1 | /* |
2 | * md5.c |
3 | * |
4 | * Implements the MD5 Message-Digest Algorithm as specified in |
5 | * RFC 1321. This implementation is a simple one, in that it |
6 | * needs every input byte to be buffered before doing any |
7 | * calculations. I do not expect this file to be used for |
8 | * general purpose MD5'ing of large amounts of data, only for |
9 | * generating hashed passwords from limited input. |
10 | * |
11 | * Sverre H. Huseby <sverrehu@online.no> |
12 | * |
13 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
14 | * Portions Copyright (c) 1994, Regents of the University of California |
15 | * |
16 | * IDENTIFICATION |
17 | * src/common/md5.c |
18 | */ |
19 | |
20 | #ifndef FRONTEND |
21 | #include "postgres.h" |
22 | #else |
23 | #include "postgres_fe.h" |
24 | #endif |
25 | |
26 | #include "common/md5.h" |
27 | |
28 | |
29 | /* |
30 | * PRIVATE FUNCTIONS |
31 | */ |
32 | |
33 | |
34 | /* |
35 | * The returned array is allocated using malloc. the caller should free it |
36 | * when it is no longer needed. |
37 | */ |
38 | static uint8 * |
39 | createPaddedCopyWithLength(const uint8 *b, uint32 *l) |
40 | { |
41 | uint8 *ret; |
42 | uint32 q; |
43 | uint32 len, |
44 | newLen448; |
45 | uint32 len_high, |
46 | len_low; /* 64-bit value split into 32-bit sections */ |
47 | |
48 | len = ((b == NULL) ? 0 : *l); |
49 | newLen448 = len + 64 - (len % 64) - 8; |
50 | if (newLen448 <= len) |
51 | newLen448 += 64; |
52 | |
53 | *l = newLen448 + 8; |
54 | if ((ret = (uint8 *) malloc(sizeof(uint8) * *l)) == NULL) |
55 | return NULL; |
56 | |
57 | if (b != NULL) |
58 | memcpy(ret, b, sizeof(uint8) * len); |
59 | |
60 | /* pad */ |
61 | ret[len] = 0x80; |
62 | for (q = len + 1; q < newLen448; q++) |
63 | ret[q] = 0x00; |
64 | |
65 | /* append length as a 64 bit bitcount */ |
66 | len_low = len; |
67 | /* split into two 32-bit values */ |
68 | /* we only look at the bottom 32-bits */ |
69 | len_high = len >> 29; |
70 | len_low <<= 3; |
71 | q = newLen448; |
72 | ret[q++] = (len_low & 0xff); |
73 | len_low >>= 8; |
74 | ret[q++] = (len_low & 0xff); |
75 | len_low >>= 8; |
76 | ret[q++] = (len_low & 0xff); |
77 | len_low >>= 8; |
78 | ret[q++] = (len_low & 0xff); |
79 | ret[q++] = (len_high & 0xff); |
80 | len_high >>= 8; |
81 | ret[q++] = (len_high & 0xff); |
82 | len_high >>= 8; |
83 | ret[q++] = (len_high & 0xff); |
84 | len_high >>= 8; |
85 | ret[q] = (len_high & 0xff); |
86 | |
87 | return ret; |
88 | } |
89 | |
90 | #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) |
91 | #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) |
92 | #define H(x, y, z) ((x) ^ (y) ^ (z)) |
93 | #define I(x, y, z) ((y) ^ ((x) | ~(z))) |
94 | #define ROT_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) |
95 | |
96 | static void |
97 | doTheRounds(uint32 X[16], uint32 state[4]) |
98 | { |
99 | uint32 a, |
100 | b, |
101 | c, |
102 | d; |
103 | |
104 | a = state[0]; |
105 | b = state[1]; |
106 | c = state[2]; |
107 | d = state[3]; |
108 | |
109 | /* round 1 */ |
110 | a = b + ROT_LEFT((a + F(b, c, d) + X[0] + 0xd76aa478), 7); /* 1 */ |
111 | d = a + ROT_LEFT((d + F(a, b, c) + X[1] + 0xe8c7b756), 12); /* 2 */ |
112 | c = d + ROT_LEFT((c + F(d, a, b) + X[2] + 0x242070db), 17); /* 3 */ |
113 | b = c + ROT_LEFT((b + F(c, d, a) + X[3] + 0xc1bdceee), 22); /* 4 */ |
114 | a = b + ROT_LEFT((a + F(b, c, d) + X[4] + 0xf57c0faf), 7); /* 5 */ |
115 | d = a + ROT_LEFT((d + F(a, b, c) + X[5] + 0x4787c62a), 12); /* 6 */ |
116 | c = d + ROT_LEFT((c + F(d, a, b) + X[6] + 0xa8304613), 17); /* 7 */ |
117 | b = c + ROT_LEFT((b + F(c, d, a) + X[7] + 0xfd469501), 22); /* 8 */ |
118 | a = b + ROT_LEFT((a + F(b, c, d) + X[8] + 0x698098d8), 7); /* 9 */ |
119 | d = a + ROT_LEFT((d + F(a, b, c) + X[9] + 0x8b44f7af), 12); /* 10 */ |
120 | c = d + ROT_LEFT((c + F(d, a, b) + X[10] + 0xffff5bb1), 17); /* 11 */ |
121 | b = c + ROT_LEFT((b + F(c, d, a) + X[11] + 0x895cd7be), 22); /* 12 */ |
122 | a = b + ROT_LEFT((a + F(b, c, d) + X[12] + 0x6b901122), 7); /* 13 */ |
123 | d = a + ROT_LEFT((d + F(a, b, c) + X[13] + 0xfd987193), 12); /* 14 */ |
124 | c = d + ROT_LEFT((c + F(d, a, b) + X[14] + 0xa679438e), 17); /* 15 */ |
125 | b = c + ROT_LEFT((b + F(c, d, a) + X[15] + 0x49b40821), 22); /* 16 */ |
126 | |
127 | /* round 2 */ |
128 | a = b + ROT_LEFT((a + G(b, c, d) + X[1] + 0xf61e2562), 5); /* 17 */ |
129 | d = a + ROT_LEFT((d + G(a, b, c) + X[6] + 0xc040b340), 9); /* 18 */ |
130 | c = d + ROT_LEFT((c + G(d, a, b) + X[11] + 0x265e5a51), 14); /* 19 */ |
131 | b = c + ROT_LEFT((b + G(c, d, a) + X[0] + 0xe9b6c7aa), 20); /* 20 */ |
132 | a = b + ROT_LEFT((a + G(b, c, d) + X[5] + 0xd62f105d), 5); /* 21 */ |
133 | d = a + ROT_LEFT((d + G(a, b, c) + X[10] + 0x02441453), 9); /* 22 */ |
134 | c = d + ROT_LEFT((c + G(d, a, b) + X[15] + 0xd8a1e681), 14); /* 23 */ |
135 | b = c + ROT_LEFT((b + G(c, d, a) + X[4] + 0xe7d3fbc8), 20); /* 24 */ |
136 | a = b + ROT_LEFT((a + G(b, c, d) + X[9] + 0x21e1cde6), 5); /* 25 */ |
137 | d = a + ROT_LEFT((d + G(a, b, c) + X[14] + 0xc33707d6), 9); /* 26 */ |
138 | c = d + ROT_LEFT((c + G(d, a, b) + X[3] + 0xf4d50d87), 14); /* 27 */ |
139 | b = c + ROT_LEFT((b + G(c, d, a) + X[8] + 0x455a14ed), 20); /* 28 */ |
140 | a = b + ROT_LEFT((a + G(b, c, d) + X[13] + 0xa9e3e905), 5); /* 29 */ |
141 | d = a + ROT_LEFT((d + G(a, b, c) + X[2] + 0xfcefa3f8), 9); /* 30 */ |
142 | c = d + ROT_LEFT((c + G(d, a, b) + X[7] + 0x676f02d9), 14); /* 31 */ |
143 | b = c + ROT_LEFT((b + G(c, d, a) + X[12] + 0x8d2a4c8a), 20); /* 32 */ |
144 | |
145 | /* round 3 */ |
146 | a = b + ROT_LEFT((a + H(b, c, d) + X[5] + 0xfffa3942), 4); /* 33 */ |
147 | d = a + ROT_LEFT((d + H(a, b, c) + X[8] + 0x8771f681), 11); /* 34 */ |
148 | c = d + ROT_LEFT((c + H(d, a, b) + X[11] + 0x6d9d6122), 16); /* 35 */ |
149 | b = c + ROT_LEFT((b + H(c, d, a) + X[14] + 0xfde5380c), 23); /* 36 */ |
150 | a = b + ROT_LEFT((a + H(b, c, d) + X[1] + 0xa4beea44), 4); /* 37 */ |
151 | d = a + ROT_LEFT((d + H(a, b, c) + X[4] + 0x4bdecfa9), 11); /* 38 */ |
152 | c = d + ROT_LEFT((c + H(d, a, b) + X[7] + 0xf6bb4b60), 16); /* 39 */ |
153 | b = c + ROT_LEFT((b + H(c, d, a) + X[10] + 0xbebfbc70), 23); /* 40 */ |
154 | a = b + ROT_LEFT((a + H(b, c, d) + X[13] + 0x289b7ec6), 4); /* 41 */ |
155 | d = a + ROT_LEFT((d + H(a, b, c) + X[0] + 0xeaa127fa), 11); /* 42 */ |
156 | c = d + ROT_LEFT((c + H(d, a, b) + X[3] + 0xd4ef3085), 16); /* 43 */ |
157 | b = c + ROT_LEFT((b + H(c, d, a) + X[6] + 0x04881d05), 23); /* 44 */ |
158 | a = b + ROT_LEFT((a + H(b, c, d) + X[9] + 0xd9d4d039), 4); /* 45 */ |
159 | d = a + ROT_LEFT((d + H(a, b, c) + X[12] + 0xe6db99e5), 11); /* 46 */ |
160 | c = d + ROT_LEFT((c + H(d, a, b) + X[15] + 0x1fa27cf8), 16); /* 47 */ |
161 | b = c + ROT_LEFT((b + H(c, d, a) + X[2] + 0xc4ac5665), 23); /* 48 */ |
162 | |
163 | /* round 4 */ |
164 | a = b + ROT_LEFT((a + I(b, c, d) + X[0] + 0xf4292244), 6); /* 49 */ |
165 | d = a + ROT_LEFT((d + I(a, b, c) + X[7] + 0x432aff97), 10); /* 50 */ |
166 | c = d + ROT_LEFT((c + I(d, a, b) + X[14] + 0xab9423a7), 15); /* 51 */ |
167 | b = c + ROT_LEFT((b + I(c, d, a) + X[5] + 0xfc93a039), 21); /* 52 */ |
168 | a = b + ROT_LEFT((a + I(b, c, d) + X[12] + 0x655b59c3), 6); /* 53 */ |
169 | d = a + ROT_LEFT((d + I(a, b, c) + X[3] + 0x8f0ccc92), 10); /* 54 */ |
170 | c = d + ROT_LEFT((c + I(d, a, b) + X[10] + 0xffeff47d), 15); /* 55 */ |
171 | b = c + ROT_LEFT((b + I(c, d, a) + X[1] + 0x85845dd1), 21); /* 56 */ |
172 | a = b + ROT_LEFT((a + I(b, c, d) + X[8] + 0x6fa87e4f), 6); /* 57 */ |
173 | d = a + ROT_LEFT((d + I(a, b, c) + X[15] + 0xfe2ce6e0), 10); /* 58 */ |
174 | c = d + ROT_LEFT((c + I(d, a, b) + X[6] + 0xa3014314), 15); /* 59 */ |
175 | b = c + ROT_LEFT((b + I(c, d, a) + X[13] + 0x4e0811a1), 21); /* 60 */ |
176 | a = b + ROT_LEFT((a + I(b, c, d) + X[4] + 0xf7537e82), 6); /* 61 */ |
177 | d = a + ROT_LEFT((d + I(a, b, c) + X[11] + 0xbd3af235), 10); /* 62 */ |
178 | c = d + ROT_LEFT((c + I(d, a, b) + X[2] + 0x2ad7d2bb), 15); /* 63 */ |
179 | b = c + ROT_LEFT((b + I(c, d, a) + X[9] + 0xeb86d391), 21); /* 64 */ |
180 | |
181 | state[0] += a; |
182 | state[1] += b; |
183 | state[2] += c; |
184 | state[3] += d; |
185 | } |
186 | |
187 | static int |
188 | calculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16]) |
189 | { |
190 | register uint32 i, |
191 | j, |
192 | k, |
193 | newI; |
194 | uint32 l; |
195 | uint8 *input; |
196 | register uint32 *wbp; |
197 | uint32 workBuff[16], |
198 | state[4]; |
199 | |
200 | l = len; |
201 | |
202 | state[0] = 0x67452301; |
203 | state[1] = 0xEFCDAB89; |
204 | state[2] = 0x98BADCFE; |
205 | state[3] = 0x10325476; |
206 | |
207 | if ((input = createPaddedCopyWithLength(b, &l)) == NULL) |
208 | return 0; |
209 | |
210 | for (i = 0;;) |
211 | { |
212 | if ((newI = i + 16 * 4) > l) |
213 | break; |
214 | k = i + 3; |
215 | for (j = 0; j < 16; j++) |
216 | { |
217 | wbp = (workBuff + j); |
218 | *wbp = input[k--]; |
219 | *wbp <<= 8; |
220 | *wbp |= input[k--]; |
221 | *wbp <<= 8; |
222 | *wbp |= input[k--]; |
223 | *wbp <<= 8; |
224 | *wbp |= input[k]; |
225 | k += 7; |
226 | } |
227 | doTheRounds(workBuff, state); |
228 | i = newI; |
229 | } |
230 | free(input); |
231 | |
232 | j = 0; |
233 | for (i = 0; i < 4; i++) |
234 | { |
235 | k = state[i]; |
236 | sum[j++] = (k & 0xff); |
237 | k >>= 8; |
238 | sum[j++] = (k & 0xff); |
239 | k >>= 8; |
240 | sum[j++] = (k & 0xff); |
241 | k >>= 8; |
242 | sum[j++] = (k & 0xff); |
243 | } |
244 | return 1; |
245 | } |
246 | |
247 | static void |
248 | bytesToHex(uint8 b[16], char *s) |
249 | { |
250 | static const char *hex = "0123456789abcdef" ; |
251 | int q, |
252 | w; |
253 | |
254 | for (q = 0, w = 0; q < 16; q++) |
255 | { |
256 | s[w++] = hex[(b[q] >> 4) & 0x0F]; |
257 | s[w++] = hex[b[q] & 0x0F]; |
258 | } |
259 | s[w] = '\0'; |
260 | } |
261 | |
262 | /* |
263 | * PUBLIC FUNCTIONS |
264 | */ |
265 | |
266 | /* |
267 | * pg_md5_hash |
268 | * |
269 | * Calculates the MD5 sum of the bytes in a buffer. |
270 | * |
271 | * SYNOPSIS #include "md5.h" |
272 | * int pg_md5_hash(const void *buff, size_t len, char *hexsum) |
273 | * |
274 | * INPUT buff the buffer containing the bytes that you want |
275 | * the MD5 sum of. |
276 | * len number of bytes in the buffer. |
277 | * |
278 | * OUTPUT hexsum the MD5 sum as a '\0'-terminated string of |
279 | * hexadecimal digits. an MD5 sum is 16 bytes long. |
280 | * each byte is represented by two heaxadecimal |
281 | * characters. you thus need to provide an array |
282 | * of 33 characters, including the trailing '\0'. |
283 | * |
284 | * RETURNS false on failure (out of memory for internal buffers) or |
285 | * true on success. |
286 | * |
287 | * STANDARDS MD5 is described in RFC 1321. |
288 | * |
289 | * AUTHOR Sverre H. Huseby <sverrehu@online.no> |
290 | * |
291 | */ |
292 | bool |
293 | pg_md5_hash(const void *buff, size_t len, char *hexsum) |
294 | { |
295 | uint8 sum[16]; |
296 | |
297 | if (!calculateDigestFromBuffer(buff, len, sum)) |
298 | return false; |
299 | |
300 | bytesToHex(sum, hexsum); |
301 | return true; |
302 | } |
303 | |
304 | bool |
305 | pg_md5_binary(const void *buff, size_t len, void *outbuf) |
306 | { |
307 | if (!calculateDigestFromBuffer(buff, len, outbuf)) |
308 | return false; |
309 | return true; |
310 | } |
311 | |
312 | |
313 | /* |
314 | * Computes MD5 checksum of "passwd" (a null-terminated string) followed |
315 | * by "salt" (which need not be null-terminated). |
316 | * |
317 | * Output format is "md5" followed by a 32-hex-digit MD5 checksum. |
318 | * Hence, the output buffer "buf" must be at least 36 bytes long. |
319 | * |
320 | * Returns true if okay, false on error (out of memory). |
321 | */ |
322 | bool |
323 | pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len, |
324 | char *buf) |
325 | { |
326 | size_t passwd_len = strlen(passwd); |
327 | |
328 | /* +1 here is just to avoid risk of unportable malloc(0) */ |
329 | char *crypt_buf = malloc(passwd_len + salt_len + 1); |
330 | bool ret; |
331 | |
332 | if (!crypt_buf) |
333 | return false; |
334 | |
335 | /* |
336 | * Place salt at the end because it may be known by users trying to crack |
337 | * the MD5 output. |
338 | */ |
339 | memcpy(crypt_buf, passwd, passwd_len); |
340 | memcpy(crypt_buf + passwd_len, salt, salt_len); |
341 | |
342 | strcpy(buf, "md5" ); |
343 | ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3); |
344 | |
345 | free(crypt_buf); |
346 | |
347 | return ret; |
348 | } |
349 | |