| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * freepage.c |
| 4 | * Management of free memory pages. |
| 5 | * |
| 6 | * The intention of this code is to provide infrastructure for memory |
| 7 | * allocators written specifically for PostgreSQL. At least in the case |
| 8 | * of dynamic shared memory, we can't simply use malloc() or even |
| 9 | * relatively thin wrappers like palloc() which sit on top of it, because |
| 10 | * no allocator built into the operating system will deal with relative |
| 11 | * pointers. In the future, we may find other cases in which greater |
| 12 | * control over our own memory management seems desirable. |
| 13 | * |
| 14 | * A FreePageManager keeps track of which 4kB pages of memory are currently |
| 15 | * unused from the point of view of some higher-level memory allocator. |
| 16 | * Unlike a user-facing allocator such as palloc(), a FreePageManager can |
| 17 | * only allocate and free in units of whole pages, and freeing an |
| 18 | * allocation can only be done given knowledge of its length in pages. |
| 19 | * |
| 20 | * Since a free page manager has only a fixed amount of dedicated memory, |
| 21 | * and since there is no underlying allocator, it uses the free pages |
| 22 | * it is given to manage to store its bookkeeping data. It keeps multiple |
| 23 | * freelists of runs of pages, sorted by the size of the run; the head of |
| 24 | * each freelist is stored in the FreePageManager itself, and the first |
| 25 | * page of each run contains a relative pointer to the next run. See |
| 26 | * FreePageManagerGetInternal for more details on how the freelists are |
| 27 | * managed. |
| 28 | * |
| 29 | * To avoid memory fragmentation, it's important to consolidate adjacent |
| 30 | * spans of pages whenever possible; otherwise, large allocation requests |
| 31 | * might not be satisfied even when sufficient contiguous space is |
| 32 | * available. Therefore, in addition to the freelists, we maintain an |
| 33 | * in-memory btree of free page ranges ordered by page number. If a |
| 34 | * range being freed precedes or follows a range that is already free, |
| 35 | * the existing range is extended; if it exactly bridges the gap between |
| 36 | * free ranges, then the two existing ranges are consolidated with the |
| 37 | * newly-freed range to form one great big range of free pages. |
| 38 | * |
| 39 | * When there is only one range of free pages, the btree is trivial and |
| 40 | * is stored within the FreePageManager proper; otherwise, pages are |
| 41 | * allocated from the area under management as needed. Even in cases |
| 42 | * where memory fragmentation is very severe, only a tiny fraction of |
| 43 | * the pages under management are consumed by this btree. |
| 44 | * |
| 45 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 46 | * Portions Copyright (c) 1994, Regents of the University of California |
| 47 | * |
| 48 | * IDENTIFICATION |
| 49 | * src/backend/utils/mmgr/freepage.c |
| 50 | * |
| 51 | *------------------------------------------------------------------------- |
| 52 | */ |
| 53 | |
| 54 | #include "postgres.h" |
| 55 | #include "lib/stringinfo.h" |
| 56 | #include "miscadmin.h" |
| 57 | |
| 58 | #include "utils/freepage.h" |
| 59 | #include "utils/relptr.h" |
| 60 | |
| 61 | |
| 62 | /* Magic numbers to identify various page types */ |
| 63 | #define FREE_PAGE_SPAN_LEADER_MAGIC 0xea4020f0 |
| 64 | #define FREE_PAGE_LEAF_MAGIC 0x98eae728 |
| 65 | #define FREE_PAGE_INTERNAL_MAGIC 0x19aa32c9 |
| 66 | |
| 67 | /* Doubly linked list of spans of free pages; stored in first page of span. */ |
| 68 | struct FreePageSpanLeader |
| 69 | { |
| 70 | int magic; /* always FREE_PAGE_SPAN_LEADER_MAGIC */ |
| 71 | Size npages; /* number of pages in span */ |
| 72 | RelptrFreePageSpanLeader prev; |
| 73 | RelptrFreePageSpanLeader next; |
| 74 | }; |
| 75 | |
| 76 | /* Common header for btree leaf and internal pages. */ |
| 77 | typedef struct |
| 78 | { |
| 79 | int ; /* FREE_PAGE_LEAF_MAGIC or |
| 80 | * FREE_PAGE_INTERNAL_MAGIC */ |
| 81 | Size ; /* number of items used */ |
| 82 | RelptrFreePageBtree ; /* uplink */ |
| 83 | } ; |
| 84 | |
| 85 | /* Internal key; points to next level of btree. */ |
| 86 | typedef struct FreePageBtreeInternalKey |
| 87 | { |
| 88 | Size first_page; /* low bound for keys on child page */ |
| 89 | RelptrFreePageBtree child; /* downlink */ |
| 90 | } FreePageBtreeInternalKey; |
| 91 | |
| 92 | /* Leaf key; no payload data. */ |
| 93 | typedef struct FreePageBtreeLeafKey |
| 94 | { |
| 95 | Size first_page; /* first page in span */ |
| 96 | Size npages; /* number of pages in span */ |
| 97 | } FreePageBtreeLeafKey; |
| 98 | |
| 99 | /* Work out how many keys will fit on a page. */ |
| 100 | #define FPM_ITEMS_PER_INTERNAL_PAGE \ |
| 101 | ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \ |
| 102 | sizeof(FreePageBtreeInternalKey)) |
| 103 | #define FPM_ITEMS_PER_LEAF_PAGE \ |
| 104 | ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \ |
| 105 | sizeof(FreePageBtreeLeafKey)) |
| 106 | |
| 107 | /* A btree page of either sort */ |
| 108 | struct FreePageBtree |
| 109 | { |
| 110 | FreePageBtreeHeader hdr; |
| 111 | union |
| 112 | { |
| 113 | FreePageBtreeInternalKey internal_key[FPM_ITEMS_PER_INTERNAL_PAGE]; |
| 114 | FreePageBtreeLeafKey leaf_key[FPM_ITEMS_PER_LEAF_PAGE]; |
| 115 | } u; |
| 116 | }; |
| 117 | |
| 118 | /* Results of a btree search */ |
| 119 | typedef struct FreePageBtreeSearchResult |
| 120 | { |
| 121 | FreePageBtree *page; |
| 122 | Size index; |
| 123 | bool found; |
| 124 | unsigned split_pages; |
| 125 | } FreePageBtreeSearchResult; |
| 126 | |
| 127 | /* Helper functions */ |
| 128 | static void FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm, |
| 129 | FreePageBtree *btp); |
| 130 | static Size FreePageBtreeCleanup(FreePageManager *fpm); |
| 131 | static FreePageBtree *FreePageBtreeFindLeftSibling(char *base, |
| 132 | FreePageBtree *btp); |
| 133 | static FreePageBtree *FreePageBtreeFindRightSibling(char *base, |
| 134 | FreePageBtree *btp); |
| 135 | static Size FreePageBtreeFirstKey(FreePageBtree *btp); |
| 136 | static FreePageBtree *FreePageBtreeGetRecycled(FreePageManager *fpm); |
| 137 | static void FreePageBtreeInsertInternal(char *base, FreePageBtree *btp, |
| 138 | Size index, Size first_page, FreePageBtree *child); |
| 139 | static void FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index, |
| 140 | Size first_page, Size npages); |
| 141 | static void FreePageBtreeRecycle(FreePageManager *fpm, Size pageno); |
| 142 | static void FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp, |
| 143 | Size index); |
| 144 | static void FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp); |
| 145 | static void FreePageBtreeSearch(FreePageManager *fpm, Size first_page, |
| 146 | FreePageBtreeSearchResult *result); |
| 147 | static Size FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page); |
| 148 | static Size FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page); |
| 149 | static FreePageBtree *FreePageBtreeSplitPage(FreePageManager *fpm, |
| 150 | FreePageBtree *btp); |
| 151 | static void FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp); |
| 152 | static void FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp, |
| 153 | FreePageBtree *parent, int level, StringInfo buf); |
| 154 | static void FreePageManagerDumpSpans(FreePageManager *fpm, |
| 155 | FreePageSpanLeader *span, Size expected_pages, |
| 156 | StringInfo buf); |
| 157 | static bool FreePageManagerGetInternal(FreePageManager *fpm, Size npages, |
| 158 | Size *first_page); |
| 159 | static Size FreePageManagerPutInternal(FreePageManager *fpm, Size first_page, |
| 160 | Size npages, bool soft); |
| 161 | static void FreePagePopSpanLeader(FreePageManager *fpm, Size pageno); |
| 162 | static void FreePagePushSpanLeader(FreePageManager *fpm, Size first_page, |
| 163 | Size npages); |
| 164 | static Size FreePageManagerLargestContiguous(FreePageManager *fpm); |
| 165 | static void FreePageManagerUpdateLargest(FreePageManager *fpm); |
| 166 | |
| 167 | #if FPM_EXTRA_ASSERTS |
| 168 | static Size sum_free_pages(FreePageManager *fpm); |
| 169 | #endif |
| 170 | |
| 171 | /* |
| 172 | * Initialize a new, empty free page manager. |
| 173 | * |
| 174 | * 'fpm' should reference caller-provided memory large enough to contain a |
| 175 | * FreePageManager. We'll initialize it here. |
| 176 | * |
| 177 | * 'base' is the address to which all pointers are relative. When managing |
| 178 | * a dynamic shared memory segment, it should normally be the base of the |
| 179 | * segment. When managing backend-private memory, it can be either NULL or, |
| 180 | * if managing a single contiguous extent of memory, the start of that extent. |
| 181 | */ |
| 182 | void |
| 183 | FreePageManagerInitialize(FreePageManager *fpm, char *base) |
| 184 | { |
| 185 | Size f; |
| 186 | |
| 187 | relptr_store(base, fpm->self, fpm); |
| 188 | relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); |
| 189 | relptr_store(base, fpm->btree_recycle, (FreePageSpanLeader *) NULL); |
| 190 | fpm->btree_depth = 0; |
| 191 | fpm->btree_recycle_count = 0; |
| 192 | fpm->singleton_first_page = 0; |
| 193 | fpm->singleton_npages = 0; |
| 194 | fpm->contiguous_pages = 0; |
| 195 | fpm->contiguous_pages_dirty = true; |
| 196 | #ifdef FPM_EXTRA_ASSERTS |
| 197 | fpm->free_pages = 0; |
| 198 | #endif |
| 199 | |
| 200 | for (f = 0; f < FPM_NUM_FREELISTS; f++) |
| 201 | relptr_store(base, fpm->freelist[f], (FreePageSpanLeader *) NULL); |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * Allocate a run of pages of the given length from the free page manager. |
| 206 | * The return value indicates whether we were able to satisfy the request; |
| 207 | * if true, the first page of the allocation is stored in *first_page. |
| 208 | */ |
| 209 | bool |
| 210 | FreePageManagerGet(FreePageManager *fpm, Size npages, Size *first_page) |
| 211 | { |
| 212 | bool result; |
| 213 | Size contiguous_pages; |
| 214 | |
| 215 | result = FreePageManagerGetInternal(fpm, npages, first_page); |
| 216 | |
| 217 | /* |
| 218 | * It's a bit counterintuitive, but allocating pages can actually create |
| 219 | * opportunities for cleanup that create larger ranges. We might pull a |
| 220 | * key out of the btree that enables the item at the head of the btree |
| 221 | * recycle list to be inserted; and then if there are more items behind it |
| 222 | * one of those might cause two currently-separated ranges to merge, |
| 223 | * creating a single range of contiguous pages larger than any that |
| 224 | * existed previously. It might be worth trying to improve the cleanup |
| 225 | * algorithm to avoid such corner cases, but for now we just notice the |
| 226 | * condition and do the appropriate reporting. |
| 227 | */ |
| 228 | contiguous_pages = FreePageBtreeCleanup(fpm); |
| 229 | if (fpm->contiguous_pages < contiguous_pages) |
| 230 | fpm->contiguous_pages = contiguous_pages; |
| 231 | |
| 232 | /* |
| 233 | * FreePageManagerGetInternal may have set contiguous_pages_dirty. |
| 234 | * Recompute contiguous_pages if so. |
| 235 | */ |
| 236 | FreePageManagerUpdateLargest(fpm); |
| 237 | |
| 238 | #ifdef FPM_EXTRA_ASSERTS |
| 239 | if (result) |
| 240 | { |
| 241 | Assert(fpm->free_pages >= npages); |
| 242 | fpm->free_pages -= npages; |
| 243 | } |
| 244 | Assert(fpm->free_pages == sum_free_pages(fpm)); |
| 245 | Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm)); |
| 246 | #endif |
| 247 | return result; |
| 248 | } |
| 249 | |
| 250 | #ifdef FPM_EXTRA_ASSERTS |
| 251 | static void |
| 252 | sum_free_pages_recurse(FreePageManager *fpm, FreePageBtree *btp, Size *sum) |
| 253 | { |
| 254 | char *base = fpm_segment_base(fpm); |
| 255 | |
| 256 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC || |
| 257 | btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); |
| 258 | ++*sum; |
| 259 | if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) |
| 260 | { |
| 261 | Size index; |
| 262 | |
| 263 | |
| 264 | for (index = 0; index < btp->hdr.nused; ++index) |
| 265 | { |
| 266 | FreePageBtree *child; |
| 267 | |
| 268 | child = relptr_access(base, btp->u.internal_key[index].child); |
| 269 | sum_free_pages_recurse(fpm, child, sum); |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | static Size |
| 274 | sum_free_pages(FreePageManager *fpm) |
| 275 | { |
| 276 | FreePageSpanLeader *recycle; |
| 277 | char *base = fpm_segment_base(fpm); |
| 278 | Size sum = 0; |
| 279 | int list; |
| 280 | |
| 281 | /* Count the spans by scanning the freelists. */ |
| 282 | for (list = 0; list < FPM_NUM_FREELISTS; ++list) |
| 283 | { |
| 284 | |
| 285 | if (!relptr_is_null(fpm->freelist[list])) |
| 286 | { |
| 287 | FreePageSpanLeader *candidate = |
| 288 | relptr_access(base, fpm->freelist[list]); |
| 289 | |
| 290 | do |
| 291 | { |
| 292 | sum += candidate->npages; |
| 293 | candidate = relptr_access(base, candidate->next); |
| 294 | } while (candidate != NULL); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /* Count btree internal pages. */ |
| 299 | if (fpm->btree_depth > 0) |
| 300 | { |
| 301 | FreePageBtree *root = relptr_access(base, fpm->btree_root); |
| 302 | |
| 303 | sum_free_pages_recurse(fpm, root, &sum); |
| 304 | } |
| 305 | |
| 306 | /* Count the recycle list. */ |
| 307 | for (recycle = relptr_access(base, fpm->btree_recycle); |
| 308 | recycle != NULL; |
| 309 | recycle = relptr_access(base, recycle->next)) |
| 310 | { |
| 311 | Assert(recycle->npages == 1); |
| 312 | ++sum; |
| 313 | } |
| 314 | |
| 315 | return sum; |
| 316 | } |
| 317 | #endif |
| 318 | |
| 319 | /* |
| 320 | * Compute the size of the largest run of pages that the user could |
| 321 | * successfully get. |
| 322 | */ |
| 323 | static Size |
| 324 | FreePageManagerLargestContiguous(FreePageManager *fpm) |
| 325 | { |
| 326 | char *base; |
| 327 | Size largest; |
| 328 | |
| 329 | base = fpm_segment_base(fpm); |
| 330 | largest = 0; |
| 331 | if (!relptr_is_null(fpm->freelist[FPM_NUM_FREELISTS - 1])) |
| 332 | { |
| 333 | FreePageSpanLeader *candidate; |
| 334 | |
| 335 | candidate = relptr_access(base, fpm->freelist[FPM_NUM_FREELISTS - 1]); |
| 336 | do |
| 337 | { |
| 338 | if (candidate->npages > largest) |
| 339 | largest = candidate->npages; |
| 340 | candidate = relptr_access(base, candidate->next); |
| 341 | } while (candidate != NULL); |
| 342 | } |
| 343 | else |
| 344 | { |
| 345 | Size f = FPM_NUM_FREELISTS - 1; |
| 346 | |
| 347 | do |
| 348 | { |
| 349 | --f; |
| 350 | if (!relptr_is_null(fpm->freelist[f])) |
| 351 | { |
| 352 | largest = f + 1; |
| 353 | break; |
| 354 | } |
| 355 | } while (f > 0); |
| 356 | } |
| 357 | |
| 358 | return largest; |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * Recompute the size of the largest run of pages that the user could |
| 363 | * successfully get, if it has been marked dirty. |
| 364 | */ |
| 365 | static void |
| 366 | FreePageManagerUpdateLargest(FreePageManager *fpm) |
| 367 | { |
| 368 | if (!fpm->contiguous_pages_dirty) |
| 369 | return; |
| 370 | |
| 371 | fpm->contiguous_pages = FreePageManagerLargestContiguous(fpm); |
| 372 | fpm->contiguous_pages_dirty = false; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Transfer a run of pages to the free page manager. |
| 377 | */ |
| 378 | void |
| 379 | FreePageManagerPut(FreePageManager *fpm, Size first_page, Size npages) |
| 380 | { |
| 381 | Size contiguous_pages; |
| 382 | |
| 383 | Assert(npages > 0); |
| 384 | |
| 385 | /* Record the new pages. */ |
| 386 | contiguous_pages = |
| 387 | FreePageManagerPutInternal(fpm, first_page, npages, false); |
| 388 | |
| 389 | /* |
| 390 | * If the new range we inserted into the page manager was contiguous with |
| 391 | * an existing range, it may have opened up cleanup opportunities. |
| 392 | */ |
| 393 | if (contiguous_pages > npages) |
| 394 | { |
| 395 | Size cleanup_contiguous_pages; |
| 396 | |
| 397 | cleanup_contiguous_pages = FreePageBtreeCleanup(fpm); |
| 398 | if (cleanup_contiguous_pages > contiguous_pages) |
| 399 | contiguous_pages = cleanup_contiguous_pages; |
| 400 | } |
| 401 | |
| 402 | /* See if we now have a new largest chunk. */ |
| 403 | if (fpm->contiguous_pages < contiguous_pages) |
| 404 | fpm->contiguous_pages = contiguous_pages; |
| 405 | |
| 406 | /* |
| 407 | * The earlier call to FreePageManagerPutInternal may have set |
| 408 | * contiguous_pages_dirty if it needed to allocate internal pages, so |
| 409 | * recompute contiguous_pages if necessary. |
| 410 | */ |
| 411 | FreePageManagerUpdateLargest(fpm); |
| 412 | |
| 413 | #ifdef FPM_EXTRA_ASSERTS |
| 414 | fpm->free_pages += npages; |
| 415 | Assert(fpm->free_pages == sum_free_pages(fpm)); |
| 416 | Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm)); |
| 417 | #endif |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Produce a debugging dump of the state of a free page manager. |
| 422 | */ |
| 423 | char * |
| 424 | FreePageManagerDump(FreePageManager *fpm) |
| 425 | { |
| 426 | char *base = fpm_segment_base(fpm); |
| 427 | StringInfoData buf; |
| 428 | FreePageSpanLeader *recycle; |
| 429 | bool dumped_any_freelist = false; |
| 430 | Size f; |
| 431 | |
| 432 | /* Initialize output buffer. */ |
| 433 | initStringInfo(&buf); |
| 434 | |
| 435 | /* Dump general stuff. */ |
| 436 | appendStringInfo(&buf, "metadata: self %zu max contiguous pages = %zu\n" , |
| 437 | fpm->self.relptr_off, fpm->contiguous_pages); |
| 438 | |
| 439 | /* Dump btree. */ |
| 440 | if (fpm->btree_depth > 0) |
| 441 | { |
| 442 | FreePageBtree *root; |
| 443 | |
| 444 | appendStringInfo(&buf, "btree depth %u:\n" , fpm->btree_depth); |
| 445 | root = relptr_access(base, fpm->btree_root); |
| 446 | FreePageManagerDumpBtree(fpm, root, NULL, 0, &buf); |
| 447 | } |
| 448 | else if (fpm->singleton_npages > 0) |
| 449 | { |
| 450 | appendStringInfo(&buf, "singleton: %zu(%zu)\n" , |
| 451 | fpm->singleton_first_page, fpm->singleton_npages); |
| 452 | } |
| 453 | |
| 454 | /* Dump btree recycle list. */ |
| 455 | recycle = relptr_access(base, fpm->btree_recycle); |
| 456 | if (recycle != NULL) |
| 457 | { |
| 458 | appendStringInfoString(&buf, "btree recycle:" ); |
| 459 | FreePageManagerDumpSpans(fpm, recycle, 1, &buf); |
| 460 | } |
| 461 | |
| 462 | /* Dump free lists. */ |
| 463 | for (f = 0; f < FPM_NUM_FREELISTS; ++f) |
| 464 | { |
| 465 | FreePageSpanLeader *span; |
| 466 | |
| 467 | if (relptr_is_null(fpm->freelist[f])) |
| 468 | continue; |
| 469 | if (!dumped_any_freelist) |
| 470 | { |
| 471 | appendStringInfoString(&buf, "freelists:\n" ); |
| 472 | dumped_any_freelist = true; |
| 473 | } |
| 474 | appendStringInfo(&buf, " %zu:" , f + 1); |
| 475 | span = relptr_access(base, fpm->freelist[f]); |
| 476 | FreePageManagerDumpSpans(fpm, span, f + 1, &buf); |
| 477 | } |
| 478 | |
| 479 | /* And return result to caller. */ |
| 480 | return buf.data; |
| 481 | } |
| 482 | |
| 483 | |
| 484 | /* |
| 485 | * The first_page value stored at index zero in any non-root page must match |
| 486 | * the first_page value stored in its parent at the index which points to that |
| 487 | * page. So when the value stored at index zero in a btree page changes, we've |
| 488 | * got to walk up the tree adjusting ancestor keys until we reach an ancestor |
| 489 | * where that key isn't index zero. This function should be called after |
| 490 | * updating the first key on the target page; it will propagate the change |
| 491 | * upward as far as needed. |
| 492 | * |
| 493 | * We assume here that the first key on the page has not changed enough to |
| 494 | * require changes in the ordering of keys on its ancestor pages. Thus, |
| 495 | * if we search the parent page for the first key greater than or equal to |
| 496 | * the first key on the current page, the downlink to this page will be either |
| 497 | * the exact index returned by the search (if the first key decreased) |
| 498 | * or one less (if the first key increased). |
| 499 | */ |
| 500 | static void |
| 501 | FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm, FreePageBtree *btp) |
| 502 | { |
| 503 | char *base = fpm_segment_base(fpm); |
| 504 | Size first_page; |
| 505 | FreePageBtree *parent; |
| 506 | FreePageBtree *child; |
| 507 | |
| 508 | /* This might be either a leaf or an internal page. */ |
| 509 | Assert(btp->hdr.nused > 0); |
| 510 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 511 | { |
| 512 | Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE); |
| 513 | first_page = btp->u.leaf_key[0].first_page; |
| 514 | } |
| 515 | else |
| 516 | { |
| 517 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 518 | Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE); |
| 519 | first_page = btp->u.internal_key[0].first_page; |
| 520 | } |
| 521 | child = btp; |
| 522 | |
| 523 | /* Loop until we find an ancestor that does not require adjustment. */ |
| 524 | for (;;) |
| 525 | { |
| 526 | Size s; |
| 527 | |
| 528 | parent = relptr_access(base, child->hdr.parent); |
| 529 | if (parent == NULL) |
| 530 | break; |
| 531 | s = FreePageBtreeSearchInternal(parent, first_page); |
| 532 | |
| 533 | /* Key is either at index s or index s-1; figure out which. */ |
| 534 | if (s >= parent->hdr.nused) |
| 535 | { |
| 536 | Assert(s == parent->hdr.nused); |
| 537 | --s; |
| 538 | } |
| 539 | else |
| 540 | { |
| 541 | FreePageBtree *check; |
| 542 | |
| 543 | check = relptr_access(base, parent->u.internal_key[s].child); |
| 544 | if (check != child) |
| 545 | { |
| 546 | Assert(s > 0); |
| 547 | --s; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | #ifdef USE_ASSERT_CHECKING |
| 552 | /* Debugging double-check. */ |
| 553 | { |
| 554 | FreePageBtree *check; |
| 555 | |
| 556 | check = relptr_access(base, parent->u.internal_key[s].child); |
| 557 | Assert(s < parent->hdr.nused); |
| 558 | Assert(child == check); |
| 559 | } |
| 560 | #endif |
| 561 | |
| 562 | /* Update the parent key. */ |
| 563 | parent->u.internal_key[s].first_page = first_page; |
| 564 | |
| 565 | /* |
| 566 | * If this is the first key in the parent, go up another level; else |
| 567 | * done. |
| 568 | */ |
| 569 | if (s > 0) |
| 570 | break; |
| 571 | child = parent; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | * Attempt to reclaim space from the free-page btree. The return value is |
| 577 | * the largest range of contiguous pages created by the cleanup operation. |
| 578 | */ |
| 579 | static Size |
| 580 | FreePageBtreeCleanup(FreePageManager *fpm) |
| 581 | { |
| 582 | char *base = fpm_segment_base(fpm); |
| 583 | Size max_contiguous_pages = 0; |
| 584 | |
| 585 | /* Attempt to shrink the depth of the btree. */ |
| 586 | while (!relptr_is_null(fpm->btree_root)) |
| 587 | { |
| 588 | FreePageBtree *root = relptr_access(base, fpm->btree_root); |
| 589 | |
| 590 | /* If the root contains only one key, reduce depth by one. */ |
| 591 | if (root->hdr.nused == 1) |
| 592 | { |
| 593 | /* Shrink depth of tree by one. */ |
| 594 | Assert(fpm->btree_depth > 0); |
| 595 | --fpm->btree_depth; |
| 596 | if (root->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 597 | { |
| 598 | /* If root is a leaf, convert only entry to singleton range. */ |
| 599 | relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); |
| 600 | fpm->singleton_first_page = root->u.leaf_key[0].first_page; |
| 601 | fpm->singleton_npages = root->u.leaf_key[0].npages; |
| 602 | } |
| 603 | else |
| 604 | { |
| 605 | FreePageBtree *newroot; |
| 606 | |
| 607 | /* If root is an internal page, make only child the root. */ |
| 608 | Assert(root->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 609 | relptr_copy(fpm->btree_root, root->u.internal_key[0].child); |
| 610 | newroot = relptr_access(base, fpm->btree_root); |
| 611 | relptr_store(base, newroot->hdr.parent, (FreePageBtree *) NULL); |
| 612 | } |
| 613 | FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, root)); |
| 614 | } |
| 615 | else if (root->hdr.nused == 2 && |
| 616 | root->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 617 | { |
| 618 | Size end_of_first; |
| 619 | Size start_of_second; |
| 620 | |
| 621 | end_of_first = root->u.leaf_key[0].first_page + |
| 622 | root->u.leaf_key[0].npages; |
| 623 | start_of_second = root->u.leaf_key[1].first_page; |
| 624 | |
| 625 | if (end_of_first + 1 == start_of_second) |
| 626 | { |
| 627 | Size root_page = fpm_pointer_to_page(base, root); |
| 628 | |
| 629 | if (end_of_first == root_page) |
| 630 | { |
| 631 | FreePagePopSpanLeader(fpm, root->u.leaf_key[0].first_page); |
| 632 | FreePagePopSpanLeader(fpm, root->u.leaf_key[1].first_page); |
| 633 | fpm->singleton_first_page = root->u.leaf_key[0].first_page; |
| 634 | fpm->singleton_npages = root->u.leaf_key[0].npages + |
| 635 | root->u.leaf_key[1].npages + 1; |
| 636 | fpm->btree_depth = 0; |
| 637 | relptr_store(base, fpm->btree_root, |
| 638 | (FreePageBtree *) NULL); |
| 639 | FreePagePushSpanLeader(fpm, fpm->singleton_first_page, |
| 640 | fpm->singleton_npages); |
| 641 | Assert(max_contiguous_pages == 0); |
| 642 | max_contiguous_pages = fpm->singleton_npages; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /* Whether it worked or not, it's time to stop. */ |
| 647 | break; |
| 648 | } |
| 649 | else |
| 650 | { |
| 651 | /* Nothing more to do. Stop. */ |
| 652 | break; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Attempt to free recycled btree pages. We skip this if releasing the |
| 658 | * recycled page would require a btree page split, because the page we're |
| 659 | * trying to recycle would be consumed by the split, which would be |
| 660 | * counterproductive. |
| 661 | * |
| 662 | * We also currently only ever attempt to recycle the first page on the |
| 663 | * list; that could be made more aggressive, but it's not clear that the |
| 664 | * complexity would be worthwhile. |
| 665 | */ |
| 666 | while (fpm->btree_recycle_count > 0) |
| 667 | { |
| 668 | FreePageBtree *btp; |
| 669 | Size first_page; |
| 670 | Size contiguous_pages; |
| 671 | |
| 672 | btp = FreePageBtreeGetRecycled(fpm); |
| 673 | first_page = fpm_pointer_to_page(base, btp); |
| 674 | contiguous_pages = FreePageManagerPutInternal(fpm, first_page, 1, true); |
| 675 | if (contiguous_pages == 0) |
| 676 | { |
| 677 | FreePageBtreeRecycle(fpm, first_page); |
| 678 | break; |
| 679 | } |
| 680 | else |
| 681 | { |
| 682 | if (contiguous_pages > max_contiguous_pages) |
| 683 | max_contiguous_pages = contiguous_pages; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | return max_contiguous_pages; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Consider consolidating the given page with its left or right sibling, |
| 692 | * if it's fairly empty. |
| 693 | */ |
| 694 | static void |
| 695 | FreePageBtreeConsolidate(FreePageManager *fpm, FreePageBtree *btp) |
| 696 | { |
| 697 | char *base = fpm_segment_base(fpm); |
| 698 | FreePageBtree *np; |
| 699 | Size max; |
| 700 | |
| 701 | /* |
| 702 | * We only try to consolidate pages that are less than a third full. We |
| 703 | * could be more aggressive about this, but that might risk performing |
| 704 | * consolidation only to end up splitting again shortly thereafter. Since |
| 705 | * the btree should be very small compared to the space under management, |
| 706 | * our goal isn't so much to ensure that it always occupies the absolutely |
| 707 | * smallest possible number of pages as to reclaim pages before things get |
| 708 | * too egregiously out of hand. |
| 709 | */ |
| 710 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 711 | max = FPM_ITEMS_PER_LEAF_PAGE; |
| 712 | else |
| 713 | { |
| 714 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 715 | max = FPM_ITEMS_PER_INTERNAL_PAGE; |
| 716 | } |
| 717 | if (btp->hdr.nused >= max / 3) |
| 718 | return; |
| 719 | |
| 720 | /* |
| 721 | * If we can fit our right sibling's keys onto this page, consolidate. |
| 722 | */ |
| 723 | np = FreePageBtreeFindRightSibling(base, btp); |
| 724 | if (np != NULL && btp->hdr.nused + np->hdr.nused <= max) |
| 725 | { |
| 726 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 727 | { |
| 728 | memcpy(&btp->u.leaf_key[btp->hdr.nused], &np->u.leaf_key[0], |
| 729 | sizeof(FreePageBtreeLeafKey) * np->hdr.nused); |
| 730 | btp->hdr.nused += np->hdr.nused; |
| 731 | } |
| 732 | else |
| 733 | { |
| 734 | memcpy(&btp->u.internal_key[btp->hdr.nused], &np->u.internal_key[0], |
| 735 | sizeof(FreePageBtreeInternalKey) * np->hdr.nused); |
| 736 | btp->hdr.nused += np->hdr.nused; |
| 737 | FreePageBtreeUpdateParentPointers(base, btp); |
| 738 | } |
| 739 | FreePageBtreeRemovePage(fpm, np); |
| 740 | return; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * If we can fit our keys onto our left sibling's page, consolidate. In |
| 745 | * this case, we move our keys onto the other page rather than visca |
| 746 | * versa, to avoid having to adjust ancestor keys. |
| 747 | */ |
| 748 | np = FreePageBtreeFindLeftSibling(base, btp); |
| 749 | if (np != NULL && btp->hdr.nused + np->hdr.nused <= max) |
| 750 | { |
| 751 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 752 | { |
| 753 | memcpy(&np->u.leaf_key[np->hdr.nused], &btp->u.leaf_key[0], |
| 754 | sizeof(FreePageBtreeLeafKey) * btp->hdr.nused); |
| 755 | np->hdr.nused += btp->hdr.nused; |
| 756 | } |
| 757 | else |
| 758 | { |
| 759 | memcpy(&np->u.internal_key[np->hdr.nused], &btp->u.internal_key[0], |
| 760 | sizeof(FreePageBtreeInternalKey) * btp->hdr.nused); |
| 761 | np->hdr.nused += btp->hdr.nused; |
| 762 | FreePageBtreeUpdateParentPointers(base, np); |
| 763 | } |
| 764 | FreePageBtreeRemovePage(fpm, btp); |
| 765 | return; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Find the passed page's left sibling; that is, the page at the same level |
| 771 | * of the tree whose keyspace immediately precedes ours. |
| 772 | */ |
| 773 | static FreePageBtree * |
| 774 | FreePageBtreeFindLeftSibling(char *base, FreePageBtree *btp) |
| 775 | { |
| 776 | FreePageBtree *p = btp; |
| 777 | int levels = 0; |
| 778 | |
| 779 | /* Move up until we can move left. */ |
| 780 | for (;;) |
| 781 | { |
| 782 | Size first_page; |
| 783 | Size index; |
| 784 | |
| 785 | first_page = FreePageBtreeFirstKey(p); |
| 786 | p = relptr_access(base, p->hdr.parent); |
| 787 | |
| 788 | if (p == NULL) |
| 789 | return NULL; /* we were passed the rightmost page */ |
| 790 | |
| 791 | index = FreePageBtreeSearchInternal(p, first_page); |
| 792 | if (index > 0) |
| 793 | { |
| 794 | Assert(p->u.internal_key[index].first_page == first_page); |
| 795 | p = relptr_access(base, p->u.internal_key[index - 1].child); |
| 796 | break; |
| 797 | } |
| 798 | Assert(index == 0); |
| 799 | ++levels; |
| 800 | } |
| 801 | |
| 802 | /* Descend left. */ |
| 803 | while (levels > 0) |
| 804 | { |
| 805 | Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 806 | p = relptr_access(base, p->u.internal_key[p->hdr.nused - 1].child); |
| 807 | --levels; |
| 808 | } |
| 809 | Assert(p->hdr.magic == btp->hdr.magic); |
| 810 | |
| 811 | return p; |
| 812 | } |
| 813 | |
| 814 | /* |
| 815 | * Find the passed page's right sibling; that is, the page at the same level |
| 816 | * of the tree whose keyspace immediately follows ours. |
| 817 | */ |
| 818 | static FreePageBtree * |
| 819 | FreePageBtreeFindRightSibling(char *base, FreePageBtree *btp) |
| 820 | { |
| 821 | FreePageBtree *p = btp; |
| 822 | int levels = 0; |
| 823 | |
| 824 | /* Move up until we can move right. */ |
| 825 | for (;;) |
| 826 | { |
| 827 | Size first_page; |
| 828 | Size index; |
| 829 | |
| 830 | first_page = FreePageBtreeFirstKey(p); |
| 831 | p = relptr_access(base, p->hdr.parent); |
| 832 | |
| 833 | if (p == NULL) |
| 834 | return NULL; /* we were passed the rightmost page */ |
| 835 | |
| 836 | index = FreePageBtreeSearchInternal(p, first_page); |
| 837 | if (index < p->hdr.nused - 1) |
| 838 | { |
| 839 | Assert(p->u.internal_key[index].first_page == first_page); |
| 840 | p = relptr_access(base, p->u.internal_key[index + 1].child); |
| 841 | break; |
| 842 | } |
| 843 | Assert(index == p->hdr.nused - 1); |
| 844 | ++levels; |
| 845 | } |
| 846 | |
| 847 | /* Descend left. */ |
| 848 | while (levels > 0) |
| 849 | { |
| 850 | Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 851 | p = relptr_access(base, p->u.internal_key[0].child); |
| 852 | --levels; |
| 853 | } |
| 854 | Assert(p->hdr.magic == btp->hdr.magic); |
| 855 | |
| 856 | return p; |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Get the first key on a btree page. |
| 861 | */ |
| 862 | static Size |
| 863 | FreePageBtreeFirstKey(FreePageBtree *btp) |
| 864 | { |
| 865 | Assert(btp->hdr.nused > 0); |
| 866 | |
| 867 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 868 | return btp->u.leaf_key[0].first_page; |
| 869 | else |
| 870 | { |
| 871 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 872 | return btp->u.internal_key[0].first_page; |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * Get a page from the btree recycle list for use as a btree page. |
| 878 | */ |
| 879 | static FreePageBtree * |
| 880 | FreePageBtreeGetRecycled(FreePageManager *fpm) |
| 881 | { |
| 882 | char *base = fpm_segment_base(fpm); |
| 883 | FreePageSpanLeader *victim = relptr_access(base, fpm->btree_recycle); |
| 884 | FreePageSpanLeader *newhead; |
| 885 | |
| 886 | Assert(victim != NULL); |
| 887 | newhead = relptr_access(base, victim->next); |
| 888 | if (newhead != NULL) |
| 889 | relptr_copy(newhead->prev, victim->prev); |
| 890 | relptr_store(base, fpm->btree_recycle, newhead); |
| 891 | Assert(fpm_pointer_is_page_aligned(base, victim)); |
| 892 | fpm->btree_recycle_count--; |
| 893 | return (FreePageBtree *) victim; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Insert an item into an internal page. |
| 898 | */ |
| 899 | static void |
| 900 | FreePageBtreeInsertInternal(char *base, FreePageBtree *btp, Size index, |
| 901 | Size first_page, FreePageBtree *child) |
| 902 | { |
| 903 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 904 | Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE); |
| 905 | Assert(index <= btp->hdr.nused); |
| 906 | memmove(&btp->u.internal_key[index + 1], &btp->u.internal_key[index], |
| 907 | sizeof(FreePageBtreeInternalKey) * (btp->hdr.nused - index)); |
| 908 | btp->u.internal_key[index].first_page = first_page; |
| 909 | relptr_store(base, btp->u.internal_key[index].child, child); |
| 910 | ++btp->hdr.nused; |
| 911 | } |
| 912 | |
| 913 | /* |
| 914 | * Insert an item into a leaf page. |
| 915 | */ |
| 916 | static void |
| 917 | FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index, Size first_page, |
| 918 | Size npages) |
| 919 | { |
| 920 | Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); |
| 921 | Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE); |
| 922 | Assert(index <= btp->hdr.nused); |
| 923 | memmove(&btp->u.leaf_key[index + 1], &btp->u.leaf_key[index], |
| 924 | sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index)); |
| 925 | btp->u.leaf_key[index].first_page = first_page; |
| 926 | btp->u.leaf_key[index].npages = npages; |
| 927 | ++btp->hdr.nused; |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * Put a page on the btree recycle list. |
| 932 | */ |
| 933 | static void |
| 934 | FreePageBtreeRecycle(FreePageManager *fpm, Size pageno) |
| 935 | { |
| 936 | char *base = fpm_segment_base(fpm); |
| 937 | FreePageSpanLeader *head = relptr_access(base, fpm->btree_recycle); |
| 938 | FreePageSpanLeader *span; |
| 939 | |
| 940 | span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno); |
| 941 | span->magic = FREE_PAGE_SPAN_LEADER_MAGIC; |
| 942 | span->npages = 1; |
| 943 | relptr_store(base, span->next, head); |
| 944 | relptr_store(base, span->prev, (FreePageSpanLeader *) NULL); |
| 945 | if (head != NULL) |
| 946 | relptr_store(base, head->prev, span); |
| 947 | relptr_store(base, fpm->btree_recycle, span); |
| 948 | fpm->btree_recycle_count++; |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Remove an item from the btree at the given position on the given page. |
| 953 | */ |
| 954 | static void |
| 955 | FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp, Size index) |
| 956 | { |
| 957 | Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); |
| 958 | Assert(index < btp->hdr.nused); |
| 959 | |
| 960 | /* When last item is removed, extirpate entire page from btree. */ |
| 961 | if (btp->hdr.nused == 1) |
| 962 | { |
| 963 | FreePageBtreeRemovePage(fpm, btp); |
| 964 | return; |
| 965 | } |
| 966 | |
| 967 | /* Physically remove the key from the page. */ |
| 968 | --btp->hdr.nused; |
| 969 | if (index < btp->hdr.nused) |
| 970 | memmove(&btp->u.leaf_key[index], &btp->u.leaf_key[index + 1], |
| 971 | sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index)); |
| 972 | |
| 973 | /* If we just removed the first key, adjust ancestor keys. */ |
| 974 | if (index == 0) |
| 975 | FreePageBtreeAdjustAncestorKeys(fpm, btp); |
| 976 | |
| 977 | /* Consider whether to consolidate this page with a sibling. */ |
| 978 | FreePageBtreeConsolidate(fpm, btp); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * Remove a page from the btree. Caller is responsible for having relocated |
| 983 | * any keys from this page that are still wanted. The page is placed on the |
| 984 | * recycled list. |
| 985 | */ |
| 986 | static void |
| 987 | FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp) |
| 988 | { |
| 989 | char *base = fpm_segment_base(fpm); |
| 990 | FreePageBtree *parent; |
| 991 | Size index; |
| 992 | Size first_page; |
| 993 | |
| 994 | for (;;) |
| 995 | { |
| 996 | /* Find parent page. */ |
| 997 | parent = relptr_access(base, btp->hdr.parent); |
| 998 | if (parent == NULL) |
| 999 | { |
| 1000 | /* We are removing the root page. */ |
| 1001 | relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); |
| 1002 | fpm->btree_depth = 0; |
| 1003 | Assert(fpm->singleton_first_page == 0); |
| 1004 | Assert(fpm->singleton_npages == 0); |
| 1005 | return; |
| 1006 | } |
| 1007 | |
| 1008 | /* |
| 1009 | * If the parent contains only one item, we need to remove it as well. |
| 1010 | */ |
| 1011 | if (parent->hdr.nused > 1) |
| 1012 | break; |
| 1013 | FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp)); |
| 1014 | btp = parent; |
| 1015 | } |
| 1016 | |
| 1017 | /* Find and remove the downlink. */ |
| 1018 | first_page = FreePageBtreeFirstKey(btp); |
| 1019 | if (parent->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 1020 | { |
| 1021 | index = FreePageBtreeSearchLeaf(parent, first_page); |
| 1022 | Assert(index < parent->hdr.nused); |
| 1023 | if (index < parent->hdr.nused - 1) |
| 1024 | memmove(&parent->u.leaf_key[index], |
| 1025 | &parent->u.leaf_key[index + 1], |
| 1026 | sizeof(FreePageBtreeLeafKey) |
| 1027 | * (parent->hdr.nused - index - 1)); |
| 1028 | } |
| 1029 | else |
| 1030 | { |
| 1031 | index = FreePageBtreeSearchInternal(parent, first_page); |
| 1032 | Assert(index < parent->hdr.nused); |
| 1033 | if (index < parent->hdr.nused - 1) |
| 1034 | memmove(&parent->u.internal_key[index], |
| 1035 | &parent->u.internal_key[index + 1], |
| 1036 | sizeof(FreePageBtreeInternalKey) |
| 1037 | * (parent->hdr.nused - index - 1)); |
| 1038 | } |
| 1039 | parent->hdr.nused--; |
| 1040 | Assert(parent->hdr.nused > 0); |
| 1041 | |
| 1042 | /* Recycle the page. */ |
| 1043 | FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp)); |
| 1044 | |
| 1045 | /* Adjust ancestor keys if needed. */ |
| 1046 | if (index == 0) |
| 1047 | FreePageBtreeAdjustAncestorKeys(fpm, parent); |
| 1048 | |
| 1049 | /* Consider whether to consolidate the parent with a sibling. */ |
| 1050 | FreePageBtreeConsolidate(fpm, parent); |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * Search the btree for an entry for the given first page and initialize |
| 1055 | * *result with the results of the search. result->page and result->index |
| 1056 | * indicate either the position of an exact match or the position at which |
| 1057 | * the new key should be inserted. result->found is true for an exact match, |
| 1058 | * otherwise false. result->split_pages will contain the number of additional |
| 1059 | * btree pages that will be needed when performing a split to insert a key. |
| 1060 | * Except as described above, the contents of fields in the result object are |
| 1061 | * undefined on return. |
| 1062 | */ |
| 1063 | static void |
| 1064 | FreePageBtreeSearch(FreePageManager *fpm, Size first_page, |
| 1065 | FreePageBtreeSearchResult *result) |
| 1066 | { |
| 1067 | char *base = fpm_segment_base(fpm); |
| 1068 | FreePageBtree *btp = relptr_access(base, fpm->btree_root); |
| 1069 | Size index; |
| 1070 | |
| 1071 | result->split_pages = 1; |
| 1072 | |
| 1073 | /* If the btree is empty, there's nothing to find. */ |
| 1074 | if (btp == NULL) |
| 1075 | { |
| 1076 | result->page = NULL; |
| 1077 | result->found = false; |
| 1078 | return; |
| 1079 | } |
| 1080 | |
| 1081 | /* Descend until we hit a leaf. */ |
| 1082 | while (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) |
| 1083 | { |
| 1084 | FreePageBtree *child; |
| 1085 | bool found_exact; |
| 1086 | |
| 1087 | index = FreePageBtreeSearchInternal(btp, first_page); |
| 1088 | found_exact = index < btp->hdr.nused && |
| 1089 | btp->u.internal_key[index].first_page == first_page; |
| 1090 | |
| 1091 | /* |
| 1092 | * If we found an exact match we descend directly. Otherwise, we |
| 1093 | * descend into the child to the left if possible so that we can find |
| 1094 | * the insertion point at that child's high end. |
| 1095 | */ |
| 1096 | if (!found_exact && index > 0) |
| 1097 | --index; |
| 1098 | |
| 1099 | /* Track required split depth for leaf insert. */ |
| 1100 | if (btp->hdr.nused >= FPM_ITEMS_PER_INTERNAL_PAGE) |
| 1101 | { |
| 1102 | Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE); |
| 1103 | result->split_pages++; |
| 1104 | } |
| 1105 | else |
| 1106 | result->split_pages = 0; |
| 1107 | |
| 1108 | /* Descend to appropriate child page. */ |
| 1109 | Assert(index < btp->hdr.nused); |
| 1110 | child = relptr_access(base, btp->u.internal_key[index].child); |
| 1111 | Assert(relptr_access(base, child->hdr.parent) == btp); |
| 1112 | btp = child; |
| 1113 | } |
| 1114 | |
| 1115 | /* Track required split depth for leaf insert. */ |
| 1116 | if (btp->hdr.nused >= FPM_ITEMS_PER_LEAF_PAGE) |
| 1117 | { |
| 1118 | Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE); |
| 1119 | result->split_pages++; |
| 1120 | } |
| 1121 | else |
| 1122 | result->split_pages = 0; |
| 1123 | |
| 1124 | /* Search leaf page. */ |
| 1125 | index = FreePageBtreeSearchLeaf(btp, first_page); |
| 1126 | |
| 1127 | /* Assemble results. */ |
| 1128 | result->page = btp; |
| 1129 | result->index = index; |
| 1130 | result->found = index < btp->hdr.nused && |
| 1131 | first_page == btp->u.leaf_key[index].first_page; |
| 1132 | } |
| 1133 | |
| 1134 | /* |
| 1135 | * Search an internal page for the first key greater than or equal to a given |
| 1136 | * page number. Returns the index of that key, or one greater than the number |
| 1137 | * of keys on the page if none. |
| 1138 | */ |
| 1139 | static Size |
| 1140 | FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page) |
| 1141 | { |
| 1142 | Size low = 0; |
| 1143 | Size high = btp->hdr.nused; |
| 1144 | |
| 1145 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 1146 | Assert(high > 0 && high <= FPM_ITEMS_PER_INTERNAL_PAGE); |
| 1147 | |
| 1148 | while (low < high) |
| 1149 | { |
| 1150 | Size mid = (low + high) / 2; |
| 1151 | Size val = btp->u.internal_key[mid].first_page; |
| 1152 | |
| 1153 | if (first_page == val) |
| 1154 | return mid; |
| 1155 | else if (first_page < val) |
| 1156 | high = mid; |
| 1157 | else |
| 1158 | low = mid + 1; |
| 1159 | } |
| 1160 | |
| 1161 | return low; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * Search a leaf page for the first key greater than or equal to a given |
| 1166 | * page number. Returns the index of that key, or one greater than the number |
| 1167 | * of keys on the page if none. |
| 1168 | */ |
| 1169 | static Size |
| 1170 | FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page) |
| 1171 | { |
| 1172 | Size low = 0; |
| 1173 | Size high = btp->hdr.nused; |
| 1174 | |
| 1175 | Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); |
| 1176 | Assert(high > 0 && high <= FPM_ITEMS_PER_LEAF_PAGE); |
| 1177 | |
| 1178 | while (low < high) |
| 1179 | { |
| 1180 | Size mid = (low + high) / 2; |
| 1181 | Size val = btp->u.leaf_key[mid].first_page; |
| 1182 | |
| 1183 | if (first_page == val) |
| 1184 | return mid; |
| 1185 | else if (first_page < val) |
| 1186 | high = mid; |
| 1187 | else |
| 1188 | low = mid + 1; |
| 1189 | } |
| 1190 | |
| 1191 | return low; |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Allocate a new btree page and move half the keys from the provided page |
| 1196 | * to the new page. Caller is responsible for making sure that there's a |
| 1197 | * page available from fpm->btree_recycle. Returns a pointer to the new page, |
| 1198 | * to which caller must add a downlink. |
| 1199 | */ |
| 1200 | static FreePageBtree * |
| 1201 | FreePageBtreeSplitPage(FreePageManager *fpm, FreePageBtree *btp) |
| 1202 | { |
| 1203 | FreePageBtree *newsibling; |
| 1204 | |
| 1205 | newsibling = FreePageBtreeGetRecycled(fpm); |
| 1206 | newsibling->hdr.magic = btp->hdr.magic; |
| 1207 | newsibling->hdr.nused = btp->hdr.nused / 2; |
| 1208 | relptr_copy(newsibling->hdr.parent, btp->hdr.parent); |
| 1209 | btp->hdr.nused -= newsibling->hdr.nused; |
| 1210 | |
| 1211 | if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) |
| 1212 | memcpy(&newsibling->u.leaf_key, |
| 1213 | &btp->u.leaf_key[btp->hdr.nused], |
| 1214 | sizeof(FreePageBtreeLeafKey) * newsibling->hdr.nused); |
| 1215 | else |
| 1216 | { |
| 1217 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 1218 | memcpy(&newsibling->u.internal_key, |
| 1219 | &btp->u.internal_key[btp->hdr.nused], |
| 1220 | sizeof(FreePageBtreeInternalKey) * newsibling->hdr.nused); |
| 1221 | FreePageBtreeUpdateParentPointers(fpm_segment_base(fpm), newsibling); |
| 1222 | } |
| 1223 | |
| 1224 | return newsibling; |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * When internal pages are split or merged, the parent pointers of their |
| 1229 | * children must be updated. |
| 1230 | */ |
| 1231 | static void |
| 1232 | FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp) |
| 1233 | { |
| 1234 | Size i; |
| 1235 | |
| 1236 | Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); |
| 1237 | for (i = 0; i < btp->hdr.nused; ++i) |
| 1238 | { |
| 1239 | FreePageBtree *child; |
| 1240 | |
| 1241 | child = relptr_access(base, btp->u.internal_key[i].child); |
| 1242 | relptr_store(base, child->hdr.parent, btp); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | * Debugging dump of btree data. |
| 1248 | */ |
| 1249 | static void |
| 1250 | FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp, |
| 1251 | FreePageBtree *parent, int level, StringInfo buf) |
| 1252 | { |
| 1253 | char *base = fpm_segment_base(fpm); |
| 1254 | Size pageno = fpm_pointer_to_page(base, btp); |
| 1255 | Size index; |
| 1256 | FreePageBtree *check_parent; |
| 1257 | |
| 1258 | check_stack_depth(); |
| 1259 | check_parent = relptr_access(base, btp->hdr.parent); |
| 1260 | appendStringInfo(buf, " %zu@%d %c" , pageno, level, |
| 1261 | btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC ? 'i' : 'l'); |
| 1262 | if (parent != check_parent) |
| 1263 | appendStringInfo(buf, " [actual parent %zu, expected %zu]" , |
| 1264 | fpm_pointer_to_page(base, check_parent), |
| 1265 | fpm_pointer_to_page(base, parent)); |
| 1266 | appendStringInfoChar(buf, ':'); |
| 1267 | for (index = 0; index < btp->hdr.nused; ++index) |
| 1268 | { |
| 1269 | if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) |
| 1270 | appendStringInfo(buf, " %zu->%zu" , |
| 1271 | btp->u.internal_key[index].first_page, |
| 1272 | btp->u.internal_key[index].child.relptr_off / FPM_PAGE_SIZE); |
| 1273 | else |
| 1274 | appendStringInfo(buf, " %zu(%zu)" , |
| 1275 | btp->u.leaf_key[index].first_page, |
| 1276 | btp->u.leaf_key[index].npages); |
| 1277 | } |
| 1278 | appendStringInfoChar(buf, '\n'); |
| 1279 | |
| 1280 | if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) |
| 1281 | { |
| 1282 | for (index = 0; index < btp->hdr.nused; ++index) |
| 1283 | { |
| 1284 | FreePageBtree *child; |
| 1285 | |
| 1286 | child = relptr_access(base, btp->u.internal_key[index].child); |
| 1287 | FreePageManagerDumpBtree(fpm, child, btp, level + 1, buf); |
| 1288 | } |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | /* |
| 1293 | * Debugging dump of free-span data. |
| 1294 | */ |
| 1295 | static void |
| 1296 | FreePageManagerDumpSpans(FreePageManager *fpm, FreePageSpanLeader *span, |
| 1297 | Size expected_pages, StringInfo buf) |
| 1298 | { |
| 1299 | char *base = fpm_segment_base(fpm); |
| 1300 | |
| 1301 | while (span != NULL) |
| 1302 | { |
| 1303 | if (span->npages != expected_pages) |
| 1304 | appendStringInfo(buf, " %zu(%zu)" , fpm_pointer_to_page(base, span), |
| 1305 | span->npages); |
| 1306 | else |
| 1307 | appendStringInfo(buf, " %zu" , fpm_pointer_to_page(base, span)); |
| 1308 | span = relptr_access(base, span->next); |
| 1309 | } |
| 1310 | |
| 1311 | appendStringInfoChar(buf, '\n'); |
| 1312 | } |
| 1313 | |
| 1314 | /* |
| 1315 | * This function allocates a run of pages of the given length from the free |
| 1316 | * page manager. |
| 1317 | */ |
| 1318 | static bool |
| 1319 | FreePageManagerGetInternal(FreePageManager *fpm, Size npages, Size *first_page) |
| 1320 | { |
| 1321 | char *base = fpm_segment_base(fpm); |
| 1322 | FreePageSpanLeader *victim = NULL; |
| 1323 | FreePageSpanLeader *prev; |
| 1324 | FreePageSpanLeader *next; |
| 1325 | FreePageBtreeSearchResult result; |
| 1326 | Size victim_page = 0; /* placate compiler */ |
| 1327 | Size f; |
| 1328 | |
| 1329 | /* |
| 1330 | * Search for a free span. |
| 1331 | * |
| 1332 | * Right now, we use a simple best-fit policy here, but it's possible for |
| 1333 | * this to result in memory fragmentation if we're repeatedly asked to |
| 1334 | * allocate chunks just a little smaller than what we have available. |
| 1335 | * Hopefully, this is unlikely, because we expect most requests to be |
| 1336 | * single pages or superblock-sized chunks -- but no policy can be optimal |
| 1337 | * under all circumstances unless it has knowledge of future allocation |
| 1338 | * patterns. |
| 1339 | */ |
| 1340 | for (f = Min(npages, FPM_NUM_FREELISTS) - 1; f < FPM_NUM_FREELISTS; ++f) |
| 1341 | { |
| 1342 | /* Skip empty freelists. */ |
| 1343 | if (relptr_is_null(fpm->freelist[f])) |
| 1344 | continue; |
| 1345 | |
| 1346 | /* |
| 1347 | * All of the freelists except the last one contain only items of a |
| 1348 | * single size, so we just take the first one. But the final free |
| 1349 | * list contains everything too big for any of the other lists, so we |
| 1350 | * need to search the list. |
| 1351 | */ |
| 1352 | if (f < FPM_NUM_FREELISTS - 1) |
| 1353 | victim = relptr_access(base, fpm->freelist[f]); |
| 1354 | else |
| 1355 | { |
| 1356 | FreePageSpanLeader *candidate; |
| 1357 | |
| 1358 | candidate = relptr_access(base, fpm->freelist[f]); |
| 1359 | do |
| 1360 | { |
| 1361 | if (candidate->npages >= npages && (victim == NULL || |
| 1362 | victim->npages > candidate->npages)) |
| 1363 | { |
| 1364 | victim = candidate; |
| 1365 | if (victim->npages == npages) |
| 1366 | break; |
| 1367 | } |
| 1368 | candidate = relptr_access(base, candidate->next); |
| 1369 | } while (candidate != NULL); |
| 1370 | } |
| 1371 | break; |
| 1372 | } |
| 1373 | |
| 1374 | /* If we didn't find an allocatable span, return failure. */ |
| 1375 | if (victim == NULL) |
| 1376 | return false; |
| 1377 | |
| 1378 | /* Remove span from free list. */ |
| 1379 | Assert(victim->magic == FREE_PAGE_SPAN_LEADER_MAGIC); |
| 1380 | prev = relptr_access(base, victim->prev); |
| 1381 | next = relptr_access(base, victim->next); |
| 1382 | if (prev != NULL) |
| 1383 | relptr_copy(prev->next, victim->next); |
| 1384 | else |
| 1385 | relptr_copy(fpm->freelist[f], victim->next); |
| 1386 | if (next != NULL) |
| 1387 | relptr_copy(next->prev, victim->prev); |
| 1388 | victim_page = fpm_pointer_to_page(base, victim); |
| 1389 | |
| 1390 | /* Decide whether we might be invalidating contiguous_pages. */ |
| 1391 | if (f == FPM_NUM_FREELISTS - 1 && |
| 1392 | victim->npages == fpm->contiguous_pages) |
| 1393 | { |
| 1394 | /* |
| 1395 | * The victim span came from the oversized freelist, and had the same |
| 1396 | * size as the longest span. There may or may not be another one of |
| 1397 | * the same size, so contiguous_pages must be recomputed just to be |
| 1398 | * safe. |
| 1399 | */ |
| 1400 | fpm->contiguous_pages_dirty = true; |
| 1401 | } |
| 1402 | else if (f + 1 == fpm->contiguous_pages && |
| 1403 | relptr_is_null(fpm->freelist[f])) |
| 1404 | { |
| 1405 | /* |
| 1406 | * The victim span came from a fixed sized freelist, and it was the |
| 1407 | * list for spans of the same size as the current longest span, and |
| 1408 | * the list is now empty after removing the victim. So |
| 1409 | * contiguous_pages must be recomputed without a doubt. |
| 1410 | */ |
| 1411 | fpm->contiguous_pages_dirty = true; |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * If we haven't initialized the btree yet, the victim must be the single |
| 1416 | * span stored within the FreePageManager itself. Otherwise, we need to |
| 1417 | * update the btree. |
| 1418 | */ |
| 1419 | if (relptr_is_null(fpm->btree_root)) |
| 1420 | { |
| 1421 | Assert(victim_page == fpm->singleton_first_page); |
| 1422 | Assert(victim->npages == fpm->singleton_npages); |
| 1423 | Assert(victim->npages >= npages); |
| 1424 | fpm->singleton_first_page += npages; |
| 1425 | fpm->singleton_npages -= npages; |
| 1426 | if (fpm->singleton_npages > 0) |
| 1427 | FreePagePushSpanLeader(fpm, fpm->singleton_first_page, |
| 1428 | fpm->singleton_npages); |
| 1429 | } |
| 1430 | else |
| 1431 | { |
| 1432 | /* |
| 1433 | * If the span we found is exactly the right size, remove it from the |
| 1434 | * btree completely. Otherwise, adjust the btree entry to reflect the |
| 1435 | * still-unallocated portion of the span, and put that portion on the |
| 1436 | * appropriate free list. |
| 1437 | */ |
| 1438 | FreePageBtreeSearch(fpm, victim_page, &result); |
| 1439 | Assert(result.found); |
| 1440 | if (victim->npages == npages) |
| 1441 | FreePageBtreeRemove(fpm, result.page, result.index); |
| 1442 | else |
| 1443 | { |
| 1444 | FreePageBtreeLeafKey *key; |
| 1445 | |
| 1446 | /* Adjust btree to reflect remaining pages. */ |
| 1447 | Assert(victim->npages > npages); |
| 1448 | key = &result.page->u.leaf_key[result.index]; |
| 1449 | Assert(key->npages == victim->npages); |
| 1450 | key->first_page += npages; |
| 1451 | key->npages -= npages; |
| 1452 | if (result.index == 0) |
| 1453 | FreePageBtreeAdjustAncestorKeys(fpm, result.page); |
| 1454 | |
| 1455 | /* Put the unallocated pages back on the appropriate free list. */ |
| 1456 | FreePagePushSpanLeader(fpm, victim_page + npages, |
| 1457 | victim->npages - npages); |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | /* Return results to caller. */ |
| 1462 | *first_page = fpm_pointer_to_page(base, victim); |
| 1463 | return true; |
| 1464 | } |
| 1465 | |
| 1466 | /* |
| 1467 | * Put a range of pages into the btree and freelists, consolidating it with |
| 1468 | * existing free spans just before and/or after it. If 'soft' is true, |
| 1469 | * only perform the insertion if it can be done without allocating new btree |
| 1470 | * pages; if false, do it always. Returns 0 if the soft flag caused the |
| 1471 | * insertion to be skipped, or otherwise the size of the contiguous span |
| 1472 | * created by the insertion. This may be larger than npages if we're able |
| 1473 | * to consolidate with an adjacent range. |
| 1474 | */ |
| 1475 | static Size |
| 1476 | FreePageManagerPutInternal(FreePageManager *fpm, Size first_page, Size npages, |
| 1477 | bool soft) |
| 1478 | { |
| 1479 | char *base = fpm_segment_base(fpm); |
| 1480 | FreePageBtreeSearchResult result; |
| 1481 | FreePageBtreeLeafKey *prevkey = NULL; |
| 1482 | FreePageBtreeLeafKey *nextkey = NULL; |
| 1483 | FreePageBtree *np; |
| 1484 | Size nindex; |
| 1485 | |
| 1486 | Assert(npages > 0); |
| 1487 | |
| 1488 | /* We can store a single free span without initializing the btree. */ |
| 1489 | if (fpm->btree_depth == 0) |
| 1490 | { |
| 1491 | if (fpm->singleton_npages == 0) |
| 1492 | { |
| 1493 | /* Don't have a span yet; store this one. */ |
| 1494 | fpm->singleton_first_page = first_page; |
| 1495 | fpm->singleton_npages = npages; |
| 1496 | FreePagePushSpanLeader(fpm, first_page, npages); |
| 1497 | return fpm->singleton_npages; |
| 1498 | } |
| 1499 | else if (fpm->singleton_first_page + fpm->singleton_npages == |
| 1500 | first_page) |
| 1501 | { |
| 1502 | /* New span immediately follows sole existing span. */ |
| 1503 | fpm->singleton_npages += npages; |
| 1504 | FreePagePopSpanLeader(fpm, fpm->singleton_first_page); |
| 1505 | FreePagePushSpanLeader(fpm, fpm->singleton_first_page, |
| 1506 | fpm->singleton_npages); |
| 1507 | return fpm->singleton_npages; |
| 1508 | } |
| 1509 | else if (first_page + npages == fpm->singleton_first_page) |
| 1510 | { |
| 1511 | /* New span immediately precedes sole existing span. */ |
| 1512 | FreePagePopSpanLeader(fpm, fpm->singleton_first_page); |
| 1513 | fpm->singleton_first_page = first_page; |
| 1514 | fpm->singleton_npages += npages; |
| 1515 | FreePagePushSpanLeader(fpm, fpm->singleton_first_page, |
| 1516 | fpm->singleton_npages); |
| 1517 | return fpm->singleton_npages; |
| 1518 | } |
| 1519 | else |
| 1520 | { |
| 1521 | /* Not contiguous; we need to initialize the btree. */ |
| 1522 | Size root_page; |
| 1523 | FreePageBtree *root; |
| 1524 | |
| 1525 | if (!relptr_is_null(fpm->btree_recycle)) |
| 1526 | root = FreePageBtreeGetRecycled(fpm); |
| 1527 | else if (soft) |
| 1528 | return 0; /* Should not allocate if soft. */ |
| 1529 | else if (FreePageManagerGetInternal(fpm, 1, &root_page)) |
| 1530 | root = (FreePageBtree *) fpm_page_to_pointer(base, root_page); |
| 1531 | else |
| 1532 | { |
| 1533 | /* We'd better be able to get a page from the existing range. */ |
| 1534 | elog(FATAL, "free page manager btree is corrupt" ); |
| 1535 | } |
| 1536 | |
| 1537 | /* Create the btree and move the preexisting range into it. */ |
| 1538 | root->hdr.magic = FREE_PAGE_LEAF_MAGIC; |
| 1539 | root->hdr.nused = 1; |
| 1540 | relptr_store(base, root->hdr.parent, (FreePageBtree *) NULL); |
| 1541 | root->u.leaf_key[0].first_page = fpm->singleton_first_page; |
| 1542 | root->u.leaf_key[0].npages = fpm->singleton_npages; |
| 1543 | relptr_store(base, fpm->btree_root, root); |
| 1544 | fpm->singleton_first_page = 0; |
| 1545 | fpm->singleton_npages = 0; |
| 1546 | fpm->btree_depth = 1; |
| 1547 | |
| 1548 | /* |
| 1549 | * Corner case: it may be that the btree root took the very last |
| 1550 | * free page. In that case, the sole btree entry covers a zero |
| 1551 | * page run, which is invalid. Overwrite it with the entry we're |
| 1552 | * trying to insert and get out. |
| 1553 | */ |
| 1554 | if (root->u.leaf_key[0].npages == 0) |
| 1555 | { |
| 1556 | root->u.leaf_key[0].first_page = first_page; |
| 1557 | root->u.leaf_key[0].npages = npages; |
| 1558 | FreePagePushSpanLeader(fpm, first_page, npages); |
| 1559 | return npages; |
| 1560 | } |
| 1561 | |
| 1562 | /* Fall through to insert the new key. */ |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | /* Search the btree. */ |
| 1567 | FreePageBtreeSearch(fpm, first_page, &result); |
| 1568 | Assert(!result.found); |
| 1569 | if (result.index > 0) |
| 1570 | prevkey = &result.page->u.leaf_key[result.index - 1]; |
| 1571 | if (result.index < result.page->hdr.nused) |
| 1572 | { |
| 1573 | np = result.page; |
| 1574 | nindex = result.index; |
| 1575 | nextkey = &result.page->u.leaf_key[result.index]; |
| 1576 | } |
| 1577 | else |
| 1578 | { |
| 1579 | np = FreePageBtreeFindRightSibling(base, result.page); |
| 1580 | nindex = 0; |
| 1581 | if (np != NULL) |
| 1582 | nextkey = &np->u.leaf_key[0]; |
| 1583 | } |
| 1584 | |
| 1585 | /* Consolidate with the previous entry if possible. */ |
| 1586 | if (prevkey != NULL && prevkey->first_page + prevkey->npages >= first_page) |
| 1587 | { |
| 1588 | bool remove_next = false; |
| 1589 | Size result; |
| 1590 | |
| 1591 | Assert(prevkey->first_page + prevkey->npages == first_page); |
| 1592 | prevkey->npages = (first_page - prevkey->first_page) + npages; |
| 1593 | |
| 1594 | /* Check whether we can *also* consolidate with the following entry. */ |
| 1595 | if (nextkey != NULL && |
| 1596 | prevkey->first_page + prevkey->npages >= nextkey->first_page) |
| 1597 | { |
| 1598 | Assert(prevkey->first_page + prevkey->npages == |
| 1599 | nextkey->first_page); |
| 1600 | prevkey->npages = (nextkey->first_page - prevkey->first_page) |
| 1601 | + nextkey->npages; |
| 1602 | FreePagePopSpanLeader(fpm, nextkey->first_page); |
| 1603 | remove_next = true; |
| 1604 | } |
| 1605 | |
| 1606 | /* Put the span on the correct freelist and save size. */ |
| 1607 | FreePagePopSpanLeader(fpm, prevkey->first_page); |
| 1608 | FreePagePushSpanLeader(fpm, prevkey->first_page, prevkey->npages); |
| 1609 | result = prevkey->npages; |
| 1610 | |
| 1611 | /* |
| 1612 | * If we consolidated with both the preceding and following entries, |
| 1613 | * we must remove the following entry. We do this last, because |
| 1614 | * removing an element from the btree may invalidate pointers we hold |
| 1615 | * into the current data structure. |
| 1616 | * |
| 1617 | * NB: The btree is technically in an invalid state a this point |
| 1618 | * because we've already updated prevkey to cover the same key space |
| 1619 | * as nextkey. FreePageBtreeRemove() shouldn't notice that, though. |
| 1620 | */ |
| 1621 | if (remove_next) |
| 1622 | FreePageBtreeRemove(fpm, np, nindex); |
| 1623 | |
| 1624 | return result; |
| 1625 | } |
| 1626 | |
| 1627 | /* Consolidate with the next entry if possible. */ |
| 1628 | if (nextkey != NULL && first_page + npages >= nextkey->first_page) |
| 1629 | { |
| 1630 | Size newpages; |
| 1631 | |
| 1632 | /* Compute new size for span. */ |
| 1633 | Assert(first_page + npages == nextkey->first_page); |
| 1634 | newpages = (nextkey->first_page - first_page) + nextkey->npages; |
| 1635 | |
| 1636 | /* Put span on correct free list. */ |
| 1637 | FreePagePopSpanLeader(fpm, nextkey->first_page); |
| 1638 | FreePagePushSpanLeader(fpm, first_page, newpages); |
| 1639 | |
| 1640 | /* Update key in place. */ |
| 1641 | nextkey->first_page = first_page; |
| 1642 | nextkey->npages = newpages; |
| 1643 | |
| 1644 | /* If reducing first key on page, ancestors might need adjustment. */ |
| 1645 | if (nindex == 0) |
| 1646 | FreePageBtreeAdjustAncestorKeys(fpm, np); |
| 1647 | |
| 1648 | return nextkey->npages; |
| 1649 | } |
| 1650 | |
| 1651 | /* Split leaf page and as many of its ancestors as necessary. */ |
| 1652 | if (result.split_pages > 0) |
| 1653 | { |
| 1654 | /* |
| 1655 | * NB: We could consider various coping strategies here to avoid a |
| 1656 | * split; most obviously, if np != result.page, we could target that |
| 1657 | * page instead. More complicated shuffling strategies could be |
| 1658 | * possible as well; basically, unless every single leaf page is 100% |
| 1659 | * full, we can jam this key in there if we try hard enough. It's |
| 1660 | * unlikely that trying that hard is worthwhile, but it's possible we |
| 1661 | * might need to make more than no effort. For now, we just do the |
| 1662 | * easy thing, which is nothing. |
| 1663 | */ |
| 1664 | |
| 1665 | /* If this is a soft insert, it's time to give up. */ |
| 1666 | if (soft) |
| 1667 | return 0; |
| 1668 | |
| 1669 | /* Check whether we need to allocate more btree pages to split. */ |
| 1670 | if (result.split_pages > fpm->btree_recycle_count) |
| 1671 | { |
| 1672 | Size pages_needed; |
| 1673 | Size recycle_page; |
| 1674 | Size i; |
| 1675 | |
| 1676 | /* |
| 1677 | * Allocate the required number of pages and split each one in |
| 1678 | * turn. This should never fail, because if we've got enough |
| 1679 | * spans of free pages kicking around that we need additional |
| 1680 | * storage space just to remember them all, then we should |
| 1681 | * certainly have enough to expand the btree, which should only |
| 1682 | * ever use a tiny number of pages compared to the number under |
| 1683 | * management. If it does, something's badly screwed up. |
| 1684 | */ |
| 1685 | pages_needed = result.split_pages - fpm->btree_recycle_count; |
| 1686 | for (i = 0; i < pages_needed; ++i) |
| 1687 | { |
| 1688 | if (!FreePageManagerGetInternal(fpm, 1, &recycle_page)) |
| 1689 | elog(FATAL, "free page manager btree is corrupt" ); |
| 1690 | FreePageBtreeRecycle(fpm, recycle_page); |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * The act of allocating pages to recycle may have invalidated the |
| 1695 | * results of our previous btree reserch, so repeat it. (We could |
| 1696 | * recheck whether any of our split-avoidance strategies that were |
| 1697 | * not viable before now are, but it hardly seems worthwhile, so |
| 1698 | * we don't bother. Consolidation can't be possible now if it |
| 1699 | * wasn't previously.) |
| 1700 | */ |
| 1701 | FreePageBtreeSearch(fpm, first_page, &result); |
| 1702 | |
| 1703 | /* |
| 1704 | * The act of allocating pages for use in constructing our btree |
| 1705 | * should never cause any page to become more full, so the new |
| 1706 | * split depth should be no greater than the old one, and perhaps |
| 1707 | * less if we fortuitously allocated a chunk that freed up a slot |
| 1708 | * on the page we need to update. |
| 1709 | */ |
| 1710 | Assert(result.split_pages <= fpm->btree_recycle_count); |
| 1711 | } |
| 1712 | |
| 1713 | /* If we still need to perform a split, do it. */ |
| 1714 | if (result.split_pages > 0) |
| 1715 | { |
| 1716 | FreePageBtree *split_target = result.page; |
| 1717 | FreePageBtree *child = NULL; |
| 1718 | Size key = first_page; |
| 1719 | |
| 1720 | for (;;) |
| 1721 | { |
| 1722 | FreePageBtree *newsibling; |
| 1723 | FreePageBtree *parent; |
| 1724 | |
| 1725 | /* Identify parent page, which must receive downlink. */ |
| 1726 | parent = relptr_access(base, split_target->hdr.parent); |
| 1727 | |
| 1728 | /* Split the page - downlink not added yet. */ |
| 1729 | newsibling = FreePageBtreeSplitPage(fpm, split_target); |
| 1730 | |
| 1731 | /* |
| 1732 | * At this point in the loop, we're always carrying a pending |
| 1733 | * insertion. On the first pass, it's the actual key we're |
| 1734 | * trying to insert; on subsequent passes, it's the downlink |
| 1735 | * that needs to be added as a result of the split performed |
| 1736 | * during the previous loop iteration. Since we've just split |
| 1737 | * the page, there's definitely room on one of the two |
| 1738 | * resulting pages. |
| 1739 | */ |
| 1740 | if (child == NULL) |
| 1741 | { |
| 1742 | Size index; |
| 1743 | FreePageBtree *insert_into; |
| 1744 | |
| 1745 | insert_into = key < newsibling->u.leaf_key[0].first_page ? |
| 1746 | split_target : newsibling; |
| 1747 | index = FreePageBtreeSearchLeaf(insert_into, key); |
| 1748 | FreePageBtreeInsertLeaf(insert_into, index, key, npages); |
| 1749 | if (index == 0 && insert_into == split_target) |
| 1750 | FreePageBtreeAdjustAncestorKeys(fpm, split_target); |
| 1751 | } |
| 1752 | else |
| 1753 | { |
| 1754 | Size index; |
| 1755 | FreePageBtree *insert_into; |
| 1756 | |
| 1757 | insert_into = |
| 1758 | key < newsibling->u.internal_key[0].first_page ? |
| 1759 | split_target : newsibling; |
| 1760 | index = FreePageBtreeSearchInternal(insert_into, key); |
| 1761 | FreePageBtreeInsertInternal(base, insert_into, index, |
| 1762 | key, child); |
| 1763 | relptr_store(base, child->hdr.parent, insert_into); |
| 1764 | if (index == 0 && insert_into == split_target) |
| 1765 | FreePageBtreeAdjustAncestorKeys(fpm, split_target); |
| 1766 | } |
| 1767 | |
| 1768 | /* If the page we just split has no parent, split the root. */ |
| 1769 | if (parent == NULL) |
| 1770 | { |
| 1771 | FreePageBtree *newroot; |
| 1772 | |
| 1773 | newroot = FreePageBtreeGetRecycled(fpm); |
| 1774 | newroot->hdr.magic = FREE_PAGE_INTERNAL_MAGIC; |
| 1775 | newroot->hdr.nused = 2; |
| 1776 | relptr_store(base, newroot->hdr.parent, |
| 1777 | (FreePageBtree *) NULL); |
| 1778 | newroot->u.internal_key[0].first_page = |
| 1779 | FreePageBtreeFirstKey(split_target); |
| 1780 | relptr_store(base, newroot->u.internal_key[0].child, |
| 1781 | split_target); |
| 1782 | relptr_store(base, split_target->hdr.parent, newroot); |
| 1783 | newroot->u.internal_key[1].first_page = |
| 1784 | FreePageBtreeFirstKey(newsibling); |
| 1785 | relptr_store(base, newroot->u.internal_key[1].child, |
| 1786 | newsibling); |
| 1787 | relptr_store(base, newsibling->hdr.parent, newroot); |
| 1788 | relptr_store(base, fpm->btree_root, newroot); |
| 1789 | fpm->btree_depth++; |
| 1790 | |
| 1791 | break; |
| 1792 | } |
| 1793 | |
| 1794 | /* If the parent page isn't full, insert the downlink. */ |
| 1795 | key = newsibling->u.internal_key[0].first_page; |
| 1796 | if (parent->hdr.nused < FPM_ITEMS_PER_INTERNAL_PAGE) |
| 1797 | { |
| 1798 | Size index; |
| 1799 | |
| 1800 | index = FreePageBtreeSearchInternal(parent, key); |
| 1801 | FreePageBtreeInsertInternal(base, parent, index, |
| 1802 | key, newsibling); |
| 1803 | relptr_store(base, newsibling->hdr.parent, parent); |
| 1804 | if (index == 0) |
| 1805 | FreePageBtreeAdjustAncestorKeys(fpm, parent); |
| 1806 | break; |
| 1807 | } |
| 1808 | |
| 1809 | /* The parent also needs to be split, so loop around. */ |
| 1810 | child = newsibling; |
| 1811 | split_target = parent; |
| 1812 | } |
| 1813 | |
| 1814 | /* |
| 1815 | * The loop above did the insert, so just need to update the free |
| 1816 | * list, and we're done. |
| 1817 | */ |
| 1818 | FreePagePushSpanLeader(fpm, first_page, npages); |
| 1819 | |
| 1820 | return npages; |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | /* Physically add the key to the page. */ |
| 1825 | Assert(result.page->hdr.nused < FPM_ITEMS_PER_LEAF_PAGE); |
| 1826 | FreePageBtreeInsertLeaf(result.page, result.index, first_page, npages); |
| 1827 | |
| 1828 | /* If new first key on page, ancestors might need adjustment. */ |
| 1829 | if (result.index == 0) |
| 1830 | FreePageBtreeAdjustAncestorKeys(fpm, result.page); |
| 1831 | |
| 1832 | /* Put it on the free list. */ |
| 1833 | FreePagePushSpanLeader(fpm, first_page, npages); |
| 1834 | |
| 1835 | return npages; |
| 1836 | } |
| 1837 | |
| 1838 | /* |
| 1839 | * Remove a FreePageSpanLeader from the linked-list that contains it, either |
| 1840 | * because we're changing the size of the span, or because we're allocating it. |
| 1841 | */ |
| 1842 | static void |
| 1843 | FreePagePopSpanLeader(FreePageManager *fpm, Size pageno) |
| 1844 | { |
| 1845 | char *base = fpm_segment_base(fpm); |
| 1846 | FreePageSpanLeader *span; |
| 1847 | FreePageSpanLeader *next; |
| 1848 | FreePageSpanLeader *prev; |
| 1849 | |
| 1850 | span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno); |
| 1851 | |
| 1852 | next = relptr_access(base, span->next); |
| 1853 | prev = relptr_access(base, span->prev); |
| 1854 | if (next != NULL) |
| 1855 | relptr_copy(next->prev, span->prev); |
| 1856 | if (prev != NULL) |
| 1857 | relptr_copy(prev->next, span->next); |
| 1858 | else |
| 1859 | { |
| 1860 | Size f = Min(span->npages, FPM_NUM_FREELISTS) - 1; |
| 1861 | |
| 1862 | Assert(fpm->freelist[f].relptr_off == pageno * FPM_PAGE_SIZE); |
| 1863 | relptr_copy(fpm->freelist[f], span->next); |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * Initialize a new FreePageSpanLeader and put it on the appropriate free list. |
| 1869 | */ |
| 1870 | static void |
| 1871 | FreePagePushSpanLeader(FreePageManager *fpm, Size first_page, Size npages) |
| 1872 | { |
| 1873 | char *base = fpm_segment_base(fpm); |
| 1874 | Size f = Min(npages, FPM_NUM_FREELISTS) - 1; |
| 1875 | FreePageSpanLeader *head = relptr_access(base, fpm->freelist[f]); |
| 1876 | FreePageSpanLeader *span; |
| 1877 | |
| 1878 | span = (FreePageSpanLeader *) fpm_page_to_pointer(base, first_page); |
| 1879 | span->magic = FREE_PAGE_SPAN_LEADER_MAGIC; |
| 1880 | span->npages = npages; |
| 1881 | relptr_store(base, span->next, head); |
| 1882 | relptr_store(base, span->prev, (FreePageSpanLeader *) NULL); |
| 1883 | if (head != NULL) |
| 1884 | relptr_store(base, head->prev, span); |
| 1885 | relptr_store(base, fpm->freelist[f], span); |
| 1886 | } |
| 1887 | |