1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * htup_details.h |
4 | * POSTGRES heap tuple header definitions. |
5 | * |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * src/include/access/htup_details.h |
11 | * |
12 | *------------------------------------------------------------------------- |
13 | */ |
14 | #ifndef HTUP_DETAILS_H |
15 | #define HTUP_DETAILS_H |
16 | |
17 | #include "access/htup.h" |
18 | #include "access/tupdesc.h" |
19 | #include "access/tupmacs.h" |
20 | #include "access/transam.h" |
21 | #include "storage/bufpage.h" |
22 | |
23 | /* |
24 | * MaxTupleAttributeNumber limits the number of (user) columns in a tuple. |
25 | * The key limit on this value is that the size of the fixed overhead for |
26 | * a tuple, plus the size of the null-values bitmap (at 1 bit per column), |
27 | * plus MAXALIGN alignment, must fit into t_hoff which is uint8. On most |
28 | * machines the upper limit without making t_hoff wider would be a little |
29 | * over 1700. We use round numbers here and for MaxHeapAttributeNumber |
30 | * so that alterations in HeapTupleHeaderData layout won't change the |
31 | * supported max number of columns. |
32 | */ |
33 | #define MaxTupleAttributeNumber 1664 /* 8 * 208 */ |
34 | |
35 | /* |
36 | * MaxHeapAttributeNumber limits the number of (user) columns in a table. |
37 | * This should be somewhat less than MaxTupleAttributeNumber. It must be |
38 | * at least one less, else we will fail to do UPDATEs on a maximal-width |
39 | * table (because UPDATE has to form working tuples that include CTID). |
40 | * In practice we want some additional daylight so that we can gracefully |
41 | * support operations that add hidden "resjunk" columns, for example |
42 | * SELECT * FROM wide_table ORDER BY foo, bar, baz. |
43 | * In any case, depending on column data types you will likely be running |
44 | * into the disk-block-based limit on overall tuple size if you have more |
45 | * than a thousand or so columns. TOAST won't help. |
46 | */ |
47 | #define MaxHeapAttributeNumber 1600 /* 8 * 200 */ |
48 | |
49 | /* |
50 | * Heap tuple header. To avoid wasting space, the fields should be |
51 | * laid out in such a way as to avoid structure padding. |
52 | * |
53 | * Datums of composite types (row types) share the same general structure |
54 | * as on-disk tuples, so that the same routines can be used to build and |
55 | * examine them. However the requirements are slightly different: a Datum |
56 | * does not need any transaction visibility information, and it does need |
57 | * a length word and some embedded type information. We can achieve this |
58 | * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple |
59 | * with the fields needed in the Datum case. Typically, all tuples built |
60 | * in-memory will be initialized with the Datum fields; but when a tuple is |
61 | * about to be inserted in a table, the transaction fields will be filled, |
62 | * overwriting the datum fields. |
63 | * |
64 | * The overall structure of a heap tuple looks like: |
65 | * fixed fields (HeapTupleHeaderData struct) |
66 | * nulls bitmap (if HEAP_HASNULL is set in t_infomask) |
67 | * alignment padding (as needed to make user data MAXALIGN'd) |
68 | * object ID (if HEAP_HASOID_OLD is set in t_infomask, not created |
69 | * anymore) |
70 | * user data fields |
71 | * |
72 | * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three |
73 | * physical fields. Xmin and Xmax are always really stored, but Cmin, Cmax |
74 | * and Xvac share a field. This works because we know that Cmin and Cmax |
75 | * are only interesting for the lifetime of the inserting and deleting |
76 | * transaction respectively. If a tuple is inserted and deleted in the same |
77 | * transaction, we store a "combo" command id that can be mapped to the real |
78 | * cmin and cmax, but only by use of local state within the originating |
79 | * backend. See combocid.c for more details. Meanwhile, Xvac is only set by |
80 | * old-style VACUUM FULL, which does not have any command sub-structure and so |
81 | * does not need either Cmin or Cmax. (This requires that old-style VACUUM |
82 | * FULL never try to move a tuple whose Cmin or Cmax is still interesting, |
83 | * ie, an insert-in-progress or delete-in-progress tuple.) |
84 | * |
85 | * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid |
86 | * is initialized with its own TID (location). If the tuple is ever updated, |
87 | * its t_ctid is changed to point to the replacement version of the tuple. Or |
88 | * if the tuple is moved from one partition to another, due to an update of |
89 | * the partition key, t_ctid is set to a special value to indicate that |
90 | * (see ItemPointerSetMovedPartitions). Thus, a tuple is the latest version |
91 | * of its row iff XMAX is invalid or |
92 | * t_ctid points to itself (in which case, if XMAX is valid, the tuple is |
93 | * either locked or deleted). One can follow the chain of t_ctid links |
94 | * to find the newest version of the row, unless it was moved to a different |
95 | * partition. Beware however that VACUUM might |
96 | * erase the pointed-to (newer) tuple before erasing the pointing (older) |
97 | * tuple. Hence, when following a t_ctid link, it is necessary to check |
98 | * to see if the referenced slot is empty or contains an unrelated tuple. |
99 | * Check that the referenced tuple has XMIN equal to the referencing tuple's |
100 | * XMAX to verify that it is actually the descendant version and not an |
101 | * unrelated tuple stored into a slot recently freed by VACUUM. If either |
102 | * check fails, one may assume that there is no live descendant version. |
103 | * |
104 | * t_ctid is sometimes used to store a speculative insertion token, instead |
105 | * of a real TID. A speculative token is set on a tuple that's being |
106 | * inserted, until the inserter is sure that it wants to go ahead with the |
107 | * insertion. Hence a token should only be seen on a tuple with an XMAX |
108 | * that's still in-progress, or invalid/aborted. The token is replaced with |
109 | * the tuple's real TID when the insertion is confirmed. One should never |
110 | * see a speculative insertion token while following a chain of t_ctid links, |
111 | * because they are not used on updates, only insertions. |
112 | * |
113 | * Following the fixed header fields, the nulls bitmap is stored (beginning |
114 | * at t_bits). The bitmap is *not* stored if t_infomask shows that there |
115 | * are no nulls in the tuple. If an OID field is present (as indicated by |
116 | * t_infomask), then it is stored just before the user data, which begins at |
117 | * the offset shown by t_hoff. Note that t_hoff must be a multiple of |
118 | * MAXALIGN. |
119 | */ |
120 | |
121 | typedef struct HeapTupleFields |
122 | { |
123 | TransactionId t_xmin; /* inserting xact ID */ |
124 | TransactionId t_xmax; /* deleting or locking xact ID */ |
125 | |
126 | union |
127 | { |
128 | CommandId t_cid; /* inserting or deleting command ID, or both */ |
129 | TransactionId t_xvac; /* old-style VACUUM FULL xact ID */ |
130 | } t_field3; |
131 | } HeapTupleFields; |
132 | |
133 | typedef struct DatumTupleFields |
134 | { |
135 | int32 datum_len_; /* varlena header (do not touch directly!) */ |
136 | |
137 | int32 datum_typmod; /* -1, or identifier of a record type */ |
138 | |
139 | Oid datum_typeid; /* composite type OID, or RECORDOID */ |
140 | |
141 | /* |
142 | * datum_typeid cannot be a domain over composite, only plain composite, |
143 | * even if the datum is meant as a value of a domain-over-composite type. |
144 | * This is in line with the general principle that CoerceToDomain does not |
145 | * change the physical representation of the base type value. |
146 | * |
147 | * Note: field ordering is chosen with thought that Oid might someday |
148 | * widen to 64 bits. |
149 | */ |
150 | } DatumTupleFields; |
151 | |
152 | struct |
153 | { |
154 | union |
155 | { |
156 | HeapTupleFields ; |
157 | DatumTupleFields ; |
158 | } ; |
159 | |
160 | ItemPointerData ; /* current TID of this or newer tuple (or a |
161 | * speculative insertion token) */ |
162 | |
163 | /* Fields below here must match MinimalTupleData! */ |
164 | |
165 | #define 2 |
166 | uint16 ; /* number of attributes + various flags */ |
167 | |
168 | #define 3 |
169 | uint16 ; /* various flag bits, see below */ |
170 | |
171 | #define 4 |
172 | uint8 ; /* sizeof header incl. bitmap, padding */ |
173 | |
174 | /* ^ - 23 bytes - ^ */ |
175 | |
176 | #define 5 |
177 | bits8 [FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */ |
178 | |
179 | /* MORE DATA FOLLOWS AT END OF STRUCT */ |
180 | }; |
181 | |
182 | /* typedef appears in htup.h */ |
183 | |
184 | #define offsetof(HeapTupleHeaderData, t_bits) |
185 | |
186 | /* |
187 | * information stored in t_infomask: |
188 | */ |
189 | #define HEAP_HASNULL 0x0001 /* has null attribute(s) */ |
190 | #define HEAP_HASVARWIDTH 0x0002 /* has variable-width attribute(s) */ |
191 | #define HEAP_HASEXTERNAL 0x0004 /* has external stored attribute(s) */ |
192 | #define HEAP_HASOID_OLD 0x0008 /* has an object-id field */ |
193 | #define HEAP_XMAX_KEYSHR_LOCK 0x0010 /* xmax is a key-shared locker */ |
194 | #define HEAP_COMBOCID 0x0020 /* t_cid is a combo cid */ |
195 | #define HEAP_XMAX_EXCL_LOCK 0x0040 /* xmax is exclusive locker */ |
196 | #define HEAP_XMAX_LOCK_ONLY 0x0080 /* xmax, if valid, is only a locker */ |
197 | |
198 | /* xmax is a shared locker */ |
199 | #define HEAP_XMAX_SHR_LOCK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK) |
200 | |
201 | #define HEAP_LOCK_MASK (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \ |
202 | HEAP_XMAX_KEYSHR_LOCK) |
203 | #define HEAP_XMIN_COMMITTED 0x0100 /* t_xmin committed */ |
204 | #define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */ |
205 | #define HEAP_XMIN_FROZEN (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID) |
206 | #define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax committed */ |
207 | #define HEAP_XMAX_INVALID 0x0800 /* t_xmax invalid/aborted */ |
208 | #define HEAP_XMAX_IS_MULTI 0x1000 /* t_xmax is a MultiXactId */ |
209 | #define HEAP_UPDATED 0x2000 /* this is UPDATEd version of row */ |
210 | #define HEAP_MOVED_OFF 0x4000 /* moved to another place by pre-9.0 |
211 | * VACUUM FULL; kept for binary |
212 | * upgrade support */ |
213 | #define HEAP_MOVED_IN 0x8000 /* moved from another place by pre-9.0 |
214 | * VACUUM FULL; kept for binary |
215 | * upgrade support */ |
216 | #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN) |
217 | |
218 | #define HEAP_XACT_MASK 0xFFF0 /* visibility-related bits */ |
219 | |
220 | /* |
221 | * A tuple is only locked (i.e. not updated by its Xmax) if the |
222 | * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is |
223 | * not a multi and the EXCL_LOCK bit is set. |
224 | * |
225 | * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible |
226 | * aborted updater transaction. |
227 | * |
228 | * Beware of multiple evaluations of the argument. |
229 | */ |
230 | #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \ |
231 | (((infomask) & HEAP_XMAX_LOCK_ONLY) || \ |
232 | (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK)) |
233 | |
234 | /* |
235 | * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of |
236 | * XMAX_EXCL_LOCK and XMAX_KEYSHR_LOCK must come from a tuple that was |
237 | * share-locked in 9.2 or earlier and then pg_upgrade'd. |
238 | * |
239 | * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple |
240 | * FOR SHARE lockers of that tuple. That set HEAP_XMAX_LOCK_ONLY (with a |
241 | * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and |
242 | * HEAP_XMAX_KEYSHR_LOCK. That combination is no longer possible in 9.3 and |
243 | * up, so if we see that combination we know for certain that the tuple was |
244 | * locked in an earlier release; since all such lockers are gone (they cannot |
245 | * survive through pg_upgrade), such tuples can safely be considered not |
246 | * locked. |
247 | * |
248 | * We must not resolve such multixacts locally, because the result would be |
249 | * bogus, regardless of where they stand with respect to the current valid |
250 | * multixact range. |
251 | */ |
252 | #define HEAP_LOCKED_UPGRADED(infomask) \ |
253 | ( \ |
254 | ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \ |
255 | ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \ |
256 | (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \ |
257 | ) |
258 | |
259 | /* |
260 | * Use these to test whether a particular lock is applied to a tuple |
261 | */ |
262 | #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \ |
263 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK) |
264 | #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \ |
265 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK) |
266 | #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \ |
267 | (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK) |
268 | |
269 | /* turn these all off when Xmax is to change */ |
270 | #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \ |
271 | HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY) |
272 | |
273 | /* |
274 | * information stored in t_infomask2: |
275 | */ |
276 | #define HEAP_NATTS_MASK 0x07FF /* 11 bits for number of attributes */ |
277 | /* bits 0x1800 are available */ |
278 | #define HEAP_KEYS_UPDATED 0x2000 /* tuple was updated and key cols |
279 | * modified, or tuple deleted */ |
280 | #define HEAP_HOT_UPDATED 0x4000 /* tuple was HOT-updated */ |
281 | #define HEAP_ONLY_TUPLE 0x8000 /* this is heap-only tuple */ |
282 | |
283 | #define HEAP2_XACT_MASK 0xE000 /* visibility-related bits */ |
284 | |
285 | /* |
286 | * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins. It is |
287 | * only used in tuples that are in the hash table, and those don't need |
288 | * any visibility information, so we can overlay it on a visibility flag |
289 | * instead of using up a dedicated bit. |
290 | */ |
291 | #define HEAP_TUPLE_HAS_MATCH HEAP_ONLY_TUPLE /* tuple has a join match */ |
292 | |
293 | /* |
294 | * HeapTupleHeader accessor macros |
295 | * |
296 | * Note: beware of multiple evaluations of "tup" argument. But the Set |
297 | * macros evaluate their other argument only once. |
298 | */ |
299 | |
300 | /* |
301 | * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid |
302 | * originally used to insert the tuple. However, the tuple might actually |
303 | * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin |
304 | * is visible to every snapshot. Prior to PostgreSQL 9.4, we actually changed |
305 | * the xmin to FrozenTransactionId, and that value may still be encountered |
306 | * on disk. |
307 | */ |
308 | #define (tup) \ |
309 | ( \ |
310 | (tup)->t_choice.t_heap.t_xmin \ |
311 | ) |
312 | |
313 | #define (tup) \ |
314 | ( \ |
315 | HeapTupleHeaderXminFrozen(tup) ? \ |
316 | FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \ |
317 | ) |
318 | |
319 | #define (tup, xid) \ |
320 | ( \ |
321 | (tup)->t_choice.t_heap.t_xmin = (xid) \ |
322 | ) |
323 | |
324 | #define (tup) \ |
325 | ( \ |
326 | ((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \ |
327 | ) |
328 | |
329 | #define (tup) \ |
330 | ( \ |
331 | ((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \ |
332 | HEAP_XMIN_INVALID \ |
333 | ) |
334 | |
335 | #define (tup) \ |
336 | ( \ |
337 | ((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \ |
338 | ) |
339 | |
340 | #define (tup) \ |
341 | ( \ |
342 | AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ |
343 | ((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \ |
344 | ) |
345 | |
346 | #define (tup) \ |
347 | ( \ |
348 | AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \ |
349 | ((tup)->t_infomask |= HEAP_XMIN_INVALID) \ |
350 | ) |
351 | |
352 | #define (tup) \ |
353 | ( \ |
354 | AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \ |
355 | ((tup)->t_infomask |= HEAP_XMIN_FROZEN) \ |
356 | ) |
357 | |
358 | /* |
359 | * HeapTupleHeaderGetRawXmax gets you the raw Xmax field. To find out the Xid |
360 | * that updated a tuple, you might need to resolve the MultiXactId if certain |
361 | * bits are set. HeapTupleHeaderGetUpdateXid checks those bits and takes care |
362 | * to resolve the MultiXactId if necessary. This might involve multixact I/O, |
363 | * so it should only be used if absolutely necessary. |
364 | */ |
365 | #define (tup) \ |
366 | ( \ |
367 | (!((tup)->t_infomask & HEAP_XMAX_INVALID) && \ |
368 | ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \ |
369 | !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \ |
370 | HeapTupleGetUpdateXid(tup) \ |
371 | : \ |
372 | HeapTupleHeaderGetRawXmax(tup) \ |
373 | ) |
374 | |
375 | #define (tup) \ |
376 | ( \ |
377 | (tup)->t_choice.t_heap.t_xmax \ |
378 | ) |
379 | |
380 | #define (tup, xid) \ |
381 | ( \ |
382 | (tup)->t_choice.t_heap.t_xmax = (xid) \ |
383 | ) |
384 | |
385 | /* |
386 | * HeapTupleHeaderGetRawCommandId will give you what's in the header whether |
387 | * it is useful or not. Most code should use HeapTupleHeaderGetCmin or |
388 | * HeapTupleHeaderGetCmax instead, but note that those Assert that you can |
389 | * get a legitimate result, ie you are in the originating transaction! |
390 | */ |
391 | #define HeapTupleHeaderGetRawCommandId(tup) \ |
392 | ( \ |
393 | (tup)->t_choice.t_heap.t_field3.t_cid \ |
394 | ) |
395 | |
396 | /* SetCmin is reasonably simple since we never need a combo CID */ |
397 | #define (tup, cid) \ |
398 | do { \ |
399 | Assert(!((tup)->t_infomask & HEAP_MOVED)); \ |
400 | (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ |
401 | (tup)->t_infomask &= ~HEAP_COMBOCID; \ |
402 | } while (0) |
403 | |
404 | /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */ |
405 | #define (tup, cid, iscombo) \ |
406 | do { \ |
407 | Assert(!((tup)->t_infomask & HEAP_MOVED)); \ |
408 | (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \ |
409 | if (iscombo) \ |
410 | (tup)->t_infomask |= HEAP_COMBOCID; \ |
411 | else \ |
412 | (tup)->t_infomask &= ~HEAP_COMBOCID; \ |
413 | } while (0) |
414 | |
415 | #define (tup) \ |
416 | ( \ |
417 | ((tup)->t_infomask & HEAP_MOVED) ? \ |
418 | (tup)->t_choice.t_heap.t_field3.t_xvac \ |
419 | : \ |
420 | InvalidTransactionId \ |
421 | ) |
422 | |
423 | #define (tup, xid) \ |
424 | do { \ |
425 | Assert((tup)->t_infomask & HEAP_MOVED); \ |
426 | (tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \ |
427 | } while (0) |
428 | |
429 | #define (tup) \ |
430 | ( \ |
431 | (ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \ |
432 | ) |
433 | |
434 | #define (tup) \ |
435 | ( \ |
436 | AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \ |
437 | ItemPointerGetBlockNumber(&(tup)->t_ctid) \ |
438 | ) |
439 | |
440 | #define (tup, token) \ |
441 | ( \ |
442 | ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \ |
443 | ) |
444 | |
445 | #define (tup) \ |
446 | (ItemPointerGetOffsetNumber(&(tup)->t_ctid) == MovedPartitionsOffsetNumber && \ |
447 | ItemPointerGetBlockNumberNoCheck(&(tup)->t_ctid) == MovedPartitionsBlockNumber) |
448 | |
449 | #define (tup) \ |
450 | ItemPointerSet(&(tup)->t_ctid, MovedPartitionsBlockNumber, MovedPartitionsOffsetNumber) |
451 | |
452 | #define (tup) \ |
453 | VARSIZE(tup) |
454 | |
455 | #define (tup, len) \ |
456 | SET_VARSIZE(tup, len) |
457 | |
458 | #define (tup) \ |
459 | ( \ |
460 | (tup)->t_choice.t_datum.datum_typeid \ |
461 | ) |
462 | |
463 | #define (tup, typeid) \ |
464 | ( \ |
465 | (tup)->t_choice.t_datum.datum_typeid = (typeid) \ |
466 | ) |
467 | |
468 | #define (tup) \ |
469 | ( \ |
470 | (tup)->t_choice.t_datum.datum_typmod \ |
471 | ) |
472 | |
473 | #define (tup, typmod) \ |
474 | ( \ |
475 | (tup)->t_choice.t_datum.datum_typmod = (typmod) \ |
476 | ) |
477 | |
478 | /* |
479 | * Note that we stop considering a tuple HOT-updated as soon as it is known |
480 | * aborted or the would-be updating transaction is known aborted. For best |
481 | * efficiency, check tuple visibility before using this macro, so that the |
482 | * INVALID bits will be as up to date as possible. |
483 | */ |
484 | #define (tup) \ |
485 | ( \ |
486 | ((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \ |
487 | ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \ |
488 | !HeapTupleHeaderXminInvalid(tup) \ |
489 | ) |
490 | |
491 | #define (tup) \ |
492 | ( \ |
493 | (tup)->t_infomask2 |= HEAP_HOT_UPDATED \ |
494 | ) |
495 | |
496 | #define (tup) \ |
497 | ( \ |
498 | (tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \ |
499 | ) |
500 | |
501 | #define (tup) \ |
502 | ( \ |
503 | ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \ |
504 | ) |
505 | |
506 | #define (tup) \ |
507 | ( \ |
508 | (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \ |
509 | ) |
510 | |
511 | #define (tup) \ |
512 | ( \ |
513 | (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \ |
514 | ) |
515 | |
516 | #define (tup) \ |
517 | ( \ |
518 | ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \ |
519 | ) |
520 | |
521 | #define (tup) \ |
522 | ( \ |
523 | (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \ |
524 | ) |
525 | |
526 | #define (tup) \ |
527 | ( \ |
528 | (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \ |
529 | ) |
530 | |
531 | #define (tup) \ |
532 | ((tup)->t_infomask2 & HEAP_NATTS_MASK) |
533 | |
534 | #define (tup, natts) \ |
535 | ( \ |
536 | (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \ |
537 | ) |
538 | |
539 | #define (tup) \ |
540 | (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0) |
541 | |
542 | |
543 | /* |
544 | * BITMAPLEN(NATTS) - |
545 | * Computes size of null bitmap given number of data columns. |
546 | */ |
547 | #define BITMAPLEN(NATTS) (((int)(NATTS) + 7) / 8) |
548 | |
549 | /* |
550 | * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including |
551 | * header and MAXALIGN alignment padding. Basically it's BLCKSZ minus the |
552 | * other stuff that has to be on a disk page. Since heap pages use no |
553 | * "special space", there's no deduction for that. |
554 | * |
555 | * NOTE: we allow for the ItemId that must point to the tuple, ensuring that |
556 | * an otherwise-empty page can indeed hold a tuple of this size. Because |
557 | * ItemIds and tuples have different alignment requirements, don't assume that |
558 | * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page. |
559 | */ |
560 | #define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData))) |
561 | #define MinHeapTupleSize MAXALIGN(SizeofHeapTupleHeader) |
562 | |
563 | /* |
564 | * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can |
565 | * fit on one heap page. (Note that indexes could have more, because they |
566 | * use a smaller tuple header.) We arrive at the divisor because each tuple |
567 | * must be maxaligned, and it must have an associated line pointer. |
568 | * |
569 | * Note: with HOT, there could theoretically be more line pointers (not actual |
570 | * tuples) than this on a heap page. However we constrain the number of line |
571 | * pointers to this anyway, to avoid excessive line-pointer bloat and not |
572 | * require increases in the size of work arrays. |
573 | */ |
574 | #define MaxHeapTuplesPerPage \ |
575 | ((int) ((BLCKSZ - SizeOfPageHeaderData) / \ |
576 | (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData)))) |
577 | |
578 | /* |
579 | * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of |
580 | * data fields of char(n) and similar types. It need not have anything |
581 | * directly to do with the *actual* upper limit of varlena values, which |
582 | * is currently 1Gb (see TOAST structures in postgres.h). I've set it |
583 | * at 10Mb which seems like a reasonable number --- tgl 8/6/00. |
584 | */ |
585 | #define MaxAttrSize (10 * 1024 * 1024) |
586 | |
587 | |
588 | /* |
589 | * MinimalTuple is an alternative representation that is used for transient |
590 | * tuples inside the executor, in places where transaction status information |
591 | * is not required, the tuple rowtype is known, and shaving off a few bytes |
592 | * is worthwhile because we need to store many tuples. The representation |
593 | * is chosen so that tuple access routines can work with either full or |
594 | * minimal tuples via a HeapTupleData pointer structure. The access routines |
595 | * see no difference, except that they must not access the transaction status |
596 | * or t_ctid fields because those aren't there. |
597 | * |
598 | * For the most part, MinimalTuples should be accessed via TupleTableSlot |
599 | * routines. These routines will prevent access to the "system columns" |
600 | * and thereby prevent accidental use of the nonexistent fields. |
601 | * |
602 | * MinimalTupleData contains a length word, some padding, and fields matching |
603 | * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so |
604 | * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both |
605 | * structs. This makes data alignment rules equivalent in both cases. |
606 | * |
607 | * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is |
608 | * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the |
609 | * minimal tuple --- that is, where a full tuple matching the minimal tuple's |
610 | * data would start. This trick is what makes the structs seem equivalent. |
611 | * |
612 | * Note that t_hoff is computed the same as in a full tuple, hence it includes |
613 | * the MINIMAL_TUPLE_OFFSET distance. t_len does not include that, however. |
614 | * |
615 | * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data |
616 | * other than the length word. tuplesort.c and tuplestore.c use this to avoid |
617 | * writing the padding to disk. |
618 | */ |
619 | #define MINIMAL_TUPLE_OFFSET \ |
620 | ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF) |
621 | #define MINIMAL_TUPLE_PADDING \ |
622 | ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF) |
623 | #define MINIMAL_TUPLE_DATA_OFFSET \ |
624 | offsetof(MinimalTupleData, t_infomask2) |
625 | |
626 | struct MinimalTupleData |
627 | { |
628 | uint32 t_len; /* actual length of minimal tuple */ |
629 | |
630 | char mt_padding[MINIMAL_TUPLE_PADDING]; |
631 | |
632 | /* Fields below here must match HeapTupleHeaderData! */ |
633 | |
634 | uint16 t_infomask2; /* number of attributes + various flags */ |
635 | |
636 | uint16 t_infomask; /* various flag bits, see below */ |
637 | |
638 | uint8 t_hoff; /* sizeof header incl. bitmap, padding */ |
639 | |
640 | /* ^ - 23 bytes - ^ */ |
641 | |
642 | bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */ |
643 | |
644 | /* MORE DATA FOLLOWS AT END OF STRUCT */ |
645 | }; |
646 | |
647 | /* typedef appears in htup.h */ |
648 | |
649 | #define offsetof(MinimalTupleData, t_bits) |
650 | |
651 | |
652 | /* |
653 | * GETSTRUCT - given a HeapTuple pointer, return address of the user data |
654 | */ |
655 | #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff) |
656 | |
657 | /* |
658 | * Accessor macros to be used with HeapTuple pointers. |
659 | */ |
660 | |
661 | #define HeapTupleHasNulls(tuple) \ |
662 | (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0) |
663 | |
664 | #define HeapTupleNoNulls(tuple) \ |
665 | (!((tuple)->t_data->t_infomask & HEAP_HASNULL)) |
666 | |
667 | #define HeapTupleHasVarWidth(tuple) \ |
668 | (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0) |
669 | |
670 | #define HeapTupleAllFixed(tuple) \ |
671 | (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH)) |
672 | |
673 | #define HeapTupleHasExternal(tuple) \ |
674 | (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0) |
675 | |
676 | #define HeapTupleIsHotUpdated(tuple) \ |
677 | HeapTupleHeaderIsHotUpdated((tuple)->t_data) |
678 | |
679 | #define HeapTupleSetHotUpdated(tuple) \ |
680 | HeapTupleHeaderSetHotUpdated((tuple)->t_data) |
681 | |
682 | #define HeapTupleClearHotUpdated(tuple) \ |
683 | HeapTupleHeaderClearHotUpdated((tuple)->t_data) |
684 | |
685 | #define HeapTupleIsHeapOnly(tuple) \ |
686 | HeapTupleHeaderIsHeapOnly((tuple)->t_data) |
687 | |
688 | #define HeapTupleSetHeapOnly(tuple) \ |
689 | HeapTupleHeaderSetHeapOnly((tuple)->t_data) |
690 | |
691 | #define HeapTupleClearHeapOnly(tuple) \ |
692 | HeapTupleHeaderClearHeapOnly((tuple)->t_data) |
693 | |
694 | |
695 | /* ---------------- |
696 | * fastgetattr |
697 | * |
698 | * Fetch a user attribute's value as a Datum (might be either a |
699 | * value, or a pointer into the data area of the tuple). |
700 | * |
701 | * This must not be used when a system attribute might be requested. |
702 | * Furthermore, the passed attnum MUST be valid. Use heap_getattr() |
703 | * instead, if in doubt. |
704 | * |
705 | * This gets called many times, so we macro the cacheable and NULL |
706 | * lookups, and call nocachegetattr() for the rest. |
707 | * ---------------- |
708 | */ |
709 | |
710 | #if !defined(DISABLE_COMPLEX_MACRO) |
711 | |
712 | #define fastgetattr(tup, attnum, tupleDesc, isnull) \ |
713 | ( \ |
714 | AssertMacro((attnum) > 0), \ |
715 | (*(isnull) = false), \ |
716 | HeapTupleNoNulls(tup) ? \ |
717 | ( \ |
718 | TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff >= 0 ? \ |
719 | ( \ |
720 | fetchatt(TupleDescAttr((tupleDesc), (attnum)-1), \ |
721 | (char *) (tup)->t_data + (tup)->t_data->t_hoff + \ |
722 | TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff)\ |
723 | ) \ |
724 | : \ |
725 | nocachegetattr((tup), (attnum), (tupleDesc)) \ |
726 | ) \ |
727 | : \ |
728 | ( \ |
729 | att_isnull((attnum)-1, (tup)->t_data->t_bits) ? \ |
730 | ( \ |
731 | (*(isnull) = true), \ |
732 | (Datum)NULL \ |
733 | ) \ |
734 | : \ |
735 | ( \ |
736 | nocachegetattr((tup), (attnum), (tupleDesc)) \ |
737 | ) \ |
738 | ) \ |
739 | ) |
740 | #else /* defined(DISABLE_COMPLEX_MACRO) */ |
741 | |
742 | extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
743 | bool *isnull); |
744 | #endif /* defined(DISABLE_COMPLEX_MACRO) */ |
745 | |
746 | |
747 | /* ---------------- |
748 | * heap_getattr |
749 | * |
750 | * Extract an attribute of a heap tuple and return it as a Datum. |
751 | * This works for either system or user attributes. The given attnum |
752 | * is properly range-checked. |
753 | * |
754 | * If the field in question has a NULL value, we return a zero Datum |
755 | * and set *isnull == true. Otherwise, we set *isnull == false. |
756 | * |
757 | * <tup> is the pointer to the heap tuple. <attnum> is the attribute |
758 | * number of the column (field) caller wants. <tupleDesc> is a |
759 | * pointer to the structure describing the row and all its fields. |
760 | * ---------------- |
761 | */ |
762 | #define heap_getattr(tup, attnum, tupleDesc, isnull) \ |
763 | ( \ |
764 | ((attnum) > 0) ? \ |
765 | ( \ |
766 | ((attnum) > (int) HeapTupleHeaderGetNatts((tup)->t_data)) ? \ |
767 | getmissingattr((tupleDesc), (attnum), (isnull)) \ |
768 | : \ |
769 | fastgetattr((tup), (attnum), (tupleDesc), (isnull)) \ |
770 | ) \ |
771 | : \ |
772 | heap_getsysattr((tup), (attnum), (tupleDesc), (isnull)) \ |
773 | ) |
774 | |
775 | |
776 | /* prototypes for functions in common/heaptuple.c */ |
777 | extern Size heap_compute_data_size(TupleDesc tupleDesc, |
778 | Datum *values, bool *isnull); |
779 | extern void heap_fill_tuple(TupleDesc tupleDesc, |
780 | Datum *values, bool *isnull, |
781 | char *data, Size data_size, |
782 | uint16 *infomask, bits8 *bit); |
783 | extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc); |
784 | extern Datum nocachegetattr(HeapTuple tup, int attnum, |
785 | TupleDesc att); |
786 | extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
787 | bool *isnull); |
788 | extern Datum getmissingattr(TupleDesc tupleDesc, |
789 | int attnum, bool *isnull); |
790 | extern HeapTuple heap_copytuple(HeapTuple tuple); |
791 | extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest); |
792 | extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc); |
793 | extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, |
794 | Datum *values, bool *isnull); |
795 | extern HeapTuple heap_modify_tuple(HeapTuple tuple, |
796 | TupleDesc tupleDesc, |
797 | Datum *replValues, |
798 | bool *replIsnull, |
799 | bool *doReplace); |
800 | extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple, |
801 | TupleDesc tupleDesc, |
802 | int nCols, |
803 | int *replCols, |
804 | Datum *replValues, |
805 | bool *replIsnull); |
806 | extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, |
807 | Datum *values, bool *isnull); |
808 | extern void heap_freetuple(HeapTuple htup); |
809 | extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor, |
810 | Datum *values, bool *isnull); |
811 | extern void heap_free_minimal_tuple(MinimalTuple mtup); |
812 | extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup); |
813 | extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup); |
814 | extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup); |
815 | extern size_t varsize_any(void *p); |
816 | extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); |
817 | extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc); |
818 | |
819 | #endif /* HTUP_DETAILS_H */ |
820 | |