1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nbtree.h |
4 | * header file for postgres btree access method implementation. |
5 | * |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * src/include/access/nbtree.h |
11 | * |
12 | *------------------------------------------------------------------------- |
13 | */ |
14 | #ifndef NBTREE_H |
15 | #define NBTREE_H |
16 | |
17 | #include "access/amapi.h" |
18 | #include "access/itup.h" |
19 | #include "access/sdir.h" |
20 | #include "access/xlogreader.h" |
21 | #include "catalog/pg_index.h" |
22 | #include "lib/stringinfo.h" |
23 | #include "storage/bufmgr.h" |
24 | #include "storage/shm_toc.h" |
25 | |
26 | /* There's room for a 16-bit vacuum cycle ID in BTPageOpaqueData */ |
27 | typedef uint16 BTCycleId; |
28 | |
29 | /* |
30 | * BTPageOpaqueData -- At the end of every page, we store a pointer |
31 | * to both siblings in the tree. This is used to do forward/backward |
32 | * index scans. The next-page link is also critical for recovery when |
33 | * a search has navigated to the wrong page due to concurrent page splits |
34 | * or deletions; see src/backend/access/nbtree/README for more info. |
35 | * |
36 | * In addition, we store the page's btree level (counting upwards from |
37 | * zero at a leaf page) as well as some flag bits indicating the page type |
38 | * and status. If the page is deleted, we replace the level with the |
39 | * next-transaction-ID value indicating when it is safe to reclaim the page. |
40 | * |
41 | * We also store a "vacuum cycle ID". When a page is split while VACUUM is |
42 | * processing the index, a nonzero value associated with the VACUUM run is |
43 | * stored into both halves of the split page. (If VACUUM is not running, |
44 | * both pages receive zero cycleids.) This allows VACUUM to detect whether |
45 | * a page was split since it started, with a small probability of false match |
46 | * if the page was last split some exact multiple of MAX_BT_CYCLE_ID VACUUMs |
47 | * ago. Also, during a split, the BTP_SPLIT_END flag is cleared in the left |
48 | * (original) page, and set in the right page, but only if the next page |
49 | * to its right has a different cycleid. |
50 | * |
51 | * NOTE: the BTP_LEAF flag bit is redundant since level==0 could be tested |
52 | * instead. |
53 | */ |
54 | |
55 | typedef struct BTPageOpaqueData |
56 | { |
57 | BlockNumber btpo_prev; /* left sibling, or P_NONE if leftmost */ |
58 | BlockNumber btpo_next; /* right sibling, or P_NONE if rightmost */ |
59 | union |
60 | { |
61 | uint32 level; /* tree level --- zero for leaf pages */ |
62 | TransactionId xact; /* next transaction ID, if deleted */ |
63 | } btpo; |
64 | uint16 btpo_flags; /* flag bits, see below */ |
65 | BTCycleId btpo_cycleid; /* vacuum cycle ID of latest split */ |
66 | } BTPageOpaqueData; |
67 | |
68 | typedef BTPageOpaqueData *BTPageOpaque; |
69 | |
70 | /* Bits defined in btpo_flags */ |
71 | #define BTP_LEAF (1 << 0) /* leaf page, i.e. not internal page */ |
72 | #define BTP_ROOT (1 << 1) /* root page (has no parent) */ |
73 | #define BTP_DELETED (1 << 2) /* page has been deleted from tree */ |
74 | #define BTP_META (1 << 3) /* meta-page */ |
75 | #define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */ |
76 | #define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */ |
77 | #define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DEAD tuples */ |
78 | #define BTP_INCOMPLETE_SPLIT (1 << 7) /* right sibling's downlink is missing */ |
79 | |
80 | /* |
81 | * The max allowed value of a cycle ID is a bit less than 64K. This is |
82 | * for convenience of pg_filedump and similar utilities: we want to use |
83 | * the last 2 bytes of special space as an index type indicator, and |
84 | * restricting cycle ID lets btree use that space for vacuum cycle IDs |
85 | * while still allowing index type to be identified. |
86 | */ |
87 | #define MAX_BT_CYCLE_ID 0xFF7F |
88 | |
89 | |
90 | /* |
91 | * The Meta page is always the first page in the btree index. |
92 | * Its primary purpose is to point to the location of the btree root page. |
93 | * We also point to the "fast" root, which is the current effective root; |
94 | * see README for discussion. |
95 | */ |
96 | |
97 | typedef struct BTMetaPageData |
98 | { |
99 | uint32 btm_magic; /* should contain BTREE_MAGIC */ |
100 | uint32 btm_version; /* nbtree version (always <= BTREE_VERSION) */ |
101 | BlockNumber btm_root; /* current root location */ |
102 | uint32 btm_level; /* tree level of the root page */ |
103 | BlockNumber btm_fastroot; /* current "fast" root location */ |
104 | uint32 btm_fastlevel; /* tree level of the "fast" root page */ |
105 | /* remaining fields only valid when btm_version >= BTREE_NOVAC_VERSION */ |
106 | TransactionId btm_oldest_btpo_xact; /* oldest btpo_xact among all deleted |
107 | * pages */ |
108 | float8 btm_last_cleanup_num_heap_tuples; /* number of heap tuples |
109 | * during last cleanup */ |
110 | } BTMetaPageData; |
111 | |
112 | #define BTPageGetMeta(p) \ |
113 | ((BTMetaPageData *) PageGetContents(p)) |
114 | |
115 | /* |
116 | * The current Btree version is 4. That's what you'll get when you create |
117 | * a new index. |
118 | * |
119 | * Btree version 3 was used in PostgreSQL v11. It is mostly the same as |
120 | * version 4, but heap TIDs were not part of the keyspace. Index tuples |
121 | * with duplicate keys could be stored in any order. We continue to |
122 | * support reading and writing Btree versions 2 and 3, so that they don't |
123 | * need to be immediately re-indexed at pg_upgrade. In order to get the |
124 | * new heapkeyspace semantics, however, a REINDEX is needed. |
125 | * |
126 | * Btree version 2 is mostly the same as version 3. There are two new |
127 | * fields in the metapage that were introduced in version 3. A version 2 |
128 | * metapage will be automatically upgraded to version 3 on the first |
129 | * insert to it. INCLUDE indexes cannot use version 2. |
130 | */ |
131 | #define BTREE_METAPAGE 0 /* first page is meta */ |
132 | #define BTREE_MAGIC 0x053162 /* magic number in metapage */ |
133 | #define BTREE_VERSION 4 /* current version number */ |
134 | #define BTREE_MIN_VERSION 2 /* minimal supported version number */ |
135 | #define BTREE_NOVAC_VERSION 3 /* minimal version with all meta fields */ |
136 | |
137 | /* |
138 | * Maximum size of a btree index entry, including its tuple header. |
139 | * |
140 | * We actually need to be able to fit three items on every page, |
141 | * so restrict any one item to 1/3 the per-page available space. |
142 | * |
143 | * There are rare cases where _bt_truncate() will need to enlarge |
144 | * a heap index tuple to make space for a tiebreaker heap TID |
145 | * attribute, which we account for here. |
146 | */ |
147 | #define BTMaxItemSize(page) \ |
148 | MAXALIGN_DOWN((PageGetPageSize(page) - \ |
149 | MAXALIGN(SizeOfPageHeaderData + \ |
150 | 3*sizeof(ItemIdData) + \ |
151 | 3*sizeof(ItemPointerData)) - \ |
152 | MAXALIGN(sizeof(BTPageOpaqueData))) / 3) |
153 | #define BTMaxItemSizeNoHeapTid(page) \ |
154 | MAXALIGN_DOWN((PageGetPageSize(page) - \ |
155 | MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \ |
156 | MAXALIGN(sizeof(BTPageOpaqueData))) / 3) |
157 | |
158 | /* |
159 | * The leaf-page fillfactor defaults to 90% but is user-adjustable. |
160 | * For pages above the leaf level, we use a fixed 70% fillfactor. |
161 | * The fillfactor is applied during index build and when splitting |
162 | * a rightmost page; when splitting non-rightmost pages we try to |
163 | * divide the data equally. When splitting a page that's entirely |
164 | * filled with a single value (duplicates), the effective leaf-page |
165 | * fillfactor is 96%, regardless of whether the page is a rightmost |
166 | * page. |
167 | */ |
168 | #define BTREE_MIN_FILLFACTOR 10 |
169 | #define BTREE_DEFAULT_FILLFACTOR 90 |
170 | #define BTREE_NONLEAF_FILLFACTOR 70 |
171 | #define BTREE_SINGLEVAL_FILLFACTOR 96 |
172 | |
173 | /* |
174 | * In general, the btree code tries to localize its knowledge about |
175 | * page layout to a couple of routines. However, we need a special |
176 | * value to indicate "no page number" in those places where we expect |
177 | * page numbers. We can use zero for this because we never need to |
178 | * make a pointer to the metadata page. |
179 | */ |
180 | |
181 | #define P_NONE 0 |
182 | |
183 | /* |
184 | * Macros to test whether a page is leftmost or rightmost on its tree level, |
185 | * as well as other state info kept in the opaque data. |
186 | */ |
187 | #define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE) |
188 | #define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE) |
189 | #define P_ISLEAF(opaque) (((opaque)->btpo_flags & BTP_LEAF) != 0) |
190 | #define P_ISROOT(opaque) (((opaque)->btpo_flags & BTP_ROOT) != 0) |
191 | #define P_ISDELETED(opaque) (((opaque)->btpo_flags & BTP_DELETED) != 0) |
192 | #define P_ISMETA(opaque) (((opaque)->btpo_flags & BTP_META) != 0) |
193 | #define P_ISHALFDEAD(opaque) (((opaque)->btpo_flags & BTP_HALF_DEAD) != 0) |
194 | #define P_IGNORE(opaque) (((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD)) != 0) |
195 | #define P_HAS_GARBAGE(opaque) (((opaque)->btpo_flags & BTP_HAS_GARBAGE) != 0) |
196 | #define P_INCOMPLETE_SPLIT(opaque) (((opaque)->btpo_flags & BTP_INCOMPLETE_SPLIT) != 0) |
197 | |
198 | /* |
199 | * Lehman and Yao's algorithm requires a ``high key'' on every non-rightmost |
200 | * page. The high key is not a tuple that is used to visit the heap. It is |
201 | * a pivot tuple (see "Notes on B-Tree tuple format" below for definition). |
202 | * The high key on a page is required to be greater than or equal to any |
203 | * other key that appears on the page. If we find ourselves trying to |
204 | * insert a key that is strictly > high key, we know we need to move right |
205 | * (this should only happen if the page was split since we examined the |
206 | * parent page). |
207 | * |
208 | * Our insertion algorithm guarantees that we can use the initial least key |
209 | * on our right sibling as the high key. Once a page is created, its high |
210 | * key changes only if the page is split. |
211 | * |
212 | * On a non-rightmost page, the high key lives in item 1 and data items |
213 | * start in item 2. Rightmost pages have no high key, so we store data |
214 | * items beginning in item 1. |
215 | */ |
216 | |
217 | #define P_HIKEY ((OffsetNumber) 1) |
218 | #define P_FIRSTKEY ((OffsetNumber) 2) |
219 | #define P_FIRSTDATAKEY(opaque) (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY) |
220 | |
221 | /* |
222 | * Notes on B-Tree tuple format, and key and non-key attributes: |
223 | * |
224 | * INCLUDE B-Tree indexes have non-key attributes. These are extra |
225 | * attributes that may be returned by index-only scans, but do not influence |
226 | * the order of items in the index (formally, non-key attributes are not |
227 | * considered to be part of the key space). Non-key attributes are only |
228 | * present in leaf index tuples whose item pointers actually point to heap |
229 | * tuples (non-pivot tuples). _bt_check_natts() enforces the rules |
230 | * described here. |
231 | * |
232 | * Non-pivot tuple format: |
233 | * |
234 | * t_tid | t_info | key values | INCLUDE columns, if any |
235 | * |
236 | * t_tid points to the heap TID, which is a tiebreaker key column as of |
237 | * BTREE_VERSION 4. Currently, the INDEX_ALT_TID_MASK status bit is never |
238 | * set for non-pivot tuples. |
239 | * |
240 | * All other types of index tuples ("pivot" tuples) only have key columns, |
241 | * since pivot tuples only exist to represent how the key space is |
242 | * separated. In general, any B-Tree index that has more than one level |
243 | * (i.e. any index that does not just consist of a metapage and a single |
244 | * leaf root page) must have some number of pivot tuples, since pivot |
245 | * tuples are used for traversing the tree. Suffix truncation can omit |
246 | * trailing key columns when a new pivot is formed, which makes minus |
247 | * infinity their logical value. Since BTREE_VERSION 4 indexes treat heap |
248 | * TID as a trailing key column that ensures that all index tuples are |
249 | * physically unique, it is necessary to represent heap TID as a trailing |
250 | * key column in pivot tuples, though very often this can be truncated |
251 | * away, just like any other key column. (Actually, the heap TID is |
252 | * omitted rather than truncated, since its representation is different to |
253 | * the non-pivot representation.) |
254 | * |
255 | * Pivot tuple format: |
256 | * |
257 | * t_tid | t_info | key values | [heap TID] |
258 | * |
259 | * We store the number of columns present inside pivot tuples by abusing |
260 | * their t_tid offset field, since pivot tuples never need to store a real |
261 | * offset (downlinks only need to store a block number in t_tid). The |
262 | * offset field only stores the number of columns/attributes when the |
263 | * INDEX_ALT_TID_MASK bit is set, which doesn't count the trailing heap |
264 | * TID column sometimes stored in pivot tuples -- that's represented by |
265 | * the presence of BT_HEAP_TID_ATTR. The INDEX_ALT_TID_MASK bit in t_info |
266 | * is always set on BTREE_VERSION 4. BT_HEAP_TID_ATTR can only be set on |
267 | * BTREE_VERSION 4. |
268 | * |
269 | * In version 3 indexes, the INDEX_ALT_TID_MASK flag might not be set in |
270 | * pivot tuples. In that case, the number of key columns is implicitly |
271 | * the same as the number of key columns in the index. It is not usually |
272 | * set on version 2 indexes, which predate the introduction of INCLUDE |
273 | * indexes. (Only explicitly truncated pivot tuples explicitly represent |
274 | * the number of key columns on versions 2 and 3, whereas all pivot tuples |
275 | * are formed using truncation on version 4. A version 2 index will have |
276 | * it set for an internal page negative infinity item iff internal page |
277 | * split occurred after upgrade to Postgres 11+.) |
278 | * |
279 | * The 12 least significant offset bits from t_tid are used to represent |
280 | * the number of columns in INDEX_ALT_TID_MASK tuples, leaving 4 status |
281 | * bits (BT_RESERVED_OFFSET_MASK bits), 3 of which that are reserved for |
282 | * future use. BT_N_KEYS_OFFSET_MASK should be large enough to store any |
283 | * number of columns/attributes <= INDEX_MAX_KEYS. |
284 | * |
285 | * Note well: The macros that deal with the number of attributes in tuples |
286 | * assume that a tuple with INDEX_ALT_TID_MASK set must be a pivot tuple, |
287 | * and that a tuple without INDEX_ALT_TID_MASK set must be a non-pivot |
288 | * tuple (or must have the same number of attributes as the index has |
289 | * generally in the case of !heapkeyspace indexes). They will need to be |
290 | * updated if non-pivot tuples ever get taught to use INDEX_ALT_TID_MASK |
291 | * for something else. |
292 | */ |
293 | #define INDEX_ALT_TID_MASK INDEX_AM_RESERVED_BIT |
294 | |
295 | /* Item pointer offset bits */ |
296 | #define BT_RESERVED_OFFSET_MASK 0xF000 |
297 | #define BT_N_KEYS_OFFSET_MASK 0x0FFF |
298 | #define BT_HEAP_TID_ATTR 0x1000 |
299 | |
300 | /* Get/set downlink block number */ |
301 | #define BTreeInnerTupleGetDownLink(itup) \ |
302 | ItemPointerGetBlockNumberNoCheck(&((itup)->t_tid)) |
303 | #define BTreeInnerTupleSetDownLink(itup, blkno) \ |
304 | ItemPointerSetBlockNumber(&((itup)->t_tid), (blkno)) |
305 | |
306 | /* |
307 | * Get/set leaf page highkey's link. During the second phase of deletion, the |
308 | * target leaf page's high key may point to an ancestor page (at all other |
309 | * times, the leaf level high key's link is not used). See the nbtree README |
310 | * for full details. |
311 | */ |
312 | #define BTreeTupleGetTopParent(itup) \ |
313 | ItemPointerGetBlockNumberNoCheck(&((itup)->t_tid)) |
314 | #define BTreeTupleSetTopParent(itup, blkno) \ |
315 | do { \ |
316 | ItemPointerSetBlockNumber(&((itup)->t_tid), (blkno)); \ |
317 | BTreeTupleSetNAtts((itup), 0); \ |
318 | } while(0) |
319 | |
320 | /* |
321 | * Get/set number of attributes within B-tree index tuple. |
322 | * |
323 | * Note that this does not include an implicit tiebreaker heap TID |
324 | * attribute, if any. Note also that the number of key attributes must be |
325 | * explicitly represented in all heapkeyspace pivot tuples. |
326 | */ |
327 | #define BTreeTupleGetNAtts(itup, rel) \ |
328 | ( \ |
329 | (itup)->t_info & INDEX_ALT_TID_MASK ? \ |
330 | ( \ |
331 | ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_N_KEYS_OFFSET_MASK \ |
332 | ) \ |
333 | : \ |
334 | IndexRelationGetNumberOfAttributes(rel) \ |
335 | ) |
336 | #define BTreeTupleSetNAtts(itup, n) \ |
337 | do { \ |
338 | (itup)->t_info |= INDEX_ALT_TID_MASK; \ |
339 | ItemPointerSetOffsetNumber(&(itup)->t_tid, (n) & BT_N_KEYS_OFFSET_MASK); \ |
340 | } while(0) |
341 | |
342 | /* |
343 | * Get tiebreaker heap TID attribute, if any. Macro works with both pivot |
344 | * and non-pivot tuples, despite differences in how heap TID is represented. |
345 | */ |
346 | #define BTreeTupleGetHeapTID(itup) \ |
347 | ( \ |
348 | (itup)->t_info & INDEX_ALT_TID_MASK && \ |
349 | (ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_HEAP_TID_ATTR) != 0 ? \ |
350 | ( \ |
351 | (ItemPointer) (((char *) (itup) + IndexTupleSize(itup)) - \ |
352 | sizeof(ItemPointerData)) \ |
353 | ) \ |
354 | : (itup)->t_info & INDEX_ALT_TID_MASK ? NULL : (ItemPointer) &((itup)->t_tid) \ |
355 | ) |
356 | /* |
357 | * Set the heap TID attribute for a tuple that uses the INDEX_ALT_TID_MASK |
358 | * representation (currently limited to pivot tuples) |
359 | */ |
360 | #define BTreeTupleSetAltHeapTID(itup) \ |
361 | do { \ |
362 | Assert((itup)->t_info & INDEX_ALT_TID_MASK); \ |
363 | ItemPointerSetOffsetNumber(&(itup)->t_tid, \ |
364 | ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) | BT_HEAP_TID_ATTR); \ |
365 | } while(0) |
366 | |
367 | /* |
368 | * Operator strategy numbers for B-tree have been moved to access/stratnum.h, |
369 | * because many places need to use them in ScanKeyInit() calls. |
370 | * |
371 | * The strategy numbers are chosen so that we can commute them by |
372 | * subtraction, thus: |
373 | */ |
374 | #define BTCommuteStrategyNumber(strat) (BTMaxStrategyNumber + 1 - (strat)) |
375 | |
376 | /* |
377 | * When a new operator class is declared, we require that the user |
378 | * supply us with an amproc procedure (BTORDER_PROC) for determining |
379 | * whether, for two keys a and b, a < b, a = b, or a > b. This routine |
380 | * must return < 0, 0, > 0, respectively, in these three cases. |
381 | * |
382 | * To facilitate accelerated sorting, an operator class may choose to |
383 | * offer a second procedure (BTSORTSUPPORT_PROC). For full details, see |
384 | * src/include/utils/sortsupport.h. |
385 | * |
386 | * To support window frames defined by "RANGE offset PRECEDING/FOLLOWING", |
387 | * an operator class may choose to offer a third amproc procedure |
388 | * (BTINRANGE_PROC), independently of whether it offers sortsupport. |
389 | * For full details, see doc/src/sgml/btree.sgml. |
390 | */ |
391 | |
392 | #define BTORDER_PROC 1 |
393 | #define BTSORTSUPPORT_PROC 2 |
394 | #define BTINRANGE_PROC 3 |
395 | #define BTNProcs 3 |
396 | |
397 | /* |
398 | * We need to be able to tell the difference between read and write |
399 | * requests for pages, in order to do locking correctly. |
400 | */ |
401 | |
402 | #define BT_READ BUFFER_LOCK_SHARE |
403 | #define BT_WRITE BUFFER_LOCK_EXCLUSIVE |
404 | |
405 | /* |
406 | * BTStackData -- As we descend a tree, we push the (location, downlink) |
407 | * pairs from internal pages onto a private stack. If we split a |
408 | * leaf, we use this stack to walk back up the tree and insert data |
409 | * into parent pages (and possibly to split them, too). Lehman and |
410 | * Yao's update algorithm guarantees that under no circumstances can |
411 | * our private stack give us an irredeemably bad picture up the tree. |
412 | * Again, see the paper for details. |
413 | */ |
414 | |
415 | typedef struct BTStackData |
416 | { |
417 | BlockNumber bts_blkno; |
418 | OffsetNumber bts_offset; |
419 | BlockNumber bts_btentry; |
420 | struct BTStackData *bts_parent; |
421 | } BTStackData; |
422 | |
423 | typedef BTStackData *BTStack; |
424 | |
425 | /* |
426 | * BTScanInsertData is the btree-private state needed to find an initial |
427 | * position for an indexscan, or to insert new tuples -- an "insertion |
428 | * scankey" (not to be confused with a search scankey). It's used to descend |
429 | * a B-Tree using _bt_search. |
430 | * |
431 | * heapkeyspace indicates if we expect all keys in the index to be physically |
432 | * unique because heap TID is used as a tiebreaker attribute, and if index may |
433 | * have truncated key attributes in pivot tuples. This is actually a property |
434 | * of the index relation itself (not an indexscan). heapkeyspace indexes are |
435 | * indexes whose version is >= version 4. It's convenient to keep this close |
436 | * by, rather than accessing the metapage repeatedly. |
437 | * |
438 | * anynullkeys indicates if any of the keys had NULL value when scankey was |
439 | * built from index tuple (note that already-truncated tuple key attributes |
440 | * set NULL as a placeholder key value, which also affects value of |
441 | * anynullkeys). This is a convenience for unique index non-pivot tuple |
442 | * insertion, which usually temporarily unsets scantid, but shouldn't iff |
443 | * anynullkeys is true. Value generally matches non-pivot tuple's HasNulls |
444 | * bit, but may not when inserting into an INCLUDE index (tuple header value |
445 | * is affected by the NULL-ness of both key and non-key attributes). |
446 | * |
447 | * When nextkey is false (the usual case), _bt_search and _bt_binsrch will |
448 | * locate the first item >= scankey. When nextkey is true, they will locate |
449 | * the first item > scan key. |
450 | * |
451 | * pivotsearch is set to true by callers that want to re-find a leaf page |
452 | * using a scankey built from a leaf page's high key. Most callers set this |
453 | * to false. |
454 | * |
455 | * scantid is the heap TID that is used as a final tiebreaker attribute. It |
456 | * is set to NULL when index scan doesn't need to find a position for a |
457 | * specific physical tuple. Must be set when inserting new tuples into |
458 | * heapkeyspace indexes, since every tuple in the tree unambiguously belongs |
459 | * in one exact position (it's never set with !heapkeyspace indexes, though). |
460 | * Despite the representational difference, nbtree search code considers |
461 | * scantid to be just another insertion scankey attribute. |
462 | * |
463 | * scankeys is an array of scan key entries for attributes that are compared |
464 | * before scantid (user-visible attributes). keysz is the size of the array. |
465 | * During insertion, there must be a scan key for every attribute, but when |
466 | * starting a regular index scan some can be omitted. The array is used as a |
467 | * flexible array member, though it's sized in a way that makes it possible to |
468 | * use stack allocations. See nbtree/README for full details. |
469 | */ |
470 | typedef struct BTScanInsertData |
471 | { |
472 | bool heapkeyspace; |
473 | bool anynullkeys; |
474 | bool nextkey; |
475 | bool pivotsearch; |
476 | ItemPointer scantid; /* tiebreaker for scankeys */ |
477 | int keysz; /* Size of scankeys array */ |
478 | ScanKeyData scankeys[INDEX_MAX_KEYS]; /* Must appear last */ |
479 | } BTScanInsertData; |
480 | |
481 | typedef BTScanInsertData *BTScanInsert; |
482 | |
483 | /* |
484 | * BTInsertStateData is a working area used during insertion. |
485 | * |
486 | * This is filled in after descending the tree to the first leaf page the new |
487 | * tuple might belong on. Tracks the current position while performing |
488 | * uniqueness check, before we have determined which exact page to insert |
489 | * to. |
490 | * |
491 | * (This should be private to nbtinsert.c, but it's also used by |
492 | * _bt_binsrch_insert) |
493 | */ |
494 | typedef struct BTInsertStateData |
495 | { |
496 | IndexTuple itup; /* Item we're inserting */ |
497 | Size itemsz; /* Size of itup -- should be MAXALIGN()'d */ |
498 | BTScanInsert itup_key; /* Insertion scankey */ |
499 | |
500 | /* Buffer containing leaf page we're likely to insert itup on */ |
501 | Buffer buf; |
502 | |
503 | /* |
504 | * Cache of bounds within the current buffer. Only used for insertions |
505 | * where _bt_check_unique is called. See _bt_binsrch_insert and |
506 | * _bt_findinsertloc for details. |
507 | */ |
508 | bool bounds_valid; |
509 | OffsetNumber low; |
510 | OffsetNumber stricthigh; |
511 | } BTInsertStateData; |
512 | |
513 | typedef BTInsertStateData *BTInsertState; |
514 | |
515 | /* |
516 | * BTScanOpaqueData is the btree-private state needed for an indexscan. |
517 | * This consists of preprocessed scan keys (see _bt_preprocess_keys() for |
518 | * details of the preprocessing), information about the current location |
519 | * of the scan, and information about the marked location, if any. (We use |
520 | * BTScanPosData to represent the data needed for each of current and marked |
521 | * locations.) In addition we can remember some known-killed index entries |
522 | * that must be marked before we can move off the current page. |
523 | * |
524 | * Index scans work a page at a time: we pin and read-lock the page, identify |
525 | * all the matching items on the page and save them in BTScanPosData, then |
526 | * release the read-lock while returning the items to the caller for |
527 | * processing. This approach minimizes lock/unlock traffic. Note that we |
528 | * keep the pin on the index page until the caller is done with all the items |
529 | * (this is needed for VACUUM synchronization, see nbtree/README). When we |
530 | * are ready to step to the next page, if the caller has told us any of the |
531 | * items were killed, we re-lock the page to mark them killed, then unlock. |
532 | * Finally we drop the pin and step to the next page in the appropriate |
533 | * direction. |
534 | * |
535 | * If we are doing an index-only scan, we save the entire IndexTuple for each |
536 | * matched item, otherwise only its heap TID and offset. The IndexTuples go |
537 | * into a separate workspace array; each BTScanPosItem stores its tuple's |
538 | * offset within that array. |
539 | */ |
540 | |
541 | typedef struct BTScanPosItem /* what we remember about each match */ |
542 | { |
543 | ItemPointerData heapTid; /* TID of referenced heap item */ |
544 | OffsetNumber indexOffset; /* index item's location within page */ |
545 | LocationIndex tupleOffset; /* IndexTuple's offset in workspace, if any */ |
546 | } BTScanPosItem; |
547 | |
548 | typedef struct BTScanPosData |
549 | { |
550 | Buffer buf; /* if valid, the buffer is pinned */ |
551 | |
552 | XLogRecPtr lsn; /* pos in the WAL stream when page was read */ |
553 | BlockNumber currPage; /* page referenced by items array */ |
554 | BlockNumber nextPage; /* page's right link when we scanned it */ |
555 | |
556 | /* |
557 | * moreLeft and moreRight track whether we think there may be matching |
558 | * index entries to the left and right of the current page, respectively. |
559 | * We can clear the appropriate one of these flags when _bt_checkkeys() |
560 | * returns continuescan = false. |
561 | */ |
562 | bool moreLeft; |
563 | bool moreRight; |
564 | |
565 | /* |
566 | * If we are doing an index-only scan, nextTupleOffset is the first free |
567 | * location in the associated tuple storage workspace. |
568 | */ |
569 | int nextTupleOffset; |
570 | |
571 | /* |
572 | * The items array is always ordered in index order (ie, increasing |
573 | * indexoffset). When scanning backwards it is convenient to fill the |
574 | * array back-to-front, so we start at the last slot and fill downwards. |
575 | * Hence we need both a first-valid-entry and a last-valid-entry counter. |
576 | * itemIndex is a cursor showing which entry was last returned to caller. |
577 | */ |
578 | int firstItem; /* first valid index in items[] */ |
579 | int lastItem; /* last valid index in items[] */ |
580 | int itemIndex; /* current index in items[] */ |
581 | |
582 | BTScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */ |
583 | } BTScanPosData; |
584 | |
585 | typedef BTScanPosData *BTScanPos; |
586 | |
587 | #define BTScanPosIsPinned(scanpos) \ |
588 | ( \ |
589 | AssertMacro(BlockNumberIsValid((scanpos).currPage) || \ |
590 | !BufferIsValid((scanpos).buf)), \ |
591 | BufferIsValid((scanpos).buf) \ |
592 | ) |
593 | #define BTScanPosUnpin(scanpos) \ |
594 | do { \ |
595 | ReleaseBuffer((scanpos).buf); \ |
596 | (scanpos).buf = InvalidBuffer; \ |
597 | } while (0) |
598 | #define BTScanPosUnpinIfPinned(scanpos) \ |
599 | do { \ |
600 | if (BTScanPosIsPinned(scanpos)) \ |
601 | BTScanPosUnpin(scanpos); \ |
602 | } while (0) |
603 | |
604 | #define BTScanPosIsValid(scanpos) \ |
605 | ( \ |
606 | AssertMacro(BlockNumberIsValid((scanpos).currPage) || \ |
607 | !BufferIsValid((scanpos).buf)), \ |
608 | BlockNumberIsValid((scanpos).currPage) \ |
609 | ) |
610 | #define BTScanPosInvalidate(scanpos) \ |
611 | do { \ |
612 | (scanpos).currPage = InvalidBlockNumber; \ |
613 | (scanpos).nextPage = InvalidBlockNumber; \ |
614 | (scanpos).buf = InvalidBuffer; \ |
615 | (scanpos).lsn = InvalidXLogRecPtr; \ |
616 | (scanpos).nextTupleOffset = 0; \ |
617 | } while (0); |
618 | |
619 | /* We need one of these for each equality-type SK_SEARCHARRAY scan key */ |
620 | typedef struct BTArrayKeyInfo |
621 | { |
622 | int scan_key; /* index of associated key in arrayKeyData */ |
623 | int cur_elem; /* index of current element in elem_values */ |
624 | int mark_elem; /* index of marked element in elem_values */ |
625 | int num_elems; /* number of elems in current array value */ |
626 | Datum *elem_values; /* array of num_elems Datums */ |
627 | } BTArrayKeyInfo; |
628 | |
629 | typedef struct BTScanOpaqueData |
630 | { |
631 | /* these fields are set by _bt_preprocess_keys(): */ |
632 | bool qual_ok; /* false if qual can never be satisfied */ |
633 | int numberOfKeys; /* number of preprocessed scan keys */ |
634 | ScanKey keyData; /* array of preprocessed scan keys */ |
635 | |
636 | /* workspace for SK_SEARCHARRAY support */ |
637 | ScanKey arrayKeyData; /* modified copy of scan->keyData */ |
638 | int numArrayKeys; /* number of equality-type array keys (-1 if |
639 | * there are any unsatisfiable array keys) */ |
640 | int arrayKeyCount; /* count indicating number of array scan keys |
641 | * processed */ |
642 | BTArrayKeyInfo *arrayKeys; /* info about each equality-type array key */ |
643 | MemoryContext arrayContext; /* scan-lifespan context for array data */ |
644 | |
645 | /* info about killed items if any (killedItems is NULL if never used) */ |
646 | int *killedItems; /* currPos.items indexes of killed items */ |
647 | int numKilled; /* number of currently stored items */ |
648 | |
649 | /* |
650 | * If we are doing an index-only scan, these are the tuple storage |
651 | * workspaces for the currPos and markPos respectively. Each is of size |
652 | * BLCKSZ, so it can hold as much as a full page's worth of tuples. |
653 | */ |
654 | char *currTuples; /* tuple storage for currPos */ |
655 | char *markTuples; /* tuple storage for markPos */ |
656 | |
657 | /* |
658 | * If the marked position is on the same page as current position, we |
659 | * don't use markPos, but just keep the marked itemIndex in markItemIndex |
660 | * (all the rest of currPos is valid for the mark position). Hence, to |
661 | * determine if there is a mark, first look at markItemIndex, then at |
662 | * markPos. |
663 | */ |
664 | int markItemIndex; /* itemIndex, or -1 if not valid */ |
665 | |
666 | /* keep these last in struct for efficiency */ |
667 | BTScanPosData currPos; /* current position data */ |
668 | BTScanPosData markPos; /* marked position, if any */ |
669 | } BTScanOpaqueData; |
670 | |
671 | typedef BTScanOpaqueData *BTScanOpaque; |
672 | |
673 | /* |
674 | * We use some private sk_flags bits in preprocessed scan keys. We're allowed |
675 | * to use bits 16-31 (see skey.h). The uppermost bits are copied from the |
676 | * index's indoption[] array entry for the index attribute. |
677 | */ |
678 | #define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */ |
679 | #define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */ |
680 | #define SK_BT_INDOPTION_SHIFT 24 /* must clear the above bits */ |
681 | #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT) |
682 | #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT) |
683 | |
684 | /* |
685 | * Constant definition for progress reporting. Phase numbers must match |
686 | * btbuildphasename. |
687 | */ |
688 | /* PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE is 1 (see progress.h) */ |
689 | #define PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN 2 |
690 | #define PROGRESS_BTREE_PHASE_PERFORMSORT_1 3 |
691 | #define PROGRESS_BTREE_PHASE_PERFORMSORT_2 4 |
692 | #define PROGRESS_BTREE_PHASE_LEAF_LOAD 5 |
693 | |
694 | /* |
695 | * external entry points for btree, in nbtree.c |
696 | */ |
697 | extern void btbuildempty(Relation index); |
698 | extern bool btinsert(Relation rel, Datum *values, bool *isnull, |
699 | ItemPointer ht_ctid, Relation heapRel, |
700 | IndexUniqueCheck checkUnique, |
701 | struct IndexInfo *indexInfo); |
702 | extern IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys); |
703 | extern Size btestimateparallelscan(void); |
704 | extern void btinitparallelscan(void *target); |
705 | extern bool btgettuple(IndexScanDesc scan, ScanDirection dir); |
706 | extern int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm); |
707 | extern void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys, |
708 | ScanKey orderbys, int norderbys); |
709 | extern void btparallelrescan(IndexScanDesc scan); |
710 | extern void btendscan(IndexScanDesc scan); |
711 | extern void btmarkpos(IndexScanDesc scan); |
712 | extern void btrestrpos(IndexScanDesc scan); |
713 | extern IndexBulkDeleteResult *btbulkdelete(IndexVacuumInfo *info, |
714 | IndexBulkDeleteResult *stats, |
715 | IndexBulkDeleteCallback callback, |
716 | void *callback_state); |
717 | extern IndexBulkDeleteResult *btvacuumcleanup(IndexVacuumInfo *info, |
718 | IndexBulkDeleteResult *stats); |
719 | extern bool btcanreturn(Relation index, int attno); |
720 | |
721 | /* |
722 | * prototypes for internal functions in nbtree.c |
723 | */ |
724 | extern bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno); |
725 | extern void _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page); |
726 | extern void _bt_parallel_done(IndexScanDesc scan); |
727 | extern void _bt_parallel_advance_array_keys(IndexScanDesc scan); |
728 | |
729 | /* |
730 | * prototypes for functions in nbtinsert.c |
731 | */ |
732 | extern bool _bt_doinsert(Relation rel, IndexTuple itup, |
733 | IndexUniqueCheck checkUnique, Relation heapRel); |
734 | extern Buffer _bt_getstackbuf(Relation rel, BTStack stack); |
735 | extern void _bt_finish_split(Relation rel, Buffer bbuf, BTStack stack); |
736 | |
737 | /* |
738 | * prototypes for functions in nbtsplitloc.c |
739 | */ |
740 | extern OffsetNumber _bt_findsplitloc(Relation rel, Page page, |
741 | OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem, |
742 | bool *newitemonleft); |
743 | |
744 | /* |
745 | * prototypes for functions in nbtpage.c |
746 | */ |
747 | extern void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level); |
748 | extern void _bt_update_meta_cleanup_info(Relation rel, |
749 | TransactionId oldestBtpoXact, float8 numHeapTuples); |
750 | extern void _bt_upgrademetapage(Page page); |
751 | extern Buffer _bt_getroot(Relation rel, int access); |
752 | extern Buffer _bt_gettrueroot(Relation rel); |
753 | extern int _bt_getrootheight(Relation rel); |
754 | extern bool _bt_heapkeyspace(Relation rel); |
755 | extern void _bt_checkpage(Relation rel, Buffer buf); |
756 | extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access); |
757 | extern Buffer _bt_relandgetbuf(Relation rel, Buffer obuf, |
758 | BlockNumber blkno, int access); |
759 | extern void _bt_relbuf(Relation rel, Buffer buf); |
760 | extern void _bt_pageinit(Page page, Size size); |
761 | extern bool _bt_page_recyclable(Page page); |
762 | extern void _bt_delitems_delete(Relation rel, Buffer buf, |
763 | OffsetNumber *itemnos, int nitems, Relation heapRel); |
764 | extern void _bt_delitems_vacuum(Relation rel, Buffer buf, |
765 | OffsetNumber *itemnos, int nitems, |
766 | BlockNumber lastBlockVacuumed); |
767 | extern int _bt_pagedel(Relation rel, Buffer buf); |
768 | |
769 | /* |
770 | * prototypes for functions in nbtsearch.c |
771 | */ |
772 | extern BTStack _bt_search(Relation rel, BTScanInsert key, Buffer *bufP, |
773 | int access, Snapshot snapshot); |
774 | extern Buffer _bt_moveright(Relation rel, BTScanInsert key, Buffer buf, |
775 | bool forupdate, BTStack stack, int access, Snapshot snapshot); |
776 | extern OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate); |
777 | extern int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum); |
778 | extern bool _bt_first(IndexScanDesc scan, ScanDirection dir); |
779 | extern bool _bt_next(IndexScanDesc scan, ScanDirection dir); |
780 | extern Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost, |
781 | Snapshot snapshot); |
782 | |
783 | /* |
784 | * prototypes for functions in nbtutils.c |
785 | */ |
786 | extern BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup); |
787 | extern void _bt_freestack(BTStack stack); |
788 | extern void _bt_preprocess_array_keys(IndexScanDesc scan); |
789 | extern void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir); |
790 | extern bool _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir); |
791 | extern void _bt_mark_array_keys(IndexScanDesc scan); |
792 | extern void _bt_restore_array_keys(IndexScanDesc scan); |
793 | extern void _bt_preprocess_keys(IndexScanDesc scan); |
794 | extern bool _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, |
795 | int tupnatts, ScanDirection dir, bool *continuescan); |
796 | extern void _bt_killitems(IndexScanDesc scan); |
797 | extern BTCycleId _bt_vacuum_cycleid(Relation rel); |
798 | extern BTCycleId _bt_start_vacuum(Relation rel); |
799 | extern void _bt_end_vacuum(Relation rel); |
800 | extern void _bt_end_vacuum_callback(int code, Datum arg); |
801 | extern Size BTreeShmemSize(void); |
802 | extern void BTreeShmemInit(void); |
803 | extern bytea *btoptions(Datum reloptions, bool validate); |
804 | extern bool btproperty(Oid index_oid, int attno, |
805 | IndexAMProperty prop, const char *propname, |
806 | bool *res, bool *isnull); |
807 | extern char *btbuildphasename(int64 phasenum); |
808 | extern IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft, |
809 | IndexTuple firstright, BTScanInsert itup_key); |
810 | extern int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft, |
811 | IndexTuple firstright); |
812 | extern bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, |
813 | OffsetNumber offnum); |
814 | extern void _bt_check_third_page(Relation rel, Relation heap, |
815 | bool needheaptidspace, Page page, IndexTuple newtup); |
816 | |
817 | /* |
818 | * prototypes for functions in nbtvalidate.c |
819 | */ |
820 | extern bool btvalidate(Oid opclassoid); |
821 | |
822 | /* |
823 | * prototypes for functions in nbtsort.c |
824 | */ |
825 | extern IndexBuildResult *btbuild(Relation heap, Relation index, |
826 | struct IndexInfo *indexInfo); |
827 | extern void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc); |
828 | |
829 | #endif /* NBTREE_H */ |
830 | |