| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * htup_details.h |
| 4 | * POSTGRES heap tuple header definitions. |
| 5 | * |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * src/include/access/htup_details.h |
| 11 | * |
| 12 | *------------------------------------------------------------------------- |
| 13 | */ |
| 14 | #ifndef HTUP_DETAILS_H |
| 15 | #define HTUP_DETAILS_H |
| 16 | |
| 17 | #include "access/htup.h" |
| 18 | #include "access/tupdesc.h" |
| 19 | #include "access/tupmacs.h" |
| 20 | #include "access/transam.h" |
| 21 | #include "storage/bufpage.h" |
| 22 | |
| 23 | /* |
| 24 | * MaxTupleAttributeNumber limits the number of (user) columns in a tuple. |
| 25 | * The key limit on this value is that the size of the fixed overhead for |
| 26 | * a tuple, plus the size of the null-values bitmap (at 1 bit per column), |
| 27 | * plus MAXALIGN alignment, must fit into t_hoff which is uint8. On most |
| 28 | * machines the upper limit without making t_hoff wider would be a little |
| 29 | * over 1700. We use round numbers here and for MaxHeapAttributeNumber |
| 30 | * so that alterations in HeapTupleHeaderData layout won't change the |
| 31 | * supported max number of columns. |
| 32 | */ |
| 33 | #define MaxTupleAttributeNumber 1664 /* 8 * 208 */ |
| 34 | |
| 35 | /* |
| 36 | * MaxHeapAttributeNumber limits the number of (user) columns in a table. |
| 37 | * This should be somewhat less than MaxTupleAttributeNumber. It must be |
| 38 | * at least one less, else we will fail to do UPDATEs on a maximal-width |
| 39 | * table (because UPDATE has to form working tuples that include CTID). |
| 40 | * In practice we want some additional daylight so that we can gracefully |
| 41 | * support operations that add hidden "resjunk" columns, for example |
| 42 | * SELECT * FROM wide_table ORDER BY foo, bar, baz. |
| 43 | * In any case, depending on column data types you will likely be running |
| 44 | * into the disk-block-based limit on overall tuple size if you have more |
| 45 | * than a thousand or so columns. TOAST won't help. |
| 46 | */ |
| 47 | #define MaxHeapAttributeNumber 1600 /* 8 * 200 */ |
| 48 | |
| 49 | /* |
| 50 | * Heap tuple header. To avoid wasting space, the fields should be |
| 51 | * laid out in such a way as to avoid structure padding. |
| 52 | * |
| 53 | * Datums of composite types (row types) share the same general structure |
| 54 | * as on-disk tuples, so that the same routines can be used to build and |
| 55 | * examine them. However the requirements are slightly different: a Datum |
| 56 | * does not need any transaction visibility information, and it does need |
| 57 | * a length word and some embedded type information. We can achieve this |
| 58 | * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple |
| 59 | * with the fields needed in the Datum case. Typically, all tuples built |
| 60 | * in-memory will be initialized with the Datum fields; but when a tuple is |
| 61 | * about to be inserted in a table, the transaction fields will be filled, |
| 62 | * overwriting the datum fields. |
| 63 | * |
| 64 | * The overall structure of a heap tuple looks like: |
| 65 | * fixed fields (HeapTupleHeaderData struct) |
| 66 | * nulls bitmap (if HEAP_HASNULL is set in t_infomask) |
| 67 | * alignment padding (as needed to make user data MAXALIGN'd) |
| 68 | * object ID (if HEAP_HASOID_OLD is set in t_infomask, not created |
| 69 | * anymore) |
| 70 | * user data fields |
| 71 | * |
| 72 | * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three |
| 73 | * physical fields. Xmin and Xmax are always really stored, but Cmin, Cmax |
| 74 | * and Xvac share a field. This works because we know that Cmin and Cmax |
| 75 | * are only interesting for the lifetime of the inserting and deleting |
| 76 | * transaction respectively. If a tuple is inserted and deleted in the same |
| 77 | * transaction, we store a "combo" command id that can be mapped to the real |
| 78 | * cmin and cmax, but only by use of local state within the originating |
| 79 | * backend. See combocid.c for more details. Meanwhile, Xvac is only set by |
| 80 | * old-style VACUUM FULL, which does not have any command sub-structure and so |
| 81 | * does not need either Cmin or Cmax. (This requires that old-style VACUUM |
| 82 | * FULL never try to move a tuple whose Cmin or Cmax is still interesting, |
| 83 | * ie, an insert-in-progress or delete-in-progress tuple.) |
| 84 | * |
| 85 | * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid |
| 86 | * is initialized with its own TID (location). If the tuple is ever updated, |
| 87 | * its t_ctid is changed to point to the replacement version of the tuple. Or |
| 88 | * if the tuple is moved from one partition to another, due to an update of |
| 89 | * the partition key, t_ctid is set to a special value to indicate that |
| 90 | * (see ItemPointerSetMovedPartitions). Thus, a tuple is the latest version |
| 91 | * of its row iff XMAX is invalid or |
| 92 | * t_ctid points to itself (in which case, if XMAX is valid, the tuple is |
| 93 | * either locked or deleted). One can follow the chain of t_ctid links |
| 94 | * to find the newest version of the row, unless it was moved to a different |
| 95 | * partition. Beware however that VACUUM might |
| 96 | * erase the pointed-to (newer) tuple before erasing the pointing (older) |
| 97 | * tuple. Hence, when following a t_ctid link, it is necessary to check |
| 98 | * to see if the referenced slot is empty or contains an unrelated tuple. |
| 99 | * Check that the referenced tuple has XMIN equal to the referencing tuple's |
| 100 | * XMAX to verify that it is actually the descendant version and not an |
| 101 | * unrelated tuple stored into a slot recently freed by VACUUM. If either |
| 102 | * check fails, one may assume that there is no live descendant version. |
| 103 | * |
| 104 | * t_ctid is sometimes used to store a speculative insertion token, instead |
| 105 | * of a real TID. A speculative token is set on a tuple that's being |
| 106 | * inserted, until the inserter is sure that it wants to go ahead with the |
| 107 | * insertion. Hence a token should only be seen on a tuple with an XMAX |
| 108 | * that's still in-progress, or invalid/aborted. The token is replaced with |
| 109 | * the tuple's real TID when the insertion is confirmed. One should never |
| 110 | * see a speculative insertion token while following a chain of t_ctid links, |
| 111 | * because they are not used on updates, only insertions. |
| 112 | * |
| 113 | * Following the fixed header fields, the nulls bitmap is stored (beginning |
| 114 | * at t_bits). The bitmap is *not* stored if t_infomask shows that there |
| 115 | * are no nulls in the tuple. If an OID field is present (as indicated by |
| 116 | * t_infomask), then it is stored just before the user data, which begins at |
| 117 | * the offset shown by t_hoff. Note that t_hoff must be a multiple of |
| 118 | * MAXALIGN. |
| 119 | */ |
| 120 | |
| 121 | typedef struct HeapTupleFields |
| 122 | { |
| 123 | TransactionId t_xmin; /* inserting xact ID */ |
| 124 | TransactionId t_xmax; /* deleting or locking xact ID */ |
| 125 | |
| 126 | union |
| 127 | { |
| 128 | CommandId t_cid; /* inserting or deleting command ID, or both */ |
| 129 | TransactionId t_xvac; /* old-style VACUUM FULL xact ID */ |
| 130 | } t_field3; |
| 131 | } HeapTupleFields; |
| 132 | |
| 133 | typedef struct DatumTupleFields |
| 134 | { |
| 135 | int32 datum_len_; /* varlena header (do not touch directly!) */ |
| 136 | |
| 137 | int32 datum_typmod; /* -1, or identifier of a record type */ |
| 138 | |
| 139 | Oid datum_typeid; /* composite type OID, or RECORDOID */ |
| 140 | |
| 141 | /* |
| 142 | * datum_typeid cannot be a domain over composite, only plain composite, |
| 143 | * even if the datum is meant as a value of a domain-over-composite type. |
| 144 | * This is in line with the general principle that CoerceToDomain does not |
| 145 | * change the physical representation of the base type value. |
| 146 | * |
| 147 | * Note: field ordering is chosen with thought that Oid might someday |
| 148 | * widen to 64 bits. |
| 149 | */ |
| 150 | } DatumTupleFields; |
| 151 | |
| 152 | struct |
| 153 | { |
| 154 | union |
| 155 | { |
| 156 | HeapTupleFields ; |
| 157 | DatumTupleFields ; |
| 158 | } ; |
| 159 | |
| 160 | ItemPointerData ; /* current TID of this or newer tuple (or a |
| 161 | * speculative insertion token) */ |
| 162 | |
| 163 | /* Fields below here must match MinimalTupleData! */ |
| 164 | |
| 165 | #define 2 |
| 166 | uint16 ; /* number of attributes + various flags */ |
| 167 | |
| 168 | #define 3 |
| 169 | uint16 ; /* various flag bits, see below */ |
| 170 | |
| 171 | #define 4 |
| 172 | uint8 ; /* sizeof header incl. bitmap, padding */ |
| 173 | |
| 174 | /* ^ - 23 bytes - ^ */ |
| 175 | |
| 176 | #define 5 |
| 177 | bits8 [FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */ |
| 178 | |
| 179 | /* MORE DATA FOLLOWS AT END OF STRUCT */ |
| 180 | }; |
| 181 | |
| 182 | /* typedef appears in htup.h */ |
| 183 | |
| 184 | #define offsetof(HeapTupleHeaderData, t_bits) |
| 185 | |
| 186 | /* |
| 187 | * information stored in t_infomask: |
| 188 | */ |
| 189 | #define HEAP_HASNULL 0x0001 /* has null attribute(s) */ |
| 190 | #define HEAP_HASVARWIDTH 0x0002 /* has variable-width attribute(s) */ |
| 191 | #define HEAP_HASEXTERNAL 0x0004 /* has external stored attribute(s) */ |
| 192 | #define HEAP_HASOID_OLD 0x0008 /* has an object-id field */ |
| 193 | #define HEAP_XMAX_KEYSHR_LOCK 0x0010 /* xmax is a key-shared locker */ |
| 194 | #define HEAP_COMBOCID 0x0020 /* t_cid is a combo cid */ |
| 195 | #define HEAP_XMAX_EXCL_LOCK 0x0040 /* xmax is exclusive locker */ |
| 196 | #define HEAP_XMAX_LOCK_ONLY 0x0080 /* xmax, if valid, is only a locker */ |
| 197 | |
| 198 | /* xmax is a shared locker */ |
| 199 | #define HEAP_XMAX_SHR_LOCK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK) |
| 200 | |
| 201 | #define HEAP_LOCK_MASK (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \ |
| 202 | HEAP_XMAX_KEYSHR_LOCK) |
| 203 | #define HEAP_XMIN_COMMITTED 0x0100 /* t_xmin committed */ |
| 204 | #define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */ |
| 205 | #define HEAP_XMIN_FROZEN (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID) |
| 206 | #define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax committed */ |
| 207 | #define HEAP_XMAX_INVALID 0x0800 /* t_xmax invalid/aborted */ |
| 208 | #define HEAP_XMAX_IS_MULTI 0x1000 /* t_xmax is a MultiXactId */ |
| 209 | #define HEAP_UPDATED 0x2000 /* this is UPDATEd version of row */ |
| 210 | #define HEAP_MOVED_OFF 0x4000 /* moved to another place by pre-9.0 |
| 211 | * VACUUM FULL; kept for binary |
| 212 | * upgrade support */ |
| 213 | #define HEAP_MOVED_IN 0x8000 /* moved from another place by pre-9.0 |
| 214 | * VACUUM FULL; kept for binary |
| 215 | * upgrade support */ |
| 216 | #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN) |
| 217 | |
| 218 | #define HEAP_XACT_MASK 0xFFF0 /* visibility-related bits */ |
| 219 | |
| 220 | /* |
| 221 | * A tuple is only locked (i.e. not updated by its Xmax) if the |
| 222 | * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is |
| 223 | * not a multi and the EXCL_LOCK bit is set. |
| 224 | * |
| 225 | * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible |
| 226 | * aborted updater transaction. |
| 227 | * |
| 228 | * Beware of multiple evaluations of the argument. |
| 229 | */ |
| 230 | #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \ |
| 231 | (((infomask) & HEAP_XMAX_LOCK_ONLY) || \ |
| 232 | (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK)) |
| 233 | |
| 234 | /* |
| 235 | * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of |
| 236 | * XMAX_EXCL_LOCK and XMAX_KEYSHR_LOCK must come from a tuple that was |
| 237 | * share-locked in 9.2 or earlier and then pg_upgrade'd. |
| 238 | * |
| 239 | * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple |
| 240 | * FOR SHARE lockers of that tuple. That set HEAP_XMAX_LOCK_ONLY (with a |
| 241 | * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and |
| 242 | * HEAP_XMAX_KEYSHR_LOCK. That combination is no longer possible in 9.3 and |
| 243 | * up, so if we see that combination we know for certain that the tuple was |
| 244 | * locked in an earlier release; since all such lockers are gone (they cannot |
| 245 | * survive through pg_upgrade), such tuples can safely be considered not |
| 246 | * locked. |
| 247 | * |
| 248 | * We must not resolve such multixacts locally, because the result would be |
| 249 | * bogus, regardless of where they stand with respect to the current valid |
| 250 | * multixact range. |
| 251 | */ |
| 252 | #define HEAP_LOCKED_UPGRADED(infomask) \ |
| 253 | ( \ |
| 254 | ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \ |
| 255 | ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \ |
| 256 | (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \ |
| 257 | ) |
| 258 | |
| 259 | /* |
| 260 | * Use these to test whether a particular lock is applied to a tuple |
| 261 | */ |
| 262 | #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \ |
| 263 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK) |
| 264 | #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \ |
| 265 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK) |
| 266 | #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \ |
| 267 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK) |
| 268 | |
| 269 | /* turn these all off when Xmax is to change */ |
| 270 | #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \ |
| 271 | HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY) |
| 272 | |
| 273 | /* |
| 274 | * information stored in t_infomask2: |
| 275 | */ |
| 276 | #define HEAP_NATTS_MASK 0x07FF /* 11 bits for number of attributes */ |
| 277 | /* bits 0x1800 are available */ |
| 278 | #define HEAP_KEYS_UPDATED 0x2000 /* tuple was updated and key cols |
| 279 | * modified, or tuple deleted */ |
| 280 | #define HEAP_HOT_UPDATED 0x4000 /* tuple was HOT-updated */ |
| 281 | #define HEAP_ONLY_TUPLE 0x8000 /* this is heap-only tuple */ |
| 282 | |
| 283 | #define HEAP2_XACT_MASK 0xE000 /* visibility-related bits */ |
| 284 | |
| 285 | /* |
| 286 | * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins. It is |
| 287 | * only used in tuples that are in the hash table, and those don't need |
| 288 | * any visibility information, so we can overlay it on a visibility flag |
| 289 | * instead of using up a dedicated bit. |
| 290 | */ |
| 291 | #define HEAP_TUPLE_HAS_MATCH HEAP_ONLY_TUPLE /* tuple has a join match */ |
| 292 | |
| 293 | /* |
| 294 | * HeapTupleHeader accessor macros |
| 295 | * |
| 296 | * Note: beware of multiple evaluations of "tup" argument. But the Set |
| 297 | * macros evaluate their other argument only once. |
| 298 | */ |
| 299 | |
| 300 | /* |
| 301 | * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid |
| 302 | * originally used to insert the tuple. However, the tuple might actually |
| 303 | * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin |
| 304 | * is visible to every snapshot. Prior to PostgreSQL 9.4, we actually changed |
| 305 | * the xmin to FrozenTransactionId, and that value may still be encountered |
| 306 | * on disk. |
| 307 | */ |
| 308 | #define (tup) \ |
| 309 | ( \ |
| 310 | (tup)->t_choice.t_heap.t_xmin \ |
| 311 | ) |
| 312 | |
| 313 | #define (tup) \ |
| 314 | ( \ |
| 315 | HeapTupleHeaderXminFrozen(tup) ? \ |
| 316 | FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \ |
| 317 | ) |
| 318 | |
| 319 | #define (tup, xid) \ |
| 320 | ( \ |
| 321 | (tup)->t_choice.t_heap.t_xmin = (xid) \ |
| 322 | ) |
| 323 | |
| 324 | #define (tup) \ |
| 325 | ( \ |
| 326 | ((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \ |
| 327 | ) |
| 328 | |
| 329 | #define (tup) \ |
| 330 | ( \ |
| 331 | ((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \ |
| 332 | HEAP_XMIN_INVALID \ |
| 333 | ) |
| 334 | |
| 335 | #define (tup) \ |
| 336 | ( \ |
| 337 | ((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \ |
| 338 | ) |
| 339 | |
| 340 | #define (tup) \ |
| 341 | ( \ |
| 342 | AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ |
| 343 | ((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \ |
| 344 | ) |
| 345 | |
| 346 | #define (tup) \ |
| 347 | ( \ |
| 348 | AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \ |
| 349 | ((tup)->t_infomask |= HEAP_XMIN_INVALID) \ |
| 350 | ) |
| 351 | |
| 352 | #define (tup) \ |
| 353 | ( \ |
| 354 | AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ |
| 355 | ((tup)->t_infomask |= HEAP_XMIN_FROZEN) \ |
| 356 | ) |
| 357 | |
| 358 | /* |
| 359 | * HeapTupleHeaderGetRawXmax gets you the raw Xmax field. To find out the Xid |
| 360 | * that updated a tuple, you might need to resolve the MultiXactId if certain |
| 361 | * bits are set. HeapTupleHeaderGetUpdateXid checks those bits and takes care |
| 362 | * to resolve the MultiXactId if necessary. This might involve multixact I/O, |
| 363 | * so it should only be used if absolutely necessary. |
| 364 | */ |
| 365 | #define (tup) \ |
| 366 | ( \ |
| 367 | (!((tup)->t_infomask & HEAP_XMAX_INVALID) && \ |
| 368 | ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \ |
| 369 | !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \ |
| 370 | HeapTupleGetUpdateXid(tup) \ |
| 371 | : \ |
| 372 | HeapTupleHeaderGetRawXmax(tup) \ |
| 373 | ) |
| 374 | |
| 375 | #define (tup) \ |
| 376 | ( \ |
| 377 | (tup)->t_choice.t_heap.t_xmax \ |
| 378 | ) |
| 379 | |
| 380 | #define (tup, xid) \ |
| 381 | ( \ |
| 382 | (tup)->t_choice.t_heap.t_xmax = (xid) \ |
| 383 | ) |
| 384 | |
| 385 | /* |
| 386 | * HeapTupleHeaderGetRawCommandId will give you what's in the header whether |
| 387 | * it is useful or not. Most code should use HeapTupleHeaderGetCmin or |
| 388 | * HeapTupleHeaderGetCmax instead, but note that those Assert that you can |
| 389 | * get a legitimate result, ie you are in the originating transaction! |
| 390 | */ |
| 391 | #define HeapTupleHeaderGetRawCommandId(tup) \ |
| 392 | ( \ |
| 393 | (tup)->t_choice.t_heap.t_field3.t_cid \ |
| 394 | ) |
| 395 | |
| 396 | /* SetCmin is reasonably simple since we never need a combo CID */ |
| 397 | #define (tup, cid) \ |
| 398 | do { \ |
| 399 | Assert(!((tup)->t_infomask & HEAP_MOVED)); \ |
| 400 | (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ |
| 401 | (tup)->t_infomask &= ~HEAP_COMBOCID; \ |
| 402 | } while (0) |
| 403 | |
| 404 | /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */ |
| 405 | #define (tup, cid, iscombo) \ |
| 406 | do { \ |
| 407 | Assert(!((tup)->t_infomask & HEAP_MOVED)); \ |
| 408 | (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ |
| 409 | if (iscombo) \ |
| 410 | (tup)->t_infomask |= HEAP_COMBOCID; \ |
| 411 | else \ |
| 412 | (tup)->t_infomask &= ~HEAP_COMBOCID; \ |
| 413 | } while (0) |
| 414 | |
| 415 | #define (tup) \ |
| 416 | ( \ |
| 417 | ((tup)->t_infomask & HEAP_MOVED) ? \ |
| 418 | (tup)->t_choice.t_heap.t_field3.t_xvac \ |
| 419 | : \ |
| 420 | InvalidTransactionId \ |
| 421 | ) |
| 422 | |
| 423 | #define (tup, xid) \ |
| 424 | do { \ |
| 425 | Assert((tup)->t_infomask & HEAP_MOVED); \ |
| 426 | (tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \ |
| 427 | } while (0) |
| 428 | |
| 429 | #define (tup) \ |
| 430 | ( \ |
| 431 | (ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \ |
| 432 | ) |
| 433 | |
| 434 | #define (tup) \ |
| 435 | ( \ |
| 436 | AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \ |
| 437 | ItemPointerGetBlockNumber(&(tup)->t_ctid) \ |
| 438 | ) |
| 439 | |
| 440 | #define (tup, token) \ |
| 441 | ( \ |
| 442 | ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \ |
| 443 | ) |
| 444 | |
| 445 | #define (tup) \ |
| 446 | (ItemPointerGetOffsetNumber(&(tup)->t_ctid) == MovedPartitionsOffsetNumber && \ |
| 447 | ItemPointerGetBlockNumberNoCheck(&(tup)->t_ctid) == MovedPartitionsBlockNumber) |
| 448 | |
| 449 | #define (tup) \ |
| 450 | ItemPointerSet(&(tup)->t_ctid, MovedPartitionsBlockNumber, MovedPartitionsOffsetNumber) |
| 451 | |
| 452 | #define (tup) \ |
| 453 | VARSIZE(tup) |
| 454 | |
| 455 | #define (tup, len) \ |
| 456 | SET_VARSIZE(tup, len) |
| 457 | |
| 458 | #define (tup) \ |
| 459 | ( \ |
| 460 | (tup)->t_choice.t_datum.datum_typeid \ |
| 461 | ) |
| 462 | |
| 463 | #define (tup, typeid) \ |
| 464 | ( \ |
| 465 | (tup)->t_choice.t_datum.datum_typeid = (typeid) \ |
| 466 | ) |
| 467 | |
| 468 | #define (tup) \ |
| 469 | ( \ |
| 470 | (tup)->t_choice.t_datum.datum_typmod \ |
| 471 | ) |
| 472 | |
| 473 | #define (tup, typmod) \ |
| 474 | ( \ |
| 475 | (tup)->t_choice.t_datum.datum_typmod = (typmod) \ |
| 476 | ) |
| 477 | |
| 478 | /* |
| 479 | * Note that we stop considering a tuple HOT-updated as soon as it is known |
| 480 | * aborted or the would-be updating transaction is known aborted. For best |
| 481 | * efficiency, check tuple visibility before using this macro, so that the |
| 482 | * INVALID bits will be as up to date as possible. |
| 483 | */ |
| 484 | #define (tup) \ |
| 485 | ( \ |
| 486 | ((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \ |
| 487 | ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \ |
| 488 | !HeapTupleHeaderXminInvalid(tup) \ |
| 489 | ) |
| 490 | |
| 491 | #define (tup) \ |
| 492 | ( \ |
| 493 | (tup)->t_infomask2 |= HEAP_HOT_UPDATED \ |
| 494 | ) |
| 495 | |
| 496 | #define (tup) \ |
| 497 | ( \ |
| 498 | (tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \ |
| 499 | ) |
| 500 | |
| 501 | #define (tup) \ |
| 502 | ( \ |
| 503 | ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \ |
| 504 | ) |
| 505 | |
| 506 | #define (tup) \ |
| 507 | ( \ |
| 508 | (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \ |
| 509 | ) |
| 510 | |
| 511 | #define (tup) \ |
| 512 | ( \ |
| 513 | (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \ |
| 514 | ) |
| 515 | |
| 516 | #define (tup) \ |
| 517 | ( \ |
| 518 | ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \ |
| 519 | ) |
| 520 | |
| 521 | #define (tup) \ |
| 522 | ( \ |
| 523 | (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \ |
| 524 | ) |
| 525 | |
| 526 | #define (tup) \ |
| 527 | ( \ |
| 528 | (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \ |
| 529 | ) |
| 530 | |
| 531 | #define (tup) \ |
| 532 | ((tup)->t_infomask2 & HEAP_NATTS_MASK) |
| 533 | |
| 534 | #define (tup, natts) \ |
| 535 | ( \ |
| 536 | (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \ |
| 537 | ) |
| 538 | |
| 539 | #define (tup) \ |
| 540 | (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0) |
| 541 | |
| 542 | |
| 543 | /* |
| 544 | * BITMAPLEN(NATTS) - |
| 545 | * Computes size of null bitmap given number of data columns. |
| 546 | */ |
| 547 | #define BITMAPLEN(NATTS) (((int)(NATTS) + 7) / 8) |
| 548 | |
| 549 | /* |
| 550 | * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including |
| 551 | * header and MAXALIGN alignment padding. Basically it's BLCKSZ minus the |
| 552 | * other stuff that has to be on a disk page. Since heap pages use no |
| 553 | * "special space", there's no deduction for that. |
| 554 | * |
| 555 | * NOTE: we allow for the ItemId that must point to the tuple, ensuring that |
| 556 | * an otherwise-empty page can indeed hold a tuple of this size. Because |
| 557 | * ItemIds and tuples have different alignment requirements, don't assume that |
| 558 | * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page. |
| 559 | */ |
| 560 | #define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData))) |
| 561 | #define MinHeapTupleSize MAXALIGN(SizeofHeapTupleHeader) |
| 562 | |
| 563 | /* |
| 564 | * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can |
| 565 | * fit on one heap page. (Note that indexes could have more, because they |
| 566 | * use a smaller tuple header.) We arrive at the divisor because each tuple |
| 567 | * must be maxaligned, and it must have an associated line pointer. |
| 568 | * |
| 569 | * Note: with HOT, there could theoretically be more line pointers (not actual |
| 570 | * tuples) than this on a heap page. However we constrain the number of line |
| 571 | * pointers to this anyway, to avoid excessive line-pointer bloat and not |
| 572 | * require increases in the size of work arrays. |
| 573 | */ |
| 574 | #define MaxHeapTuplesPerPage \ |
| 575 | ((int) ((BLCKSZ - SizeOfPageHeaderData) / \ |
| 576 | (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData)))) |
| 577 | |
| 578 | /* |
| 579 | * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of |
| 580 | * data fields of char(n) and similar types. It need not have anything |
| 581 | * directly to do with the *actual* upper limit of varlena values, which |
| 582 | * is currently 1Gb (see TOAST structures in postgres.h). I've set it |
| 583 | * at 10Mb which seems like a reasonable number --- tgl 8/6/00. |
| 584 | */ |
| 585 | #define MaxAttrSize (10 * 1024 * 1024) |
| 586 | |
| 587 | |
| 588 | /* |
| 589 | * MinimalTuple is an alternative representation that is used for transient |
| 590 | * tuples inside the executor, in places where transaction status information |
| 591 | * is not required, the tuple rowtype is known, and shaving off a few bytes |
| 592 | * is worthwhile because we need to store many tuples. The representation |
| 593 | * is chosen so that tuple access routines can work with either full or |
| 594 | * minimal tuples via a HeapTupleData pointer structure. The access routines |
| 595 | * see no difference, except that they must not access the transaction status |
| 596 | * or t_ctid fields because those aren't there. |
| 597 | * |
| 598 | * For the most part, MinimalTuples should be accessed via TupleTableSlot |
| 599 | * routines. These routines will prevent access to the "system columns" |
| 600 | * and thereby prevent accidental use of the nonexistent fields. |
| 601 | * |
| 602 | * MinimalTupleData contains a length word, some padding, and fields matching |
| 603 | * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so |
| 604 | * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both |
| 605 | * structs. This makes data alignment rules equivalent in both cases. |
| 606 | * |
| 607 | * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is |
| 608 | * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the |
| 609 | * minimal tuple --- that is, where a full tuple matching the minimal tuple's |
| 610 | * data would start. This trick is what makes the structs seem equivalent. |
| 611 | * |
| 612 | * Note that t_hoff is computed the same as in a full tuple, hence it includes |
| 613 | * the MINIMAL_TUPLE_OFFSET distance. t_len does not include that, however. |
| 614 | * |
| 615 | * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data |
| 616 | * other than the length word. tuplesort.c and tuplestore.c use this to avoid |
| 617 | * writing the padding to disk. |
| 618 | */ |
| 619 | #define MINIMAL_TUPLE_OFFSET \ |
| 620 | ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF) |
| 621 | #define MINIMAL_TUPLE_PADDING \ |
| 622 | ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF) |
| 623 | #define MINIMAL_TUPLE_DATA_OFFSET \ |
| 624 | offsetof(MinimalTupleData, t_infomask2) |
| 625 | |
| 626 | struct MinimalTupleData |
| 627 | { |
| 628 | uint32 t_len; /* actual length of minimal tuple */ |
| 629 | |
| 630 | char mt_padding[MINIMAL_TUPLE_PADDING]; |
| 631 | |
| 632 | /* Fields below here must match HeapTupleHeaderData! */ |
| 633 | |
| 634 | uint16 t_infomask2; /* number of attributes + various flags */ |
| 635 | |
| 636 | uint16 t_infomask; /* various flag bits, see below */ |
| 637 | |
| 638 | uint8 t_hoff; /* sizeof header incl. bitmap, padding */ |
| 639 | |
| 640 | /* ^ - 23 bytes - ^ */ |
| 641 | |
| 642 | bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */ |
| 643 | |
| 644 | /* MORE DATA FOLLOWS AT END OF STRUCT */ |
| 645 | }; |
| 646 | |
| 647 | /* typedef appears in htup.h */ |
| 648 | |
| 649 | #define offsetof(MinimalTupleData, t_bits) |
| 650 | |
| 651 | |
| 652 | /* |
| 653 | * GETSTRUCT - given a HeapTuple pointer, return address of the user data |
| 654 | */ |
| 655 | #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff) |
| 656 | |
| 657 | /* |
| 658 | * Accessor macros to be used with HeapTuple pointers. |
| 659 | */ |
| 660 | |
| 661 | #define HeapTupleHasNulls(tuple) \ |
| 662 | (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0) |
| 663 | |
| 664 | #define HeapTupleNoNulls(tuple) \ |
| 665 | (!((tuple)->t_data->t_infomask & HEAP_HASNULL)) |
| 666 | |
| 667 | #define HeapTupleHasVarWidth(tuple) \ |
| 668 | (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0) |
| 669 | |
| 670 | #define HeapTupleAllFixed(tuple) \ |
| 671 | (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH)) |
| 672 | |
| 673 | #define HeapTupleHasExternal(tuple) \ |
| 674 | (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0) |
| 675 | |
| 676 | #define HeapTupleIsHotUpdated(tuple) \ |
| 677 | HeapTupleHeaderIsHotUpdated((tuple)->t_data) |
| 678 | |
| 679 | #define HeapTupleSetHotUpdated(tuple) \ |
| 680 | HeapTupleHeaderSetHotUpdated((tuple)->t_data) |
| 681 | |
| 682 | #define HeapTupleClearHotUpdated(tuple) \ |
| 683 | HeapTupleHeaderClearHotUpdated((tuple)->t_data) |
| 684 | |
| 685 | #define HeapTupleIsHeapOnly(tuple) \ |
| 686 | HeapTupleHeaderIsHeapOnly((tuple)->t_data) |
| 687 | |
| 688 | #define HeapTupleSetHeapOnly(tuple) \ |
| 689 | HeapTupleHeaderSetHeapOnly((tuple)->t_data) |
| 690 | |
| 691 | #define HeapTupleClearHeapOnly(tuple) \ |
| 692 | HeapTupleHeaderClearHeapOnly((tuple)->t_data) |
| 693 | |
| 694 | |
| 695 | /* ---------------- |
| 696 | * fastgetattr |
| 697 | * |
| 698 | * Fetch a user attribute's value as a Datum (might be either a |
| 699 | * value, or a pointer into the data area of the tuple). |
| 700 | * |
| 701 | * This must not be used when a system attribute might be requested. |
| 702 | * Furthermore, the passed attnum MUST be valid. Use heap_getattr() |
| 703 | * instead, if in doubt. |
| 704 | * |
| 705 | * This gets called many times, so we macro the cacheable and NULL |
| 706 | * lookups, and call nocachegetattr() for the rest. |
| 707 | * ---------------- |
| 708 | */ |
| 709 | |
| 710 | #if !defined(DISABLE_COMPLEX_MACRO) |
| 711 | |
| 712 | #define fastgetattr(tup, attnum, tupleDesc, isnull) \ |
| 713 | ( \ |
| 714 | AssertMacro((attnum) > 0), \ |
| 715 | (*(isnull) = false), \ |
| 716 | HeapTupleNoNulls(tup) ? \ |
| 717 | ( \ |
| 718 | TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff >= 0 ? \ |
| 719 | ( \ |
| 720 | fetchatt(TupleDescAttr((tupleDesc), (attnum)-1), \ |
| 721 | (char *) (tup)->t_data + (tup)->t_data->t_hoff + \ |
| 722 | TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff)\ |
| 723 | ) \ |
| 724 | : \ |
| 725 | nocachegetattr((tup), (attnum), (tupleDesc)) \ |
| 726 | ) \ |
| 727 | : \ |
| 728 | ( \ |
| 729 | att_isnull((attnum)-1, (tup)->t_data->t_bits) ? \ |
| 730 | ( \ |
| 731 | (*(isnull) = true), \ |
| 732 | (Datum)NULL \ |
| 733 | ) \ |
| 734 | : \ |
| 735 | ( \ |
| 736 | nocachegetattr((tup), (attnum), (tupleDesc)) \ |
| 737 | ) \ |
| 738 | ) \ |
| 739 | ) |
| 740 | #else /* defined(DISABLE_COMPLEX_MACRO) */ |
| 741 | |
| 742 | extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
| 743 | bool *isnull); |
| 744 | #endif /* defined(DISABLE_COMPLEX_MACRO) */ |
| 745 | |
| 746 | |
| 747 | /* ---------------- |
| 748 | * heap_getattr |
| 749 | * |
| 750 | * Extract an attribute of a heap tuple and return it as a Datum. |
| 751 | * This works for either system or user attributes. The given attnum |
| 752 | * is properly range-checked. |
| 753 | * |
| 754 | * If the field in question has a NULL value, we return a zero Datum |
| 755 | * and set *isnull == true. Otherwise, we set *isnull == false. |
| 756 | * |
| 757 | * <tup> is the pointer to the heap tuple. <attnum> is the attribute |
| 758 | * number of the column (field) caller wants. <tupleDesc> is a |
| 759 | * pointer to the structure describing the row and all its fields. |
| 760 | * ---------------- |
| 761 | */ |
| 762 | #define heap_getattr(tup, attnum, tupleDesc, isnull) \ |
| 763 | ( \ |
| 764 | ((attnum) > 0) ? \ |
| 765 | ( \ |
| 766 | ((attnum) > (int) HeapTupleHeaderGetNatts((tup)->t_data)) ? \ |
| 767 | getmissingattr((tupleDesc), (attnum), (isnull)) \ |
| 768 | : \ |
| 769 | fastgetattr((tup), (attnum), (tupleDesc), (isnull)) \ |
| 770 | ) \ |
| 771 | : \ |
| 772 | heap_getsysattr((tup), (attnum), (tupleDesc), (isnull)) \ |
| 773 | ) |
| 774 | |
| 775 | |
| 776 | /* prototypes for functions in common/heaptuple.c */ |
| 777 | extern Size heap_compute_data_size(TupleDesc tupleDesc, |
| 778 | Datum *values, bool *isnull); |
| 779 | extern void heap_fill_tuple(TupleDesc tupleDesc, |
| 780 | Datum *values, bool *isnull, |
| 781 | char *data, Size data_size, |
| 782 | uint16 *infomask, bits8 *bit); |
| 783 | extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc); |
| 784 | extern Datum nocachegetattr(HeapTuple tup, int attnum, |
| 785 | TupleDesc att); |
| 786 | extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
| 787 | bool *isnull); |
| 788 | extern Datum getmissingattr(TupleDesc tupleDesc, |
| 789 | int attnum, bool *isnull); |
| 790 | extern HeapTuple heap_copytuple(HeapTuple tuple); |
| 791 | extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest); |
| 792 | extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc); |
| 793 | extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, |
| 794 | Datum *values, bool *isnull); |
| 795 | extern HeapTuple heap_modify_tuple(HeapTuple tuple, |
| 796 | TupleDesc tupleDesc, |
| 797 | Datum *replValues, |
| 798 | bool *replIsnull, |
| 799 | bool *doReplace); |
| 800 | extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple, |
| 801 | TupleDesc tupleDesc, |
| 802 | int nCols, |
| 803 | int *replCols, |
| 804 | Datum *replValues, |
| 805 | bool *replIsnull); |
| 806 | extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, |
| 807 | Datum *values, bool *isnull); |
| 808 | extern void heap_freetuple(HeapTuple htup); |
| 809 | extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor, |
| 810 | Datum *values, bool *isnull); |
| 811 | extern void heap_free_minimal_tuple(MinimalTuple mtup); |
| 812 | extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup); |
| 813 | extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup); |
| 814 | extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup); |
| 815 | extern size_t varsize_any(void *p); |
| 816 | extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); |
| 817 | extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); |
| 818 | |
| 819 | #endif /* HTUP_DETAILS_H */ |
| 820 | |