595 | * fail if it's been dropped entirely --- we'll just transiently |
| 1596 | * acquire a non-conflicting lock. |
| 1597 | */ |
| 1598 | if (acquire) |
| 1599 | LockRelationOid(rte->relid, rte->rellockmode); |
| 1600 | else |
| 1601 | UnlockRelationOid(rte->relid, rte->rellockmode); |
| 1602 | } |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | /* |
| 1607 | * AcquirePlannerLocks: acquire locks needed for planning of a querytree list; |
| 1608 | * or release them if acquire is false. |
| 1609 | * |
| 1610 | * Note that we don't actually try to open the relations, and hence will not |
| 1611 | * fail if one has been dropped entirely --- we'll just transiently acquire |
| 1612 | * a non-conflicting lock. |
| 1613 | */ |
| 1614 | static void |
| 1615 | AcquirePlannerLocks(List *stmt_list, bool acquire) |
| 1616 | { |
| 1617 | ListCell *lc; |
| 1618 | |
| 1619 | foreach(lc, stmt_list) |
| 1620 | { |
| 1621 | Query *query = lfirst_node(Query, lc); |
| 1622 | |
| 1623 | if (query->commandType == CMD_UTILITY) |
| 1624 | { |
| 1625 | /* Ignore utility statements, unless they contain a Query */ |
| 1626 | query = UtilityContainsQuery(query->utilityStmt); |
| 1627 | if (query) |
| 1628 | ScanQueryForLocks(query, acquire); |
| 1629 | continue; |
| 1630 | } |
| 1631 | |
| 1632 | ScanQueryForLocks(query, acquire); |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | * ScanQueryForLocks: recursively scan one Query for AcquirePlannerLocks. |
| 1638 | */ |
| 1639 | static void |
| 1640 | ScanQueryForLocks(Query *parsetree, bool acquire) |
| 1641 | { |
| 1642 | ListCell *lc; |
| 1643 | |
| 1644 | /* Shouldn't get called on utility commands */ |
| 1645 | Assert(parsetree->commandType != CMD_UTILITY); |
| 1646 | |
| 1647 | /* |
| 1648 | * First, process RTEs of the current query level. |
| 1649 | */ |
| 1650 | foreach(lc, parsetree->rtable) |
| 1651 | { |
| 1652 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
| 1653 | |
| 1654 | switch (rte->rtekind) |
| 1655 | { |
| 1656 | case RTE_RELATION: |
| 1657 | /* Acquire or release the appropriate type of lock */ |
| 1658 | if (acquire) |
| 1659 | LockRelationOid(rte->relid, rte->rellockmode); |
| 1660 | else |
| 1661 | UnlockRelationOid(rte->relid, rte->rellockmode); |
| 1662 | break; |
| 1663 | |
| 1664 | case RTE_SUBQUERY: |
| 1665 | /* Recurse into subquery-in-FROM */ |
| 1666 | ScanQueryForLocks(rte->subquery, acquire); |
| 1667 | break; |
| 1668 | |
| 1669 | default: |
| 1670 | /* ignore other types of RTEs */ |
| 1671 | break; |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | /* Recurse into subquery-in-WITH */ |
| 1676 | foreach(lc, parsetree->cteList) |
| 1677 | { |
| 1678 | CommonTableExpr *cte = lfirst_node(CommonTableExpr, lc); |
| 1679 | |
| 1680 | ScanQueryForLocks(castNode(Query, cte->ctequery), acquire); |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * Recurse into sublink subqueries, too. But we already did the ones in |
| 1685 | * the rtable and cteList. |
| 1686 | */ |
| 1687 | if (parsetree->hasSubLinks) |
| 1688 | { |
| 1689 | query_tree_walker(parsetree, ScanQueryWalker, |
| 1690 | (void *) &acquire, |
| 1691 | QTW_IGNORE_RC_SUBQUERIES); |
| 1692 | } |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * Walker to find sublink subqueries for ScanQueryForLocks |
| 1697 | */ |
| 1698 | static bool |
| 1699 | ScanQueryWalker(Node *node, bool *acquire) |
| 1700 | { |
| 1701 | if (node == NULL) |
| 1702 | return false; |
| 1703 | if (IsA(node, SubLink)) |
| 1704 | { |
| 1705 | SubLink *sub = (SubLink *) node; |
| 1706 | |
| 1707 | /* Do what we came for */ |
| 1708 | ScanQueryForLocks(castNode(Query, sub->subselect), *acquire); |
| 1709 | /* Fall through to process lefthand args of SubLink */ |
| 1710 | } |
| 1711 | |
| 1712 | /* |
| 1713 | * Do NOT recurse into Query nodes, because ScanQueryForLocks already |
| 1714 | * processed subselects of subselects for us. |
| 1715 | */ |
| 1716 | return expression_tree_walker(node, ScanQueryWalker, |
| 1717 | (void *) acquire); |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * PlanCacheComputeResultDesc: given a list of analyzed-and-rewritten Queries, |
| 1722 | * determine the result tupledesc it will produce. Returns NULL if the |
| 1723 | * execution will not return tuples. |
| 1724 | * |
| 1725 | * Note: the result is created or copied into current memory context. |
| 1726 | */ |
| 1727 | static TupleDesc |
| 1728 | PlanCacheComputeResultDesc(List *stmt_list) |
| 1729 | { |
| 1730 | Query *query; |
| 1731 | |
| 1732 | switch (ChoosePortalStrategy(stmt_list)) |
| 1733 | { |
| 1734 | case PORTAL_ONE_SELECT: |
| 1735 | case PORTAL_ONE_MOD_WITH: |
| 1736 | query = linitial_node(Query, stmt_list); |
| 1737 | return ExecCleanTypeFromTL(query->targetList); |
| 1738 | |
| 1739 | case PORTAL_ONE_RETURNING: |
| 1740 | query = QueryListGetPrimaryStmt(stmt_list); |
| 1741 | Assert(query->returningList); |
| 1742 | return ExecCleanTypeFromTL(query->returningList); |
| 1743 | |
| 1744 | case PORTAL_UTIL_SELECT: |
| 1745 | query = linitial_node(Query, stmt_list); |
| 1746 | Assert(query->utilityStmt); |
| 1747 | return UtilityTupleDescriptor(query->utilityStmt); |
| 1748 | |
| 1749 | case PORTAL_MULTI_QUERY: |
| 1750 | /* will not return tuples */ |
| 1751 | break; |
| 1752 | } |
| 1753 | return NULL; |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | * PlanCacheRelCallback |
| 1758 | * Relcache inval callback function |
| 1759 | * |
| 1760 | * Invalidate all plans mentioning the given rel, or all plans mentioning |
| 1761 | * any rel at all if relid == InvalidOid. |
| 1762 | */ |
| 1763 | static void |
| 1764 | PlanCacheRelCallback(Datum arg, Oid relid) |
| 1765 | { |
| 1766 | dlist_iter iter; |
| 1767 | |
| 1768 | dlist_foreach(iter, &saved_plan_list) |
| 1769 | { |
| 1770 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
| 1771 | node, iter.cur); |
| 1772 | |
| 1773 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1774 | |
| 1775 | /* No work if it's already invalidated */ |
| 1776 | if (!plansource->is_valid) |
| 1777 | continue; |
| 1778 | |
| 1779 | /* Never invalidate transaction control commands */ |
| 1780 | if (IsTransactionStmtPlan(plansource)) |
| 1781 | continue; |
| 1782 | |
| 1783 | /* |
| 1784 | * Check the dependency list for the rewritten querytree. |
| 1785 | */ |
| 1786 | if ((relid == InvalidOid) ? plansource->relationOids != NIL : |
| 1787 | list_member_oid(plansource->relationOids, relid)) |
| 1788 | { |
| 1789 | /* Invalidate the querytree and generic plan */ |
| 1790 | plansource->is_valid = false; |
| 1791 | if (plansource->gplan) |
| 1792 | plansource->gplan->is_valid = false; |
| 1793 | } |
| 1794 | |
| 1795 | /* |
| 1796 | * The generic plan, if any, could have more dependencies than the |
| 1797 | * querytree does, so we have to check it too. |
| 1798 | */ |
| 1799 | if (plansource->gplan && plansource->gplan->is_valid) |
| 1800 | { |
| 1801 | ListCell *lc; |
| 1802 | |
| 1803 | foreach(lc, plansource->gplan->stmt_list) |
| 1804 | { |
| 1805 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
| 1806 | |
| 1807 | if (plannedstmt->commandType == CMD_UTILITY) |
| 1808 | continue; /* Ignore utility statements */ |
| 1809 | if ((relid == InvalidOid) ? plannedstmt->relationOids != NIL : |
| 1810 | list_member_oid(plannedstmt->relationOids, relid)) |
| 1811 | { |
| 1812 | /* Invalidate the generic plan only */ |
| 1813 | plansource->gplan->is_valid = false; |
| 1814 | break; /* out of stmt_list scan */ |
| 1815 | } |
| 1816 | } |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | /* Likewise check cached expressions */ |
| 1821 | dlist_foreach(iter, &cached_expression_list) |
| 1822 | { |
| 1823 | CachedExpression *cexpr = dlist_container(CachedExpression, |
| 1824 | node, iter.cur); |
| 1825 | |
| 1826 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
| 1827 | |
| 1828 | /* No work if it's already invalidated */ |
| 1829 | if (!cexpr->is_valid) |
| 1830 | continue; |
| 1831 | |
| 1832 | if ((relid == InvalidOid) ? cexpr->relationOids != NIL : |
| 1833 | list_member_oid(cexpr->relationOids, relid)) |
| 1834 | { |
| 1835 | cexpr->is_valid = false; |
| 1836 | } |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | /* |
| 1841 | * PlanCacheObjectCallback |
| 1842 | * Syscache inval callback function for PROCOID and TYPEOID caches |
| 1843 | * |
| 1844 | * Invalidate all plans mentioning the object with the specified hash value, |
| 1845 | * or all plans mentioning any member of this cache if hashvalue == 0. |
| 1846 | */ |
| 1847 | static void |
| 1848 | PlanCacheObjectCallback(Datum arg, int cacheid, uint32 hashvalue) |
| 1849 | { |
| 1850 | dlist_iter iter; |
| 1851 | |
| 1852 | dlist_foreach(iter, &saved_plan_list) |
| 1853 | { |
| 1854 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
| 1855 | node, iter.cur); |
| 1856 | ListCell *lc; |
| 1857 | |
| 1858 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1859 | |
| 1860 | /* No work if it's already invalidated */ |
| 1861 | if (!plansource->is_valid) |
| 1862 | continue; |
| 1863 | |
| 1864 | /* Never invalidate transaction control commands */ |
| 1865 | if (IsTransactionStmtPlan(plansource)) |
| 1866 | continue; |
| 1867 | |
| 1868 | /* |
| 1869 | * Check the dependency list for the rewritten querytree. |
| 1870 | */ |
| 1871 | foreach(lc, plansource->invalItems) |
| 1872 | { |
| 1873 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc); |
| 1874 | |
| 1875 | if (item->cacheId != cacheid) |
| 1876 | continue; |
| 1877 | if (hashvalue == 0 || |
| 1878 | item->hashValue == hashvalue) |
| 1879 | { |
| 1880 | /* Invalidate the querytree and generic plan */ |
| 1881 | plansource->is_valid = false; |
| 1882 | if (plansource->gplan) |
| 1883 | plansource->gplan->is_valid = false; |
| 1884 | break; |
| 1885 | } |
| 1886 | } |
| 1887 | |
| 1888 | /* |
| 1889 | * The generic plan, if any, could have more dependencies than the |
| 1890 | * querytree does, so we have to check it too. |
| 1891 | */ |
| 1892 | if (plansource->gplan && plansource->gplan->is_valid) |
| 1893 | { |
| 1894 | foreach(lc, plansource->gplan->stmt_list) |
| 1895 | { |
| 1896 | PlannedStmt *plannedstmt = lfirst_node(PlannedStmt, lc); |
| 1897 | ListCell *lc3; |
| 1898 | |
| 1899 | if (plannedstmt->commandType == CMD_UTILITY) |
| 1900 | continue; /* Ignore utility statements */ |
| 1901 | foreach(lc3, plannedstmt->invalItems) |
| 1902 | { |
| 1903 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc3); |
| 1904 | |
| 1905 | if (item->cacheId != cacheid) |
| 1906 | continue; |
| 1907 | if (hashvalue == 0 || |
| 1908 | item->hashValue == hashvalue) |
| 1909 | { |
| 1910 | /* Invalidate the generic plan only */ |
| 1911 | plansource->gplan->is_valid = false; |
| 1912 | break; /* out of invalItems scan */ |
| 1913 | } |
| 1914 | } |
| 1915 | if (!plansource->gplan->is_valid) |
| 1916 | break; /* out of stmt_list scan */ |
| 1917 | } |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | /* Likewise check cached expressions */ |
| 1922 | dlist_foreach(iter, &cached_expression_list) |
| 1923 | { |
| 1924 | CachedExpression *cexpr = dlist_container(CachedExpression, |
| 1925 | node, iter.cur); |
| 1926 | ListCell *lc; |
| 1927 | |
| 1928 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
| 1929 | |
| 1930 | /* No work if it's already invalidated */ |
| 1931 | if (!cexpr->is_valid) |
| 1932 | continue; |
| 1933 | |
| 1934 | foreach(lc, cexpr->invalItems) |
| 1935 | { |
| 1936 | PlanInvalItem *item = (PlanInvalItem *) lfirst(lc); |
| 1937 | |
| 1938 | if (item->cacheId != cacheid) |
| 1939 | continue; |
| 1940 | if (hashvalue == 0 || |
| 1941 | item->hashValue == hashvalue) |
| 1942 | { |
| 1943 | cexpr->is_valid = false; |
| 1944 | break; |
| 1945 | } |
| 1946 | } |
| 1947 | } |
| 1948 | } |
| 1949 | |
| 1950 | /* |
| 1951 | * PlanCacheSysCallback |
| 1952 | * Syscache inval callback function for other caches |
| 1953 | * |
| 1954 | * Just invalidate everything... |
| 1955 | */ |
| 1956 | static void |
| 1957 | PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue) |
| 1958 | { |
| 1959 | ResetPlanCache(); |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | * ResetPlanCache: invalidate all cached plans. |
| 1964 | */ |
| 1965 | void |
| 1966 | ResetPlanCache(void) |
| 1967 | { |
| 1968 | dlist_iter iter; |
| 1969 | |
| 1970 | dlist_foreach(iter, &saved_plan_list) |
| 1971 | { |
| 1972 | CachedPlanSource *plansource = dlist_container(CachedPlanSource, |
| 1973 | node, iter.cur); |
| 1974 | ListCell *lc; |
| 1975 | |
| 1976 | Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); |
| 1977 | |
| 1978 | /* No work if it's already invalidated */ |
| 1979 | if (!plansource->is_valid) |
| 1980 | continue; |
| 1981 | |
| 1982 | /* |
| 1983 | * We *must not* mark transaction control statements as invalid, |
| 1984 | * particularly not ROLLBACK, because they may need to be executed in |
| 1985 | * aborted transactions when we can't revalidate them (cf bug #5269). |
| 1986 | */ |
| 1987 | if (IsTransactionStmtPlan(plansource)) |
| 1988 | continue; |
| 1989 | |
| 1990 | /* |
| 1991 | * In general there is no point in invalidating utility statements |
| 1992 | * since they have no plans anyway. So invalidate it only if it |
| 1993 | * contains at least one non-utility statement, or contains a utility |
| 1994 | * statement that contains a pre-analyzed query (which could have |
| 1995 | * dependencies.) |
| 1996 | */ |
| 1997 | foreach(lc, plansource->query_list) |
| 1998 | { |
| 1999 | Query *query = lfirst_node(Query, lc); |
| 2000 | |
| 2001 | if (query->commandType != CMD_UTILITY || |
| 2002 | UtilityContainsQuery(query->utilityStmt)) |
| 2003 | { |
| 2004 | /* non-utility statement, so invalidate */ |
| 2005 | plansource->is_valid = false; |
| 2006 | if (plansource->gplan) |
| 2007 | plansource->gplan->is_valid = false; |
| 2008 | /* no need to look further */ |
| 2009 | break; |
| 2010 | } |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | /* Likewise invalidate cached expressions */ |
| 2015 | dlist_foreach(iter, &cached_expression_list) |
| 2016 | { |
| 2017 | CachedExpression *cexpr = dlist_container(CachedExpression, |
| 2018 | node, iter.cur); |
| 2019 | |
| 2020 | Assert(cexpr->magic == CACHEDEXPR_MAGIC); |
| 2021 | |
| 2022 | cexpr->is_valid = false; |
| 2023 | } |
| 2024 | } |
| 2025 | |