1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * slab.c |
4 | * SLAB allocator definitions. |
5 | * |
6 | * SLAB is a MemoryContext implementation designed for cases where large |
7 | * numbers of equally-sized objects are allocated (and freed). |
8 | * |
9 | * |
10 | * Portions Copyright (c) 2017-2019, PostgreSQL Global Development Group |
11 | * |
12 | * IDENTIFICATION |
13 | * src/backend/utils/mmgr/slab.c |
14 | * |
15 | * |
16 | * NOTE: |
17 | * The constant allocation size allows significant simplification and various |
18 | * optimizations over more general purpose allocators. The blocks are carved |
19 | * into chunks of exactly the right size (plus alignment), not wasting any |
20 | * memory. |
21 | * |
22 | * The information about free chunks is maintained both at the block level and |
23 | * global (context) level. This is possible as the chunk size (and thus also |
24 | * the number of chunks per block) is fixed. |
25 | * |
26 | * On each block, free chunks are tracked in a simple linked list. Contents |
27 | * of free chunks is replaced with an index of the next free chunk, forming |
28 | * a very simple linked list. Each block also contains a counter of free |
29 | * chunks. Combined with the local block-level freelist, it makes it trivial |
30 | * to eventually free the whole block. |
31 | * |
32 | * At the context level, we use 'freelist' to track blocks ordered by number |
33 | * of free chunks, starting with blocks having a single allocated chunk, and |
34 | * with completely full blocks on the tail. |
35 | * |
36 | * This also allows various optimizations - for example when searching for |
37 | * free chunk, the allocator reuses space from the fullest blocks first, in |
38 | * the hope that some of the less full blocks will get completely empty (and |
39 | * returned back to the OS). |
40 | * |
41 | * For each block, we maintain pointer to the first free chunk - this is quite |
42 | * cheap and allows us to skip all the preceding used chunks, eliminating |
43 | * a significant number of lookups in many common usage patters. In the worst |
44 | * case this performs as if the pointer was not maintained. |
45 | * |
46 | * We cache the freelist index for the blocks with the fewest free chunks |
47 | * (minFreeChunks), so that we don't have to search the freelist on every |
48 | * SlabAlloc() call, which is quite expensive. |
49 | * |
50 | *------------------------------------------------------------------------- |
51 | */ |
52 | |
53 | #include "postgres.h" |
54 | |
55 | #include "utils/memdebug.h" |
56 | #include "utils/memutils.h" |
57 | #include "lib/ilist.h" |
58 | |
59 | |
60 | /* |
61 | * SlabContext is a specialized implementation of MemoryContext. |
62 | */ |
63 | typedef struct SlabContext |
64 | { |
65 | MemoryContextData ; /* Standard memory-context fields */ |
66 | /* Allocation parameters for this context: */ |
67 | Size chunkSize; /* chunk size */ |
68 | Size fullChunkSize; /* chunk size including header and alignment */ |
69 | Size blockSize; /* block size */ |
70 | Size ; /* allocated size of context header */ |
71 | int chunksPerBlock; /* number of chunks per block */ |
72 | int minFreeChunks; /* min number of free chunks in any block */ |
73 | int nblocks; /* number of blocks allocated */ |
74 | /* blocks with free space, grouped by number of free chunks: */ |
75 | dlist_head freelist[FLEXIBLE_ARRAY_MEMBER]; |
76 | } SlabContext; |
77 | |
78 | /* |
79 | * SlabBlock |
80 | * Structure of a single block in SLAB allocator. |
81 | * |
82 | * node: doubly-linked list of blocks in global freelist |
83 | * nfree: number of free chunks in this block |
84 | * firstFreeChunk: index of the first free chunk |
85 | */ |
86 | typedef struct SlabBlock |
87 | { |
88 | dlist_node node; /* doubly-linked list */ |
89 | int nfree; /* number of free chunks */ |
90 | int firstFreeChunk; /* index of the first free chunk in the block */ |
91 | } SlabBlock; |
92 | |
93 | /* |
94 | * SlabChunk |
95 | * The prefix of each piece of memory in a SlabBlock |
96 | * |
97 | * Note: to meet the memory context APIs, the payload area of the chunk must |
98 | * be maxaligned, and the "slab" link must be immediately adjacent to the |
99 | * payload area (cf. GetMemoryChunkContext). Since we support no machines on |
100 | * which MAXALIGN is more than twice sizeof(void *), this happens without any |
101 | * special hacking in this struct declaration. But there is a static |
102 | * assertion below that the alignment is done correctly. |
103 | */ |
104 | typedef struct SlabChunk |
105 | { |
106 | SlabBlock *block; /* block owning this chunk */ |
107 | SlabContext *slab; /* owning context */ |
108 | /* there must not be any padding to reach a MAXALIGN boundary here! */ |
109 | } SlabChunk; |
110 | |
111 | |
112 | #define SlabPointerGetChunk(ptr) \ |
113 | ((SlabChunk *)(((char *)(ptr)) - sizeof(SlabChunk))) |
114 | #define SlabChunkGetPointer(chk) \ |
115 | ((void *)(((char *)(chk)) + sizeof(SlabChunk))) |
116 | #define SlabBlockGetChunk(slab, block, idx) \ |
117 | ((SlabChunk *) ((char *) (block) + sizeof(SlabBlock) \ |
118 | + (idx * slab->fullChunkSize))) |
119 | #define SlabBlockStart(block) \ |
120 | ((char *) block + sizeof(SlabBlock)) |
121 | #define SlabChunkIndex(slab, block, chunk) \ |
122 | (((char *) chunk - SlabBlockStart(block)) / slab->fullChunkSize) |
123 | |
124 | /* |
125 | * These functions implement the MemoryContext API for Slab contexts. |
126 | */ |
127 | static void *SlabAlloc(MemoryContext context, Size size); |
128 | static void SlabFree(MemoryContext context, void *pointer); |
129 | static void *SlabRealloc(MemoryContext context, void *pointer, Size size); |
130 | static void SlabReset(MemoryContext context); |
131 | static void SlabDelete(MemoryContext context); |
132 | static Size SlabGetChunkSpace(MemoryContext context, void *pointer); |
133 | static bool SlabIsEmpty(MemoryContext context); |
134 | static void SlabStats(MemoryContext context, |
135 | MemoryStatsPrintFunc printfunc, void *passthru, |
136 | MemoryContextCounters *totals); |
137 | #ifdef MEMORY_CONTEXT_CHECKING |
138 | static void SlabCheck(MemoryContext context); |
139 | #endif |
140 | |
141 | /* |
142 | * This is the virtual function table for Slab contexts. |
143 | */ |
144 | static const MemoryContextMethods SlabMethods = { |
145 | SlabAlloc, |
146 | SlabFree, |
147 | SlabRealloc, |
148 | SlabReset, |
149 | SlabDelete, |
150 | SlabGetChunkSpace, |
151 | SlabIsEmpty, |
152 | SlabStats |
153 | #ifdef MEMORY_CONTEXT_CHECKING |
154 | ,SlabCheck |
155 | #endif |
156 | }; |
157 | |
158 | /* ---------- |
159 | * Debug macros |
160 | * ---------- |
161 | */ |
162 | #ifdef HAVE_ALLOCINFO |
163 | #define SlabFreeInfo(_cxt, _chunk) \ |
164 | fprintf(stderr, "SlabFree: %s: %p, %zu\n", \ |
165 | (_cxt)->header.name, (_chunk), (_chunk)->header.size) |
166 | #define SlabAllocInfo(_cxt, _chunk) \ |
167 | fprintf(stderr, "SlabAlloc: %s: %p, %zu\n", \ |
168 | (_cxt)->header.name, (_chunk), (_chunk)->header.size) |
169 | #else |
170 | #define SlabFreeInfo(_cxt, _chunk) |
171 | #define SlabAllocInfo(_cxt, _chunk) |
172 | #endif |
173 | |
174 | |
175 | /* |
176 | * SlabContextCreate |
177 | * Create a new Slab context. |
178 | * |
179 | * parent: parent context, or NULL if top-level context |
180 | * name: name of context (must be statically allocated) |
181 | * blockSize: allocation block size |
182 | * chunkSize: allocation chunk size |
183 | * |
184 | * The chunkSize may not exceed: |
185 | * MAXALIGN_DOWN(SIZE_MAX) - MAXALIGN(sizeof(SlabBlock)) - SLAB_CHUNKHDRSZ |
186 | */ |
187 | MemoryContext |
188 | SlabContextCreate(MemoryContext parent, |
189 | const char *name, |
190 | Size blockSize, |
191 | Size chunkSize) |
192 | { |
193 | int chunksPerBlock; |
194 | Size fullChunkSize; |
195 | Size freelistSize; |
196 | Size ; |
197 | SlabContext *slab; |
198 | int i; |
199 | |
200 | /* Assert we padded SlabChunk properly */ |
201 | StaticAssertStmt(sizeof(SlabChunk) == MAXALIGN(sizeof(SlabChunk)), |
202 | "sizeof(SlabChunk) is not maxaligned" ); |
203 | StaticAssertStmt(offsetof(SlabChunk, slab) + sizeof(MemoryContext) == |
204 | sizeof(SlabChunk), |
205 | "padding calculation in SlabChunk is wrong" ); |
206 | |
207 | /* Make sure the linked list node fits inside a freed chunk */ |
208 | if (chunkSize < sizeof(int)) |
209 | chunkSize = sizeof(int); |
210 | |
211 | /* chunk, including SLAB header (both addresses nicely aligned) */ |
212 | fullChunkSize = sizeof(SlabChunk) + MAXALIGN(chunkSize); |
213 | |
214 | /* Make sure the block can store at least one chunk. */ |
215 | if (blockSize < fullChunkSize + sizeof(SlabBlock)) |
216 | elog(ERROR, "block size %zu for slab is too small for %zu chunks" , |
217 | blockSize, chunkSize); |
218 | |
219 | /* Compute maximum number of chunks per block */ |
220 | chunksPerBlock = (blockSize - sizeof(SlabBlock)) / fullChunkSize; |
221 | |
222 | /* The freelist starts with 0, ends with chunksPerBlock. */ |
223 | freelistSize = sizeof(dlist_head) * (chunksPerBlock + 1); |
224 | |
225 | /* |
226 | * Allocate the context header. Unlike aset.c, we never try to combine |
227 | * this with the first regular block; not worth the extra complication. |
228 | */ |
229 | |
230 | /* Size of the memory context header */ |
231 | headerSize = offsetof(SlabContext, freelist) + freelistSize; |
232 | |
233 | slab = (SlabContext *) malloc(headerSize); |
234 | if (slab == NULL) |
235 | { |
236 | MemoryContextStats(TopMemoryContext); |
237 | ereport(ERROR, |
238 | (errcode(ERRCODE_OUT_OF_MEMORY), |
239 | errmsg("out of memory" ), |
240 | errdetail("Failed while creating memory context \"%s\"." , |
241 | name))); |
242 | } |
243 | |
244 | /* |
245 | * Avoid writing code that can fail between here and MemoryContextCreate; |
246 | * we'd leak the header if we ereport in this stretch. |
247 | */ |
248 | |
249 | /* Fill in SlabContext-specific header fields */ |
250 | slab->chunkSize = chunkSize; |
251 | slab->fullChunkSize = fullChunkSize; |
252 | slab->blockSize = blockSize; |
253 | slab->headerSize = headerSize; |
254 | slab->chunksPerBlock = chunksPerBlock; |
255 | slab->minFreeChunks = 0; |
256 | slab->nblocks = 0; |
257 | |
258 | /* initialize the freelist slots */ |
259 | for (i = 0; i < (slab->chunksPerBlock + 1); i++) |
260 | dlist_init(&slab->freelist[i]); |
261 | |
262 | /* Finally, do the type-independent part of context creation */ |
263 | MemoryContextCreate((MemoryContext) slab, |
264 | T_SlabContext, |
265 | &SlabMethods, |
266 | parent, |
267 | name); |
268 | |
269 | return (MemoryContext) slab; |
270 | } |
271 | |
272 | /* |
273 | * SlabReset |
274 | * Frees all memory which is allocated in the given set. |
275 | * |
276 | * The code simply frees all the blocks in the context - we don't keep any |
277 | * keeper blocks or anything like that. |
278 | */ |
279 | static void |
280 | SlabReset(MemoryContext context) |
281 | { |
282 | int i; |
283 | SlabContext *slab = castNode(SlabContext, context); |
284 | |
285 | Assert(slab); |
286 | |
287 | #ifdef MEMORY_CONTEXT_CHECKING |
288 | /* Check for corruption and leaks before freeing */ |
289 | SlabCheck(context); |
290 | #endif |
291 | |
292 | /* walk over freelists and free the blocks */ |
293 | for (i = 0; i <= slab->chunksPerBlock; i++) |
294 | { |
295 | dlist_mutable_iter miter; |
296 | |
297 | dlist_foreach_modify(miter, &slab->freelist[i]) |
298 | { |
299 | SlabBlock *block = dlist_container(SlabBlock, node, miter.cur); |
300 | |
301 | dlist_delete(miter.cur); |
302 | |
303 | #ifdef CLOBBER_FREED_MEMORY |
304 | wipe_mem(block, slab->blockSize); |
305 | #endif |
306 | free(block); |
307 | slab->nblocks--; |
308 | } |
309 | } |
310 | |
311 | slab->minFreeChunks = 0; |
312 | |
313 | Assert(slab->nblocks == 0); |
314 | } |
315 | |
316 | /* |
317 | * SlabDelete |
318 | * Free all memory which is allocated in the given context. |
319 | */ |
320 | static void |
321 | SlabDelete(MemoryContext context) |
322 | { |
323 | /* Reset to release all the SlabBlocks */ |
324 | SlabReset(context); |
325 | /* And free the context header */ |
326 | free(context); |
327 | } |
328 | |
329 | /* |
330 | * SlabAlloc |
331 | * Returns pointer to allocated memory of given size or NULL if |
332 | * request could not be completed; memory is added to the slab. |
333 | */ |
334 | static void * |
335 | SlabAlloc(MemoryContext context, Size size) |
336 | { |
337 | SlabContext *slab = castNode(SlabContext, context); |
338 | SlabBlock *block; |
339 | SlabChunk *chunk; |
340 | int idx; |
341 | |
342 | Assert(slab); |
343 | |
344 | Assert((slab->minFreeChunks >= 0) && |
345 | (slab->minFreeChunks < slab->chunksPerBlock)); |
346 | |
347 | /* make sure we only allow correct request size */ |
348 | if (size != slab->chunkSize) |
349 | elog(ERROR, "unexpected alloc chunk size %zu (expected %zu)" , |
350 | size, slab->chunkSize); |
351 | |
352 | /* |
353 | * If there are no free chunks in any existing block, create a new block |
354 | * and put it to the last freelist bucket. |
355 | * |
356 | * slab->minFreeChunks == 0 means there are no blocks with free chunks, |
357 | * thanks to how minFreeChunks is updated at the end of SlabAlloc(). |
358 | */ |
359 | if (slab->minFreeChunks == 0) |
360 | { |
361 | block = (SlabBlock *) malloc(slab->blockSize); |
362 | |
363 | if (block == NULL) |
364 | return NULL; |
365 | |
366 | block->nfree = slab->chunksPerBlock; |
367 | block->firstFreeChunk = 0; |
368 | |
369 | /* |
370 | * Put all the chunks on a freelist. Walk the chunks and point each |
371 | * one to the next one. |
372 | */ |
373 | for (idx = 0; idx < slab->chunksPerBlock; idx++) |
374 | { |
375 | chunk = SlabBlockGetChunk(slab, block, idx); |
376 | *(int32 *) SlabChunkGetPointer(chunk) = (idx + 1); |
377 | } |
378 | |
379 | /* |
380 | * And add it to the last freelist with all chunks empty. |
381 | * |
382 | * We know there are no blocks in the freelist, otherwise we wouldn't |
383 | * need a new block. |
384 | */ |
385 | Assert(dlist_is_empty(&slab->freelist[slab->chunksPerBlock])); |
386 | |
387 | dlist_push_head(&slab->freelist[slab->chunksPerBlock], &block->node); |
388 | |
389 | slab->minFreeChunks = slab->chunksPerBlock; |
390 | slab->nblocks += 1; |
391 | } |
392 | |
393 | /* grab the block from the freelist (even the new block is there) */ |
394 | block = dlist_head_element(SlabBlock, node, |
395 | &slab->freelist[slab->minFreeChunks]); |
396 | |
397 | /* make sure we actually got a valid block, with matching nfree */ |
398 | Assert(block != NULL); |
399 | Assert(slab->minFreeChunks == block->nfree); |
400 | Assert(block->nfree > 0); |
401 | |
402 | /* we know index of the first free chunk in the block */ |
403 | idx = block->firstFreeChunk; |
404 | |
405 | /* make sure the chunk index is valid, and that it's marked as empty */ |
406 | Assert((idx >= 0) && (idx < slab->chunksPerBlock)); |
407 | |
408 | /* compute the chunk location block start (after the block header) */ |
409 | chunk = SlabBlockGetChunk(slab, block, idx); |
410 | |
411 | /* |
412 | * Update the block nfree count, and also the minFreeChunks as we've |
413 | * decreased nfree for a block with the minimum number of free chunks |
414 | * (because that's how we chose the block). |
415 | */ |
416 | block->nfree--; |
417 | slab->minFreeChunks = block->nfree; |
418 | |
419 | /* |
420 | * Remove the chunk from the freelist head. The index of the next free |
421 | * chunk is stored in the chunk itself. |
422 | */ |
423 | VALGRIND_MAKE_MEM_DEFINED(SlabChunkGetPointer(chunk), sizeof(int32)); |
424 | block->firstFreeChunk = *(int32 *) SlabChunkGetPointer(chunk); |
425 | |
426 | Assert(block->firstFreeChunk >= 0); |
427 | Assert(block->firstFreeChunk <= slab->chunksPerBlock); |
428 | |
429 | Assert((block->nfree != 0 && |
430 | block->firstFreeChunk < slab->chunksPerBlock) || |
431 | (block->nfree == 0 && |
432 | block->firstFreeChunk == slab->chunksPerBlock)); |
433 | |
434 | /* move the whole block to the right place in the freelist */ |
435 | dlist_delete(&block->node); |
436 | dlist_push_head(&slab->freelist[block->nfree], &block->node); |
437 | |
438 | /* |
439 | * And finally update minFreeChunks, i.e. the index to the block with the |
440 | * lowest number of free chunks. We only need to do that when the block |
441 | * got full (otherwise we know the current block is the right one). We'll |
442 | * simply walk the freelist until we find a non-empty entry. |
443 | */ |
444 | if (slab->minFreeChunks == 0) |
445 | { |
446 | for (idx = 1; idx <= slab->chunksPerBlock; idx++) |
447 | { |
448 | if (dlist_is_empty(&slab->freelist[idx])) |
449 | continue; |
450 | |
451 | /* found a non-empty freelist */ |
452 | slab->minFreeChunks = idx; |
453 | break; |
454 | } |
455 | } |
456 | |
457 | if (slab->minFreeChunks == slab->chunksPerBlock) |
458 | slab->minFreeChunks = 0; |
459 | |
460 | /* Prepare to initialize the chunk header. */ |
461 | VALGRIND_MAKE_MEM_UNDEFINED(chunk, sizeof(SlabChunk)); |
462 | |
463 | chunk->block = block; |
464 | chunk->slab = slab; |
465 | |
466 | #ifdef MEMORY_CONTEXT_CHECKING |
467 | /* slab mark to catch clobber of "unused" space */ |
468 | if (slab->chunkSize < (slab->fullChunkSize - sizeof(SlabChunk))) |
469 | { |
470 | set_sentinel(SlabChunkGetPointer(chunk), size); |
471 | VALGRIND_MAKE_MEM_NOACCESS(((char *) chunk) + |
472 | sizeof(SlabChunk) + slab->chunkSize, |
473 | slab->fullChunkSize - |
474 | (slab->chunkSize + sizeof(SlabChunk))); |
475 | } |
476 | #endif |
477 | #ifdef RANDOMIZE_ALLOCATED_MEMORY |
478 | /* fill the allocated space with junk */ |
479 | randomize_mem((char *) SlabChunkGetPointer(chunk), size); |
480 | #endif |
481 | |
482 | SlabAllocInfo(slab, chunk); |
483 | return SlabChunkGetPointer(chunk); |
484 | } |
485 | |
486 | /* |
487 | * SlabFree |
488 | * Frees allocated memory; memory is removed from the slab. |
489 | */ |
490 | static void |
491 | SlabFree(MemoryContext context, void *pointer) |
492 | { |
493 | int idx; |
494 | SlabContext *slab = castNode(SlabContext, context); |
495 | SlabChunk *chunk = SlabPointerGetChunk(pointer); |
496 | SlabBlock *block = chunk->block; |
497 | |
498 | SlabFreeInfo(slab, chunk); |
499 | |
500 | #ifdef MEMORY_CONTEXT_CHECKING |
501 | /* Test for someone scribbling on unused space in chunk */ |
502 | if (slab->chunkSize < (slab->fullChunkSize - sizeof(SlabChunk))) |
503 | if (!sentinel_ok(pointer, slab->chunkSize)) |
504 | elog(WARNING, "detected write past chunk end in %s %p" , |
505 | slab->header.name, chunk); |
506 | #endif |
507 | |
508 | /* compute index of the chunk with respect to block start */ |
509 | idx = SlabChunkIndex(slab, block, chunk); |
510 | |
511 | /* add chunk to freelist, and update block nfree count */ |
512 | *(int32 *) pointer = block->firstFreeChunk; |
513 | block->firstFreeChunk = idx; |
514 | block->nfree++; |
515 | |
516 | Assert(block->nfree > 0); |
517 | Assert(block->nfree <= slab->chunksPerBlock); |
518 | |
519 | #ifdef CLOBBER_FREED_MEMORY |
520 | /* XXX don't wipe the int32 index, used for block-level freelist */ |
521 | wipe_mem((char *) pointer + sizeof(int32), |
522 | slab->chunkSize - sizeof(int32)); |
523 | #endif |
524 | |
525 | /* remove the block from a freelist */ |
526 | dlist_delete(&block->node); |
527 | |
528 | /* |
529 | * See if we need to update the minFreeChunks field for the slab - we only |
530 | * need to do that if there the block had that number of free chunks |
531 | * before we freed one. In that case, we check if there still are blocks |
532 | * in the original freelist and we either keep the current value (if there |
533 | * still are blocks) or increment it by one (the new block is still the |
534 | * one with minimum free chunks). |
535 | * |
536 | * The one exception is when the block will get completely free - in that |
537 | * case we will free it, se we can't use it for minFreeChunks. It however |
538 | * means there are no more blocks with free chunks. |
539 | */ |
540 | if (slab->minFreeChunks == (block->nfree - 1)) |
541 | { |
542 | /* Have we removed the last chunk from the freelist? */ |
543 | if (dlist_is_empty(&slab->freelist[slab->minFreeChunks])) |
544 | { |
545 | /* but if we made the block entirely free, we'll free it */ |
546 | if (block->nfree == slab->chunksPerBlock) |
547 | slab->minFreeChunks = 0; |
548 | else |
549 | slab->minFreeChunks++; |
550 | } |
551 | } |
552 | |
553 | /* If the block is now completely empty, free it. */ |
554 | if (block->nfree == slab->chunksPerBlock) |
555 | { |
556 | free(block); |
557 | slab->nblocks--; |
558 | } |
559 | else |
560 | dlist_push_head(&slab->freelist[block->nfree], &block->node); |
561 | |
562 | Assert(slab->nblocks >= 0); |
563 | } |
564 | |
565 | /* |
566 | * SlabRealloc |
567 | * Change the allocated size of a chunk. |
568 | * |
569 | * As Slab is designed for allocating equally-sized chunks of memory, it can't |
570 | * do an actual chunk size change. We try to be gentle and allow calls with |
571 | * exactly the same size, as in that case we can simply return the same |
572 | * chunk. When the size differs, we throw an error. |
573 | * |
574 | * We could also allow requests with size < chunkSize. That however seems |
575 | * rather pointless - Slab is meant for chunks of constant size, and moreover |
576 | * realloc is usually used to enlarge the chunk. |
577 | */ |
578 | static void * |
579 | SlabRealloc(MemoryContext context, void *pointer, Size size) |
580 | { |
581 | SlabContext *slab = castNode(SlabContext, context); |
582 | |
583 | Assert(slab); |
584 | |
585 | /* can't do actual realloc with slab, but let's try to be gentle */ |
586 | if (size == slab->chunkSize) |
587 | return pointer; |
588 | |
589 | elog(ERROR, "slab allocator does not support realloc()" ); |
590 | return NULL; /* keep compiler quiet */ |
591 | } |
592 | |
593 | /* |
594 | * SlabGetChunkSpace |
595 | * Given a currently-allocated chunk, determine the total space |
596 | * it occupies (including all memory-allocation overhead). |
597 | */ |
598 | static Size |
599 | SlabGetChunkSpace(MemoryContext context, void *pointer) |
600 | { |
601 | SlabContext *slab = castNode(SlabContext, context); |
602 | |
603 | Assert(slab); |
604 | |
605 | return slab->fullChunkSize; |
606 | } |
607 | |
608 | /* |
609 | * SlabIsEmpty |
610 | * Is an Slab empty of any allocated space? |
611 | */ |
612 | static bool |
613 | SlabIsEmpty(MemoryContext context) |
614 | { |
615 | SlabContext *slab = castNode(SlabContext, context); |
616 | |
617 | Assert(slab); |
618 | |
619 | return (slab->nblocks == 0); |
620 | } |
621 | |
622 | /* |
623 | * SlabStats |
624 | * Compute stats about memory consumption of a Slab context. |
625 | * |
626 | * printfunc: if not NULL, pass a human-readable stats string to this. |
627 | * passthru: pass this pointer through to printfunc. |
628 | * totals: if not NULL, add stats about this context into *totals. |
629 | */ |
630 | static void |
631 | SlabStats(MemoryContext context, |
632 | MemoryStatsPrintFunc printfunc, void *passthru, |
633 | MemoryContextCounters *totals) |
634 | { |
635 | SlabContext *slab = castNode(SlabContext, context); |
636 | Size nblocks = 0; |
637 | Size freechunks = 0; |
638 | Size totalspace; |
639 | Size freespace = 0; |
640 | int i; |
641 | |
642 | /* Include context header in totalspace */ |
643 | totalspace = slab->headerSize; |
644 | |
645 | for (i = 0; i <= slab->chunksPerBlock; i++) |
646 | { |
647 | dlist_iter iter; |
648 | |
649 | dlist_foreach(iter, &slab->freelist[i]) |
650 | { |
651 | SlabBlock *block = dlist_container(SlabBlock, node, iter.cur); |
652 | |
653 | nblocks++; |
654 | totalspace += slab->blockSize; |
655 | freespace += slab->fullChunkSize * block->nfree; |
656 | freechunks += block->nfree; |
657 | } |
658 | } |
659 | |
660 | if (printfunc) |
661 | { |
662 | char stats_string[200]; |
663 | |
664 | snprintf(stats_string, sizeof(stats_string), |
665 | "%zu total in %zd blocks; %zu free (%zd chunks); %zu used" , |
666 | totalspace, nblocks, freespace, freechunks, |
667 | totalspace - freespace); |
668 | printfunc(context, passthru, stats_string); |
669 | } |
670 | |
671 | if (totals) |
672 | { |
673 | totals->nblocks += nblocks; |
674 | totals->freechunks += freechunks; |
675 | totals->totalspace += totalspace; |
676 | totals->freespace += freespace; |
677 | } |
678 | } |
679 | |
680 | |
681 | #ifdef MEMORY_CONTEXT_CHECKING |
682 | |
683 | /* |
684 | * SlabCheck |
685 | * Walk through chunks and check consistency of memory. |
686 | * |
687 | * NOTE: report errors as WARNING, *not* ERROR or FATAL. Otherwise you'll |
688 | * find yourself in an infinite loop when trouble occurs, because this |
689 | * routine will be entered again when elog cleanup tries to release memory! |
690 | */ |
691 | static void |
692 | SlabCheck(MemoryContext context) |
693 | { |
694 | int i; |
695 | SlabContext *slab = castNode(SlabContext, context); |
696 | const char *name = slab->header.name; |
697 | char *freechunks; |
698 | |
699 | Assert(slab); |
700 | Assert(slab->chunksPerBlock > 0); |
701 | |
702 | /* bitmap of free chunks on a block */ |
703 | freechunks = palloc(slab->chunksPerBlock * sizeof(bool)); |
704 | |
705 | /* walk all the freelists */ |
706 | for (i = 0; i <= slab->chunksPerBlock; i++) |
707 | { |
708 | int j, |
709 | nfree; |
710 | dlist_iter iter; |
711 | |
712 | /* walk all blocks on this freelist */ |
713 | dlist_foreach(iter, &slab->freelist[i]) |
714 | { |
715 | int idx; |
716 | SlabBlock *block = dlist_container(SlabBlock, node, iter.cur); |
717 | |
718 | /* |
719 | * Make sure the number of free chunks (in the block header) |
720 | * matches position in the freelist. |
721 | */ |
722 | if (block->nfree != i) |
723 | elog(WARNING, "problem in slab %s: number of free chunks %d in block %p does not match freelist %d" , |
724 | name, block->nfree, block, i); |
725 | |
726 | /* reset the bitmap of free chunks for this block */ |
727 | memset(freechunks, 0, (slab->chunksPerBlock * sizeof(bool))); |
728 | idx = block->firstFreeChunk; |
729 | |
730 | /* |
731 | * Now walk through the chunks, count the free ones and also |
732 | * perform some additional checks for the used ones. As the chunk |
733 | * freelist is stored within the chunks themselves, we have to |
734 | * walk through the chunks and construct our own bitmap. |
735 | */ |
736 | |
737 | nfree = 0; |
738 | while (idx < slab->chunksPerBlock) |
739 | { |
740 | SlabChunk *chunk; |
741 | |
742 | /* count the chunk as free, add it to the bitmap */ |
743 | nfree++; |
744 | freechunks[idx] = true; |
745 | |
746 | /* read index of the next free chunk */ |
747 | chunk = SlabBlockGetChunk(slab, block, idx); |
748 | VALGRIND_MAKE_MEM_DEFINED(SlabChunkGetPointer(chunk), sizeof(int32)); |
749 | idx = *(int32 *) SlabChunkGetPointer(chunk); |
750 | } |
751 | |
752 | for (j = 0; j < slab->chunksPerBlock; j++) |
753 | { |
754 | /* non-zero bit in the bitmap means chunk the chunk is used */ |
755 | if (!freechunks[j]) |
756 | { |
757 | SlabChunk *chunk = SlabBlockGetChunk(slab, block, j); |
758 | |
759 | /* chunks have both block and slab pointers, so check both */ |
760 | if (chunk->block != block) |
761 | elog(WARNING, "problem in slab %s: bogus block link in block %p, chunk %p" , |
762 | name, block, chunk); |
763 | |
764 | if (chunk->slab != slab) |
765 | elog(WARNING, "problem in slab %s: bogus slab link in block %p, chunk %p" , |
766 | name, block, chunk); |
767 | |
768 | /* there might be sentinel (thanks to alignment) */ |
769 | if (slab->chunkSize < (slab->fullChunkSize - sizeof(SlabChunk))) |
770 | if (!sentinel_ok(chunk, slab->chunkSize)) |
771 | elog(WARNING, "problem in slab %s: detected write past chunk end in block %p, chunk %p" , |
772 | name, block, chunk); |
773 | } |
774 | } |
775 | |
776 | /* |
777 | * Make sure we got the expected number of free chunks (as tracked |
778 | * in the block header). |
779 | */ |
780 | if (nfree != block->nfree) |
781 | elog(WARNING, "problem in slab %s: number of free chunks %d in block %p does not match bitmap %d" , |
782 | name, block->nfree, block, nfree); |
783 | } |
784 | } |
785 | } |
786 | |
787 | #endif /* MEMORY_CONTEXT_CHECKING */ |
788 | |