1 | /*--------------------------------------------------------------------------- |
2 | * |
3 | * Ryu floating-point output for double precision. |
4 | * |
5 | * Portions Copyright (c) 2018-2019, PostgreSQL Global Development Group |
6 | * |
7 | * IDENTIFICATION |
8 | * src/common/d2s.c |
9 | * |
10 | * This is a modification of code taken from github.com/ulfjack/ryu under the |
11 | * terms of the Boost license (not the Apache license). The original copyright |
12 | * notice follows: |
13 | * |
14 | * Copyright 2018 Ulf Adams |
15 | * |
16 | * The contents of this file may be used under the terms of the Apache |
17 | * License, Version 2.0. |
18 | * |
19 | * (See accompanying file LICENSE-Apache or copy at |
20 | * http://www.apache.org/licenses/LICENSE-2.0) |
21 | * |
22 | * Alternatively, the contents of this file may be used under the terms of the |
23 | * Boost Software License, Version 1.0. |
24 | * |
25 | * (See accompanying file LICENSE-Boost or copy at |
26 | * https://www.boost.org/LICENSE_1_0.txt) |
27 | * |
28 | * Unless required by applicable law or agreed to in writing, this software is |
29 | * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
30 | * KIND, either express or implied. |
31 | * |
32 | *--------------------------------------------------------------------------- |
33 | */ |
34 | |
35 | /* |
36 | * Runtime compiler options: |
37 | * |
38 | * -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower, |
39 | * depending on your compiler. |
40 | */ |
41 | |
42 | #ifndef FRONTEND |
43 | #include "postgres.h" |
44 | #else |
45 | #include "postgres_fe.h" |
46 | #endif |
47 | |
48 | #include "common/shortest_dec.h" |
49 | |
50 | /* |
51 | * For consistency, we use 128-bit types if and only if the rest of PG also |
52 | * does, even though we could use them here without worrying about the |
53 | * alignment concerns that apply elsewhere. |
54 | */ |
55 | #if !defined(HAVE_INT128) && defined(_MSC_VER) \ |
56 | && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) |
57 | #define HAS_64_BIT_INTRINSICS |
58 | #endif |
59 | |
60 | #include "ryu_common.h" |
61 | #include "digit_table.h" |
62 | #include "d2s_full_table.h" |
63 | #include "d2s_intrinsics.h" |
64 | |
65 | #define DOUBLE_MANTISSA_BITS 52 |
66 | #define DOUBLE_EXPONENT_BITS 11 |
67 | #define DOUBLE_BIAS 1023 |
68 | |
69 | #define DOUBLE_POW5_INV_BITCOUNT 122 |
70 | #define DOUBLE_POW5_BITCOUNT 121 |
71 | |
72 | |
73 | static inline uint32 |
74 | pow5Factor(uint64 value) |
75 | { |
76 | uint32 count = 0; |
77 | |
78 | for (;;) |
79 | { |
80 | Assert(value != 0); |
81 | const uint64 q = div5(value); |
82 | const uint32 r = (uint32) (value - 5 * q); |
83 | |
84 | if (r != 0) |
85 | break; |
86 | |
87 | value = q; |
88 | ++count; |
89 | } |
90 | return count; |
91 | } |
92 | |
93 | /* Returns true if value is divisible by 5^p. */ |
94 | static inline bool |
95 | multipleOfPowerOf5(const uint64 value, const uint32 p) |
96 | { |
97 | /* |
98 | * I tried a case distinction on p, but there was no performance |
99 | * difference. |
100 | */ |
101 | return pow5Factor(value) >= p; |
102 | } |
103 | |
104 | /* Returns true if value is divisible by 2^p. */ |
105 | static inline bool |
106 | multipleOfPowerOf2(const uint64 value, const uint32 p) |
107 | { |
108 | /* return __builtin_ctzll(value) >= p; */ |
109 | return (value & ((UINT64CONST(1) << p) - 1)) == 0; |
110 | } |
111 | |
112 | /* |
113 | * We need a 64x128-bit multiplication and a subsequent 128-bit shift. |
114 | * |
115 | * Multiplication: |
116 | * |
117 | * The 64-bit factor is variable and passed in, the 128-bit factor comes |
118 | * from a lookup table. We know that the 64-bit factor only has 55 |
119 | * significant bits (i.e., the 9 topmost bits are zeros). The 128-bit |
120 | * factor only has 124 significant bits (i.e., the 4 topmost bits are |
121 | * zeros). |
122 | * |
123 | * Shift: |
124 | * |
125 | * In principle, the multiplication result requires 55 + 124 = 179 bits to |
126 | * represent. However, we then shift this value to the right by j, which is |
127 | * at least j >= 115, so the result is guaranteed to fit into 179 - 115 = |
128 | * 64 bits. This means that we only need the topmost 64 significant bits of |
129 | * the 64x128-bit multiplication. |
130 | * |
131 | * There are several ways to do this: |
132 | * |
133 | * 1. Best case: the compiler exposes a 128-bit type. |
134 | * We perform two 64x64-bit multiplications, add the higher 64 bits of the |
135 | * lower result to the higher result, and shift by j - 64 bits. |
136 | * |
137 | * We explicitly cast from 64-bit to 128-bit, so the compiler can tell |
138 | * that these are only 64-bit inputs, and can map these to the best |
139 | * possible sequence of assembly instructions. x86-64 machines happen to |
140 | * have matching assembly instructions for 64x64-bit multiplications and |
141 | * 128-bit shifts. |
142 | * |
143 | * 2. Second best case: the compiler exposes intrinsics for the x86-64 |
144 | * assembly instructions mentioned in 1. |
145 | * |
146 | * 3. We only have 64x64 bit instructions that return the lower 64 bits of |
147 | * the result, i.e., we have to use plain C. |
148 | * |
149 | * Our inputs are less than the full width, so we have three options: |
150 | * a. Ignore this fact and just implement the intrinsics manually. |
151 | * b. Split both into 31-bit pieces, which guarantees no internal |
152 | * overflow, but requires extra work upfront (unless we change the |
153 | * lookup table). |
154 | * c. Split only the first factor into 31-bit pieces, which also |
155 | * guarantees no internal overflow, but requires extra work since the |
156 | * intermediate results are not perfectly aligned. |
157 | */ |
158 | #if defined(HAVE_INT128) |
159 | |
160 | /* Best case: use 128-bit type. */ |
161 | static inline uint64 |
162 | mulShift(const uint64 m, const uint64 *const mul, const int32 j) |
163 | { |
164 | const uint128 b0 = ((uint128) m) * mul[0]; |
165 | const uint128 b2 = ((uint128) m) * mul[1]; |
166 | |
167 | return (uint64) (((b0 >> 64) + b2) >> (j - 64)); |
168 | } |
169 | |
170 | static inline uint64 |
171 | mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, |
172 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
173 | { |
174 | *vp = mulShift(4 * m + 2, mul, j); |
175 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
176 | return mulShift(4 * m, mul, j); |
177 | } |
178 | |
179 | #elif defined(HAS_64_BIT_INTRINSICS) |
180 | |
181 | static inline uint64 |
182 | mulShift(const uint64 m, const uint64 *const mul, const int32 j) |
183 | { |
184 | /* m is maximum 55 bits */ |
185 | uint64 high1; |
186 | |
187 | /* 128 */ |
188 | const uint64 low1 = umul128(m, mul[1], &high1); |
189 | |
190 | /* 64 */ |
191 | uint64 high0; |
192 | uint64 sum; |
193 | |
194 | /* 64 */ |
195 | umul128(m, mul[0], &high0); |
196 | /* 0 */ |
197 | sum = high0 + low1; |
198 | |
199 | if (sum < high0) |
200 | { |
201 | ++high1; |
202 | /* overflow into high1 */ |
203 | } |
204 | return shiftright128(sum, high1, j - 64); |
205 | } |
206 | |
207 | static inline uint64 |
208 | mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, |
209 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
210 | { |
211 | *vp = mulShift(4 * m + 2, mul, j); |
212 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
213 | return mulShift(4 * m, mul, j); |
214 | } |
215 | |
216 | #else /* // !defined(HAVE_INT128) && |
217 | * !defined(HAS_64_BIT_INTRINSICS) */ |
218 | |
219 | static inline uint64 |
220 | mulShiftAll(uint64 m, const uint64 *const mul, const int32 j, |
221 | uint64 *const vp, uint64 *const vm, const uint32 mmShift) |
222 | { |
223 | m <<= 1; /* m is maximum 55 bits */ |
224 | |
225 | uint64 tmp; |
226 | const uint64 lo = umul128(m, mul[0], &tmp); |
227 | uint64 hi; |
228 | const uint64 mid = tmp + umul128(m, mul[1], &hi); |
229 | |
230 | hi += mid < tmp; /* overflow into hi */ |
231 | |
232 | const uint64 lo2 = lo + mul[0]; |
233 | const uint64 mid2 = mid + mul[1] + (lo2 < lo); |
234 | const uint64 hi2 = hi + (mid2 < mid); |
235 | |
236 | *vp = shiftright128(mid2, hi2, j - 64 - 1); |
237 | |
238 | if (mmShift == 1) |
239 | { |
240 | const uint64 lo3 = lo - mul[0]; |
241 | const uint64 mid3 = mid - mul[1] - (lo3 > lo); |
242 | const uint64 hi3 = hi - (mid3 > mid); |
243 | |
244 | *vm = shiftright128(mid3, hi3, j - 64 - 1); |
245 | } |
246 | else |
247 | { |
248 | const uint64 lo3 = lo + lo; |
249 | const uint64 mid3 = mid + mid + (lo3 < lo); |
250 | const uint64 hi3 = hi + hi + (mid3 < mid); |
251 | const uint64 lo4 = lo3 - mul[0]; |
252 | const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3); |
253 | const uint64 hi4 = hi3 - (mid4 > mid3); |
254 | |
255 | *vm = shiftright128(mid4, hi4, j - 64); |
256 | } |
257 | |
258 | return shiftright128(mid, hi, j - 64 - 1); |
259 | } |
260 | |
261 | #endif /* // HAS_64_BIT_INTRINSICS */ |
262 | |
263 | static inline uint32 |
264 | decimalLength(const uint64 v) |
265 | { |
266 | /* This is slightly faster than a loop. */ |
267 | /* The average output length is 16.38 digits, so we check high-to-low. */ |
268 | /* Function precondition: v is not an 18, 19, or 20-digit number. */ |
269 | /* (17 digits are sufficient for round-tripping.) */ |
270 | Assert(v < 100000000000000000L); |
271 | if (v >= 10000000000000000L) |
272 | { |
273 | return 17; |
274 | } |
275 | if (v >= 1000000000000000L) |
276 | { |
277 | return 16; |
278 | } |
279 | if (v >= 100000000000000L) |
280 | { |
281 | return 15; |
282 | } |
283 | if (v >= 10000000000000L) |
284 | { |
285 | return 14; |
286 | } |
287 | if (v >= 1000000000000L) |
288 | { |
289 | return 13; |
290 | } |
291 | if (v >= 100000000000L) |
292 | { |
293 | return 12; |
294 | } |
295 | if (v >= 10000000000L) |
296 | { |
297 | return 11; |
298 | } |
299 | if (v >= 1000000000L) |
300 | { |
301 | return 10; |
302 | } |
303 | if (v >= 100000000L) |
304 | { |
305 | return 9; |
306 | } |
307 | if (v >= 10000000L) |
308 | { |
309 | return 8; |
310 | } |
311 | if (v >= 1000000L) |
312 | { |
313 | return 7; |
314 | } |
315 | if (v >= 100000L) |
316 | { |
317 | return 6; |
318 | } |
319 | if (v >= 10000L) |
320 | { |
321 | return 5; |
322 | } |
323 | if (v >= 1000L) |
324 | { |
325 | return 4; |
326 | } |
327 | if (v >= 100L) |
328 | { |
329 | return 3; |
330 | } |
331 | if (v >= 10L) |
332 | { |
333 | return 2; |
334 | } |
335 | return 1; |
336 | } |
337 | |
338 | /* A floating decimal representing m * 10^e. */ |
339 | typedef struct floating_decimal_64 |
340 | { |
341 | uint64 mantissa; |
342 | int32 exponent; |
343 | } floating_decimal_64; |
344 | |
345 | static inline floating_decimal_64 |
346 | d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent) |
347 | { |
348 | int32 e2; |
349 | uint64 m2; |
350 | |
351 | if (ieeeExponent == 0) |
352 | { |
353 | /* We subtract 2 so that the bounds computation has 2 additional bits. */ |
354 | e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
355 | m2 = ieeeMantissa; |
356 | } |
357 | else |
358 | { |
359 | e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
360 | m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
361 | } |
362 | |
363 | #if STRICTLY_SHORTEST |
364 | const bool even = (m2 & 1) == 0; |
365 | const bool acceptBounds = even; |
366 | #else |
367 | const bool acceptBounds = false; |
368 | #endif |
369 | |
370 | /* Step 2: Determine the interval of legal decimal representations. */ |
371 | const uint64 mv = 4 * m2; |
372 | |
373 | /* Implicit bool -> int conversion. True is 1, false is 0. */ |
374 | const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
375 | |
376 | /* We would compute mp and mm like this: */ |
377 | /* uint64 mp = 4 * m2 + 2; */ |
378 | /* uint64 mm = mv - 1 - mmShift; */ |
379 | |
380 | /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */ |
381 | uint64 vr, |
382 | vp, |
383 | vm; |
384 | int32 e10; |
385 | bool vmIsTrailingZeros = false; |
386 | bool vrIsTrailingZeros = false; |
387 | |
388 | if (e2 >= 0) |
389 | { |
390 | /* |
391 | * I tried special-casing q == 0, but there was no effect on |
392 | * performance. |
393 | * |
394 | * This expr is slightly faster than max(0, log10Pow2(e2) - 1). |
395 | */ |
396 | const uint32 q = log10Pow2(e2) - (e2 > 3); |
397 | const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1; |
398 | const int32 i = -e2 + q + k; |
399 | |
400 | e10 = q; |
401 | |
402 | vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift); |
403 | |
404 | if (q <= 21) |
405 | { |
406 | /* |
407 | * This should use q <= 22, but I think 21 is also safe. Smaller |
408 | * values may still be safe, but it's more difficult to reason |
409 | * about them. |
410 | * |
411 | * Only one of mp, mv, and mm can be a multiple of 5, if any. |
412 | */ |
413 | const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv)); |
414 | |
415 | if (mvMod5 == 0) |
416 | { |
417 | vrIsTrailingZeros = multipleOfPowerOf5(mv, q); |
418 | } |
419 | else if (acceptBounds) |
420 | { |
421 | /*---- |
422 | * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q |
423 | * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q |
424 | * <=> true && pow5Factor(mm) >= q, since e2 >= q. |
425 | *---- |
426 | */ |
427 | vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); |
428 | } |
429 | else |
430 | { |
431 | /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */ |
432 | vp -= multipleOfPowerOf5(mv + 2, q); |
433 | } |
434 | } |
435 | } |
436 | else |
437 | { |
438 | /* |
439 | * This expression is slightly faster than max(0, log10Pow5(-e2) - 1). |
440 | */ |
441 | const uint32 q = log10Pow5(-e2) - (-e2 > 1); |
442 | const int32 i = -e2 - q; |
443 | const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; |
444 | const int32 j = q - k; |
445 | |
446 | e10 = q + e2; |
447 | |
448 | vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift); |
449 | |
450 | if (q <= 1) |
451 | { |
452 | /* |
453 | * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q |
454 | * trailing 0 bits. |
455 | */ |
456 | /* mv = 4 * m2, so it always has at least two trailing 0 bits. */ |
457 | vrIsTrailingZeros = true; |
458 | if (acceptBounds) |
459 | { |
460 | /* |
461 | * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff |
462 | * mmShift == 1. |
463 | */ |
464 | vmIsTrailingZeros = mmShift == 1; |
465 | } |
466 | else |
467 | { |
468 | /* |
469 | * mp = mv + 2, so it always has at least one trailing 0 bit. |
470 | */ |
471 | --vp; |
472 | } |
473 | } |
474 | else if (q < 63) |
475 | { |
476 | /* TODO(ulfjack):Use a tighter bound here. */ |
477 | /* |
478 | * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1 |
479 | */ |
480 | /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */ |
481 | /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */ |
482 | /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */ |
483 | |
484 | /* |
485 | * We also need to make sure that the left shift does not |
486 | * overflow. |
487 | */ |
488 | vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1); |
489 | } |
490 | } |
491 | |
492 | /* |
493 | * Step 4: Find the shortest decimal representation in the interval of |
494 | * legal representations. |
495 | */ |
496 | uint32 removed = 0; |
497 | uint8 lastRemovedDigit = 0; |
498 | uint64 output; |
499 | |
500 | /* On average, we remove ~2 digits. */ |
501 | if (vmIsTrailingZeros || vrIsTrailingZeros) |
502 | { |
503 | /* General case, which happens rarely (~0.7%). */ |
504 | for (;;) |
505 | { |
506 | const uint64 vpDiv10 = div10(vp); |
507 | const uint64 vmDiv10 = div10(vm); |
508 | |
509 | if (vpDiv10 <= vmDiv10) |
510 | break; |
511 | |
512 | const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); |
513 | const uint64 vrDiv10 = div10(vr); |
514 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
515 | |
516 | vmIsTrailingZeros &= vmMod10 == 0; |
517 | vrIsTrailingZeros &= lastRemovedDigit == 0; |
518 | lastRemovedDigit = (uint8) vrMod10; |
519 | vr = vrDiv10; |
520 | vp = vpDiv10; |
521 | vm = vmDiv10; |
522 | ++removed; |
523 | } |
524 | |
525 | if (vmIsTrailingZeros) |
526 | { |
527 | for (;;) |
528 | { |
529 | const uint64 vmDiv10 = div10(vm); |
530 | const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); |
531 | |
532 | if (vmMod10 != 0) |
533 | break; |
534 | |
535 | const uint64 vpDiv10 = div10(vp); |
536 | const uint64 vrDiv10 = div10(vr); |
537 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
538 | |
539 | vrIsTrailingZeros &= lastRemovedDigit == 0; |
540 | lastRemovedDigit = (uint8) vrMod10; |
541 | vr = vrDiv10; |
542 | vp = vpDiv10; |
543 | vm = vmDiv10; |
544 | ++removed; |
545 | } |
546 | } |
547 | |
548 | if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) |
549 | { |
550 | /* Round even if the exact number is .....50..0. */ |
551 | lastRemovedDigit = 4; |
552 | } |
553 | |
554 | /* |
555 | * We need to take vr + 1 if vr is outside bounds or we need to round |
556 | * up. |
557 | */ |
558 | output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
559 | } |
560 | else |
561 | { |
562 | /* |
563 | * Specialized for the common case (~99.3%). Percentages below are |
564 | * relative to this. |
565 | */ |
566 | bool roundUp = false; |
567 | const uint64 vpDiv100 = div100(vp); |
568 | const uint64 vmDiv100 = div100(vm); |
569 | |
570 | if (vpDiv100 > vmDiv100) |
571 | { |
572 | /* Optimization:remove two digits at a time(~86.2 %). */ |
573 | const uint64 vrDiv100 = div100(vr); |
574 | const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100); |
575 | |
576 | roundUp = vrMod100 >= 50; |
577 | vr = vrDiv100; |
578 | vp = vpDiv100; |
579 | vm = vmDiv100; |
580 | removed += 2; |
581 | } |
582 | |
583 | /*---- |
584 | * Loop iterations below (approximately), without optimization |
585 | * above: |
586 | * |
587 | * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, |
588 | * 6+: 0.02% |
589 | * |
590 | * Loop iterations below (approximately), with optimization |
591 | * above: |
592 | * |
593 | * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% |
594 | *---- |
595 | */ |
596 | for (;;) |
597 | { |
598 | const uint64 vpDiv10 = div10(vp); |
599 | const uint64 vmDiv10 = div10(vm); |
600 | |
601 | if (vpDiv10 <= vmDiv10) |
602 | break; |
603 | |
604 | const uint64 vrDiv10 = div10(vr); |
605 | const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); |
606 | |
607 | roundUp = vrMod10 >= 5; |
608 | vr = vrDiv10; |
609 | vp = vpDiv10; |
610 | vm = vmDiv10; |
611 | ++removed; |
612 | } |
613 | |
614 | /* |
615 | * We need to take vr + 1 if vr is outside bounds or we need to round |
616 | * up. |
617 | */ |
618 | output = vr + (vr == vm || roundUp); |
619 | } |
620 | |
621 | const int32 exp = e10 + removed; |
622 | |
623 | floating_decimal_64 fd; |
624 | |
625 | fd.exponent = exp; |
626 | fd.mantissa = output; |
627 | return fd; |
628 | } |
629 | |
630 | static inline int |
631 | to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result) |
632 | { |
633 | /* Step 5: Print the decimal representation. */ |
634 | int index = 0; |
635 | |
636 | uint64 output = v.mantissa; |
637 | int32 exp = v.exponent; |
638 | |
639 | /*---- |
640 | * On entry, mantissa * 10^exp is the result to be output. |
641 | * Caller has already done the - sign if needed. |
642 | * |
643 | * We want to insert the point somewhere depending on the output length |
644 | * and exponent, which might mean adding zeros: |
645 | * |
646 | * exp | format |
647 | * 1+ | ddddddddd000000 |
648 | * 0 | ddddddddd |
649 | * -1 .. -len+1 | dddddddd.d to d.ddddddddd |
650 | * -len ... | 0.ddddddddd to 0.000dddddd |
651 | */ |
652 | uint32 i = 0; |
653 | int32 nexp = exp + olength; |
654 | |
655 | if (nexp <= 0) |
656 | { |
657 | /* -nexp is number of 0s to add after '.' */ |
658 | Assert(nexp >= -3); |
659 | /* 0.000ddddd */ |
660 | index = 2 - nexp; |
661 | /* won't need more than this many 0s */ |
662 | memcpy(result, "0.000000" , 8); |
663 | } |
664 | else if (exp < 0) |
665 | { |
666 | /* |
667 | * dddd.dddd; leave space at the start and move the '.' in after |
668 | */ |
669 | index = 1; |
670 | } |
671 | else |
672 | { |
673 | /* |
674 | * We can save some code later by pre-filling with zeros. We know that |
675 | * there can be no more than 16 output digits in this form, otherwise |
676 | * we would not choose fixed-point output. |
677 | */ |
678 | Assert(exp < 16 && exp + olength <= 16); |
679 | memset(result, '0', 16); |
680 | } |
681 | |
682 | /* |
683 | * We prefer 32-bit operations, even on 64-bit platforms. We have at most |
684 | * 17 digits, and uint32 can store 9 digits. If output doesn't fit into |
685 | * uint32, we cut off 8 digits, so the rest will fit into uint32. |
686 | */ |
687 | if ((output >> 32) != 0) |
688 | { |
689 | /* Expensive 64-bit division. */ |
690 | const uint64 q = div1e8(output); |
691 | uint32 output2 = (uint32) (output - 100000000 * q); |
692 | const uint32 c = output2 % 10000; |
693 | |
694 | output = q; |
695 | output2 /= 10000; |
696 | |
697 | const uint32 d = output2 % 10000; |
698 | const uint32 c0 = (c % 100) << 1; |
699 | const uint32 c1 = (c / 100) << 1; |
700 | const uint32 d0 = (d % 100) << 1; |
701 | const uint32 d1 = (d / 100) << 1; |
702 | |
703 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); |
704 | memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); |
705 | memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2); |
706 | memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2); |
707 | i += 8; |
708 | } |
709 | |
710 | uint32 output2 = (uint32) output; |
711 | |
712 | while (output2 >= 10000) |
713 | { |
714 | const uint32 c = output2 - 10000 * (output2 / 10000); |
715 | const uint32 c0 = (c % 100) << 1; |
716 | const uint32 c1 = (c / 100) << 1; |
717 | |
718 | output2 /= 10000; |
719 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); |
720 | memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); |
721 | i += 4; |
722 | } |
723 | if (output2 >= 100) |
724 | { |
725 | const uint32 c = (output2 % 100) << 1; |
726 | |
727 | output2 /= 100; |
728 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); |
729 | i += 2; |
730 | } |
731 | if (output2 >= 10) |
732 | { |
733 | const uint32 c = output2 << 1; |
734 | |
735 | memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); |
736 | } |
737 | else |
738 | { |
739 | result[index] = (char) ('0' + output2); |
740 | } |
741 | |
742 | if (index == 1) |
743 | { |
744 | /* |
745 | * nexp is 1..15 here, representing the number of digits before the |
746 | * point. A value of 16 is not possible because we switch to |
747 | * scientific notation when the display exponent reaches 15. |
748 | */ |
749 | Assert(nexp < 16); |
750 | /* gcc only seems to want to optimize memmove for small 2^n */ |
751 | if (nexp & 8) |
752 | { |
753 | memmove(result + index - 1, result + index, 8); |
754 | index += 8; |
755 | } |
756 | if (nexp & 4) |
757 | { |
758 | memmove(result + index - 1, result + index, 4); |
759 | index += 4; |
760 | } |
761 | if (nexp & 2) |
762 | { |
763 | memmove(result + index - 1, result + index, 2); |
764 | index += 2; |
765 | } |
766 | if (nexp & 1) |
767 | { |
768 | result[index - 1] = result[index]; |
769 | } |
770 | result[nexp] = '.'; |
771 | index = olength + 1; |
772 | } |
773 | else if (exp >= 0) |
774 | { |
775 | /* we supplied the trailing zeros earlier, now just set the length. */ |
776 | index = olength + exp; |
777 | } |
778 | else |
779 | { |
780 | index = olength + (2 - nexp); |
781 | } |
782 | |
783 | return index; |
784 | } |
785 | |
786 | static inline int |
787 | to_chars(floating_decimal_64 v, const bool sign, char *const result) |
788 | { |
789 | /* Step 5: Print the decimal representation. */ |
790 | int index = 0; |
791 | |
792 | uint64 output = v.mantissa; |
793 | uint32 olength = decimalLength(output); |
794 | int32 exp = v.exponent + olength - 1; |
795 | |
796 | if (sign) |
797 | { |
798 | result[index++] = '-'; |
799 | } |
800 | |
801 | /* |
802 | * The thresholds for fixed-point output are chosen to match printf |
803 | * defaults. Beware that both the code of to_chars_df and the value of |
804 | * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds. |
805 | */ |
806 | if (exp >= -4 && exp < 15) |
807 | return to_chars_df(v, olength, result + index) + sign; |
808 | |
809 | /* |
810 | * If v.exponent is exactly 0, we might have reached here via the small |
811 | * integer fast path, in which case v.mantissa might contain trailing |
812 | * (decimal) zeros. For scientific notation we need to move these zeros |
813 | * into the exponent. (For fixed point this doesn't matter, which is why |
814 | * we do this here rather than above.) |
815 | * |
816 | * Since we already calculated the display exponent (exp) above based on |
817 | * the old decimal length, that value does not change here. Instead, we |
818 | * just reduce the display length for each digit removed. |
819 | * |
820 | * If we didn't get here via the fast path, the raw exponent will not |
821 | * usually be 0, and there will be no trailing zeros, so we pay no more |
822 | * than one div10/multiply extra cost. We claw back half of that by |
823 | * checking for divisibility by 2 before dividing by 10. |
824 | */ |
825 | if (v.exponent == 0) |
826 | { |
827 | while ((output & 1) == 0) |
828 | { |
829 | const uint64 q = div10(output); |
830 | const uint32 r = (uint32) (output - 10 * q); |
831 | |
832 | if (r != 0) |
833 | break; |
834 | output = q; |
835 | --olength; |
836 | } |
837 | } |
838 | |
839 | /*---- |
840 | * Print the decimal digits. |
841 | * |
842 | * The following code is equivalent to: |
843 | * |
844 | * for (uint32 i = 0; i < olength - 1; ++i) { |
845 | * const uint32 c = output % 10; output /= 10; |
846 | * result[index + olength - i] = (char) ('0' + c); |
847 | * } |
848 | * result[index] = '0' + output % 10; |
849 | *---- |
850 | */ |
851 | |
852 | uint32 i = 0; |
853 | |
854 | /* |
855 | * We prefer 32-bit operations, even on 64-bit platforms. We have at most |
856 | * 17 digits, and uint32 can store 9 digits. If output doesn't fit into |
857 | * uint32, we cut off 8 digits, so the rest will fit into uint32. |
858 | */ |
859 | if ((output >> 32) != 0) |
860 | { |
861 | /* Expensive 64-bit division. */ |
862 | const uint64 q = div1e8(output); |
863 | uint32 output2 = (uint32) (output - 100000000 * q); |
864 | |
865 | output = q; |
866 | |
867 | const uint32 c = output2 % 10000; |
868 | |
869 | output2 /= 10000; |
870 | |
871 | const uint32 d = output2 % 10000; |
872 | const uint32 c0 = (c % 100) << 1; |
873 | const uint32 c1 = (c / 100) << 1; |
874 | const uint32 d0 = (d % 100) << 1; |
875 | const uint32 d1 = (d / 100) << 1; |
876 | |
877 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
878 | memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
879 | memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2); |
880 | memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2); |
881 | i += 8; |
882 | } |
883 | |
884 | uint32 output2 = (uint32) output; |
885 | |
886 | while (output2 >= 10000) |
887 | { |
888 | const uint32 c = output2 - 10000 * (output2 / 10000); |
889 | |
890 | output2 /= 10000; |
891 | |
892 | const uint32 c0 = (c % 100) << 1; |
893 | const uint32 c1 = (c / 100) << 1; |
894 | |
895 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
896 | memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
897 | i += 4; |
898 | } |
899 | if (output2 >= 100) |
900 | { |
901 | const uint32 c = (output2 % 100) << 1; |
902 | |
903 | output2 /= 100; |
904 | memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); |
905 | i += 2; |
906 | } |
907 | if (output2 >= 10) |
908 | { |
909 | const uint32 c = output2 << 1; |
910 | |
911 | /* |
912 | * We can't use memcpy here: the decimal dot goes between these two |
913 | * digits. |
914 | */ |
915 | result[index + olength - i] = DIGIT_TABLE[c + 1]; |
916 | result[index] = DIGIT_TABLE[c]; |
917 | } |
918 | else |
919 | { |
920 | result[index] = (char) ('0' + output2); |
921 | } |
922 | |
923 | /* Print decimal point if needed. */ |
924 | if (olength > 1) |
925 | { |
926 | result[index + 1] = '.'; |
927 | index += olength + 1; |
928 | } |
929 | else |
930 | { |
931 | ++index; |
932 | } |
933 | |
934 | /* Print the exponent. */ |
935 | result[index++] = 'e'; |
936 | if (exp < 0) |
937 | { |
938 | result[index++] = '-'; |
939 | exp = -exp; |
940 | } |
941 | else |
942 | result[index++] = '+'; |
943 | |
944 | if (exp >= 100) |
945 | { |
946 | const int32 c = exp % 10; |
947 | |
948 | memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); |
949 | result[index + 2] = (char) ('0' + c); |
950 | index += 3; |
951 | } |
952 | else |
953 | { |
954 | memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); |
955 | index += 2; |
956 | } |
957 | |
958 | return index; |
959 | } |
960 | |
961 | static inline bool |
962 | d2d_small_int(const uint64 ieeeMantissa, |
963 | const uint32 ieeeExponent, |
964 | floating_decimal_64 *v) |
965 | { |
966 | const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
967 | |
968 | /* |
969 | * Avoid using multiple "return false;" here since it tends to provoke the |
970 | * compiler into inlining multiple copies of d2d, which is undesirable. |
971 | */ |
972 | |
973 | if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0) |
974 | { |
975 | /*---- |
976 | * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: |
977 | * 1 <= f = m2 / 2^-e2 < 2^53. |
978 | * |
979 | * Test if the lower -e2 bits of the significand are 0, i.e. whether |
980 | * the fraction is 0. We can use ieeeMantissa here, since the implied |
981 | * 1 bit can never be tested by this; the implied 1 can only be part |
982 | * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already |
983 | * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53) |
984 | */ |
985 | const uint64 mask = (UINT64CONST(1) << -e2) - 1; |
986 | const uint64 fraction = ieeeMantissa & mask; |
987 | |
988 | if (fraction == 0) |
989 | { |
990 | /*---- |
991 | * f is an integer in the range [1, 2^53). |
992 | * Note: mantissa might contain trailing (decimal) 0's. |
993 | * Note: since 2^53 < 10^16, there is no need to adjust |
994 | * decimalLength(). |
995 | */ |
996 | const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
997 | |
998 | v->mantissa = m2 >> -e2; |
999 | v->exponent = 0; |
1000 | return true; |
1001 | } |
1002 | } |
1003 | |
1004 | return false; |
1005 | } |
1006 | |
1007 | /* |
1008 | * Store the shortest decimal representation of the given double as an |
1009 | * UNTERMINATED string in the caller's supplied buffer (which must be at least |
1010 | * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long). |
1011 | * |
1012 | * Returns the number of bytes stored. |
1013 | */ |
1014 | int |
1015 | double_to_shortest_decimal_bufn(double f, char *result) |
1016 | { |
1017 | /* |
1018 | * Step 1: Decode the floating-point number, and unify normalized and |
1019 | * subnormal cases. |
1020 | */ |
1021 | const uint64 bits = double_to_bits(f); |
1022 | |
1023 | /* Decode bits into sign, mantissa, and exponent. */ |
1024 | const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
1025 | const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1); |
1026 | const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
1027 | |
1028 | /* Case distinction; exit early for the easy cases. */ |
1029 | if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) |
1030 | { |
1031 | return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0)); |
1032 | } |
1033 | |
1034 | floating_decimal_64 v; |
1035 | const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v); |
1036 | |
1037 | if (!isSmallInt) |
1038 | { |
1039 | v = d2d(ieeeMantissa, ieeeExponent); |
1040 | } |
1041 | |
1042 | return to_chars(v, ieeeSign, result); |
1043 | } |
1044 | |
1045 | /* |
1046 | * Store the shortest decimal representation of the given double as a |
1047 | * null-terminated string in the caller's supplied buffer (which must be at |
1048 | * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long). |
1049 | * |
1050 | * Returns the string length. |
1051 | */ |
1052 | int |
1053 | double_to_shortest_decimal_buf(double f, char *result) |
1054 | { |
1055 | const int index = double_to_shortest_decimal_bufn(f, result); |
1056 | |
1057 | /* Terminate the string. */ |
1058 | Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN); |
1059 | result[index] = '\0'; |
1060 | return index; |
1061 | } |
1062 | |
1063 | /* |
1064 | * Return the shortest decimal representation as a null-terminated palloc'd |
1065 | * string (outside the backend, uses malloc() instead). |
1066 | * |
1067 | * Caller is responsible for freeing the result. |
1068 | */ |
1069 | char * |
1070 | double_to_shortest_decimal(double f) |
1071 | { |
1072 | char *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN); |
1073 | |
1074 | double_to_shortest_decimal_buf(f, result); |
1075 | return result; |
1076 | } |
1077 | |