| 1 | /*------------------------------------------------------------------------- | 
| 2 |  * | 
| 3 |  * htup_details.h | 
| 4 |  *	  POSTGRES heap tuple header definitions. | 
| 5 |  * | 
| 6 |  * | 
| 7 |  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group | 
| 8 |  * Portions Copyright (c) 1994, Regents of the University of California | 
| 9 |  * | 
| 10 |  * src/include/access/htup_details.h | 
| 11 |  * | 
| 12 |  *------------------------------------------------------------------------- | 
| 13 |  */ | 
| 14 | #ifndef HTUP_DETAILS_H | 
| 15 | #define HTUP_DETAILS_H | 
| 16 |  | 
| 17 | #include "access/htup.h" | 
| 18 | #include "access/tupdesc.h" | 
| 19 | #include "access/tupmacs.h" | 
| 20 | #include "access/transam.h" | 
| 21 | #include "storage/bufpage.h" | 
| 22 |  | 
| 23 | /* | 
| 24 |  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple. | 
| 25 |  * The key limit on this value is that the size of the fixed overhead for | 
| 26 |  * a tuple, plus the size of the null-values bitmap (at 1 bit per column), | 
| 27 |  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most | 
| 28 |  * machines the upper limit without making t_hoff wider would be a little | 
| 29 |  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber | 
| 30 |  * so that alterations in HeapTupleHeaderData layout won't change the | 
| 31 |  * supported max number of columns. | 
| 32 |  */ | 
| 33 | #define MaxTupleAttributeNumber 1664	/* 8 * 208 */ | 
| 34 |  | 
| 35 | /* | 
| 36 |  * MaxHeapAttributeNumber limits the number of (user) columns in a table. | 
| 37 |  * This should be somewhat less than MaxTupleAttributeNumber.  It must be | 
| 38 |  * at least one less, else we will fail to do UPDATEs on a maximal-width | 
| 39 |  * table (because UPDATE has to form working tuples that include CTID). | 
| 40 |  * In practice we want some additional daylight so that we can gracefully | 
| 41 |  * support operations that add hidden "resjunk" columns, for example | 
| 42 |  * SELECT * FROM wide_table ORDER BY foo, bar, baz. | 
| 43 |  * In any case, depending on column data types you will likely be running | 
| 44 |  * into the disk-block-based limit on overall tuple size if you have more | 
| 45 |  * than a thousand or so columns.  TOAST won't help. | 
| 46 |  */ | 
| 47 | #define MaxHeapAttributeNumber	1600	/* 8 * 200 */ | 
| 48 |  | 
| 49 | /* | 
| 50 |  * Heap tuple header.  To avoid wasting space, the fields should be | 
| 51 |  * laid out in such a way as to avoid structure padding. | 
| 52 |  * | 
| 53 |  * Datums of composite types (row types) share the same general structure | 
| 54 |  * as on-disk tuples, so that the same routines can be used to build and | 
| 55 |  * examine them.  However the requirements are slightly different: a Datum | 
| 56 |  * does not need any transaction visibility information, and it does need | 
| 57 |  * a length word and some embedded type information.  We can achieve this | 
| 58 |  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple | 
| 59 |  * with the fields needed in the Datum case.  Typically, all tuples built | 
| 60 |  * in-memory will be initialized with the Datum fields; but when a tuple is | 
| 61 |  * about to be inserted in a table, the transaction fields will be filled, | 
| 62 |  * overwriting the datum fields. | 
| 63 |  * | 
| 64 |  * The overall structure of a heap tuple looks like: | 
| 65 |  *			fixed fields (HeapTupleHeaderData struct) | 
| 66 |  *			nulls bitmap (if HEAP_HASNULL is set in t_infomask) | 
| 67 |  *			alignment padding (as needed to make user data MAXALIGN'd) | 
| 68 |  *			object ID (if HEAP_HASOID_OLD is set in t_infomask, not created | 
| 69 |  *          anymore) | 
| 70 |  *			user data fields | 
| 71 |  * | 
| 72 |  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three | 
| 73 |  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax | 
| 74 |  * and Xvac share a field.  This works because we know that Cmin and Cmax | 
| 75 |  * are only interesting for the lifetime of the inserting and deleting | 
| 76 |  * transaction respectively.  If a tuple is inserted and deleted in the same | 
| 77 |  * transaction, we store a "combo" command id that can be mapped to the real | 
| 78 |  * cmin and cmax, but only by use of local state within the originating | 
| 79 |  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by | 
| 80 |  * old-style VACUUM FULL, which does not have any command sub-structure and so | 
| 81 |  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM | 
| 82 |  * FULL never try to move a tuple whose Cmin or Cmax is still interesting, | 
| 83 |  * ie, an insert-in-progress or delete-in-progress tuple.) | 
| 84 |  * | 
| 85 |  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid | 
| 86 |  * is initialized with its own TID (location).  If the tuple is ever updated, | 
| 87 |  * its t_ctid is changed to point to the replacement version of the tuple.  Or | 
| 88 |  * if the tuple is moved from one partition to another, due to an update of | 
| 89 |  * the partition key, t_ctid is set to a special value to indicate that | 
| 90 |  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version | 
| 91 |  * of its row iff XMAX is invalid or | 
| 92 |  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is | 
| 93 |  * either locked or deleted).  One can follow the chain of t_ctid links | 
| 94 |  * to find the newest version of the row, unless it was moved to a different | 
| 95 |  * partition.  Beware however that VACUUM might | 
| 96 |  * erase the pointed-to (newer) tuple before erasing the pointing (older) | 
| 97 |  * tuple.  Hence, when following a t_ctid link, it is necessary to check | 
| 98 |  * to see if the referenced slot is empty or contains an unrelated tuple. | 
| 99 |  * Check that the referenced tuple has XMIN equal to the referencing tuple's | 
| 100 |  * XMAX to verify that it is actually the descendant version and not an | 
| 101 |  * unrelated tuple stored into a slot recently freed by VACUUM.  If either | 
| 102 |  * check fails, one may assume that there is no live descendant version. | 
| 103 |  * | 
| 104 |  * t_ctid is sometimes used to store a speculative insertion token, instead | 
| 105 |  * of a real TID.  A speculative token is set on a tuple that's being | 
| 106 |  * inserted, until the inserter is sure that it wants to go ahead with the | 
| 107 |  * insertion.  Hence a token should only be seen on a tuple with an XMAX | 
| 108 |  * that's still in-progress, or invalid/aborted.  The token is replaced with | 
| 109 |  * the tuple's real TID when the insertion is confirmed.  One should never | 
| 110 |  * see a speculative insertion token while following a chain of t_ctid links, | 
| 111 |  * because they are not used on updates, only insertions. | 
| 112 |  * | 
| 113 |  * Following the fixed header fields, the nulls bitmap is stored (beginning | 
| 114 |  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there | 
| 115 |  * are no nulls in the tuple.  If an OID field is present (as indicated by | 
| 116 |  * t_infomask), then it is stored just before the user data, which begins at | 
| 117 |  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of | 
| 118 |  * MAXALIGN. | 
| 119 |  */ | 
| 120 |  | 
| 121 | typedef struct HeapTupleFields | 
| 122 | { | 
| 123 | 	TransactionId t_xmin;		/* inserting xact ID */ | 
| 124 | 	TransactionId t_xmax;		/* deleting or locking xact ID */ | 
| 125 |  | 
| 126 | 	union | 
| 127 | 	{ | 
| 128 | 		CommandId	t_cid;		/* inserting or deleting command ID, or both */ | 
| 129 | 		TransactionId t_xvac;	/* old-style VACUUM FULL xact ID */ | 
| 130 | 	}			t_field3; | 
| 131 | } HeapTupleFields; | 
| 132 |  | 
| 133 | typedef struct DatumTupleFields | 
| 134 | { | 
| 135 | 	int32		datum_len_;		/* varlena header (do not touch directly!) */ | 
| 136 |  | 
| 137 | 	int32		datum_typmod;	/* -1, or identifier of a record type */ | 
| 138 |  | 
| 139 | 	Oid			datum_typeid;	/* composite type OID, or RECORDOID */ | 
| 140 |  | 
| 141 | 	/* | 
| 142 | 	 * datum_typeid cannot be a domain over composite, only plain composite, | 
| 143 | 	 * even if the datum is meant as a value of a domain-over-composite type. | 
| 144 | 	 * This is in line with the general principle that CoerceToDomain does not | 
| 145 | 	 * change the physical representation of the base type value. | 
| 146 | 	 * | 
| 147 | 	 * Note: field ordering is chosen with thought that Oid might someday | 
| 148 | 	 * widen to 64 bits. | 
| 149 | 	 */ | 
| 150 | } DatumTupleFields; | 
| 151 |  | 
| 152 | struct  | 
| 153 | { | 
| 154 | 	union | 
| 155 | 	{ | 
| 156 | 		HeapTupleFields ; | 
| 157 | 		DatumTupleFields ; | 
| 158 | 	}			; | 
| 159 |  | 
| 160 | 	ItemPointerData ;		/* current TID of this or newer tuple (or a | 
| 161 | 								 * speculative insertion token) */ | 
| 162 |  | 
| 163 | 	/* Fields below here must match MinimalTupleData! */ | 
| 164 |  | 
| 165 | #define  2 | 
| 166 | 	uint16		;	/* number of attributes + various flags */ | 
| 167 |  | 
| 168 | #define  3 | 
| 169 | 	uint16		;		/* various flag bits, see below */ | 
| 170 |  | 
| 171 | #define  4 | 
| 172 | 	uint8		;			/* sizeof header incl. bitmap, padding */ | 
| 173 |  | 
| 174 | 	/* ^ - 23 bytes - ^ */ | 
| 175 |  | 
| 176 | #define  5 | 
| 177 | 	bits8		[FLEXIBLE_ARRAY_MEMBER];	/* bitmap of NULLs */ | 
| 178 |  | 
| 179 | 	/* MORE DATA FOLLOWS AT END OF STRUCT */ | 
| 180 | }; | 
| 181 |  | 
| 182 | /* typedef appears in htup.h */ | 
| 183 |  | 
| 184 | #define  offsetof(HeapTupleHeaderData, t_bits) | 
| 185 |  | 
| 186 | /* | 
| 187 |  * information stored in t_infomask: | 
| 188 |  */ | 
| 189 | #define HEAP_HASNULL			0x0001	/* has null attribute(s) */ | 
| 190 | #define HEAP_HASVARWIDTH		0x0002	/* has variable-width attribute(s) */ | 
| 191 | #define HEAP_HASEXTERNAL		0x0004	/* has external stored attribute(s) */ | 
| 192 | #define HEAP_HASOID_OLD			0x0008	/* has an object-id field */ | 
| 193 | #define HEAP_XMAX_KEYSHR_LOCK	0x0010	/* xmax is a key-shared locker */ | 
| 194 | #define HEAP_COMBOCID			0x0020	/* t_cid is a combo cid */ | 
| 195 | #define HEAP_XMAX_EXCL_LOCK		0x0040	/* xmax is exclusive locker */ | 
| 196 | #define HEAP_XMAX_LOCK_ONLY		0x0080	/* xmax, if valid, is only a locker */ | 
| 197 |  | 
| 198 |  /* xmax is a shared locker */ | 
| 199 | #define HEAP_XMAX_SHR_LOCK	(HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK) | 
| 200 |  | 
| 201 | #define HEAP_LOCK_MASK	(HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \ | 
| 202 | 						 HEAP_XMAX_KEYSHR_LOCK) | 
| 203 | #define HEAP_XMIN_COMMITTED		0x0100	/* t_xmin committed */ | 
| 204 | #define HEAP_XMIN_INVALID		0x0200	/* t_xmin invalid/aborted */ | 
| 205 | #define HEAP_XMIN_FROZEN		(HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID) | 
| 206 | #define HEAP_XMAX_COMMITTED		0x0400	/* t_xmax committed */ | 
| 207 | #define HEAP_XMAX_INVALID		0x0800	/* t_xmax invalid/aborted */ | 
| 208 | #define HEAP_XMAX_IS_MULTI		0x1000	/* t_xmax is a MultiXactId */ | 
| 209 | #define HEAP_UPDATED			0x2000	/* this is UPDATEd version of row */ | 
| 210 | #define HEAP_MOVED_OFF			0x4000	/* moved to another place by pre-9.0 | 
| 211 | 										 * VACUUM FULL; kept for binary | 
| 212 | 										 * upgrade support */ | 
| 213 | #define HEAP_MOVED_IN			0x8000	/* moved from another place by pre-9.0 | 
| 214 | 										 * VACUUM FULL; kept for binary | 
| 215 | 										 * upgrade support */ | 
| 216 | #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN) | 
| 217 |  | 
| 218 | #define HEAP_XACT_MASK			0xFFF0	/* visibility-related bits */ | 
| 219 |  | 
| 220 | /* | 
| 221 |  * A tuple is only locked (i.e. not updated by its Xmax) if the | 
| 222 |  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is | 
| 223 |  * not a multi and the EXCL_LOCK bit is set. | 
| 224 |  * | 
| 225 |  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible | 
| 226 |  * aborted updater transaction. | 
| 227 |  * | 
| 228 |  * Beware of multiple evaluations of the argument. | 
| 229 |  */ | 
| 230 | #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \ | 
| 231 | 	(((infomask) & HEAP_XMAX_LOCK_ONLY) || \ | 
| 232 | 	 (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK)) | 
| 233 |  | 
| 234 | /* | 
| 235 |  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of | 
| 236 |  * XMAX_EXCL_LOCK and XMAX_KEYSHR_LOCK must come from a tuple that was | 
| 237 |  * share-locked in 9.2 or earlier and then pg_upgrade'd. | 
| 238 |  * | 
| 239 |  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple | 
| 240 |  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a | 
| 241 |  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and | 
| 242 |  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and | 
| 243 |  * up, so if we see that combination we know for certain that the tuple was | 
| 244 |  * locked in an earlier release; since all such lockers are gone (they cannot | 
| 245 |  * survive through pg_upgrade), such tuples can safely be considered not | 
| 246 |  * locked. | 
| 247 |  * | 
| 248 |  * We must not resolve such multixacts locally, because the result would be | 
| 249 |  * bogus, regardless of where they stand with respect to the current valid | 
| 250 |  * multixact range. | 
| 251 |  */ | 
| 252 | #define HEAP_LOCKED_UPGRADED(infomask) \ | 
| 253 | ( \ | 
| 254 | 	 ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \ | 
| 255 | 	 ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \ | 
| 256 | 	 (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \ | 
| 257 | ) | 
| 258 |  | 
| 259 | /* | 
| 260 |  * Use these to test whether a particular lock is applied to a tuple | 
| 261 |  */ | 
| 262 | #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \ | 
| 263 | 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK) | 
| 264 | #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \ | 
| 265 | 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK) | 
| 266 | #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \ | 
| 267 | 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK) | 
| 268 |  | 
| 269 | /* turn these all off when Xmax is to change */ | 
| 270 | #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \ | 
| 271 | 						HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY) | 
| 272 |  | 
| 273 | /* | 
| 274 |  * information stored in t_infomask2: | 
| 275 |  */ | 
| 276 | #define HEAP_NATTS_MASK			0x07FF	/* 11 bits for number of attributes */ | 
| 277 | /* bits 0x1800 are available */ | 
| 278 | #define HEAP_KEYS_UPDATED		0x2000	/* tuple was updated and key cols | 
| 279 | 										 * modified, or tuple deleted */ | 
| 280 | #define HEAP_HOT_UPDATED		0x4000	/* tuple was HOT-updated */ | 
| 281 | #define HEAP_ONLY_TUPLE			0x8000	/* this is heap-only tuple */ | 
| 282 |  | 
| 283 | #define HEAP2_XACT_MASK			0xE000	/* visibility-related bits */ | 
| 284 |  | 
| 285 | /* | 
| 286 |  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is | 
| 287 |  * only used in tuples that are in the hash table, and those don't need | 
| 288 |  * any visibility information, so we can overlay it on a visibility flag | 
| 289 |  * instead of using up a dedicated bit. | 
| 290 |  */ | 
| 291 | #define HEAP_TUPLE_HAS_MATCH	HEAP_ONLY_TUPLE /* tuple has a join match */ | 
| 292 |  | 
| 293 | /* | 
| 294 |  * HeapTupleHeader accessor macros | 
| 295 |  * | 
| 296 |  * Note: beware of multiple evaluations of "tup" argument.  But the Set | 
| 297 |  * macros evaluate their other argument only once. | 
| 298 |  */ | 
| 299 |  | 
| 300 | /* | 
| 301 |  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid | 
| 302 |  * originally used to insert the tuple.  However, the tuple might actually | 
| 303 |  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin | 
| 304 |  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed | 
| 305 |  * the xmin to FrozenTransactionId, and that value may still be encountered | 
| 306 |  * on disk. | 
| 307 |  */ | 
| 308 | #define (tup) \ | 
| 309 | ( \ | 
| 310 | 	(tup)->t_choice.t_heap.t_xmin \ | 
| 311 | ) | 
| 312 |  | 
| 313 | #define (tup) \ | 
| 314 | ( \ | 
| 315 | 	HeapTupleHeaderXminFrozen(tup) ? \ | 
| 316 | 		FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \ | 
| 317 | ) | 
| 318 |  | 
| 319 | #define (tup, xid) \ | 
| 320 | ( \ | 
| 321 | 	(tup)->t_choice.t_heap.t_xmin = (xid) \ | 
| 322 | ) | 
| 323 |  | 
| 324 | #define (tup) \ | 
| 325 | ( \ | 
| 326 | 	((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \ | 
| 327 | ) | 
| 328 |  | 
| 329 | #define (tup) \ | 
| 330 | ( \ | 
| 331 | 	((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \ | 
| 332 | 		HEAP_XMIN_INVALID \ | 
| 333 | ) | 
| 334 |  | 
| 335 | #define (tup) \ | 
| 336 | ( \ | 
| 337 | 	((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \ | 
| 338 | ) | 
| 339 |  | 
| 340 | #define (tup) \ | 
| 341 | ( \ | 
| 342 | 	AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ | 
| 343 | 	((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \ | 
| 344 | ) | 
| 345 |  | 
| 346 | #define (tup) \ | 
| 347 | ( \ | 
| 348 | 	AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \ | 
| 349 | 	((tup)->t_infomask |= HEAP_XMIN_INVALID) \ | 
| 350 | ) | 
| 351 |  | 
| 352 | #define (tup) \ | 
| 353 | ( \ | 
| 354 | 	AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ | 
| 355 | 	((tup)->t_infomask |= HEAP_XMIN_FROZEN) \ | 
| 356 | ) | 
| 357 |  | 
| 358 | /* | 
| 359 |  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid | 
| 360 |  * that updated a tuple, you might need to resolve the MultiXactId if certain | 
| 361 |  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care | 
| 362 |  * to resolve the MultiXactId if necessary.  This might involve multixact I/O, | 
| 363 |  * so it should only be used if absolutely necessary. | 
| 364 |  */ | 
| 365 | #define (tup) \ | 
| 366 | ( \ | 
| 367 | 	(!((tup)->t_infomask & HEAP_XMAX_INVALID) && \ | 
| 368 | 	 ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \ | 
| 369 | 	 !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \ | 
| 370 | 		HeapTupleGetUpdateXid(tup) \ | 
| 371 | 	: \ | 
| 372 | 		HeapTupleHeaderGetRawXmax(tup) \ | 
| 373 | ) | 
| 374 |  | 
| 375 | #define (tup) \ | 
| 376 | ( \ | 
| 377 | 	(tup)->t_choice.t_heap.t_xmax \ | 
| 378 | ) | 
| 379 |  | 
| 380 | #define (tup, xid) \ | 
| 381 | ( \ | 
| 382 | 	(tup)->t_choice.t_heap.t_xmax = (xid) \ | 
| 383 | ) | 
| 384 |  | 
| 385 | /* | 
| 386 |  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether | 
| 387 |  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or | 
| 388 |  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can | 
| 389 |  * get a legitimate result, ie you are in the originating transaction! | 
| 390 |  */ | 
| 391 | #define HeapTupleHeaderGetRawCommandId(tup) \ | 
| 392 | ( \ | 
| 393 | 	(tup)->t_choice.t_heap.t_field3.t_cid \ | 
| 394 | ) | 
| 395 |  | 
| 396 | /* SetCmin is reasonably simple since we never need a combo CID */ | 
| 397 | #define (tup, cid) \ | 
| 398 | do { \ | 
| 399 | 	Assert(!((tup)->t_infomask & HEAP_MOVED)); \ | 
| 400 | 	(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ | 
| 401 | 	(tup)->t_infomask &= ~HEAP_COMBOCID; \ | 
| 402 | } while (0) | 
| 403 |  | 
| 404 | /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */ | 
| 405 | #define (tup, cid, iscombo) \ | 
| 406 | do { \ | 
| 407 | 	Assert(!((tup)->t_infomask & HEAP_MOVED)); \ | 
| 408 | 	(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ | 
| 409 | 	if (iscombo) \ | 
| 410 | 		(tup)->t_infomask |= HEAP_COMBOCID; \ | 
| 411 | 	else \ | 
| 412 | 		(tup)->t_infomask &= ~HEAP_COMBOCID; \ | 
| 413 | } while (0) | 
| 414 |  | 
| 415 | #define (tup) \ | 
| 416 | ( \ | 
| 417 | 	((tup)->t_infomask & HEAP_MOVED) ? \ | 
| 418 | 		(tup)->t_choice.t_heap.t_field3.t_xvac \ | 
| 419 | 	: \ | 
| 420 | 		InvalidTransactionId \ | 
| 421 | ) | 
| 422 |  | 
| 423 | #define (tup, xid) \ | 
| 424 | do { \ | 
| 425 | 	Assert((tup)->t_infomask & HEAP_MOVED); \ | 
| 426 | 	(tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \ | 
| 427 | } while (0) | 
| 428 |  | 
| 429 | #define (tup) \ | 
| 430 | ( \ | 
| 431 | 	(ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \ | 
| 432 | ) | 
| 433 |  | 
| 434 | #define (tup) \ | 
| 435 | ( \ | 
| 436 | 	AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \ | 
| 437 | 	ItemPointerGetBlockNumber(&(tup)->t_ctid) \ | 
| 438 | ) | 
| 439 |  | 
| 440 | #define (tup, token)	\ | 
| 441 | ( \ | 
| 442 | 	ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \ | 
| 443 | ) | 
| 444 |  | 
| 445 | #define (tup) \ | 
| 446 | 	(ItemPointerGetOffsetNumber(&(tup)->t_ctid) == MovedPartitionsOffsetNumber && \ | 
| 447 | 	 ItemPointerGetBlockNumberNoCheck(&(tup)->t_ctid) == MovedPartitionsBlockNumber) | 
| 448 |  | 
| 449 | #define (tup) \ | 
| 450 | 	ItemPointerSet(&(tup)->t_ctid, MovedPartitionsBlockNumber, MovedPartitionsOffsetNumber) | 
| 451 |  | 
| 452 | #define (tup) \ | 
| 453 | 	VARSIZE(tup) | 
| 454 |  | 
| 455 | #define (tup, len) \ | 
| 456 | 	SET_VARSIZE(tup, len) | 
| 457 |  | 
| 458 | #define (tup) \ | 
| 459 | ( \ | 
| 460 | 	(tup)->t_choice.t_datum.datum_typeid \ | 
| 461 | ) | 
| 462 |  | 
| 463 | #define (tup, typeid) \ | 
| 464 | ( \ | 
| 465 | 	(tup)->t_choice.t_datum.datum_typeid = (typeid) \ | 
| 466 | ) | 
| 467 |  | 
| 468 | #define (tup) \ | 
| 469 | ( \ | 
| 470 | 	(tup)->t_choice.t_datum.datum_typmod \ | 
| 471 | ) | 
| 472 |  | 
| 473 | #define (tup, typmod) \ | 
| 474 | ( \ | 
| 475 | 	(tup)->t_choice.t_datum.datum_typmod = (typmod) \ | 
| 476 | ) | 
| 477 |  | 
| 478 | /* | 
| 479 |  * Note that we stop considering a tuple HOT-updated as soon as it is known | 
| 480 |  * aborted or the would-be updating transaction is known aborted.  For best | 
| 481 |  * efficiency, check tuple visibility before using this macro, so that the | 
| 482 |  * INVALID bits will be as up to date as possible. | 
| 483 |  */ | 
| 484 | #define (tup) \ | 
| 485 | ( \ | 
| 486 | 	((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \ | 
| 487 | 	((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \ | 
| 488 | 	!HeapTupleHeaderXminInvalid(tup) \ | 
| 489 | ) | 
| 490 |  | 
| 491 | #define (tup) \ | 
| 492 | ( \ | 
| 493 | 	(tup)->t_infomask2 |= HEAP_HOT_UPDATED \ | 
| 494 | ) | 
| 495 |  | 
| 496 | #define (tup) \ | 
| 497 | ( \ | 
| 498 | 	(tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \ | 
| 499 | ) | 
| 500 |  | 
| 501 | #define (tup) \ | 
| 502 | ( \ | 
| 503 |   ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \ | 
| 504 | ) | 
| 505 |  | 
| 506 | #define (tup) \ | 
| 507 | ( \ | 
| 508 |   (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \ | 
| 509 | ) | 
| 510 |  | 
| 511 | #define (tup) \ | 
| 512 | ( \ | 
| 513 |   (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \ | 
| 514 | ) | 
| 515 |  | 
| 516 | #define (tup) \ | 
| 517 | ( \ | 
| 518 |   ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \ | 
| 519 | ) | 
| 520 |  | 
| 521 | #define (tup) \ | 
| 522 | ( \ | 
| 523 |   (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \ | 
| 524 | ) | 
| 525 |  | 
| 526 | #define (tup) \ | 
| 527 | ( \ | 
| 528 |   (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \ | 
| 529 | ) | 
| 530 |  | 
| 531 | #define (tup) \ | 
| 532 | 	((tup)->t_infomask2 & HEAP_NATTS_MASK) | 
| 533 |  | 
| 534 | #define (tup, natts) \ | 
| 535 | ( \ | 
| 536 | 	(tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \ | 
| 537 | ) | 
| 538 |  | 
| 539 | #define (tup) \ | 
| 540 | 		(((tup)->t_infomask & HEAP_HASEXTERNAL) != 0) | 
| 541 |  | 
| 542 |  | 
| 543 | /* | 
| 544 |  * BITMAPLEN(NATTS) - | 
| 545 |  *		Computes size of null bitmap given number of data columns. | 
| 546 |  */ | 
| 547 | #define BITMAPLEN(NATTS)	(((int)(NATTS) + 7) / 8) | 
| 548 |  | 
| 549 | /* | 
| 550 |  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including | 
| 551 |  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the | 
| 552 |  * other stuff that has to be on a disk page.  Since heap pages use no | 
| 553 |  * "special space", there's no deduction for that. | 
| 554 |  * | 
| 555 |  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that | 
| 556 |  * an otherwise-empty page can indeed hold a tuple of this size.  Because | 
| 557 |  * ItemIds and tuples have different alignment requirements, don't assume that | 
| 558 |  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page. | 
| 559 |  */ | 
| 560 | #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData))) | 
| 561 | #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader) | 
| 562 |  | 
| 563 | /* | 
| 564 |  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can | 
| 565 |  * fit on one heap page.  (Note that indexes could have more, because they | 
| 566 |  * use a smaller tuple header.)  We arrive at the divisor because each tuple | 
| 567 |  * must be maxaligned, and it must have an associated line pointer. | 
| 568 |  * | 
| 569 |  * Note: with HOT, there could theoretically be more line pointers (not actual | 
| 570 |  * tuples) than this on a heap page.  However we constrain the number of line | 
| 571 |  * pointers to this anyway, to avoid excessive line-pointer bloat and not | 
| 572 |  * require increases in the size of work arrays. | 
| 573 |  */ | 
| 574 | #define MaxHeapTuplesPerPage	\ | 
| 575 | 	((int) ((BLCKSZ - SizeOfPageHeaderData) / \ | 
| 576 | 			(MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData)))) | 
| 577 |  | 
| 578 | /* | 
| 579 |  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of | 
| 580 |  * data fields of char(n) and similar types.  It need not have anything | 
| 581 |  * directly to do with the *actual* upper limit of varlena values, which | 
| 582 |  * is currently 1Gb (see TOAST structures in postgres.h).  I've set it | 
| 583 |  * at 10Mb which seems like a reasonable number --- tgl 8/6/00. | 
| 584 |  */ | 
| 585 | #define MaxAttrSize		(10 * 1024 * 1024) | 
| 586 |  | 
| 587 |  | 
| 588 | /* | 
| 589 |  * MinimalTuple is an alternative representation that is used for transient | 
| 590 |  * tuples inside the executor, in places where transaction status information | 
| 591 |  * is not required, the tuple rowtype is known, and shaving off a few bytes | 
| 592 |  * is worthwhile because we need to store many tuples.  The representation | 
| 593 |  * is chosen so that tuple access routines can work with either full or | 
| 594 |  * minimal tuples via a HeapTupleData pointer structure.  The access routines | 
| 595 |  * see no difference, except that they must not access the transaction status | 
| 596 |  * or t_ctid fields because those aren't there. | 
| 597 |  * | 
| 598 |  * For the most part, MinimalTuples should be accessed via TupleTableSlot | 
| 599 |  * routines.  These routines will prevent access to the "system columns" | 
| 600 |  * and thereby prevent accidental use of the nonexistent fields. | 
| 601 |  * | 
| 602 |  * MinimalTupleData contains a length word, some padding, and fields matching | 
| 603 |  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so | 
| 604 |  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both | 
| 605 |  * structs.   This makes data alignment rules equivalent in both cases. | 
| 606 |  * | 
| 607 |  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is | 
| 608 |  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the | 
| 609 |  * minimal tuple --- that is, where a full tuple matching the minimal tuple's | 
| 610 |  * data would start.  This trick is what makes the structs seem equivalent. | 
| 611 |  * | 
| 612 |  * Note that t_hoff is computed the same as in a full tuple, hence it includes | 
| 613 |  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however. | 
| 614 |  * | 
| 615 |  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data | 
| 616 |  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid | 
| 617 |  * writing the padding to disk. | 
| 618 |  */ | 
| 619 | #define MINIMAL_TUPLE_OFFSET \ | 
| 620 | 	((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF) | 
| 621 | #define MINIMAL_TUPLE_PADDING \ | 
| 622 | 	((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF) | 
| 623 | #define MINIMAL_TUPLE_DATA_OFFSET \ | 
| 624 | 	offsetof(MinimalTupleData, t_infomask2) | 
| 625 |  | 
| 626 | struct MinimalTupleData | 
| 627 | { | 
| 628 | 	uint32		t_len;			/* actual length of minimal tuple */ | 
| 629 |  | 
| 630 | 	char		mt_padding[MINIMAL_TUPLE_PADDING]; | 
| 631 |  | 
| 632 | 	/* Fields below here must match HeapTupleHeaderData! */ | 
| 633 |  | 
| 634 | 	uint16		t_infomask2;	/* number of attributes + various flags */ | 
| 635 |  | 
| 636 | 	uint16		t_infomask;		/* various flag bits, see below */ | 
| 637 |  | 
| 638 | 	uint8		t_hoff;			/* sizeof header incl. bitmap, padding */ | 
| 639 |  | 
| 640 | 	/* ^ - 23 bytes - ^ */ | 
| 641 |  | 
| 642 | 	bits8		t_bits[FLEXIBLE_ARRAY_MEMBER];	/* bitmap of NULLs */ | 
| 643 |  | 
| 644 | 	/* MORE DATA FOLLOWS AT END OF STRUCT */ | 
| 645 | }; | 
| 646 |  | 
| 647 | /* typedef appears in htup.h */ | 
| 648 |  | 
| 649 | #define  offsetof(MinimalTupleData, t_bits) | 
| 650 |  | 
| 651 |  | 
| 652 | /* | 
| 653 |  * GETSTRUCT - given a HeapTuple pointer, return address of the user data | 
| 654 |  */ | 
| 655 | #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff) | 
| 656 |  | 
| 657 | /* | 
| 658 |  * Accessor macros to be used with HeapTuple pointers. | 
| 659 |  */ | 
| 660 |  | 
| 661 | #define HeapTupleHasNulls(tuple) \ | 
| 662 | 		(((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0) | 
| 663 |  | 
| 664 | #define HeapTupleNoNulls(tuple) \ | 
| 665 | 		(!((tuple)->t_data->t_infomask & HEAP_HASNULL)) | 
| 666 |  | 
| 667 | #define HeapTupleHasVarWidth(tuple) \ | 
| 668 | 		(((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0) | 
| 669 |  | 
| 670 | #define HeapTupleAllFixed(tuple) \ | 
| 671 | 		(!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH)) | 
| 672 |  | 
| 673 | #define HeapTupleHasExternal(tuple) \ | 
| 674 | 		(((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0) | 
| 675 |  | 
| 676 | #define HeapTupleIsHotUpdated(tuple) \ | 
| 677 | 		HeapTupleHeaderIsHotUpdated((tuple)->t_data) | 
| 678 |  | 
| 679 | #define HeapTupleSetHotUpdated(tuple) \ | 
| 680 | 		HeapTupleHeaderSetHotUpdated((tuple)->t_data) | 
| 681 |  | 
| 682 | #define HeapTupleClearHotUpdated(tuple) \ | 
| 683 | 		HeapTupleHeaderClearHotUpdated((tuple)->t_data) | 
| 684 |  | 
| 685 | #define HeapTupleIsHeapOnly(tuple) \ | 
| 686 | 		HeapTupleHeaderIsHeapOnly((tuple)->t_data) | 
| 687 |  | 
| 688 | #define HeapTupleSetHeapOnly(tuple) \ | 
| 689 | 		HeapTupleHeaderSetHeapOnly((tuple)->t_data) | 
| 690 |  | 
| 691 | #define HeapTupleClearHeapOnly(tuple) \ | 
| 692 | 		HeapTupleHeaderClearHeapOnly((tuple)->t_data) | 
| 693 |  | 
| 694 |  | 
| 695 | /* ---------------- | 
| 696 |  *		fastgetattr | 
| 697 |  * | 
| 698 |  *		Fetch a user attribute's value as a Datum (might be either a | 
| 699 |  *		value, or a pointer into the data area of the tuple). | 
| 700 |  * | 
| 701 |  *		This must not be used when a system attribute might be requested. | 
| 702 |  *		Furthermore, the passed attnum MUST be valid.  Use heap_getattr() | 
| 703 |  *		instead, if in doubt. | 
| 704 |  * | 
| 705 |  *		This gets called many times, so we macro the cacheable and NULL | 
| 706 |  *		lookups, and call nocachegetattr() for the rest. | 
| 707 |  * ---------------- | 
| 708 |  */ | 
| 709 |  | 
| 710 | #if !defined(DISABLE_COMPLEX_MACRO) | 
| 711 |  | 
| 712 | #define fastgetattr(tup, attnum, tupleDesc, isnull)					\ | 
| 713 | (																	\ | 
| 714 | 	AssertMacro((attnum) > 0),										\ | 
| 715 | 	(*(isnull) = false),											\ | 
| 716 | 	HeapTupleNoNulls(tup) ?											\ | 
| 717 | 	(																\ | 
| 718 | 		TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff >= 0 ?	\ | 
| 719 | 		(															\ | 
| 720 | 			fetchatt(TupleDescAttr((tupleDesc), (attnum)-1),		\ | 
| 721 | 				(char *) (tup)->t_data + (tup)->t_data->t_hoff +	\ | 
| 722 | 				TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff)\ | 
| 723 | 		)															\ | 
| 724 | 		:															\ | 
| 725 | 			nocachegetattr((tup), (attnum), (tupleDesc))			\ | 
| 726 | 	)																\ | 
| 727 | 	:																\ | 
| 728 | 	(																\ | 
| 729 | 		att_isnull((attnum)-1, (tup)->t_data->t_bits) ?				\ | 
| 730 | 		(															\ | 
| 731 | 			(*(isnull) = true),										\ | 
| 732 | 			(Datum)NULL												\ | 
| 733 | 		)															\ | 
| 734 | 		:															\ | 
| 735 | 		(															\ | 
| 736 | 			nocachegetattr((tup), (attnum), (tupleDesc))			\ | 
| 737 | 		)															\ | 
| 738 | 	)																\ | 
| 739 | ) | 
| 740 | #else							/* defined(DISABLE_COMPLEX_MACRO) */ | 
| 741 |  | 
| 742 | extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, | 
| 743 | 						 bool *isnull); | 
| 744 | #endif							/* defined(DISABLE_COMPLEX_MACRO) */ | 
| 745 |  | 
| 746 |  | 
| 747 | /* ---------------- | 
| 748 |  *		heap_getattr | 
| 749 |  * | 
| 750 |  *		Extract an attribute of a heap tuple and return it as a Datum. | 
| 751 |  *		This works for either system or user attributes.  The given attnum | 
| 752 |  *		is properly range-checked. | 
| 753 |  * | 
| 754 |  *		If the field in question has a NULL value, we return a zero Datum | 
| 755 |  *		and set *isnull == true.  Otherwise, we set *isnull == false. | 
| 756 |  * | 
| 757 |  *		<tup> is the pointer to the heap tuple.  <attnum> is the attribute | 
| 758 |  *		number of the column (field) caller wants.  <tupleDesc> is a | 
| 759 |  *		pointer to the structure describing the row and all its fields. | 
| 760 |  * ---------------- | 
| 761 |  */ | 
| 762 | #define heap_getattr(tup, attnum, tupleDesc, isnull) \ | 
| 763 | 	( \ | 
| 764 | 		((attnum) > 0) ? \ | 
| 765 | 		( \ | 
| 766 | 			((attnum) > (int) HeapTupleHeaderGetNatts((tup)->t_data)) ? \ | 
| 767 | 				getmissingattr((tupleDesc), (attnum), (isnull)) \ | 
| 768 | 			: \ | 
| 769 | 				fastgetattr((tup), (attnum), (tupleDesc), (isnull)) \ | 
| 770 | 		) \ | 
| 771 | 		: \ | 
| 772 | 			heap_getsysattr((tup), (attnum), (tupleDesc), (isnull)) \ | 
| 773 | 	) | 
| 774 |  | 
| 775 |  | 
| 776 | /* prototypes for functions in common/heaptuple.c */ | 
| 777 | extern Size heap_compute_data_size(TupleDesc tupleDesc, | 
| 778 | 								   Datum *values, bool *isnull); | 
| 779 | extern void heap_fill_tuple(TupleDesc tupleDesc, | 
| 780 | 							Datum *values, bool *isnull, | 
| 781 | 							char *data, Size data_size, | 
| 782 | 							uint16 *infomask, bits8 *bit); | 
| 783 | extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc); | 
| 784 | extern Datum nocachegetattr(HeapTuple tup, int attnum, | 
| 785 | 							TupleDesc att); | 
| 786 | extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, | 
| 787 | 							 bool *isnull); | 
| 788 | extern Datum getmissingattr(TupleDesc tupleDesc, | 
| 789 | 							int attnum, bool *isnull); | 
| 790 | extern HeapTuple heap_copytuple(HeapTuple tuple); | 
| 791 | extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest); | 
| 792 | extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc); | 
| 793 | extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, | 
| 794 | 								 Datum *values, bool *isnull); | 
| 795 | extern HeapTuple heap_modify_tuple(HeapTuple tuple, | 
| 796 | 								   TupleDesc tupleDesc, | 
| 797 | 								   Datum *replValues, | 
| 798 | 								   bool *replIsnull, | 
| 799 | 								   bool *doReplace); | 
| 800 | extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple, | 
| 801 | 										   TupleDesc tupleDesc, | 
| 802 | 										   int nCols, | 
| 803 | 										   int *replCols, | 
| 804 | 										   Datum *replValues, | 
| 805 | 										   bool *replIsnull); | 
| 806 | extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, | 
| 807 | 							  Datum *values, bool *isnull); | 
| 808 | extern void heap_freetuple(HeapTuple htup); | 
| 809 | extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor, | 
| 810 | 											Datum *values, bool *isnull); | 
| 811 | extern void heap_free_minimal_tuple(MinimalTuple mtup); | 
| 812 | extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup); | 
| 813 | extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup); | 
| 814 | extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup); | 
| 815 | extern size_t varsize_any(void *p); | 
| 816 | extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); | 
| 817 | extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); | 
| 818 |  | 
| 819 | #endif							/* HTUP_DETAILS_H */ | 
| 820 |  |