| 1 | /*--------------------------------------------------------------------------- |
| 2 | * |
| 3 | * Ryu floating-point output for double precision. |
| 4 | * |
| 5 | * Portions Copyright (c) 2018-2019, PostgreSQL Global Development Group |
| 6 | * |
| 7 | * IDENTIFICATION |
| 8 | * src/common/d2s.c |
| 9 | * |
| 10 | * This is a modification of code taken from github.com/ulfjack/ryu under the |
| 11 | * terms of the Boost license (not the Apache license). The original copyright |
| 12 | * notice follows: |
| 13 | * |
| 14 | * Copyright 2018 Ulf Adams |
| 15 | * |
| 16 | * The contents of this file may be used under the terms of the Apache |
| 17 | * License, Version 2.0. |
| 18 | * |
| 19 | * (See accompanying file LICENSE-Apache or copy at |
| 20 | * http://www.apache.org/licenses/LICENSE-2.0) |
| 21 | * |
| 22 | * Alternatively, the contents of this file may be used under the terms of the |
| 23 | * Boost Software License, Version 1.0. |
| 24 | * |
| 25 | * (See accompanying file LICENSE-Boost or copy at |
| 26 | * https://www.boost.org/LICENSE_1_0.txt) |
| 27 | * |
| 28 | * Unless required by applicable law or agreed to in writing, this software is |
| 29 | * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 30 | * KIND, either express or implied. |
| 31 | * |
| 32 | *--------------------------------------------------------------------------- |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * Runtime compiler options: |
| 37 | * |
| 38 | * -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower, |
| 39 | * depending on your compiler. |
| 40 | */ |
| 41 | |
| 42 | #ifndef FRONTEND |
| 43 | #include "postgres.h" |
| 44 | #else |
| 45 | #include "postgres_fe.h" |
| 46 | #endif |
| 47 | |
| 48 | #include "common/shortest_dec.h" |
| 49 | |
| 50 | /* |
| 51 | * For consistency, we use 128-bit types if and only if the rest of PG also |
| 52 | * does, even though we could use them here without worrying about the |
| 53 | * alignment concerns that apply elsewhere. |
| 54 | */ |
| 55 | #if !defined(HAVE_INT128) && defined(_MSC_VER) \ |
| 56 | && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) |
| 57 | #define HAS_64_BIT_INTRINSICS |
| 58 | #endif |
| 59 | |
| 60 | #include "ryu_common.h" |
| 61 | #include "digit_table.h" |
| 62 | #include "d2s_full_table.h" |
| 63 | #include "d2s_intrinsics.h" |
| 64 | |
| 65 | #define DOUBLE_MANTISSA_BITS 52 |
| 66 | #define DOUBLE_EXPONENT_BITS 11 |
| 67 | #define DOUBLE_BIAS 1023 |
| 68 | |
| 69 | #define DOUBLE_POW5_INV_BITCOUNT 122 |
| 70 | #define DOUBLE_POW5_BITCOUNT 121 |
| 71 | |
| 72 | |
| 73 | static inline uint32 |
| 74 | pow5Factor(uint64 value) |
| 75 | { |
| 76 | uint32 count = 0; |
| 77 | |
| 78 | for (;;) |
| 79 | { |
| 80 | Assert(value != 0); |
| 81 | const uint64 q = div5(value); |
| 82 | const uint32 r = (uint32) (value - 5 * q); |
| 83 | |
| 84 | if (r != 0) |
| 85 | break; |
| 86 | |
| 87 | value = q; |
| 88 | ++count; |
| 89 | } |
| 90 | return count; |
| 91 | } |
| 92 | |
| 93 | /* Returns true if value is divisible by 5^p. */ |
| 94 | static inline bool |
| 95 | multipleOfPowerOf5(const uint64 value, const uint32 p) |
| 96 | { |
| 97 | /* |
| 98 | * I tried a case distinction on p, but there was no performance |
| 99 | * difference. |
| 100 | */ |
| 101 | return pow5Factor(value) >= p; |
| 102 | } |
| 103 | |
| 104 | /* Returns true if value is divisible by 2^p. */ |
| 105 | static inline bool |
| 106 | multipleOfPowerOf2(const uint64 value, const uint32 p) |
| 107 | { |
| 108 | /* return __builtin_ctzll(value) >= p; */ |
| 109 | return (value & ((UINT64CONST(1) << p) - 1)) == 0; |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * We need a 64x128-bit multiplication and a subsequent 128-bit shift. |
| 114 | * |
| 115 | * Multiplication: |
| 116 | * |
| 117 | * The 64-bit factor is variable and passed in, the 128-bit factor comes |
| 118 | * from a lookup table. We know that the 64-bit factor only has 55 |
| 119 | * significant bits (i.e., the 9 topmost bits are zeros). The 128-bit |
| 120 | * factor only has 124 significant bits (i.e., the 4 topmost bits are |
| 121 | * zeros). |
| 122 | * |
| 123 | * Shift: |
| 124 | * |
| 125 | * In principle, the multiplication result requires 55 + 124 = 179 bits to |
| 126 | * represent. However, we then shift this value to the right by j, which is |
| 127 | * at least j >= 115, so the result is guaranteed to fit into 179 - 115 = |
| 128 | * 64 bits. This means that we only need the topmost 64 significant bits of |
| 129 | * the 64x128-bit multiplication. |
| 130 | * |
| 131 | * There are several ways to do this: |
| 132 | * |
| 133 | * 1. Best case: the compiler exposes a 128-bit type. |
| 134 | * We perform two 64x64-bit multiplications, add the higher 64 bits of the |
| 135 | * lower result to the higher result, and shift by j - 64 bits. |
| 136 | * |
| 137 | * We explicitly cast from 64-bit to 128-bit, so the compiler can tell |
| 138 | * that these are only 64-bit inputs, and can map these to the best |
| 139 | * possible sequence of assembly instructions. x86-64 machines happen to |
| 140 | * have matching assembly instructions for 64x64-bit multiplications and |
| 141 | * 128-bit shifts. |
| 142 | * |
| 143 | * 2. Second best case: the compiler exposes intrinsics for the x86-64 |
| 144 | * assembly instructions mentioned in 1. |
| 145 | * |
| 146 | * 3. We only have 64x64 bit instructions that return the lower 64 bits of |
| 147 | * the result, i.e., we have to use plain C. |
| 148 | * |
| 149 | * Our inputs are less than the full width, so we have three options: |
| 150 | * a. Ignore this fact and just implement the intrinsics manually. |
| 151 | * b. Split both into 31-bit pieces, which guarantees no internal |
| 152 | * overflow, but requires extra work upfront (unless we change the |
| 153 | * lookup table). |
| 154 | * c. Split only the first factor into 31-bit pieces, which also |
| 155 | * guarantees no internal overflow, but requires extra work since the |
| 156 | * intermediate results are not perfectly aligned. |
| 157 | */ |
| 158 | #if defined(HAVE_INT128) |
| 159 | |
| 160 | /* Best case: use 128-bit type. */ |
| 161 | static inline uint64 |
| 162 | mulShift(const uint64 m, const uint64 *const mul, const int32 j) |
| 163 | { |
| 164 | const uint128 b0 = ((uint128) m) * mul[0]; |
| 165 | const uint128 b2 = ((uint128) m) * mul[1]; |
| 166 | |
| 167 | return (uint64) (((b0 >> 64) + b2) >> (j - 64)); |
| 168 | } |
| 169 | |
| 170 | static inline uint64 |
| 171 | mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, |
| 172 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
| 173 | { |
| 174 | *vp = mulShift(4 * m + 2, mul, j); |
| 175 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
| 176 | return mulShift(4 * m, mul, j); |
| 177 | } |
| 178 | |
| 179 | #elif defined(HAS_64_BIT_INTRINSICS) |
| 180 | |
| 181 | static inline uint64 |
| 182 | mulShift(const uint64 m, const uint64 *const mul, const int32 j) |
| 183 | { |
| 184 | /* m is maximum 55 bits */ |
| 185 | uint64 high1; |
| 186 | |
| 187 | /* 128 */ |
| 188 | const uint64 low1 = umul128(m, mul[1], &high1); |
| 189 | |
| 190 | /* 64 */ |
| 191 | uint64 high0; |
| 192 | uint64 sum; |
| 193 | |
| 194 | /* 64 */ |
| 195 | umul128(m, mul[0], &high0); |
| 196 | /* 0 */ |
| 197 | sum = high0 + low1; |
| 198 | |
| 199 | if (sum < high0) |
| 200 | { |
| 201 | ++high1; |
| 202 | /* overflow into high1 */ |
| 203 | } |
| 204 | return shiftright128(sum, high1, j - 64); |
| 205 | } |
| 206 | |
| 207 | static inline uint64 |
| 208 | mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, |
| 209 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
| 210 | { |
| 211 | *vp = mulShift(4 * m + 2, mul, j); |
| 212 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
| 213 | return mulShift(4 * m, mul, j); |
| 214 | } |
| 215 | |
| 216 | #else /* // !defined(HAVE_INT128) && |
| 217 | * !defined(HAS_64_BIT_INTRINSICS) */ |
| 218 | |
| 219 | static inline uint64 |
| 220 | mulShiftAll(uint64 m, const uint64 *const mul, const int32 j, |
| 221 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
| 222 | { |
| 223 | m <<= 1; /* m is maximum 55 bits */ |
| 224 | |
| 225 | uint64 tmp; |
| 226 | const uint64 lo = umul128(m, mul[0], &tmp); |
| 227 | uint64 hi; |
| 228 | const uint64 mid = tmp + umul128(m, mul[1], &hi); |
| 229 | |
| 230 | hi += mid < tmp; /* overflow into hi */ |
| 231 | |
| 232 | const uint64 lo2 = lo + mul[0]; |
| 233 | const uint64 mid2 = mid + mul[1] + (lo2 < lo); |
| 234 | const uint64 hi2 = hi + (mid2 < mid); |
| 235 | |
| 236 | *vp = shiftright128(mid2, hi2, j - 64 - 1); |
| 237 | |
| 238 | if (mmShift == 1) |
| 239 | { |
| 240 | const uint64 lo3 = lo - mul[0]; |
| 241 | const uint64 mid3 = mid - mul[1] - (lo3 > lo); |
| 242 | const uint64 hi3 = hi - (mid3 > mid); |
| 243 | |
| 244 | *vm = shiftright128(mid3, hi3, j - 64 - 1); |
| 245 | } |
| 246 | else |
| 247 | { |
| 248 | const uint64 lo3 = lo + lo; |
| 249 | const uint64 mid3 = mid + mid + (lo3 < lo); |
| 250 | const uint64 hi3 = hi + hi + (mid3 < mid); |
| 251 | const uint64 lo4 = lo3 - mul[0]; |
| 252 | const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3); |
| 253 | const uint64 hi4 = hi3 - (mid4 > mid3); |
| 254 | |
| 255 | *vm = shiftright128(mid4, hi4, j - 64); |
| 256 | } |
| 257 | |
| 258 | return shiftright128(mid, hi, j - 64 - 1); |
| 259 | } |
| 260 | |
| 261 | #endif /* // HAS_64_BIT_INTRINSICS */ |
| 262 | |
| 263 | static inline uint32 |
| 264 | decimalLength(const uint64 v) |
| 265 | { |
| 266 | /* This is slightly faster than a loop. */ |
| 267 | /* The average output length is 16.38 digits, so we check high-to-low. */ |
| 268 | /* Function precondition: v is not an 18, 19, or 20-digit number. */ |
| 269 | /* (17 digits are sufficient for round-tripping.) */ |
| 270 | Assert(v < 100000000000000000L); |
| 271 | if (v >= 10000000000000000L) |
| 272 | { |
| 273 | return 17; |
| 274 | } |
| 275 | if (v >= 1000000000000000L) |
| 276 | { |
| 277 | return 16; |
| 278 | } |
| 279 | if (v >= 100000000000000L) |
| 280 | { |
| 281 | return 15; |
| 282 | } |
| 283 | if (v >= 10000000000000L) |
| 284 | { |
| 285 | return 14; |
| 286 | } |
| 287 | if (v >= 1000000000000L) |
| 288 | { |
| 289 | return 13; |
| 290 | } |
| 291 | if (v >= 100000000000L) |
| 292 | { |
| 293 | return 12; |
| 294 | } |
| 295 | if (v >= 10000000000L) |
| 296 | { |
| 297 | return 11; |
| 298 | } |
| 299 | if (v >= 1000000000L) |
| 300 | { |
| 301 | return 10; |
| 302 | } |
| 303 | if (v >= 100000000L) |
| 304 | { |
| 305 | return 9; |
| 306 | } |
| 307 | if (v >= 10000000L) |
| 308 | { |
| 309 | return 8; |
| 310 | } |
| 311 | if (v >= 1000000L) |
| 312 | { |
| 313 | return 7; |
| 314 | } |
| 315 | if (v >= 100000L) |
| 316 | { |
| 317 | return 6; |
| 318 | } |
| 319 | if (v >= 10000L) |
| 320 | { |
| 321 | return 5; |
| 322 | } |
| 323 | if (v >= 1000L) |
| 324 | { |
| 325 | return 4; |
| 326 | } |
| 327 | if (v >= 100L) |
| 328 | { |
| 329 | return 3; |
| 330 | } |
| 331 | if (v >= 10L) |
| 332 | { |
| 333 | return 2; |
| 334 | } |
| 335 | return 1; |
| 336 | } |
| 337 | |
| 338 | /* A floating decimal representing m * 10^e. */ |
| 339 | typedef struct floating_decimal_64 |
| 340 | { |
| 341 | uint64 mantissa; |
| 342 | int32 exponent; |
| 343 | } floating_decimal_64; |
| 344 | |
| 345 | static inline floating_decimal_64 |
| 346 | d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent) |
| 347 | { |
| 348 | int32 e2; |
| 349 | uint64 m2; |
| 350 | |
| 351 | if (ieeeExponent == 0) |
| 352 | { |
| 353 | /* We subtract 2 so that the bounds computation has 2 additional bits. */ |
| 354 | e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
| 355 | m2 = ieeeMantissa; |
| 356 | } |
| 357 | else |
| 358 | { |
| 359 | e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
| 360 | m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
| 361 | } |
| 362 | |
| 363 | #if STRICTLY_SHORTEST |
| 364 | const bool even = (m2 & 1) == 0; |
| 365 | const bool acceptBounds = even; |
| 366 | #else |
| 367 | const bool acceptBounds = false; |
| 368 | #endif |
| 369 | |
| 370 | /* Step 2: Determine the interval of legal decimal representations. */ |
| 371 | const uint64 mv = 4 * m2; |
| 372 | |
| 373 | /* Implicit bool -> int conversion. True is 1, false is 0. */ |
| 374 | const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
| 375 | |
| 376 | /* We would compute mp and mm like this: */ |
| 377 | /* uint64 mp = 4 * m2 + 2; */ |
| 378 | /* uint64 mm = mv - 1 - mmShift; */ |
| 379 | |
| 380 | /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */ |
| 381 | uint64 vr, |
| 382 | vp, |
| 383 | vm; |
| 384 | int32 e10; |
| 385 | bool vmIsTrailingZeros = false; |
| 386 | bool vrIsTrailingZeros = false; |
| 387 | |
| 388 | if (e2 >= 0) |
| 389 | { |
| 390 | /* |
| 391 | * I tried special-casing q == 0, but there was no effect on |
| 392 | * performance. |
| 393 | * |
| 394 | * This expr is slightly faster than max(0, log10Pow2(e2) - 1). |
| 395 | */ |
| 396 | const uint32 q = log10Pow2(e2) - (e2 > 3); |
| 397 | const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1; |
| 398 | const int32 i = -e2 + q + k; |
| 399 | |
| 400 | e10 = q; |
| 401 | |
| 402 | vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift); |
| 403 | |
| 404 | if (q <= 21) |
| 405 | { |
| 406 | /* |
| 407 | * This should use q <= 22, but I think 21 is also safe. Smaller |
| 408 | * values may still be safe, but it's more difficult to reason |
| 409 | * about them. |
| 410 | * |
| 411 | * Only one of mp, mv, and mm can be a multiple of 5, if any. |
| 412 | */ |
| 413 | const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv)); |
| 414 | |
| 415 | if (mvMod5 == 0) |
| 416 | { |
| 417 | vrIsTrailingZeros = multipleOfPowerOf5(mv, q); |
| 418 | } |
| 419 | else if (acceptBounds) |
| 420 | { |
| 421 | /*---- |
| 422 | * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q |
| 423 | * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q |
| 424 | * <=> true && pow5Factor(mm) >= q, since e2 >= q. |
| 425 | *---- |
| 426 | */ |
| 427 | vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); |
| 428 | } |
| 429 | else |
| 430 | { |
| 431 | /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */ |
| 432 | vp -= multipleOfPowerOf5(mv + 2, q); |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | else |
| 437 | { |
| 438 | /* |
| 439 | * This expression is slightly faster than max(0, log10Pow5(-e2) - 1). |
| 440 | */ |
| 441 | const uint32 q = log10Pow5(-e2) - (-e2 > 1); |
| 442 | const int32 i = -e2 - q; |
| 443 | const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; |
| 444 | const int32 j = q - k; |
| 445 | |
| 446 | e10 = q + e2; |
| 447 | |
| 448 | vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift); |
| 449 | |
| 450 | if (q <= 1) |
| 451 | { |
| 452 | /* |
| 453 | * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q |
| 454 | * trailing 0 bits. |
| 455 | */ |
| 456 | /* mv = 4 * m2, so it always has at least two trailing 0 bits. */ |
| 457 | vrIsTrailingZeros = true; |
| 458 | if (acceptBounds) |
| 459 | { |
| 460 | /* |
| 461 | * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff |
| 462 | * mmShift == 1. |
| 463 | */ |
| 464 | vmIsTrailingZeros = mmShift == 1; |
| 465 | } |
| 466 | else |
| 467 | { |
| 468 | /* |
| 469 | * mp = mv + 2, so it always has at least one trailing 0 bit. |
| 470 | */ |
| 471 | --vp; |
| 472 | } |
| 473 | } |
| 474 | else if (q < 63) |
| 475 | { |
| 476 | /* TODO(ulfjack):Use a tighter bound here. */ |
| 477 | /* |
| 478 | * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1 |
| 479 | */ |
| 480 | /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */ |
| 481 | /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */ |
| 482 | /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */ |
| 483 | |
| 484 | /* |
| 485 | * We also need to make sure that the left shift does not |
| 486 | * overflow. |
| 487 | */ |
| 488 | vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Step 4: Find the shortest decimal representation in the interval of |
| 494 | * legal representations. |
| 495 | */ |
| 496 | uint32 removed = 0; |
| 497 | uint8 lastRemovedDigit = 0; |
| 498 | uint64 output; |
| 499 | |
| 500 | /* On average, we remove ~2 digits. */ |
| 501 | if (vmIsTrailingZeros || vrIsTrailingZeros) |
| 502 | { |
| 503 | /* General case, which happens rarely (~0.7%). */ |
| 504 | for (;;) |
| 505 | { |
| 506 | const uint64 vpDiv10 = div10(vp); |
| 507 | const uint64 vmDiv10 = div10(vm); |
| 508 | |
| 509 | if (vpDiv10 <= vmDiv10) |
| 510 | break; |
| 511 | |
| 512 | const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); |
| 513 | const uint64 vrDiv10 = div10(vr); |
| 514 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
| 515 | |
| 516 | vmIsTrailingZeros &= vmMod10 == 0; |
| 517 | vrIsTrailingZeros &= lastRemovedDigit == 0; |
| 518 | lastRemovedDigit = (uint8) vrMod10; |
| 519 | vr = vrDiv10; |
| 520 | vp = vpDiv10; |
| 521 | vm = vmDiv10; |
| 522 | ++removed; |
| 523 | } |
| 524 | |
| 525 | if (vmIsTrailingZeros) |
| 526 | { |
| 527 | for (;;) |
| 528 | { |
| 529 | const uint64 vmDiv10 = div10(vm); |
| 530 | const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); |
| 531 | |
| 532 | if (vmMod10 != 0) |
| 533 | break; |
| 534 | |
| 535 | const uint64 vpDiv10 = div10(vp); |
| 536 | const uint64 vrDiv10 = div10(vr); |
| 537 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
| 538 | |
| 539 | vrIsTrailingZeros &= lastRemovedDigit == 0; |
| 540 | lastRemovedDigit = (uint8) vrMod10; |
| 541 | vr = vrDiv10; |
| 542 | vp = vpDiv10; |
| 543 | vm = vmDiv10; |
| 544 | ++removed; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) |
| 549 | { |
| 550 | /* Round even if the exact number is .....50..0. */ |
| 551 | lastRemovedDigit = 4; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * We need to take vr + 1 if vr is outside bounds or we need to round |
| 556 | * up. |
| 557 | */ |
| 558 | output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
| 559 | } |
| 560 | else |
| 561 | { |
| 562 | /* |
| 563 | * Specialized for the common case (~99.3%). Percentages below are |
| 564 | * relative to this. |
| 565 | */ |
| 566 | bool roundUp = false; |
| 567 | const uint64 vpDiv100 = div100(vp); |
| 568 | const uint64 vmDiv100 = div100(vm); |
| 569 | |
| 570 | if (vpDiv100 > vmDiv100) |
| 571 | { |
| 572 | /* Optimization:remove two digits at a time(~86.2 %). */ |
| 573 | const uint64 vrDiv100 = div100(vr); |
| 574 | const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100); |
| 575 | |
| 576 | roundUp = vrMod100 >= 50; |
| 577 | vr = vrDiv100; |
| 578 | vp = vpDiv100; |
| 579 | vm = vmDiv100; |
| 580 | removed += 2; |
| 581 | } |
| 582 | |
| 583 | /*---- |
| 584 | * Loop iterations below (approximately), without optimization |
| 585 | * above: |
| 586 | * |
| 587 | * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, |
| 588 | * 6+: 0.02% |
| 589 | * |
| 590 | * Loop iterations below (approximately), with optimization |
| 591 | * above: |
| 592 | * |
| 593 | * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% |
| 594 | *---- |
| 595 | */ |
| 596 | for (;;) |
| 597 | { |
| 598 | const uint64 vpDiv10 = div10(vp); |
| 599 | const uint64 vmDiv10 = div10(vm); |
| 600 | |
| 601 | if (vpDiv10 <= vmDiv10) |
| 602 | break; |
| 603 | |
| 604 | const uint64 vrDiv10 = div10(vr); |
| 605 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
| 606 | |
| 607 | roundUp = vrMod10 >= 5; |
| 608 | vr = vrDiv10; |
| 609 | vp = vpDiv10; |
| 610 | vm = vmDiv10; |
| 611 | ++removed; |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * We need to take vr + 1 if vr is outside bounds or we need to round |
| 616 | * up. |
| 617 | */ |
| 618 | output = vr + (vr == vm || roundUp); |
| 619 | } |
| 620 | |
| 621 | const int32 exp = e10 + removed; |
| 622 | |
| 623 | floating_decimal_64 fd; |
| 624 | |
| 625 | fd.exponent = exp; |
| 626 | fd.mantissa = output; |
| 627 | return fd; |
| 628 | } |
| 629 | |
| 630 | static inline int |
| 631 | to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result) |
| 632 | { |
| 633 | /* Step 5: Print the decimal representation. */ |
| 634 | int index = 0; |
| 635 | |
| 636 | uint64 output = v.mantissa; |
| 637 | int32 exp = v.exponent; |
| 638 | |
| 639 | /*---- |
| 640 | * On entry, mantissa * 10^exp is the result to be output. |
| 641 | * Caller has already done the - sign if needed. |
| 642 | * |
| 643 | * We want to insert the point somewhere depending on the output length |
| 644 | * and exponent, which might mean adding zeros: |
| 645 | * |
| 646 | * exp | format |
| 647 | * 1+ | ddddddddd000000 |
| 648 | * 0 | ddddddddd |
| 649 | * -1 .. -len+1 | dddddddd.d to d.ddddddddd |
| 650 | * -len ... | 0.ddddddddd to 0.000dddddd |
| 651 | */ |
| 652 | uint32 i = 0; |
| 653 | int32 nexp = exp + olength; |
| 654 | |
| 655 | if (nexp <= 0) |
| 656 | { |
| 657 | /* -nexp is number of 0s to add after '.' */ |
| 658 | Assert(nexp >= -3); |
| 659 | /* 0.000ddddd */ |
| 660 | index = 2 - nexp; |
| 661 | /* won't need more than this many 0s */ |
| 662 | memcpy(result, "0.000000" , 8); |
| 663 | } |
| 664 | else if (exp < 0) |
| 665 | { |
| 666 | /* |
| 667 | * dddd.dddd; leave space at the start and move the '.' in after |
| 668 | */ |
| 669 | index = 1; |
| 670 | } |
| 671 | else |
| 672 | { |
| 673 | /* |
| 674 | * We can save some code later by pre-filling with zeros. We know that |
| 675 | * there can be no more than 16 output digits in this form, otherwise |
| 676 | * we would not choose fixed-point output. |
| 677 | */ |
| 678 | Assert(exp < 16 && exp + olength <= 16); |
| 679 | memset(result, '0', 16); |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * We prefer 32-bit operations, even on 64-bit platforms. We have at most |
| 684 | * 17 digits, and uint32 can store 9 digits. If output doesn't fit into |
| 685 | * uint32, we cut off 8 digits, so the rest will fit into uint32. |
| 686 | */ |
| 687 | if ((output >> 32) != 0) |
| 688 | { |
| 689 | /* Expensive 64-bit division. */ |
| 690 | const uint64 q = div1e8(output); |
| 691 | uint32 output2 = (uint32) (output - 100000000 * q); |
| 692 | const uint32 c = output2 % 10000; |
| 693 | |
| 694 | output = q; |
| 695 | output2 /= 10000; |
| 696 | |
| 697 | const uint32 d = output2 % 10000; |
| 698 | const uint32 c0 = (c % 100) << 1; |
| 699 | const uint32 c1 = (c / 100) << 1; |
| 700 | const uint32 d0 = (d % 100) << 1; |
| 701 | const uint32 d1 = (d / 100) << 1; |
| 702 | |
| 703 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); |
| 704 | memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); |
| 705 | memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2); |
| 706 | memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2); |
| 707 | i += 8; |
| 708 | } |
| 709 | |
| 710 | uint32 output2 = (uint32) output; |
| 711 | |
| 712 | while (output2 >= 10000) |
| 713 | { |
| 714 | const uint32 c = output2 - 10000 * (output2 / 10000); |
| 715 | const uint32 c0 = (c % 100) << 1; |
| 716 | const uint32 c1 = (c / 100) << 1; |
| 717 | |
| 718 | output2 /= 10000; |
| 719 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); |
| 720 | memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); |
| 721 | i += 4; |
| 722 | } |
| 723 | if (output2 >= 100) |
| 724 | { |
| 725 | const uint32 c = (output2 % 100) << 1; |
| 726 | |
| 727 | output2 /= 100; |
| 728 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); |
| 729 | i += 2; |
| 730 | } |
| 731 | if (output2 >= 10) |
| 732 | { |
| 733 | const uint32 c = output2 << 1; |
| 734 | |
| 735 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); |
| 736 | } |
| 737 | else |
| 738 | { |
| 739 | result[index] = (char) ('0' + output2); |
| 740 | } |
| 741 | |
| 742 | if (index == 1) |
| 743 | { |
| 744 | /* |
| 745 | * nexp is 1..15 here, representing the number of digits before the |
| 746 | * point. A value of 16 is not possible because we switch to |
| 747 | * scientific notation when the display exponent reaches 15. |
| 748 | */ |
| 749 | Assert(nexp < 16); |
| 750 | /* gcc only seems to want to optimize memmove for small 2^n */ |
| 751 | if (nexp & 8) |
| 752 | { |
| 753 | memmove(result + index - 1, result + index, 8); |
| 754 | index += 8; |
| 755 | } |
| 756 | if (nexp & 4) |
| 757 | { |
| 758 | memmove(result + index - 1, result + index, 4); |
| 759 | index += 4; |
| 760 | } |
| 761 | if (nexp & 2) |
| 762 | { |
| 763 | memmove(result + index - 1, result + index, 2); |
| 764 | index += 2; |
| 765 | } |
| 766 | if (nexp & 1) |
| 767 | { |
| 768 | result[index - 1] = result[index]; |
| 769 | } |
| 770 | result[nexp] = '.'; |
| 771 | index = olength + 1; |
| 772 | } |
| 773 | else if (exp >= 0) |
| 774 | { |
| 775 | /* we supplied the trailing zeros earlier, now just set the length. */ |
| 776 | index = olength + exp; |
| 777 | } |
| 778 | else |
| 779 | { |
| 780 | index = olength + (2 - nexp); |
| 781 | } |
| 782 | |
| 783 | return index; |
| 784 | } |
| 785 | |
| 786 | static inline int |
| 787 | to_chars(floating_decimal_64 v, const bool sign, char *const result) |
| 788 | { |
| 789 | /* Step 5: Print the decimal representation. */ |
| 790 | int index = 0; |
| 791 | |
| 792 | uint64 output = v.mantissa; |
| 793 | uint32 olength = decimalLength(output); |
| 794 | int32 exp = v.exponent + olength - 1; |
| 795 | |
| 796 | if (sign) |
| 797 | { |
| 798 | result[index++] = '-'; |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | * The thresholds for fixed-point output are chosen to match printf |
| 803 | * defaults. Beware that both the code of to_chars_df and the value of |
| 804 | * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds. |
| 805 | */ |
| 806 | if (exp >= -4 && exp < 15) |
| 807 | return to_chars_df(v, olength, result + index) + sign; |
| 808 | |
| 809 | /* |
| 810 | * If v.exponent is exactly 0, we might have reached here via the small |
| 811 | * integer fast path, in which case v.mantissa might contain trailing |
| 812 | * (decimal) zeros. For scientific notation we need to move these zeros |
| 813 | * into the exponent. (For fixed point this doesn't matter, which is why |
| 814 | * we do this here rather than above.) |
| 815 | * |
| 816 | * Since we already calculated the display exponent (exp) above based on |
| 817 | * the old decimal length, that value does not change here. Instead, we |
| 818 | * just reduce the display length for each digit removed. |
| 819 | * |
| 820 | * If we didn't get here via the fast path, the raw exponent will not |
| 821 | * usually be 0, and there will be no trailing zeros, so we pay no more |
| 822 | * than one div10/multiply extra cost. We claw back half of that by |
| 823 | * checking for divisibility by 2 before dividing by 10. |
| 824 | */ |
| 825 | if (v.exponent == 0) |
| 826 | { |
| 827 | while ((output & 1) == 0) |
| 828 | { |
| 829 | const uint64 q = div10(output); |
| 830 | const uint32 r = (uint32) (output - 10 * q); |
| 831 | |
| 832 | if (r != 0) |
| 833 | break; |
| 834 | output = q; |
| 835 | --olength; |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | /*---- |
| 840 | * Print the decimal digits. |
| 841 | * |
| 842 | * The following code is equivalent to: |
| 843 | * |
| 844 | * for (uint32 i = 0; i < olength - 1; ++i) { |
| 845 | * const uint32 c = output % 10; output /= 10; |
| 846 | * result[index + olength - i] = (char) ('0' + c); |
| 847 | * } |
| 848 | * result[index] = '0' + output % 10; |
| 849 | *---- |
| 850 | */ |
| 851 | |
| 852 | uint32 i = 0; |
| 853 | |
| 854 | /* |
| 855 | * We prefer 32-bit operations, even on 64-bit platforms. We have at most |
| 856 | * 17 digits, and uint32 can store 9 digits. If output doesn't fit into |
| 857 | * uint32, we cut off 8 digits, so the rest will fit into uint32. |
| 858 | */ |
| 859 | if ((output >> 32) != 0) |
| 860 | { |
| 861 | /* Expensive 64-bit division. */ |
| 862 | const uint64 q = div1e8(output); |
| 863 | uint32 output2 = (uint32) (output - 100000000 * q); |
| 864 | |
| 865 | output = q; |
| 866 | |
| 867 | const uint32 c = output2 % 10000; |
| 868 | |
| 869 | output2 /= 10000; |
| 870 | |
| 871 | const uint32 d = output2 % 10000; |
| 872 | const uint32 c0 = (c % 100) << 1; |
| 873 | const uint32 c1 = (c / 100) << 1; |
| 874 | const uint32 d0 = (d % 100) << 1; |
| 875 | const uint32 d1 = (d / 100) << 1; |
| 876 | |
| 877 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
| 878 | memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
| 879 | memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2); |
| 880 | memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2); |
| 881 | i += 8; |
| 882 | } |
| 883 | |
| 884 | uint32 output2 = (uint32) output; |
| 885 | |
| 886 | while (output2 >= 10000) |
| 887 | { |
| 888 | const uint32 c = output2 - 10000 * (output2 / 10000); |
| 889 | |
| 890 | output2 /= 10000; |
| 891 | |
| 892 | const uint32 c0 = (c % 100) << 1; |
| 893 | const uint32 c1 = (c / 100) << 1; |
| 894 | |
| 895 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
| 896 | memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
| 897 | i += 4; |
| 898 | } |
| 899 | if (output2 >= 100) |
| 900 | { |
| 901 | const uint32 c = (output2 % 100) << 1; |
| 902 | |
| 903 | output2 /= 100; |
| 904 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); |
| 905 | i += 2; |
| 906 | } |
| 907 | if (output2 >= 10) |
| 908 | { |
| 909 | const uint32 c = output2 << 1; |
| 910 | |
| 911 | /* |
| 912 | * We can't use memcpy here: the decimal dot goes between these two |
| 913 | * digits. |
| 914 | */ |
| 915 | result[index + olength - i] = DIGIT_TABLE[c + 1]; |
| 916 | result[index] = DIGIT_TABLE[c]; |
| 917 | } |
| 918 | else |
| 919 | { |
| 920 | result[index] = (char) ('0' + output2); |
| 921 | } |
| 922 | |
| 923 | /* Print decimal point if needed. */ |
| 924 | if (olength > 1) |
| 925 | { |
| 926 | result[index + 1] = '.'; |
| 927 | index += olength + 1; |
| 928 | } |
| 929 | else |
| 930 | { |
| 931 | ++index; |
| 932 | } |
| 933 | |
| 934 | /* Print the exponent. */ |
| 935 | result[index++] = 'e'; |
| 936 | if (exp < 0) |
| 937 | { |
| 938 | result[index++] = '-'; |
| 939 | exp = -exp; |
| 940 | } |
| 941 | else |
| 942 | result[index++] = '+'; |
| 943 | |
| 944 | if (exp >= 100) |
| 945 | { |
| 946 | const int32 c = exp % 10; |
| 947 | |
| 948 | memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); |
| 949 | result[index + 2] = (char) ('0' + c); |
| 950 | index += 3; |
| 951 | } |
| 952 | else |
| 953 | { |
| 954 | memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); |
| 955 | index += 2; |
| 956 | } |
| 957 | |
| 958 | return index; |
| 959 | } |
| 960 | |
| 961 | static inline bool |
| 962 | d2d_small_int(const uint64 ieeeMantissa, |
| 963 | const uint32 ieeeExponent, |
| 964 | floating_decimal_64 *v) |
| 965 | { |
| 966 | const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
| 967 | |
| 968 | /* |
| 969 | * Avoid using multiple "return false;" here since it tends to provoke the |
| 970 | * compiler into inlining multiple copies of d2d, which is undesirable. |
| 971 | */ |
| 972 | |
| 973 | if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0) |
| 974 | { |
| 975 | /*---- |
| 976 | * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: |
| 977 | * 1 <= f = m2 / 2^-e2 < 2^53. |
| 978 | * |
| 979 | * Test if the lower -e2 bits of the significand are 0, i.e. whether |
| 980 | * the fraction is 0. We can use ieeeMantissa here, since the implied |
| 981 | * 1 bit can never be tested by this; the implied 1 can only be part |
| 982 | * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already |
| 983 | * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53) |
| 984 | */ |
| 985 | const uint64 mask = (UINT64CONST(1) << -e2) - 1; |
| 986 | const uint64 fraction = ieeeMantissa & mask; |
| 987 | |
| 988 | if (fraction == 0) |
| 989 | { |
| 990 | /*---- |
| 991 | * f is an integer in the range [1, 2^53). |
| 992 | * Note: mantissa might contain trailing (decimal) 0's. |
| 993 | * Note: since 2^53 < 10^16, there is no need to adjust |
| 994 | * decimalLength(). |
| 995 | */ |
| 996 | const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
| 997 | |
| 998 | v->mantissa = m2 >> -e2; |
| 999 | v->exponent = 0; |
| 1000 | return true; |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | return false; |
| 1005 | } |
| 1006 | |
| 1007 | /* |
| 1008 | * Store the shortest decimal representation of the given double as an |
| 1009 | * UNTERMINATED string in the caller's supplied buffer (which must be at least |
| 1010 | * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long). |
| 1011 | * |
| 1012 | * Returns the number of bytes stored. |
| 1013 | */ |
| 1014 | int |
| 1015 | double_to_shortest_decimal_bufn(double f, char *result) |
| 1016 | { |
| 1017 | /* |
| 1018 | * Step 1: Decode the floating-point number, and unify normalized and |
| 1019 | * subnormal cases. |
| 1020 | */ |
| 1021 | const uint64 bits = double_to_bits(f); |
| 1022 | |
| 1023 | /* Decode bits into sign, mantissa, and exponent. */ |
| 1024 | const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
| 1025 | const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1); |
| 1026 | const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
| 1027 | |
| 1028 | /* Case distinction; exit early for the easy cases. */ |
| 1029 | if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) |
| 1030 | { |
| 1031 | return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0)); |
| 1032 | } |
| 1033 | |
| 1034 | floating_decimal_64 v; |
| 1035 | const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v); |
| 1036 | |
| 1037 | if (!isSmallInt) |
| 1038 | { |
| 1039 | v = d2d(ieeeMantissa, ieeeExponent); |
| 1040 | } |
| 1041 | |
| 1042 | return to_chars(v, ieeeSign, result); |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Store the shortest decimal representation of the given double as a |
| 1047 | * null-terminated string in the caller's supplied buffer (which must be at |
| 1048 | * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long). |
| 1049 | * |
| 1050 | * Returns the string length. |
| 1051 | */ |
| 1052 | int |
| 1053 | double_to_shortest_decimal_buf(double f, char *result) |
| 1054 | { |
| 1055 | const int index = double_to_shortest_decimal_bufn(f, result); |
| 1056 | |
| 1057 | /* Terminate the string. */ |
| 1058 | Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN); |
| 1059 | result[index] = '\0'; |
| 1060 | return index; |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * Return the shortest decimal representation as a null-terminated palloc'd |
| 1065 | * string (outside the backend, uses malloc() instead). |
| 1066 | * |
| 1067 | * Caller is responsible for freeing the result. |
| 1068 | */ |
| 1069 | char * |
| 1070 | double_to_shortest_decimal(double f) |
| 1071 | { |
| 1072 | char *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN); |
| 1073 | |
| 1074 | double_to_shortest_decimal_buf(f, result); |
| 1075 | return result; |
| 1076 | } |
| 1077 | |