1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * sha2.c |
4 | * Set of SHA functions for SHA-224, SHA-256, SHA-384 and SHA-512. |
5 | * |
6 | * This is the set of in-core functions used when there are no other |
7 | * alternative options like OpenSSL. |
8 | * |
9 | * Portions Copyright (c) 2016-2019, PostgreSQL Global Development Group |
10 | * |
11 | * IDENTIFICATION |
12 | * src/common/sha2.c |
13 | * |
14 | *------------------------------------------------------------------------- |
15 | */ |
16 | |
17 | /* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */ |
18 | /* |
19 | * FILE: sha2.c |
20 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
21 | * |
22 | * Copyright (c) 2000-2001, Aaron D. Gifford |
23 | * All rights reserved. |
24 | * |
25 | * Redistribution and use in source and binary forms, with or without |
26 | * modification, are permitted provided that the following conditions |
27 | * are met: |
28 | * 1. Redistributions of source code must retain the above copyright |
29 | * notice, this list of conditions and the following disclaimer. |
30 | * 2. Redistributions in binary form must reproduce the above copyright |
31 | * notice, this list of conditions and the following disclaimer in the |
32 | * documentation and/or other materials provided with the distribution. |
33 | * 3. Neither the name of the copyright holder nor the names of contributors |
34 | * may be used to endorse or promote products derived from this software |
35 | * without specific prior written permission. |
36 | * |
37 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
38 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
39 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
40 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
41 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
42 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
43 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
45 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
46 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
47 | * SUCH DAMAGE. |
48 | * |
49 | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
50 | */ |
51 | |
52 | |
53 | #ifndef FRONTEND |
54 | #include "postgres.h" |
55 | #else |
56 | #include "postgres_fe.h" |
57 | #endif |
58 | |
59 | #include <sys/param.h> |
60 | |
61 | #include "common/sha2.h" |
62 | |
63 | /* |
64 | * UNROLLED TRANSFORM LOOP NOTE: |
65 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
66 | * loop version for the hash transform rounds (defined using macros |
67 | * later in this file). Either define on the command line, for example: |
68 | * |
69 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
70 | * |
71 | * or define below: |
72 | * |
73 | * #define SHA2_UNROLL_TRANSFORM |
74 | * |
75 | */ |
76 | |
77 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
78 | #define PG_SHA256_SHORT_BLOCK_LENGTH (PG_SHA256_BLOCK_LENGTH - 8) |
79 | #define PG_SHA384_SHORT_BLOCK_LENGTH (PG_SHA384_BLOCK_LENGTH - 16) |
80 | #define PG_SHA512_SHORT_BLOCK_LENGTH (PG_SHA512_BLOCK_LENGTH - 16) |
81 | |
82 | /*** ENDIAN REVERSAL MACROS *******************************************/ |
83 | #ifndef WORDS_BIGENDIAN |
84 | #define REVERSE32(w,x) { \ |
85 | uint32 tmp = (w); \ |
86 | tmp = (tmp >> 16) | (tmp << 16); \ |
87 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
88 | } |
89 | #define REVERSE64(w,x) { \ |
90 | uint64 tmp = (w); \ |
91 | tmp = (tmp >> 32) | (tmp << 32); \ |
92 | tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ |
93 | ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ |
94 | (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ |
95 | ((tmp & 0x0000ffff0000ffffULL) << 16); \ |
96 | } |
97 | #endif /* not bigendian */ |
98 | |
99 | /* |
100 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
101 | * unsigned 128-bit integer (represented using a two-element array of |
102 | * 64-bit words): |
103 | */ |
104 | #define ADDINC128(w,n) { \ |
105 | (w)[0] += (uint64)(n); \ |
106 | if ((w)[0] < (n)) { \ |
107 | (w)[1]++; \ |
108 | } \ |
109 | } |
110 | |
111 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
112 | /* |
113 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
114 | * |
115 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
116 | * S is a ROTATION) because the SHA-256/384/512 description document |
117 | * (see http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf) |
118 | * uses this same "backwards" definition. |
119 | */ |
120 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
121 | #define R(b,x) ((x) >> (b)) |
122 | /* 32-bit Rotate-right (used in SHA-256): */ |
123 | #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
124 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
125 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
126 | |
127 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
128 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
129 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
130 | |
131 | /* Four of six logical functions used in SHA-256: */ |
132 | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
133 | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
134 | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
135 | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
136 | |
137 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
138 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
139 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
140 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
141 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
142 | |
143 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
144 | /* NOTE: These should not be accessed directly from outside this |
145 | * library -- they are intended for private internal visibility/use |
146 | * only. |
147 | */ |
148 | static void SHA512_Last(pg_sha512_ctx *context); |
149 | static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data); |
150 | static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data); |
151 | |
152 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
153 | /* Hash constant words K for SHA-256: */ |
154 | static const uint32 K256[64] = { |
155 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
156 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
157 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
158 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
159 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
160 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
161 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
162 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
163 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
164 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
165 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
166 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
167 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
168 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
169 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
170 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
171 | }; |
172 | |
173 | /* Initial hash value H for SHA-224: */ |
174 | static const uint32 sha224_initial_hash_value[8] = { |
175 | 0xc1059ed8UL, |
176 | 0x367cd507UL, |
177 | 0x3070dd17UL, |
178 | 0xf70e5939UL, |
179 | 0xffc00b31UL, |
180 | 0x68581511UL, |
181 | 0x64f98fa7UL, |
182 | 0xbefa4fa4UL |
183 | }; |
184 | |
185 | /* Initial hash value H for SHA-256: */ |
186 | static const uint32 sha256_initial_hash_value[8] = { |
187 | 0x6a09e667UL, |
188 | 0xbb67ae85UL, |
189 | 0x3c6ef372UL, |
190 | 0xa54ff53aUL, |
191 | 0x510e527fUL, |
192 | 0x9b05688cUL, |
193 | 0x1f83d9abUL, |
194 | 0x5be0cd19UL |
195 | }; |
196 | |
197 | /* Hash constant words K for SHA-384 and SHA-512: */ |
198 | static const uint64 K512[80] = { |
199 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
200 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
201 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
202 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
203 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
204 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
205 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
206 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
207 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
208 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
209 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
210 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
211 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
212 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
213 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
214 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
215 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
216 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
217 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
218 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
219 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
220 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
221 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
222 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
223 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
224 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
225 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
226 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
227 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
228 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
229 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
230 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
231 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
232 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
233 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
234 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
235 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
236 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
237 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
238 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
239 | }; |
240 | |
241 | /* Initial hash value H for SHA-384 */ |
242 | static const uint64 sha384_initial_hash_value[8] = { |
243 | 0xcbbb9d5dc1059ed8ULL, |
244 | 0x629a292a367cd507ULL, |
245 | 0x9159015a3070dd17ULL, |
246 | 0x152fecd8f70e5939ULL, |
247 | 0x67332667ffc00b31ULL, |
248 | 0x8eb44a8768581511ULL, |
249 | 0xdb0c2e0d64f98fa7ULL, |
250 | 0x47b5481dbefa4fa4ULL |
251 | }; |
252 | |
253 | /* Initial hash value H for SHA-512 */ |
254 | static const uint64 sha512_initial_hash_value[8] = { |
255 | 0x6a09e667f3bcc908ULL, |
256 | 0xbb67ae8584caa73bULL, |
257 | 0x3c6ef372fe94f82bULL, |
258 | 0xa54ff53a5f1d36f1ULL, |
259 | 0x510e527fade682d1ULL, |
260 | 0x9b05688c2b3e6c1fULL, |
261 | 0x1f83d9abfb41bd6bULL, |
262 | 0x5be0cd19137e2179ULL |
263 | }; |
264 | |
265 | |
266 | /*** SHA-256: *********************************************************/ |
267 | void |
268 | pg_sha256_init(pg_sha256_ctx *context) |
269 | { |
270 | if (context == NULL) |
271 | return; |
272 | memcpy(context->state, sha256_initial_hash_value, PG_SHA256_DIGEST_LENGTH); |
273 | memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); |
274 | context->bitcount = 0; |
275 | } |
276 | |
277 | #ifdef SHA2_UNROLL_TRANSFORM |
278 | |
279 | /* Unrolled SHA-256 round macros: */ |
280 | |
281 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
282 | W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \ |
283 | ((uint32)data[1] << 16) | ((uint32)data[0] << 24); \ |
284 | data += 4; \ |
285 | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ |
286 | (d) += T1; \ |
287 | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
288 | j++; \ |
289 | } while(0) |
290 | |
291 | #define ROUND256(a,b,c,d,e,f,g,h) do { \ |
292 | s0 = W256[(j+1)&0x0f]; \ |
293 | s0 = sigma0_256(s0); \ |
294 | s1 = W256[(j+14)&0x0f]; \ |
295 | s1 = sigma1_256(s1); \ |
296 | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ |
297 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
298 | (d) += T1; \ |
299 | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
300 | j++; \ |
301 | } while(0) |
302 | |
303 | static void |
304 | SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) |
305 | { |
306 | uint32 a, |
307 | b, |
308 | c, |
309 | d, |
310 | e, |
311 | f, |
312 | g, |
313 | h, |
314 | s0, |
315 | s1; |
316 | uint32 T1, |
317 | *W256; |
318 | int j; |
319 | |
320 | W256 = (uint32 *) context->buffer; |
321 | |
322 | /* Initialize registers with the prev. intermediate value */ |
323 | a = context->state[0]; |
324 | b = context->state[1]; |
325 | c = context->state[2]; |
326 | d = context->state[3]; |
327 | e = context->state[4]; |
328 | f = context->state[5]; |
329 | g = context->state[6]; |
330 | h = context->state[7]; |
331 | |
332 | j = 0; |
333 | do |
334 | { |
335 | /* Rounds 0 to 15 (unrolled): */ |
336 | ROUND256_0_TO_15(a, b, c, d, e, f, g, h); |
337 | ROUND256_0_TO_15(h, a, b, c, d, e, f, g); |
338 | ROUND256_0_TO_15(g, h, a, b, c, d, e, f); |
339 | ROUND256_0_TO_15(f, g, h, a, b, c, d, e); |
340 | ROUND256_0_TO_15(e, f, g, h, a, b, c, d); |
341 | ROUND256_0_TO_15(d, e, f, g, h, a, b, c); |
342 | ROUND256_0_TO_15(c, d, e, f, g, h, a, b); |
343 | ROUND256_0_TO_15(b, c, d, e, f, g, h, a); |
344 | } while (j < 16); |
345 | |
346 | /* Now for the remaining rounds to 64: */ |
347 | do |
348 | { |
349 | ROUND256(a, b, c, d, e, f, g, h); |
350 | ROUND256(h, a, b, c, d, e, f, g); |
351 | ROUND256(g, h, a, b, c, d, e, f); |
352 | ROUND256(f, g, h, a, b, c, d, e); |
353 | ROUND256(e, f, g, h, a, b, c, d); |
354 | ROUND256(d, e, f, g, h, a, b, c); |
355 | ROUND256(c, d, e, f, g, h, a, b); |
356 | ROUND256(b, c, d, e, f, g, h, a); |
357 | } while (j < 64); |
358 | |
359 | /* Compute the current intermediate hash value */ |
360 | context->state[0] += a; |
361 | context->state[1] += b; |
362 | context->state[2] += c; |
363 | context->state[3] += d; |
364 | context->state[4] += e; |
365 | context->state[5] += f; |
366 | context->state[6] += g; |
367 | context->state[7] += h; |
368 | |
369 | /* Clean up */ |
370 | a = b = c = d = e = f = g = h = T1 = 0; |
371 | } |
372 | #else /* SHA2_UNROLL_TRANSFORM */ |
373 | |
374 | static void |
375 | SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) |
376 | { |
377 | uint32 a, |
378 | b, |
379 | c, |
380 | d, |
381 | e, |
382 | f, |
383 | g, |
384 | h, |
385 | s0, |
386 | s1; |
387 | uint32 T1, |
388 | T2, |
389 | *W256; |
390 | int j; |
391 | |
392 | W256 = (uint32 *) context->buffer; |
393 | |
394 | /* Initialize registers with the prev. intermediate value */ |
395 | a = context->state[0]; |
396 | b = context->state[1]; |
397 | c = context->state[2]; |
398 | d = context->state[3]; |
399 | e = context->state[4]; |
400 | f = context->state[5]; |
401 | g = context->state[6]; |
402 | h = context->state[7]; |
403 | |
404 | j = 0; |
405 | do |
406 | { |
407 | W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) | |
408 | ((uint32) data[1] << 16) | ((uint32) data[0] << 24); |
409 | data += 4; |
410 | /* Apply the SHA-256 compression function to update a..h */ |
411 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
412 | T2 = Sigma0_256(a) + Maj(a, b, c); |
413 | h = g; |
414 | g = f; |
415 | f = e; |
416 | e = d + T1; |
417 | d = c; |
418 | c = b; |
419 | b = a; |
420 | a = T1 + T2; |
421 | |
422 | j++; |
423 | } while (j < 16); |
424 | |
425 | do |
426 | { |
427 | /* Part of the message block expansion: */ |
428 | s0 = W256[(j + 1) & 0x0f]; |
429 | s0 = sigma0_256(s0); |
430 | s1 = W256[(j + 14) & 0x0f]; |
431 | s1 = sigma1_256(s1); |
432 | |
433 | /* Apply the SHA-256 compression function to update a..h */ |
434 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
435 | (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); |
436 | T2 = Sigma0_256(a) + Maj(a, b, c); |
437 | h = g; |
438 | g = f; |
439 | f = e; |
440 | e = d + T1; |
441 | d = c; |
442 | c = b; |
443 | b = a; |
444 | a = T1 + T2; |
445 | |
446 | j++; |
447 | } while (j < 64); |
448 | |
449 | /* Compute the current intermediate hash value */ |
450 | context->state[0] += a; |
451 | context->state[1] += b; |
452 | context->state[2] += c; |
453 | context->state[3] += d; |
454 | context->state[4] += e; |
455 | context->state[5] += f; |
456 | context->state[6] += g; |
457 | context->state[7] += h; |
458 | |
459 | /* Clean up */ |
460 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
461 | } |
462 | #endif /* SHA2_UNROLL_TRANSFORM */ |
463 | |
464 | void |
465 | pg_sha256_update(pg_sha256_ctx *context, const uint8 *data, size_t len) |
466 | { |
467 | size_t freespace, |
468 | usedspace; |
469 | |
470 | /* Calling with no data is valid (we do nothing) */ |
471 | if (len == 0) |
472 | return; |
473 | |
474 | usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; |
475 | if (usedspace > 0) |
476 | { |
477 | /* Calculate how much free space is available in the buffer */ |
478 | freespace = PG_SHA256_BLOCK_LENGTH - usedspace; |
479 | |
480 | if (len >= freespace) |
481 | { |
482 | /* Fill the buffer completely and process it */ |
483 | memcpy(&context->buffer[usedspace], data, freespace); |
484 | context->bitcount += freespace << 3; |
485 | len -= freespace; |
486 | data += freespace; |
487 | SHA256_Transform(context, context->buffer); |
488 | } |
489 | else |
490 | { |
491 | /* The buffer is not yet full */ |
492 | memcpy(&context->buffer[usedspace], data, len); |
493 | context->bitcount += len << 3; |
494 | /* Clean up: */ |
495 | usedspace = freespace = 0; |
496 | return; |
497 | } |
498 | } |
499 | while (len >= PG_SHA256_BLOCK_LENGTH) |
500 | { |
501 | /* Process as many complete blocks as we can */ |
502 | SHA256_Transform(context, data); |
503 | context->bitcount += PG_SHA256_BLOCK_LENGTH << 3; |
504 | len -= PG_SHA256_BLOCK_LENGTH; |
505 | data += PG_SHA256_BLOCK_LENGTH; |
506 | } |
507 | if (len > 0) |
508 | { |
509 | /* There's left-overs, so save 'em */ |
510 | memcpy(context->buffer, data, len); |
511 | context->bitcount += len << 3; |
512 | } |
513 | /* Clean up: */ |
514 | usedspace = freespace = 0; |
515 | } |
516 | |
517 | static void |
518 | SHA256_Last(pg_sha256_ctx *context) |
519 | { |
520 | unsigned int usedspace; |
521 | |
522 | usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; |
523 | #ifndef WORDS_BIGENDIAN |
524 | /* Convert FROM host byte order */ |
525 | REVERSE64(context->bitcount, context->bitcount); |
526 | #endif |
527 | if (usedspace > 0) |
528 | { |
529 | /* Begin padding with a 1 bit: */ |
530 | context->buffer[usedspace++] = 0x80; |
531 | |
532 | if (usedspace <= PG_SHA256_SHORT_BLOCK_LENGTH) |
533 | { |
534 | /* Set-up for the last transform: */ |
535 | memset(&context->buffer[usedspace], 0, PG_SHA256_SHORT_BLOCK_LENGTH - usedspace); |
536 | } |
537 | else |
538 | { |
539 | if (usedspace < PG_SHA256_BLOCK_LENGTH) |
540 | { |
541 | memset(&context->buffer[usedspace], 0, PG_SHA256_BLOCK_LENGTH - usedspace); |
542 | } |
543 | /* Do second-to-last transform: */ |
544 | SHA256_Transform(context, context->buffer); |
545 | |
546 | /* And set-up for the last transform: */ |
547 | memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); |
548 | } |
549 | } |
550 | else |
551 | { |
552 | /* Set-up for the last transform: */ |
553 | memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); |
554 | |
555 | /* Begin padding with a 1 bit: */ |
556 | *context->buffer = 0x80; |
557 | } |
558 | /* Set the bit count: */ |
559 | *(uint64 *) &context->buffer[PG_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; |
560 | |
561 | /* Final transform: */ |
562 | SHA256_Transform(context, context->buffer); |
563 | } |
564 | |
565 | void |
566 | pg_sha256_final(pg_sha256_ctx *context, uint8 *digest) |
567 | { |
568 | /* If no digest buffer is passed, we don't bother doing this: */ |
569 | if (digest != NULL) |
570 | { |
571 | SHA256_Last(context); |
572 | |
573 | #ifndef WORDS_BIGENDIAN |
574 | { |
575 | /* Convert TO host byte order */ |
576 | int j; |
577 | |
578 | for (j = 0; j < 8; j++) |
579 | { |
580 | REVERSE32(context->state[j], context->state[j]); |
581 | } |
582 | } |
583 | #endif |
584 | memcpy(digest, context->state, PG_SHA256_DIGEST_LENGTH); |
585 | } |
586 | |
587 | /* Clean up state data: */ |
588 | memset(context, 0, sizeof(pg_sha256_ctx)); |
589 | } |
590 | |
591 | |
592 | /*** SHA-512: *********************************************************/ |
593 | void |
594 | pg_sha512_init(pg_sha512_ctx *context) |
595 | { |
596 | if (context == NULL) |
597 | return; |
598 | memcpy(context->state, sha512_initial_hash_value, PG_SHA512_DIGEST_LENGTH); |
599 | memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH); |
600 | context->bitcount[0] = context->bitcount[1] = 0; |
601 | } |
602 | |
603 | #ifdef SHA2_UNROLL_TRANSFORM |
604 | |
605 | /* Unrolled SHA-512 round macros: */ |
606 | |
607 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
608 | W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \ |
609 | ((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \ |
610 | ((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \ |
611 | ((uint64)data[1] << 48) | ((uint64)data[0] << 56); \ |
612 | data += 8; \ |
613 | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ |
614 | (d) += T1; \ |
615 | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
616 | j++; \ |
617 | } while(0) |
618 | |
619 | |
620 | #define ROUND512(a,b,c,d,e,f,g,h) do { \ |
621 | s0 = W512[(j+1)&0x0f]; \ |
622 | s0 = sigma0_512(s0); \ |
623 | s1 = W512[(j+14)&0x0f]; \ |
624 | s1 = sigma1_512(s1); \ |
625 | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ |
626 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
627 | (d) += T1; \ |
628 | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
629 | j++; \ |
630 | } while(0) |
631 | |
632 | static void |
633 | SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) |
634 | { |
635 | uint64 a, |
636 | b, |
637 | c, |
638 | d, |
639 | e, |
640 | f, |
641 | g, |
642 | h, |
643 | s0, |
644 | s1; |
645 | uint64 T1, |
646 | *W512 = (uint64 *) context->buffer; |
647 | int j; |
648 | |
649 | /* Initialize registers with the prev. intermediate value */ |
650 | a = context->state[0]; |
651 | b = context->state[1]; |
652 | c = context->state[2]; |
653 | d = context->state[3]; |
654 | e = context->state[4]; |
655 | f = context->state[5]; |
656 | g = context->state[6]; |
657 | h = context->state[7]; |
658 | |
659 | j = 0; |
660 | do |
661 | { |
662 | ROUND512_0_TO_15(a, b, c, d, e, f, g, h); |
663 | ROUND512_0_TO_15(h, a, b, c, d, e, f, g); |
664 | ROUND512_0_TO_15(g, h, a, b, c, d, e, f); |
665 | ROUND512_0_TO_15(f, g, h, a, b, c, d, e); |
666 | ROUND512_0_TO_15(e, f, g, h, a, b, c, d); |
667 | ROUND512_0_TO_15(d, e, f, g, h, a, b, c); |
668 | ROUND512_0_TO_15(c, d, e, f, g, h, a, b); |
669 | ROUND512_0_TO_15(b, c, d, e, f, g, h, a); |
670 | } while (j < 16); |
671 | |
672 | /* Now for the remaining rounds up to 79: */ |
673 | do |
674 | { |
675 | ROUND512(a, b, c, d, e, f, g, h); |
676 | ROUND512(h, a, b, c, d, e, f, g); |
677 | ROUND512(g, h, a, b, c, d, e, f); |
678 | ROUND512(f, g, h, a, b, c, d, e); |
679 | ROUND512(e, f, g, h, a, b, c, d); |
680 | ROUND512(d, e, f, g, h, a, b, c); |
681 | ROUND512(c, d, e, f, g, h, a, b); |
682 | ROUND512(b, c, d, e, f, g, h, a); |
683 | } while (j < 80); |
684 | |
685 | /* Compute the current intermediate hash value */ |
686 | context->state[0] += a; |
687 | context->state[1] += b; |
688 | context->state[2] += c; |
689 | context->state[3] += d; |
690 | context->state[4] += e; |
691 | context->state[5] += f; |
692 | context->state[6] += g; |
693 | context->state[7] += h; |
694 | |
695 | /* Clean up */ |
696 | a = b = c = d = e = f = g = h = T1 = 0; |
697 | } |
698 | #else /* SHA2_UNROLL_TRANSFORM */ |
699 | |
700 | static void |
701 | SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) |
702 | { |
703 | uint64 a, |
704 | b, |
705 | c, |
706 | d, |
707 | e, |
708 | f, |
709 | g, |
710 | h, |
711 | s0, |
712 | s1; |
713 | uint64 T1, |
714 | T2, |
715 | *W512 = (uint64 *) context->buffer; |
716 | int j; |
717 | |
718 | /* Initialize registers with the prev. intermediate value */ |
719 | a = context->state[0]; |
720 | b = context->state[1]; |
721 | c = context->state[2]; |
722 | d = context->state[3]; |
723 | e = context->state[4]; |
724 | f = context->state[5]; |
725 | g = context->state[6]; |
726 | h = context->state[7]; |
727 | |
728 | j = 0; |
729 | do |
730 | { |
731 | W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) | |
732 | ((uint64) data[5] << 16) | ((uint64) data[4] << 24) | |
733 | ((uint64) data[3] << 32) | ((uint64) data[2] << 40) | |
734 | ((uint64) data[1] << 48) | ((uint64) data[0] << 56); |
735 | data += 8; |
736 | /* Apply the SHA-512 compression function to update a..h */ |
737 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
738 | T2 = Sigma0_512(a) + Maj(a, b, c); |
739 | h = g; |
740 | g = f; |
741 | f = e; |
742 | e = d + T1; |
743 | d = c; |
744 | c = b; |
745 | b = a; |
746 | a = T1 + T2; |
747 | |
748 | j++; |
749 | } while (j < 16); |
750 | |
751 | do |
752 | { |
753 | /* Part of the message block expansion: */ |
754 | s0 = W512[(j + 1) & 0x0f]; |
755 | s0 = sigma0_512(s0); |
756 | s1 = W512[(j + 14) & 0x0f]; |
757 | s1 = sigma1_512(s1); |
758 | |
759 | /* Apply the SHA-512 compression function to update a..h */ |
760 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
761 | (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); |
762 | T2 = Sigma0_512(a) + Maj(a, b, c); |
763 | h = g; |
764 | g = f; |
765 | f = e; |
766 | e = d + T1; |
767 | d = c; |
768 | c = b; |
769 | b = a; |
770 | a = T1 + T2; |
771 | |
772 | j++; |
773 | } while (j < 80); |
774 | |
775 | /* Compute the current intermediate hash value */ |
776 | context->state[0] += a; |
777 | context->state[1] += b; |
778 | context->state[2] += c; |
779 | context->state[3] += d; |
780 | context->state[4] += e; |
781 | context->state[5] += f; |
782 | context->state[6] += g; |
783 | context->state[7] += h; |
784 | |
785 | /* Clean up */ |
786 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
787 | } |
788 | #endif /* SHA2_UNROLL_TRANSFORM */ |
789 | |
790 | void |
791 | pg_sha512_update(pg_sha512_ctx *context, const uint8 *data, size_t len) |
792 | { |
793 | size_t freespace, |
794 | usedspace; |
795 | |
796 | /* Calling with no data is valid (we do nothing) */ |
797 | if (len == 0) |
798 | return; |
799 | |
800 | usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; |
801 | if (usedspace > 0) |
802 | { |
803 | /* Calculate how much free space is available in the buffer */ |
804 | freespace = PG_SHA512_BLOCK_LENGTH - usedspace; |
805 | |
806 | if (len >= freespace) |
807 | { |
808 | /* Fill the buffer completely and process it */ |
809 | memcpy(&context->buffer[usedspace], data, freespace); |
810 | ADDINC128(context->bitcount, freespace << 3); |
811 | len -= freespace; |
812 | data += freespace; |
813 | SHA512_Transform(context, context->buffer); |
814 | } |
815 | else |
816 | { |
817 | /* The buffer is not yet full */ |
818 | memcpy(&context->buffer[usedspace], data, len); |
819 | ADDINC128(context->bitcount, len << 3); |
820 | /* Clean up: */ |
821 | usedspace = freespace = 0; |
822 | return; |
823 | } |
824 | } |
825 | while (len >= PG_SHA512_BLOCK_LENGTH) |
826 | { |
827 | /* Process as many complete blocks as we can */ |
828 | SHA512_Transform(context, data); |
829 | ADDINC128(context->bitcount, PG_SHA512_BLOCK_LENGTH << 3); |
830 | len -= PG_SHA512_BLOCK_LENGTH; |
831 | data += PG_SHA512_BLOCK_LENGTH; |
832 | } |
833 | if (len > 0) |
834 | { |
835 | /* There's left-overs, so save 'em */ |
836 | memcpy(context->buffer, data, len); |
837 | ADDINC128(context->bitcount, len << 3); |
838 | } |
839 | /* Clean up: */ |
840 | usedspace = freespace = 0; |
841 | } |
842 | |
843 | static void |
844 | SHA512_Last(pg_sha512_ctx *context) |
845 | { |
846 | unsigned int usedspace; |
847 | |
848 | usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; |
849 | #ifndef WORDS_BIGENDIAN |
850 | /* Convert FROM host byte order */ |
851 | REVERSE64(context->bitcount[0], context->bitcount[0]); |
852 | REVERSE64(context->bitcount[1], context->bitcount[1]); |
853 | #endif |
854 | if (usedspace > 0) |
855 | { |
856 | /* Begin padding with a 1 bit: */ |
857 | context->buffer[usedspace++] = 0x80; |
858 | |
859 | if (usedspace <= PG_SHA512_SHORT_BLOCK_LENGTH) |
860 | { |
861 | /* Set-up for the last transform: */ |
862 | memset(&context->buffer[usedspace], 0, PG_SHA512_SHORT_BLOCK_LENGTH - usedspace); |
863 | } |
864 | else |
865 | { |
866 | if (usedspace < PG_SHA512_BLOCK_LENGTH) |
867 | { |
868 | memset(&context->buffer[usedspace], 0, PG_SHA512_BLOCK_LENGTH - usedspace); |
869 | } |
870 | /* Do second-to-last transform: */ |
871 | SHA512_Transform(context, context->buffer); |
872 | |
873 | /* And set-up for the last transform: */ |
874 | memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH - 2); |
875 | } |
876 | } |
877 | else |
878 | { |
879 | /* Prepare for final transform: */ |
880 | memset(context->buffer, 0, PG_SHA512_SHORT_BLOCK_LENGTH); |
881 | |
882 | /* Begin padding with a 1 bit: */ |
883 | *context->buffer = 0x80; |
884 | } |
885 | /* Store the length of input data (in bits): */ |
886 | *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; |
887 | *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; |
888 | |
889 | /* Final transform: */ |
890 | SHA512_Transform(context, context->buffer); |
891 | } |
892 | |
893 | void |
894 | pg_sha512_final(pg_sha512_ctx *context, uint8 *digest) |
895 | { |
896 | /* If no digest buffer is passed, we don't bother doing this: */ |
897 | if (digest != NULL) |
898 | { |
899 | SHA512_Last(context); |
900 | |
901 | /* Save the hash data for output: */ |
902 | #ifndef WORDS_BIGENDIAN |
903 | { |
904 | /* Convert TO host byte order */ |
905 | int j; |
906 | |
907 | for (j = 0; j < 8; j++) |
908 | { |
909 | REVERSE64(context->state[j], context->state[j]); |
910 | } |
911 | } |
912 | #endif |
913 | memcpy(digest, context->state, PG_SHA512_DIGEST_LENGTH); |
914 | } |
915 | |
916 | /* Zero out state data */ |
917 | memset(context, 0, sizeof(pg_sha512_ctx)); |
918 | } |
919 | |
920 | |
921 | /*** SHA-384: *********************************************************/ |
922 | void |
923 | pg_sha384_init(pg_sha384_ctx *context) |
924 | { |
925 | if (context == NULL) |
926 | return; |
927 | memcpy(context->state, sha384_initial_hash_value, PG_SHA512_DIGEST_LENGTH); |
928 | memset(context->buffer, 0, PG_SHA384_BLOCK_LENGTH); |
929 | context->bitcount[0] = context->bitcount[1] = 0; |
930 | } |
931 | |
932 | void |
933 | pg_sha384_update(pg_sha384_ctx *context, const uint8 *data, size_t len) |
934 | { |
935 | pg_sha512_update((pg_sha512_ctx *) context, data, len); |
936 | } |
937 | |
938 | void |
939 | pg_sha384_final(pg_sha384_ctx *context, uint8 *digest) |
940 | { |
941 | /* If no digest buffer is passed, we don't bother doing this: */ |
942 | if (digest != NULL) |
943 | { |
944 | SHA512_Last((pg_sha512_ctx *) context); |
945 | |
946 | /* Save the hash data for output: */ |
947 | #ifndef WORDS_BIGENDIAN |
948 | { |
949 | /* Convert TO host byte order */ |
950 | int j; |
951 | |
952 | for (j = 0; j < 6; j++) |
953 | { |
954 | REVERSE64(context->state[j], context->state[j]); |
955 | } |
956 | } |
957 | #endif |
958 | memcpy(digest, context->state, PG_SHA384_DIGEST_LENGTH); |
959 | } |
960 | |
961 | /* Zero out state data */ |
962 | memset(context, 0, sizeof(pg_sha384_ctx)); |
963 | } |
964 | |
965 | /*** SHA-224: *********************************************************/ |
966 | void |
967 | pg_sha224_init(pg_sha224_ctx *context) |
968 | { |
969 | if (context == NULL) |
970 | return; |
971 | memcpy(context->state, sha224_initial_hash_value, PG_SHA256_DIGEST_LENGTH); |
972 | memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); |
973 | context->bitcount = 0; |
974 | } |
975 | |
976 | void |
977 | pg_sha224_update(pg_sha224_ctx *context, const uint8 *data, size_t len) |
978 | { |
979 | pg_sha256_update((pg_sha256_ctx *) context, data, len); |
980 | } |
981 | |
982 | void |
983 | pg_sha224_final(pg_sha224_ctx *context, uint8 *digest) |
984 | { |
985 | /* If no digest buffer is passed, we don't bother doing this: */ |
986 | if (digest != NULL) |
987 | { |
988 | SHA256_Last(context); |
989 | |
990 | #ifndef WORDS_BIGENDIAN |
991 | { |
992 | /* Convert TO host byte order */ |
993 | int j; |
994 | |
995 | for (j = 0; j < 8; j++) |
996 | { |
997 | REVERSE32(context->state[j], context->state[j]); |
998 | } |
999 | } |
1000 | #endif |
1001 | memcpy(digest, context->state, PG_SHA224_DIGEST_LENGTH); |
1002 | } |
1003 | |
1004 | /* Clean up state data: */ |
1005 | memset(context, 0, sizeof(pg_sha224_ctx)); |
1006 | } |
1007 | |