| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * sha2.c |
| 4 | * Set of SHA functions for SHA-224, SHA-256, SHA-384 and SHA-512. |
| 5 | * |
| 6 | * This is the set of in-core functions used when there are no other |
| 7 | * alternative options like OpenSSL. |
| 8 | * |
| 9 | * Portions Copyright (c) 2016-2019, PostgreSQL Global Development Group |
| 10 | * |
| 11 | * IDENTIFICATION |
| 12 | * src/common/sha2.c |
| 13 | * |
| 14 | *------------------------------------------------------------------------- |
| 15 | */ |
| 16 | |
| 17 | /* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */ |
| 18 | /* |
| 19 | * FILE: sha2.c |
| 20 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
| 21 | * |
| 22 | * Copyright (c) 2000-2001, Aaron D. Gifford |
| 23 | * All rights reserved. |
| 24 | * |
| 25 | * Redistribution and use in source and binary forms, with or without |
| 26 | * modification, are permitted provided that the following conditions |
| 27 | * are met: |
| 28 | * 1. Redistributions of source code must retain the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer. |
| 30 | * 2. Redistributions in binary form must reproduce the above copyright |
| 31 | * notice, this list of conditions and the following disclaimer in the |
| 32 | * documentation and/or other materials provided with the distribution. |
| 33 | * 3. Neither the name of the copyright holder nor the names of contributors |
| 34 | * may be used to endorse or promote products derived from this software |
| 35 | * without specific prior written permission. |
| 36 | * |
| 37 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
| 38 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 39 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 40 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
| 41 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 42 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 43 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 45 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 46 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 47 | * SUCH DAMAGE. |
| 48 | * |
| 49 | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
| 50 | */ |
| 51 | |
| 52 | |
| 53 | #ifndef FRONTEND |
| 54 | #include "postgres.h" |
| 55 | #else |
| 56 | #include "postgres_fe.h" |
| 57 | #endif |
| 58 | |
| 59 | #include <sys/param.h> |
| 60 | |
| 61 | #include "common/sha2.h" |
| 62 | |
| 63 | /* |
| 64 | * UNROLLED TRANSFORM LOOP NOTE: |
| 65 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
| 66 | * loop version for the hash transform rounds (defined using macros |
| 67 | * later in this file). Either define on the command line, for example: |
| 68 | * |
| 69 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
| 70 | * |
| 71 | * or define below: |
| 72 | * |
| 73 | * #define SHA2_UNROLL_TRANSFORM |
| 74 | * |
| 75 | */ |
| 76 | |
| 77 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
| 78 | #define PG_SHA256_SHORT_BLOCK_LENGTH (PG_SHA256_BLOCK_LENGTH - 8) |
| 79 | #define PG_SHA384_SHORT_BLOCK_LENGTH (PG_SHA384_BLOCK_LENGTH - 16) |
| 80 | #define PG_SHA512_SHORT_BLOCK_LENGTH (PG_SHA512_BLOCK_LENGTH - 16) |
| 81 | |
| 82 | /*** ENDIAN REVERSAL MACROS *******************************************/ |
| 83 | #ifndef WORDS_BIGENDIAN |
| 84 | #define REVERSE32(w,x) { \ |
| 85 | uint32 tmp = (w); \ |
| 86 | tmp = (tmp >> 16) | (tmp << 16); \ |
| 87 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
| 88 | } |
| 89 | #define REVERSE64(w,x) { \ |
| 90 | uint64 tmp = (w); \ |
| 91 | tmp = (tmp >> 32) | (tmp << 32); \ |
| 92 | tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ |
| 93 | ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ |
| 94 | (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ |
| 95 | ((tmp & 0x0000ffff0000ffffULL) << 16); \ |
| 96 | } |
| 97 | #endif /* not bigendian */ |
| 98 | |
| 99 | /* |
| 100 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
| 101 | * unsigned 128-bit integer (represented using a two-element array of |
| 102 | * 64-bit words): |
| 103 | */ |
| 104 | #define ADDINC128(w,n) { \ |
| 105 | (w)[0] += (uint64)(n); \ |
| 106 | if ((w)[0] < (n)) { \ |
| 107 | (w)[1]++; \ |
| 108 | } \ |
| 109 | } |
| 110 | |
| 111 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| 112 | /* |
| 113 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| 114 | * |
| 115 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| 116 | * S is a ROTATION) because the SHA-256/384/512 description document |
| 117 | * (see http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf) |
| 118 | * uses this same "backwards" definition. |
| 119 | */ |
| 120 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| 121 | #define R(b,x) ((x) >> (b)) |
| 122 | /* 32-bit Rotate-right (used in SHA-256): */ |
| 123 | #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| 124 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| 125 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| 126 | |
| 127 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| 128 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| 129 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 130 | |
| 131 | /* Four of six logical functions used in SHA-256: */ |
| 132 | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| 133 | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| 134 | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| 135 | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| 136 | |
| 137 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| 138 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| 139 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| 140 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| 141 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
| 142 | |
| 143 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
| 144 | /* NOTE: These should not be accessed directly from outside this |
| 145 | * library -- they are intended for private internal visibility/use |
| 146 | * only. |
| 147 | */ |
| 148 | static void SHA512_Last(pg_sha512_ctx *context); |
| 149 | static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data); |
| 150 | static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data); |
| 151 | |
| 152 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| 153 | /* Hash constant words K for SHA-256: */ |
| 154 | static const uint32 K256[64] = { |
| 155 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
| 156 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
| 157 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
| 158 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
| 159 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 160 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
| 161 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
| 162 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
| 163 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
| 164 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 165 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
| 166 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
| 167 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
| 168 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
| 169 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 170 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| 171 | }; |
| 172 | |
| 173 | /* Initial hash value H for SHA-224: */ |
| 174 | static const uint32 sha224_initial_hash_value[8] = { |
| 175 | 0xc1059ed8UL, |
| 176 | 0x367cd507UL, |
| 177 | 0x3070dd17UL, |
| 178 | 0xf70e5939UL, |
| 179 | 0xffc00b31UL, |
| 180 | 0x68581511UL, |
| 181 | 0x64f98fa7UL, |
| 182 | 0xbefa4fa4UL |
| 183 | }; |
| 184 | |
| 185 | /* Initial hash value H for SHA-256: */ |
| 186 | static const uint32 sha256_initial_hash_value[8] = { |
| 187 | 0x6a09e667UL, |
| 188 | 0xbb67ae85UL, |
| 189 | 0x3c6ef372UL, |
| 190 | 0xa54ff53aUL, |
| 191 | 0x510e527fUL, |
| 192 | 0x9b05688cUL, |
| 193 | 0x1f83d9abUL, |
| 194 | 0x5be0cd19UL |
| 195 | }; |
| 196 | |
| 197 | /* Hash constant words K for SHA-384 and SHA-512: */ |
| 198 | static const uint64 K512[80] = { |
| 199 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
| 200 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
| 201 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
| 202 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
| 203 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
| 204 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
| 205 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
| 206 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
| 207 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
| 208 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
| 209 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
| 210 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
| 211 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
| 212 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
| 213 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
| 214 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
| 215 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
| 216 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
| 217 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
| 218 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
| 219 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
| 220 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
| 221 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
| 222 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
| 223 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
| 224 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
| 225 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
| 226 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
| 227 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
| 228 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
| 229 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
| 230 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
| 231 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
| 232 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
| 233 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
| 234 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
| 235 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
| 236 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
| 237 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
| 238 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
| 239 | }; |
| 240 | |
| 241 | /* Initial hash value H for SHA-384 */ |
| 242 | static const uint64 sha384_initial_hash_value[8] = { |
| 243 | 0xcbbb9d5dc1059ed8ULL, |
| 244 | 0x629a292a367cd507ULL, |
| 245 | 0x9159015a3070dd17ULL, |
| 246 | 0x152fecd8f70e5939ULL, |
| 247 | 0x67332667ffc00b31ULL, |
| 248 | 0x8eb44a8768581511ULL, |
| 249 | 0xdb0c2e0d64f98fa7ULL, |
| 250 | 0x47b5481dbefa4fa4ULL |
| 251 | }; |
| 252 | |
| 253 | /* Initial hash value H for SHA-512 */ |
| 254 | static const uint64 sha512_initial_hash_value[8] = { |
| 255 | 0x6a09e667f3bcc908ULL, |
| 256 | 0xbb67ae8584caa73bULL, |
| 257 | 0x3c6ef372fe94f82bULL, |
| 258 | 0xa54ff53a5f1d36f1ULL, |
| 259 | 0x510e527fade682d1ULL, |
| 260 | 0x9b05688c2b3e6c1fULL, |
| 261 | 0x1f83d9abfb41bd6bULL, |
| 262 | 0x5be0cd19137e2179ULL |
| 263 | }; |
| 264 | |
| 265 | |
| 266 | /*** SHA-256: *********************************************************/ |
| 267 | void |
| 268 | pg_sha256_init(pg_sha256_ctx *context) |
| 269 | { |
| 270 | if (context == NULL) |
| 271 | return; |
| 272 | memcpy(context->state, sha256_initial_hash_value, PG_SHA256_DIGEST_LENGTH); |
| 273 | memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); |
| 274 | context->bitcount = 0; |
| 275 | } |
| 276 | |
| 277 | #ifdef SHA2_UNROLL_TRANSFORM |
| 278 | |
| 279 | /* Unrolled SHA-256 round macros: */ |
| 280 | |
| 281 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
| 282 | W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \ |
| 283 | ((uint32)data[1] << 16) | ((uint32)data[0] << 24); \ |
| 284 | data += 4; \ |
| 285 | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ |
| 286 | (d) += T1; \ |
| 287 | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
| 288 | j++; \ |
| 289 | } while(0) |
| 290 | |
| 291 | #define ROUND256(a,b,c,d,e,f,g,h) do { \ |
| 292 | s0 = W256[(j+1)&0x0f]; \ |
| 293 | s0 = sigma0_256(s0); \ |
| 294 | s1 = W256[(j+14)&0x0f]; \ |
| 295 | s1 = sigma1_256(s1); \ |
| 296 | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ |
| 297 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
| 298 | (d) += T1; \ |
| 299 | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
| 300 | j++; \ |
| 301 | } while(0) |
| 302 | |
| 303 | static void |
| 304 | SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) |
| 305 | { |
| 306 | uint32 a, |
| 307 | b, |
| 308 | c, |
| 309 | d, |
| 310 | e, |
| 311 | f, |
| 312 | g, |
| 313 | h, |
| 314 | s0, |
| 315 | s1; |
| 316 | uint32 T1, |
| 317 | *W256; |
| 318 | int j; |
| 319 | |
| 320 | W256 = (uint32 *) context->buffer; |
| 321 | |
| 322 | /* Initialize registers with the prev. intermediate value */ |
| 323 | a = context->state[0]; |
| 324 | b = context->state[1]; |
| 325 | c = context->state[2]; |
| 326 | d = context->state[3]; |
| 327 | e = context->state[4]; |
| 328 | f = context->state[5]; |
| 329 | g = context->state[6]; |
| 330 | h = context->state[7]; |
| 331 | |
| 332 | j = 0; |
| 333 | do |
| 334 | { |
| 335 | /* Rounds 0 to 15 (unrolled): */ |
| 336 | ROUND256_0_TO_15(a, b, c, d, e, f, g, h); |
| 337 | ROUND256_0_TO_15(h, a, b, c, d, e, f, g); |
| 338 | ROUND256_0_TO_15(g, h, a, b, c, d, e, f); |
| 339 | ROUND256_0_TO_15(f, g, h, a, b, c, d, e); |
| 340 | ROUND256_0_TO_15(e, f, g, h, a, b, c, d); |
| 341 | ROUND256_0_TO_15(d, e, f, g, h, a, b, c); |
| 342 | ROUND256_0_TO_15(c, d, e, f, g, h, a, b); |
| 343 | ROUND256_0_TO_15(b, c, d, e, f, g, h, a); |
| 344 | } while (j < 16); |
| 345 | |
| 346 | /* Now for the remaining rounds to 64: */ |
| 347 | do |
| 348 | { |
| 349 | ROUND256(a, b, c, d, e, f, g, h); |
| 350 | ROUND256(h, a, b, c, d, e, f, g); |
| 351 | ROUND256(g, h, a, b, c, d, e, f); |
| 352 | ROUND256(f, g, h, a, b, c, d, e); |
| 353 | ROUND256(e, f, g, h, a, b, c, d); |
| 354 | ROUND256(d, e, f, g, h, a, b, c); |
| 355 | ROUND256(c, d, e, f, g, h, a, b); |
| 356 | ROUND256(b, c, d, e, f, g, h, a); |
| 357 | } while (j < 64); |
| 358 | |
| 359 | /* Compute the current intermediate hash value */ |
| 360 | context->state[0] += a; |
| 361 | context->state[1] += b; |
| 362 | context->state[2] += c; |
| 363 | context->state[3] += d; |
| 364 | context->state[4] += e; |
| 365 | context->state[5] += f; |
| 366 | context->state[6] += g; |
| 367 | context->state[7] += h; |
| 368 | |
| 369 | /* Clean up */ |
| 370 | a = b = c = d = e = f = g = h = T1 = 0; |
| 371 | } |
| 372 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 373 | |
| 374 | static void |
| 375 | SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) |
| 376 | { |
| 377 | uint32 a, |
| 378 | b, |
| 379 | c, |
| 380 | d, |
| 381 | e, |
| 382 | f, |
| 383 | g, |
| 384 | h, |
| 385 | s0, |
| 386 | s1; |
| 387 | uint32 T1, |
| 388 | T2, |
| 389 | *W256; |
| 390 | int j; |
| 391 | |
| 392 | W256 = (uint32 *) context->buffer; |
| 393 | |
| 394 | /* Initialize registers with the prev. intermediate value */ |
| 395 | a = context->state[0]; |
| 396 | b = context->state[1]; |
| 397 | c = context->state[2]; |
| 398 | d = context->state[3]; |
| 399 | e = context->state[4]; |
| 400 | f = context->state[5]; |
| 401 | g = context->state[6]; |
| 402 | h = context->state[7]; |
| 403 | |
| 404 | j = 0; |
| 405 | do |
| 406 | { |
| 407 | W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) | |
| 408 | ((uint32) data[1] << 16) | ((uint32) data[0] << 24); |
| 409 | data += 4; |
| 410 | /* Apply the SHA-256 compression function to update a..h */ |
| 411 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
| 412 | T2 = Sigma0_256(a) + Maj(a, b, c); |
| 413 | h = g; |
| 414 | g = f; |
| 415 | f = e; |
| 416 | e = d + T1; |
| 417 | d = c; |
| 418 | c = b; |
| 419 | b = a; |
| 420 | a = T1 + T2; |
| 421 | |
| 422 | j++; |
| 423 | } while (j < 16); |
| 424 | |
| 425 | do |
| 426 | { |
| 427 | /* Part of the message block expansion: */ |
| 428 | s0 = W256[(j + 1) & 0x0f]; |
| 429 | s0 = sigma0_256(s0); |
| 430 | s1 = W256[(j + 14) & 0x0f]; |
| 431 | s1 = sigma1_256(s1); |
| 432 | |
| 433 | /* Apply the SHA-256 compression function to update a..h */ |
| 434 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
| 435 | (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); |
| 436 | T2 = Sigma0_256(a) + Maj(a, b, c); |
| 437 | h = g; |
| 438 | g = f; |
| 439 | f = e; |
| 440 | e = d + T1; |
| 441 | d = c; |
| 442 | c = b; |
| 443 | b = a; |
| 444 | a = T1 + T2; |
| 445 | |
| 446 | j++; |
| 447 | } while (j < 64); |
| 448 | |
| 449 | /* Compute the current intermediate hash value */ |
| 450 | context->state[0] += a; |
| 451 | context->state[1] += b; |
| 452 | context->state[2] += c; |
| 453 | context->state[3] += d; |
| 454 | context->state[4] += e; |
| 455 | context->state[5] += f; |
| 456 | context->state[6] += g; |
| 457 | context->state[7] += h; |
| 458 | |
| 459 | /* Clean up */ |
| 460 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 461 | } |
| 462 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 463 | |
| 464 | void |
| 465 | pg_sha256_update(pg_sha256_ctx *context, const uint8 *data, size_t len) |
| 466 | { |
| 467 | size_t freespace, |
| 468 | usedspace; |
| 469 | |
| 470 | /* Calling with no data is valid (we do nothing) */ |
| 471 | if (len == 0) |
| 472 | return; |
| 473 | |
| 474 | usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; |
| 475 | if (usedspace > 0) |
| 476 | { |
| 477 | /* Calculate how much free space is available in the buffer */ |
| 478 | freespace = PG_SHA256_BLOCK_LENGTH - usedspace; |
| 479 | |
| 480 | if (len >= freespace) |
| 481 | { |
| 482 | /* Fill the buffer completely and process it */ |
| 483 | memcpy(&context->buffer[usedspace], data, freespace); |
| 484 | context->bitcount += freespace << 3; |
| 485 | len -= freespace; |
| 486 | data += freespace; |
| 487 | SHA256_Transform(context, context->buffer); |
| 488 | } |
| 489 | else |
| 490 | { |
| 491 | /* The buffer is not yet full */ |
| 492 | memcpy(&context->buffer[usedspace], data, len); |
| 493 | context->bitcount += len << 3; |
| 494 | /* Clean up: */ |
| 495 | usedspace = freespace = 0; |
| 496 | return; |
| 497 | } |
| 498 | } |
| 499 | while (len >= PG_SHA256_BLOCK_LENGTH) |
| 500 | { |
| 501 | /* Process as many complete blocks as we can */ |
| 502 | SHA256_Transform(context, data); |
| 503 | context->bitcount += PG_SHA256_BLOCK_LENGTH << 3; |
| 504 | len -= PG_SHA256_BLOCK_LENGTH; |
| 505 | data += PG_SHA256_BLOCK_LENGTH; |
| 506 | } |
| 507 | if (len > 0) |
| 508 | { |
| 509 | /* There's left-overs, so save 'em */ |
| 510 | memcpy(context->buffer, data, len); |
| 511 | context->bitcount += len << 3; |
| 512 | } |
| 513 | /* Clean up: */ |
| 514 | usedspace = freespace = 0; |
| 515 | } |
| 516 | |
| 517 | static void |
| 518 | SHA256_Last(pg_sha256_ctx *context) |
| 519 | { |
| 520 | unsigned int usedspace; |
| 521 | |
| 522 | usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; |
| 523 | #ifndef WORDS_BIGENDIAN |
| 524 | /* Convert FROM host byte order */ |
| 525 | REVERSE64(context->bitcount, context->bitcount); |
| 526 | #endif |
| 527 | if (usedspace > 0) |
| 528 | { |
| 529 | /* Begin padding with a 1 bit: */ |
| 530 | context->buffer[usedspace++] = 0x80; |
| 531 | |
| 532 | if (usedspace <= PG_SHA256_SHORT_BLOCK_LENGTH) |
| 533 | { |
| 534 | /* Set-up for the last transform: */ |
| 535 | memset(&context->buffer[usedspace], 0, PG_SHA256_SHORT_BLOCK_LENGTH - usedspace); |
| 536 | } |
| 537 | else |
| 538 | { |
| 539 | if (usedspace < PG_SHA256_BLOCK_LENGTH) |
| 540 | { |
| 541 | memset(&context->buffer[usedspace], 0, PG_SHA256_BLOCK_LENGTH - usedspace); |
| 542 | } |
| 543 | /* Do second-to-last transform: */ |
| 544 | SHA256_Transform(context, context->buffer); |
| 545 | |
| 546 | /* And set-up for the last transform: */ |
| 547 | memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); |
| 548 | } |
| 549 | } |
| 550 | else |
| 551 | { |
| 552 | /* Set-up for the last transform: */ |
| 553 | memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); |
| 554 | |
| 555 | /* Begin padding with a 1 bit: */ |
| 556 | *context->buffer = 0x80; |
| 557 | } |
| 558 | /* Set the bit count: */ |
| 559 | *(uint64 *) &context->buffer[PG_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; |
| 560 | |
| 561 | /* Final transform: */ |
| 562 | SHA256_Transform(context, context->buffer); |
| 563 | } |
| 564 | |
| 565 | void |
| 566 | pg_sha256_final(pg_sha256_ctx *context, uint8 *digest) |
| 567 | { |
| 568 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 569 | if (digest != NULL) |
| 570 | { |
| 571 | SHA256_Last(context); |
| 572 | |
| 573 | #ifndef WORDS_BIGENDIAN |
| 574 | { |
| 575 | /* Convert TO host byte order */ |
| 576 | int j; |
| 577 | |
| 578 | for (j = 0; j < 8; j++) |
| 579 | { |
| 580 | REVERSE32(context->state[j], context->state[j]); |
| 581 | } |
| 582 | } |
| 583 | #endif |
| 584 | memcpy(digest, context->state, PG_SHA256_DIGEST_LENGTH); |
| 585 | } |
| 586 | |
| 587 | /* Clean up state data: */ |
| 588 | memset(context, 0, sizeof(pg_sha256_ctx)); |
| 589 | } |
| 590 | |
| 591 | |
| 592 | /*** SHA-512: *********************************************************/ |
| 593 | void |
| 594 | pg_sha512_init(pg_sha512_ctx *context) |
| 595 | { |
| 596 | if (context == NULL) |
| 597 | return; |
| 598 | memcpy(context->state, sha512_initial_hash_value, PG_SHA512_DIGEST_LENGTH); |
| 599 | memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH); |
| 600 | context->bitcount[0] = context->bitcount[1] = 0; |
| 601 | } |
| 602 | |
| 603 | #ifdef SHA2_UNROLL_TRANSFORM |
| 604 | |
| 605 | /* Unrolled SHA-512 round macros: */ |
| 606 | |
| 607 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
| 608 | W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \ |
| 609 | ((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \ |
| 610 | ((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \ |
| 611 | ((uint64)data[1] << 48) | ((uint64)data[0] << 56); \ |
| 612 | data += 8; \ |
| 613 | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ |
| 614 | (d) += T1; \ |
| 615 | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
| 616 | j++; \ |
| 617 | } while(0) |
| 618 | |
| 619 | |
| 620 | #define ROUND512(a,b,c,d,e,f,g,h) do { \ |
| 621 | s0 = W512[(j+1)&0x0f]; \ |
| 622 | s0 = sigma0_512(s0); \ |
| 623 | s1 = W512[(j+14)&0x0f]; \ |
| 624 | s1 = sigma1_512(s1); \ |
| 625 | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ |
| 626 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
| 627 | (d) += T1; \ |
| 628 | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
| 629 | j++; \ |
| 630 | } while(0) |
| 631 | |
| 632 | static void |
| 633 | SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) |
| 634 | { |
| 635 | uint64 a, |
| 636 | b, |
| 637 | c, |
| 638 | d, |
| 639 | e, |
| 640 | f, |
| 641 | g, |
| 642 | h, |
| 643 | s0, |
| 644 | s1; |
| 645 | uint64 T1, |
| 646 | *W512 = (uint64 *) context->buffer; |
| 647 | int j; |
| 648 | |
| 649 | /* Initialize registers with the prev. intermediate value */ |
| 650 | a = context->state[0]; |
| 651 | b = context->state[1]; |
| 652 | c = context->state[2]; |
| 653 | d = context->state[3]; |
| 654 | e = context->state[4]; |
| 655 | f = context->state[5]; |
| 656 | g = context->state[6]; |
| 657 | h = context->state[7]; |
| 658 | |
| 659 | j = 0; |
| 660 | do |
| 661 | { |
| 662 | ROUND512_0_TO_15(a, b, c, d, e, f, g, h); |
| 663 | ROUND512_0_TO_15(h, a, b, c, d, e, f, g); |
| 664 | ROUND512_0_TO_15(g, h, a, b, c, d, e, f); |
| 665 | ROUND512_0_TO_15(f, g, h, a, b, c, d, e); |
| 666 | ROUND512_0_TO_15(e, f, g, h, a, b, c, d); |
| 667 | ROUND512_0_TO_15(d, e, f, g, h, a, b, c); |
| 668 | ROUND512_0_TO_15(c, d, e, f, g, h, a, b); |
| 669 | ROUND512_0_TO_15(b, c, d, e, f, g, h, a); |
| 670 | } while (j < 16); |
| 671 | |
| 672 | /* Now for the remaining rounds up to 79: */ |
| 673 | do |
| 674 | { |
| 675 | ROUND512(a, b, c, d, e, f, g, h); |
| 676 | ROUND512(h, a, b, c, d, e, f, g); |
| 677 | ROUND512(g, h, a, b, c, d, e, f); |
| 678 | ROUND512(f, g, h, a, b, c, d, e); |
| 679 | ROUND512(e, f, g, h, a, b, c, d); |
| 680 | ROUND512(d, e, f, g, h, a, b, c); |
| 681 | ROUND512(c, d, e, f, g, h, a, b); |
| 682 | ROUND512(b, c, d, e, f, g, h, a); |
| 683 | } while (j < 80); |
| 684 | |
| 685 | /* Compute the current intermediate hash value */ |
| 686 | context->state[0] += a; |
| 687 | context->state[1] += b; |
| 688 | context->state[2] += c; |
| 689 | context->state[3] += d; |
| 690 | context->state[4] += e; |
| 691 | context->state[5] += f; |
| 692 | context->state[6] += g; |
| 693 | context->state[7] += h; |
| 694 | |
| 695 | /* Clean up */ |
| 696 | a = b = c = d = e = f = g = h = T1 = 0; |
| 697 | } |
| 698 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 699 | |
| 700 | static void |
| 701 | SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) |
| 702 | { |
| 703 | uint64 a, |
| 704 | b, |
| 705 | c, |
| 706 | d, |
| 707 | e, |
| 708 | f, |
| 709 | g, |
| 710 | h, |
| 711 | s0, |
| 712 | s1; |
| 713 | uint64 T1, |
| 714 | T2, |
| 715 | *W512 = (uint64 *) context->buffer; |
| 716 | int j; |
| 717 | |
| 718 | /* Initialize registers with the prev. intermediate value */ |
| 719 | a = context->state[0]; |
| 720 | b = context->state[1]; |
| 721 | c = context->state[2]; |
| 722 | d = context->state[3]; |
| 723 | e = context->state[4]; |
| 724 | f = context->state[5]; |
| 725 | g = context->state[6]; |
| 726 | h = context->state[7]; |
| 727 | |
| 728 | j = 0; |
| 729 | do |
| 730 | { |
| 731 | W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) | |
| 732 | ((uint64) data[5] << 16) | ((uint64) data[4] << 24) | |
| 733 | ((uint64) data[3] << 32) | ((uint64) data[2] << 40) | |
| 734 | ((uint64) data[1] << 48) | ((uint64) data[0] << 56); |
| 735 | data += 8; |
| 736 | /* Apply the SHA-512 compression function to update a..h */ |
| 737 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
| 738 | T2 = Sigma0_512(a) + Maj(a, b, c); |
| 739 | h = g; |
| 740 | g = f; |
| 741 | f = e; |
| 742 | e = d + T1; |
| 743 | d = c; |
| 744 | c = b; |
| 745 | b = a; |
| 746 | a = T1 + T2; |
| 747 | |
| 748 | j++; |
| 749 | } while (j < 16); |
| 750 | |
| 751 | do |
| 752 | { |
| 753 | /* Part of the message block expansion: */ |
| 754 | s0 = W512[(j + 1) & 0x0f]; |
| 755 | s0 = sigma0_512(s0); |
| 756 | s1 = W512[(j + 14) & 0x0f]; |
| 757 | s1 = sigma1_512(s1); |
| 758 | |
| 759 | /* Apply the SHA-512 compression function to update a..h */ |
| 760 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
| 761 | (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); |
| 762 | T2 = Sigma0_512(a) + Maj(a, b, c); |
| 763 | h = g; |
| 764 | g = f; |
| 765 | f = e; |
| 766 | e = d + T1; |
| 767 | d = c; |
| 768 | c = b; |
| 769 | b = a; |
| 770 | a = T1 + T2; |
| 771 | |
| 772 | j++; |
| 773 | } while (j < 80); |
| 774 | |
| 775 | /* Compute the current intermediate hash value */ |
| 776 | context->state[0] += a; |
| 777 | context->state[1] += b; |
| 778 | context->state[2] += c; |
| 779 | context->state[3] += d; |
| 780 | context->state[4] += e; |
| 781 | context->state[5] += f; |
| 782 | context->state[6] += g; |
| 783 | context->state[7] += h; |
| 784 | |
| 785 | /* Clean up */ |
| 786 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 787 | } |
| 788 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 789 | |
| 790 | void |
| 791 | pg_sha512_update(pg_sha512_ctx *context, const uint8 *data, size_t len) |
| 792 | { |
| 793 | size_t freespace, |
| 794 | usedspace; |
| 795 | |
| 796 | /* Calling with no data is valid (we do nothing) */ |
| 797 | if (len == 0) |
| 798 | return; |
| 799 | |
| 800 | usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; |
| 801 | if (usedspace > 0) |
| 802 | { |
| 803 | /* Calculate how much free space is available in the buffer */ |
| 804 | freespace = PG_SHA512_BLOCK_LENGTH - usedspace; |
| 805 | |
| 806 | if (len >= freespace) |
| 807 | { |
| 808 | /* Fill the buffer completely and process it */ |
| 809 | memcpy(&context->buffer[usedspace], data, freespace); |
| 810 | ADDINC128(context->bitcount, freespace << 3); |
| 811 | len -= freespace; |
| 812 | data += freespace; |
| 813 | SHA512_Transform(context, context->buffer); |
| 814 | } |
| 815 | else |
| 816 | { |
| 817 | /* The buffer is not yet full */ |
| 818 | memcpy(&context->buffer[usedspace], data, len); |
| 819 | ADDINC128(context->bitcount, len << 3); |
| 820 | /* Clean up: */ |
| 821 | usedspace = freespace = 0; |
| 822 | return; |
| 823 | } |
| 824 | } |
| 825 | while (len >= PG_SHA512_BLOCK_LENGTH) |
| 826 | { |
| 827 | /* Process as many complete blocks as we can */ |
| 828 | SHA512_Transform(context, data); |
| 829 | ADDINC128(context->bitcount, PG_SHA512_BLOCK_LENGTH << 3); |
| 830 | len -= PG_SHA512_BLOCK_LENGTH; |
| 831 | data += PG_SHA512_BLOCK_LENGTH; |
| 832 | } |
| 833 | if (len > 0) |
| 834 | { |
| 835 | /* There's left-overs, so save 'em */ |
| 836 | memcpy(context->buffer, data, len); |
| 837 | ADDINC128(context->bitcount, len << 3); |
| 838 | } |
| 839 | /* Clean up: */ |
| 840 | usedspace = freespace = 0; |
| 841 | } |
| 842 | |
| 843 | static void |
| 844 | SHA512_Last(pg_sha512_ctx *context) |
| 845 | { |
| 846 | unsigned int usedspace; |
| 847 | |
| 848 | usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; |
| 849 | #ifndef WORDS_BIGENDIAN |
| 850 | /* Convert FROM host byte order */ |
| 851 | REVERSE64(context->bitcount[0], context->bitcount[0]); |
| 852 | REVERSE64(context->bitcount[1], context->bitcount[1]); |
| 853 | #endif |
| 854 | if (usedspace > 0) |
| 855 | { |
| 856 | /* Begin padding with a 1 bit: */ |
| 857 | context->buffer[usedspace++] = 0x80; |
| 858 | |
| 859 | if (usedspace <= PG_SHA512_SHORT_BLOCK_LENGTH) |
| 860 | { |
| 861 | /* Set-up for the last transform: */ |
| 862 | memset(&context->buffer[usedspace], 0, PG_SHA512_SHORT_BLOCK_LENGTH - usedspace); |
| 863 | } |
| 864 | else |
| 865 | { |
| 866 | if (usedspace < PG_SHA512_BLOCK_LENGTH) |
| 867 | { |
| 868 | memset(&context->buffer[usedspace], 0, PG_SHA512_BLOCK_LENGTH - usedspace); |
| 869 | } |
| 870 | /* Do second-to-last transform: */ |
| 871 | SHA512_Transform(context, context->buffer); |
| 872 | |
| 873 | /* And set-up for the last transform: */ |
| 874 | memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH - 2); |
| 875 | } |
| 876 | } |
| 877 | else |
| 878 | { |
| 879 | /* Prepare for final transform: */ |
| 880 | memset(context->buffer, 0, PG_SHA512_SHORT_BLOCK_LENGTH); |
| 881 | |
| 882 | /* Begin padding with a 1 bit: */ |
| 883 | *context->buffer = 0x80; |
| 884 | } |
| 885 | /* Store the length of input data (in bits): */ |
| 886 | *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; |
| 887 | *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; |
| 888 | |
| 889 | /* Final transform: */ |
| 890 | SHA512_Transform(context, context->buffer); |
| 891 | } |
| 892 | |
| 893 | void |
| 894 | pg_sha512_final(pg_sha512_ctx *context, uint8 *digest) |
| 895 | { |
| 896 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 897 | if (digest != NULL) |
| 898 | { |
| 899 | SHA512_Last(context); |
| 900 | |
| 901 | /* Save the hash data for output: */ |
| 902 | #ifndef WORDS_BIGENDIAN |
| 903 | { |
| 904 | /* Convert TO host byte order */ |
| 905 | int j; |
| 906 | |
| 907 | for (j = 0; j < 8; j++) |
| 908 | { |
| 909 | REVERSE64(context->state[j], context->state[j]); |
| 910 | } |
| 911 | } |
| 912 | #endif |
| 913 | memcpy(digest, context->state, PG_SHA512_DIGEST_LENGTH); |
| 914 | } |
| 915 | |
| 916 | /* Zero out state data */ |
| 917 | memset(context, 0, sizeof(pg_sha512_ctx)); |
| 918 | } |
| 919 | |
| 920 | |
| 921 | /*** SHA-384: *********************************************************/ |
| 922 | void |
| 923 | pg_sha384_init(pg_sha384_ctx *context) |
| 924 | { |
| 925 | if (context == NULL) |
| 926 | return; |
| 927 | memcpy(context->state, sha384_initial_hash_value, PG_SHA512_DIGEST_LENGTH); |
| 928 | memset(context->buffer, 0, PG_SHA384_BLOCK_LENGTH); |
| 929 | context->bitcount[0] = context->bitcount[1] = 0; |
| 930 | } |
| 931 | |
| 932 | void |
| 933 | pg_sha384_update(pg_sha384_ctx *context, const uint8 *data, size_t len) |
| 934 | { |
| 935 | pg_sha512_update((pg_sha512_ctx *) context, data, len); |
| 936 | } |
| 937 | |
| 938 | void |
| 939 | pg_sha384_final(pg_sha384_ctx *context, uint8 *digest) |
| 940 | { |
| 941 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 942 | if (digest != NULL) |
| 943 | { |
| 944 | SHA512_Last((pg_sha512_ctx *) context); |
| 945 | |
| 946 | /* Save the hash data for output: */ |
| 947 | #ifndef WORDS_BIGENDIAN |
| 948 | { |
| 949 | /* Convert TO host byte order */ |
| 950 | int j; |
| 951 | |
| 952 | for (j = 0; j < 6; j++) |
| 953 | { |
| 954 | REVERSE64(context->state[j], context->state[j]); |
| 955 | } |
| 956 | } |
| 957 | #endif |
| 958 | memcpy(digest, context->state, PG_SHA384_DIGEST_LENGTH); |
| 959 | } |
| 960 | |
| 961 | /* Zero out state data */ |
| 962 | memset(context, 0, sizeof(pg_sha384_ctx)); |
| 963 | } |
| 964 | |
| 965 | /*** SHA-224: *********************************************************/ |
| 966 | void |
| 967 | pg_sha224_init(pg_sha224_ctx *context) |
| 968 | { |
| 969 | if (context == NULL) |
| 970 | return; |
| 971 | memcpy(context->state, sha224_initial_hash_value, PG_SHA256_DIGEST_LENGTH); |
| 972 | memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); |
| 973 | context->bitcount = 0; |
| 974 | } |
| 975 | |
| 976 | void |
| 977 | pg_sha224_update(pg_sha224_ctx *context, const uint8 *data, size_t len) |
| 978 | { |
| 979 | pg_sha256_update((pg_sha256_ctx *) context, data, len); |
| 980 | } |
| 981 | |
| 982 | void |
| 983 | pg_sha224_final(pg_sha224_ctx *context, uint8 *digest) |
| 984 | { |
| 985 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 986 | if (digest != NULL) |
| 987 | { |
| 988 | SHA256_Last(context); |
| 989 | |
| 990 | #ifndef WORDS_BIGENDIAN |
| 991 | { |
| 992 | /* Convert TO host byte order */ |
| 993 | int j; |
| 994 | |
| 995 | for (j = 0; j < 8; j++) |
| 996 | { |
| 997 | REVERSE32(context->state[j], context->state[j]); |
| 998 | } |
| 999 | } |
| 1000 | #endif |
| 1001 | memcpy(digest, context->state, PG_SHA224_DIGEST_LENGTH); |
| 1002 | } |
| 1003 | |
| 1004 | /* Clean up state data: */ |
| 1005 | memset(context, 0, sizeof(pg_sha224_ctx)); |
| 1006 | } |
| 1007 | |