1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * tableam.h |
4 | * POSTGRES table access method definitions. |
5 | * |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * src/include/access/tableam.h |
11 | * |
12 | * NOTES |
13 | * See tableam.sgml for higher level documentation. |
14 | * |
15 | *------------------------------------------------------------------------- |
16 | */ |
17 | #ifndef TABLEAM_H |
18 | #define TABLEAM_H |
19 | |
20 | #include "access/relscan.h" |
21 | #include "access/sdir.h" |
22 | #include "utils/guc.h" |
23 | #include "utils/rel.h" |
24 | #include "utils/snapshot.h" |
25 | |
26 | |
27 | #define DEFAULT_TABLE_ACCESS_METHOD "heap" |
28 | |
29 | /* GUCs */ |
30 | extern char *default_table_access_method; |
31 | extern bool synchronize_seqscans; |
32 | |
33 | |
34 | struct BulkInsertStateData; |
35 | struct IndexInfo; |
36 | struct SampleScanState; |
37 | struct TBMIterateResult; |
38 | struct VacuumParams; |
39 | struct ValidateIndexState; |
40 | |
41 | /* |
42 | * Bitmask values for the flags argument to the scan_begin callback. |
43 | */ |
44 | typedef enum ScanOptions |
45 | { |
46 | /* one of SO_TYPE_* may be specified */ |
47 | SO_TYPE_SEQSCAN = 1 << 0, |
48 | SO_TYPE_BITMAPSCAN = 1 << 1, |
49 | SO_TYPE_SAMPLESCAN = 1 << 2, |
50 | SO_TYPE_ANALYZE = 1 << 3, |
51 | |
52 | /* several of SO_ALLOW_* may be specified */ |
53 | /* allow or disallow use of access strategy */ |
54 | SO_ALLOW_STRAT = 1 << 4, |
55 | /* report location to syncscan logic? */ |
56 | SO_ALLOW_SYNC = 1 << 5, |
57 | /* verify visibility page-at-a-time? */ |
58 | SO_ALLOW_PAGEMODE = 1 << 6, |
59 | |
60 | /* unregister snapshot at scan end? */ |
61 | SO_TEMP_SNAPSHOT = 1 << 7 |
62 | } ScanOptions; |
63 | |
64 | /* |
65 | * Result codes for table_{update,delete,lock_tuple}, and for visibility |
66 | * routines inside table AMs. |
67 | */ |
68 | typedef enum TM_Result |
69 | { |
70 | /* |
71 | * Signals that the action succeeded (i.e. update/delete performed, lock |
72 | * was acquired) |
73 | */ |
74 | TM_Ok, |
75 | |
76 | /* The affected tuple wasn't visible to the relevant snapshot */ |
77 | TM_Invisible, |
78 | |
79 | /* The affected tuple was already modified by the calling backend */ |
80 | TM_SelfModified, |
81 | |
82 | /* |
83 | * The affected tuple was updated by another transaction. This includes |
84 | * the case where tuple was moved to another partition. |
85 | */ |
86 | TM_Updated, |
87 | |
88 | /* The affected tuple was deleted by another transaction */ |
89 | TM_Deleted, |
90 | |
91 | /* |
92 | * The affected tuple is currently being modified by another session. This |
93 | * will only be returned if table_(update/delete/lock_tuple) are |
94 | * instructed not to wait. |
95 | */ |
96 | TM_BeingModified, |
97 | |
98 | /* lock couldn't be acquired, action skipped. Only used by lock_tuple */ |
99 | TM_WouldBlock |
100 | } TM_Result; |
101 | |
102 | /* |
103 | * When table_tuple_update, table_tuple_delete, or table_tuple_lock fail |
104 | * because the target tuple is already outdated, they fill in this struct to |
105 | * provide information to the caller about what happened. |
106 | * |
107 | * ctid is the target's ctid link: it is the same as the target's TID if the |
108 | * target was deleted, or the location of the replacement tuple if the target |
109 | * was updated. |
110 | * |
111 | * xmax is the outdating transaction's XID. If the caller wants to visit the |
112 | * replacement tuple, it must check that this matches before believing the |
113 | * replacement is really a match. |
114 | * |
115 | * cmax is the outdating command's CID, but only when the failure code is |
116 | * TM_SelfModified (i.e., something in the current transaction outdated the |
117 | * tuple); otherwise cmax is zero. (We make this restriction because |
118 | * HeapTupleHeaderGetCmax doesn't work for tuples outdated in other |
119 | * transactions.) |
120 | */ |
121 | typedef struct TM_FailureData |
122 | { |
123 | ItemPointerData ctid; |
124 | TransactionId xmax; |
125 | CommandId cmax; |
126 | bool traversed; |
127 | } TM_FailureData; |
128 | |
129 | /* "options" flag bits for table_tuple_insert */ |
130 | #define TABLE_INSERT_SKIP_WAL 0x0001 |
131 | #define TABLE_INSERT_SKIP_FSM 0x0002 |
132 | #define TABLE_INSERT_FROZEN 0x0004 |
133 | #define TABLE_INSERT_NO_LOGICAL 0x0008 |
134 | |
135 | /* flag bits for table_tuple_lock */ |
136 | /* Follow tuples whose update is in progress if lock modes don't conflict */ |
137 | #define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS (1 << 0) |
138 | /* Follow update chain and lock latest version of tuple */ |
139 | #define TUPLE_LOCK_FLAG_FIND_LAST_VERSION (1 << 1) |
140 | |
141 | |
142 | /* Typedef for callback function for table_index_build_scan */ |
143 | typedef void (*IndexBuildCallback) (Relation index, |
144 | HeapTuple htup, |
145 | Datum *values, |
146 | bool *isnull, |
147 | bool tupleIsAlive, |
148 | void *state); |
149 | |
150 | /* |
151 | * API struct for a table AM. Note this must be allocated in a |
152 | * server-lifetime manner, typically as a static const struct, which then gets |
153 | * returned by FormData_pg_am.amhandler. |
154 | * |
155 | * In most cases it's not appropriate to call the callbacks directly, use the |
156 | * table_* wrapper functions instead. |
157 | * |
158 | * GetTableAmRoutine() asserts that required callbacks are filled in, remember |
159 | * to update when adding a callback. |
160 | */ |
161 | typedef struct TableAmRoutine |
162 | { |
163 | /* this must be set to T_TableAmRoutine */ |
164 | NodeTag type; |
165 | |
166 | |
167 | /* ------------------------------------------------------------------------ |
168 | * Slot related callbacks. |
169 | * ------------------------------------------------------------------------ |
170 | */ |
171 | |
172 | /* |
173 | * Return slot implementation suitable for storing a tuple of this AM. |
174 | */ |
175 | const TupleTableSlotOps *(*slot_callbacks) (Relation rel); |
176 | |
177 | |
178 | /* ------------------------------------------------------------------------ |
179 | * Table scan callbacks. |
180 | * ------------------------------------------------------------------------ |
181 | */ |
182 | |
183 | /* |
184 | * Start a scan of `rel`. The callback has to return a TableScanDesc, |
185 | * which will typically be embedded in a larger, AM specific, struct. |
186 | * |
187 | * If nkeys != 0, the results need to be filtered by those scan keys. |
188 | * |
189 | * pscan, if not NULL, will have already been initialized with |
190 | * parallelscan_initialize(), and has to be for the same relation. Will |
191 | * only be set coming from table_beginscan_parallel(). |
192 | * |
193 | * `flags` is a bitmask indicating the type of scan (ScanOptions's |
194 | * SO_TYPE_*, currently only one may be specified), options controlling |
195 | * the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be |
196 | * specified, an AM may ignore unsupported ones) and whether the snapshot |
197 | * needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT). |
198 | */ |
199 | TableScanDesc (*scan_begin) (Relation rel, |
200 | Snapshot snapshot, |
201 | int nkeys, struct ScanKeyData *key, |
202 | ParallelTableScanDesc pscan, |
203 | uint32 flags); |
204 | |
205 | /* |
206 | * Release resources and deallocate scan. If TableScanDesc.temp_snap, |
207 | * TableScanDesc.rs_snapshot needs to be unregistered. |
208 | */ |
209 | void (*scan_end) (TableScanDesc scan); |
210 | |
211 | /* |
212 | * Restart relation scan. If set_params is set to true, allow_{strat, |
213 | * sync, pagemode} (see scan_begin) changes should be taken into account. |
214 | */ |
215 | void (*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key, |
216 | bool set_params, bool allow_strat, |
217 | bool allow_sync, bool allow_pagemode); |
218 | |
219 | /* |
220 | * Return next tuple from `scan`, store in slot. |
221 | */ |
222 | bool (*scan_getnextslot) (TableScanDesc scan, |
223 | ScanDirection direction, |
224 | TupleTableSlot *slot); |
225 | |
226 | |
227 | /* ------------------------------------------------------------------------ |
228 | * Parallel table scan related functions. |
229 | * ------------------------------------------------------------------------ |
230 | */ |
231 | |
232 | /* |
233 | * Estimate the size of shared memory needed for a parallel scan of this |
234 | * relation. The snapshot does not need to be accounted for. |
235 | */ |
236 | Size (*parallelscan_estimate) (Relation rel); |
237 | |
238 | /* |
239 | * Initialize ParallelTableScanDesc for a parallel scan of this relation. |
240 | * `pscan` will be sized according to parallelscan_estimate() for the same |
241 | * relation. |
242 | */ |
243 | Size (*parallelscan_initialize) (Relation rel, |
244 | ParallelTableScanDesc pscan); |
245 | |
246 | /* |
247 | * Reinitialize `pscan` for a new scan. `rel` will be the same relation as |
248 | * when `pscan` was initialized by parallelscan_initialize. |
249 | */ |
250 | void (*parallelscan_reinitialize) (Relation rel, |
251 | ParallelTableScanDesc pscan); |
252 | |
253 | |
254 | /* ------------------------------------------------------------------------ |
255 | * Index Scan Callbacks |
256 | * ------------------------------------------------------------------------ |
257 | */ |
258 | |
259 | /* |
260 | * Prepare to fetch tuples from the relation, as needed when fetching |
261 | * tuples for an index scan. The callback has to return an |
262 | * IndexFetchTableData, which the AM will typically embed in a larger |
263 | * structure with additional information. |
264 | * |
265 | * Tuples for an index scan can then be fetched via index_fetch_tuple. |
266 | */ |
267 | struct IndexFetchTableData *(*index_fetch_begin) (Relation rel); |
268 | |
269 | /* |
270 | * Reset index fetch. Typically this will release cross index fetch |
271 | * resources held in IndexFetchTableData. |
272 | */ |
273 | void (*index_fetch_reset) (struct IndexFetchTableData *data); |
274 | |
275 | /* |
276 | * Release resources and deallocate index fetch. |
277 | */ |
278 | void (*index_fetch_end) (struct IndexFetchTableData *data); |
279 | |
280 | /* |
281 | * Fetch tuple at `tid` into `slot`, after doing a visibility test |
282 | * according to `snapshot`. If a tuple was found and passed the visibility |
283 | * test, return true, false otherwise. |
284 | * |
285 | * Note that AMs that do not necessarily update indexes when indexed |
286 | * columns do not change, need to return the current/correct version of |
287 | * the tuple that is visible to the snapshot, even if the tid points to an |
288 | * older version of the tuple. |
289 | * |
290 | * *call_again is false on the first call to index_fetch_tuple for a tid. |
291 | * If there potentially is another tuple matching the tid, *call_again |
292 | * needs be set to true by index_fetch_tuple, signalling to the caller |
293 | * that index_fetch_tuple should be called again for the same tid. |
294 | * |
295 | * *all_dead, if all_dead is not NULL, should be set to true by |
296 | * index_fetch_tuple iff it is guaranteed that no backend needs to see |
297 | * that tuple. Index AMs can use that to avoid returning that tid in |
298 | * future searches. |
299 | */ |
300 | bool (*index_fetch_tuple) (struct IndexFetchTableData *scan, |
301 | ItemPointer tid, |
302 | Snapshot snapshot, |
303 | TupleTableSlot *slot, |
304 | bool *call_again, bool *all_dead); |
305 | |
306 | |
307 | /* ------------------------------------------------------------------------ |
308 | * Callbacks for non-modifying operations on individual tuples |
309 | * ------------------------------------------------------------------------ |
310 | */ |
311 | |
312 | /* |
313 | * Fetch tuple at `tid` into `slot`, after doing a visibility test |
314 | * according to `snapshot`. If a tuple was found and passed the visibility |
315 | * test, returns true, false otherwise. |
316 | */ |
317 | bool (*tuple_fetch_row_version) (Relation rel, |
318 | ItemPointer tid, |
319 | Snapshot snapshot, |
320 | TupleTableSlot *slot); |
321 | |
322 | /* |
323 | * Is tid valid for a scan of this relation. |
324 | */ |
325 | bool (*tuple_tid_valid) (TableScanDesc scan, |
326 | ItemPointer tid); |
327 | |
328 | /* |
329 | * Return the latest version of the tuple at `tid`, by updating `tid` to |
330 | * point at the newest version. |
331 | */ |
332 | void (*tuple_get_latest_tid) (TableScanDesc scan, |
333 | ItemPointer tid); |
334 | |
335 | /* |
336 | * Does the tuple in `slot` satisfy `snapshot`? The slot needs to be of |
337 | * the appropriate type for the AM. |
338 | */ |
339 | bool (*tuple_satisfies_snapshot) (Relation rel, |
340 | TupleTableSlot *slot, |
341 | Snapshot snapshot); |
342 | |
343 | /* see table_compute_xid_horizon_for_tuples() */ |
344 | TransactionId (*compute_xid_horizon_for_tuples) (Relation rel, |
345 | ItemPointerData *items, |
346 | int nitems); |
347 | |
348 | |
349 | /* ------------------------------------------------------------------------ |
350 | * Manipulations of physical tuples. |
351 | * ------------------------------------------------------------------------ |
352 | */ |
353 | |
354 | /* see table_tuple_insert() for reference about parameters */ |
355 | void (*tuple_insert) (Relation rel, TupleTableSlot *slot, |
356 | CommandId cid, int options, |
357 | struct BulkInsertStateData *bistate); |
358 | |
359 | /* see table_tuple_insert_speculative() for reference about parameters */ |
360 | void (*tuple_insert_speculative) (Relation rel, |
361 | TupleTableSlot *slot, |
362 | CommandId cid, |
363 | int options, |
364 | struct BulkInsertStateData *bistate, |
365 | uint32 specToken); |
366 | |
367 | /* see table_tuple_complete_speculative() for reference about parameters */ |
368 | void (*tuple_complete_speculative) (Relation rel, |
369 | TupleTableSlot *slot, |
370 | uint32 specToken, |
371 | bool succeeded); |
372 | |
373 | /* see table_multi_insert() for reference about parameters */ |
374 | void (*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots, |
375 | CommandId cid, int options, struct BulkInsertStateData *bistate); |
376 | |
377 | /* see table_tuple_delete() for reference about parameters */ |
378 | TM_Result (*tuple_delete) (Relation rel, |
379 | ItemPointer tid, |
380 | CommandId cid, |
381 | Snapshot snapshot, |
382 | Snapshot crosscheck, |
383 | bool wait, |
384 | TM_FailureData *tmfd, |
385 | bool changingPart); |
386 | |
387 | /* see table_tuple_update() for reference about parameters */ |
388 | TM_Result (*tuple_update) (Relation rel, |
389 | ItemPointer otid, |
390 | TupleTableSlot *slot, |
391 | CommandId cid, |
392 | Snapshot snapshot, |
393 | Snapshot crosscheck, |
394 | bool wait, |
395 | TM_FailureData *tmfd, |
396 | LockTupleMode *lockmode, |
397 | bool *update_indexes); |
398 | |
399 | /* see table_tuple_lock() for reference about parameters */ |
400 | TM_Result (*tuple_lock) (Relation rel, |
401 | ItemPointer tid, |
402 | Snapshot snapshot, |
403 | TupleTableSlot *slot, |
404 | CommandId cid, |
405 | LockTupleMode mode, |
406 | LockWaitPolicy wait_policy, |
407 | uint8 flags, |
408 | TM_FailureData *tmfd); |
409 | |
410 | /* |
411 | * Perform operations necessary to complete insertions made via |
412 | * tuple_insert and multi_insert with a BulkInsertState specified. This |
413 | * may for example be used to flush the relation, when the |
414 | * TABLE_INSERT_SKIP_WAL option was used. |
415 | * |
416 | * Typically callers of tuple_insert and multi_insert will just pass all |
417 | * the flags that apply to them, and each AM has to decide which of them |
418 | * make sense for it, and then only take actions in finish_bulk_insert for |
419 | * those flags, and ignore others. |
420 | * |
421 | * Optional callback. |
422 | */ |
423 | void (*finish_bulk_insert) (Relation rel, int options); |
424 | |
425 | |
426 | /* ------------------------------------------------------------------------ |
427 | * DDL related functionality. |
428 | * ------------------------------------------------------------------------ |
429 | */ |
430 | |
431 | /* |
432 | * This callback needs to create a new relation filenode for `rel`, with |
433 | * appropriate durability behaviour for `persistence`. |
434 | * |
435 | * Note that only the subset of the relcache filled by |
436 | * RelationBuildLocalRelation() can be relied upon and that the relation's |
437 | * catalog entries will either not yet exist (new relation), or will still |
438 | * reference the old relfilenode. |
439 | * |
440 | * As output *freezeXid, *minmulti must be set to the values appropriate |
441 | * for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those |
442 | * fields to be filled they can be set to InvalidTransactionId and |
443 | * InvalidMultiXactId, respectively. |
444 | * |
445 | * See also table_relation_set_new_filenode(). |
446 | */ |
447 | void (*relation_set_new_filenode) (Relation rel, |
448 | const RelFileNode *newrnode, |
449 | char persistence, |
450 | TransactionId *freezeXid, |
451 | MultiXactId *minmulti); |
452 | |
453 | /* |
454 | * This callback needs to remove all contents from `rel`'s current |
455 | * relfilenode. No provisions for transactional behaviour need to be made. |
456 | * Often this can be implemented by truncating the underlying storage to |
457 | * its minimal size. |
458 | * |
459 | * See also table_relation_nontransactional_truncate(). |
460 | */ |
461 | void (*relation_nontransactional_truncate) (Relation rel); |
462 | |
463 | /* |
464 | * See table_relation_copy_data(). |
465 | * |
466 | * This can typically be implemented by directly copying the underlying |
467 | * storage, unless it contains references to the tablespace internally. |
468 | */ |
469 | void (*relation_copy_data) (Relation rel, |
470 | const RelFileNode *newrnode); |
471 | |
472 | /* See table_relation_copy_for_cluster() */ |
473 | void (*relation_copy_for_cluster) (Relation NewTable, |
474 | Relation OldTable, |
475 | Relation OldIndex, |
476 | bool use_sort, |
477 | TransactionId OldestXmin, |
478 | TransactionId *xid_cutoff, |
479 | MultiXactId *multi_cutoff, |
480 | double *num_tuples, |
481 | double *tups_vacuumed, |
482 | double *tups_recently_dead); |
483 | |
484 | /* |
485 | * React to VACUUM command on the relation. The VACUUM can be |
486 | * triggered by a user or by autovacuum. The specific actions |
487 | * performed by the AM will depend heavily on the individual AM. |
488 | * |
489 | * On entry a transaction is already established, and the relation is |
490 | * locked with a ShareUpdateExclusive lock. |
491 | * |
492 | * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through |
493 | * this routine, even if (for ANALYZE) it is part of the same VACUUM |
494 | * command. |
495 | * |
496 | * There probably, in the future, needs to be a separate callback to |
497 | * integrate with autovacuum's scheduling. |
498 | */ |
499 | void (*relation_vacuum) (Relation onerel, |
500 | struct VacuumParams *params, |
501 | BufferAccessStrategy bstrategy); |
502 | |
503 | /* |
504 | * Prepare to analyze block `blockno` of `scan`. The scan has been started |
505 | * with table_beginscan_analyze(). See also |
506 | * table_scan_analyze_next_block(). |
507 | * |
508 | * The callback may acquire resources like locks that are held until |
509 | * table_scan_analyze_next_tuple() returns false. It e.g. can make sense |
510 | * to hold a lock until all tuples on a block have been analyzed by |
511 | * scan_analyze_next_tuple. |
512 | * |
513 | * The callback can return false if the block is not suitable for |
514 | * sampling, e.g. because it's a metapage that could never contain tuples. |
515 | * |
516 | * XXX: This obviously is primarily suited for block-based AMs. It's not |
517 | * clear what a good interface for non block based AMs would be, so there |
518 | * isn't one yet. |
519 | */ |
520 | bool (*scan_analyze_next_block) (TableScanDesc scan, |
521 | BlockNumber blockno, |
522 | BufferAccessStrategy bstrategy); |
523 | |
524 | /* |
525 | * See table_scan_analyze_next_tuple(). |
526 | * |
527 | * Not every AM might have a meaningful concept of dead rows, in which |
528 | * case it's OK to not increment *deadrows - but note that that may |
529 | * influence autovacuum scheduling (see comment for relation_vacuum |
530 | * callback). |
531 | */ |
532 | bool (*scan_analyze_next_tuple) (TableScanDesc scan, |
533 | TransactionId OldestXmin, |
534 | double *liverows, |
535 | double *deadrows, |
536 | TupleTableSlot *slot); |
537 | |
538 | /* see table_index_build_range_scan for reference about parameters */ |
539 | double (*index_build_range_scan) (Relation table_rel, |
540 | Relation index_rel, |
541 | struct IndexInfo *index_info, |
542 | bool allow_sync, |
543 | bool anyvisible, |
544 | bool progress, |
545 | BlockNumber start_blockno, |
546 | BlockNumber numblocks, |
547 | IndexBuildCallback callback, |
548 | void *callback_state, |
549 | TableScanDesc scan); |
550 | |
551 | /* see table_index_validate_scan for reference about parameters */ |
552 | void (*index_validate_scan) (Relation table_rel, |
553 | Relation index_rel, |
554 | struct IndexInfo *index_info, |
555 | Snapshot snapshot, |
556 | struct ValidateIndexState *state); |
557 | |
558 | |
559 | /* ------------------------------------------------------------------------ |
560 | * Miscellaneous functions. |
561 | * ------------------------------------------------------------------------ |
562 | */ |
563 | |
564 | /* |
565 | * See table_relation_size(). |
566 | * |
567 | * Note that currently a few callers use the MAIN_FORKNUM size to figure |
568 | * out the range of potentially interesting blocks (brin, analyze). It's |
569 | * probable that we'll need to revise the interface for those at some |
570 | * point. |
571 | */ |
572 | uint64 (*relation_size) (Relation rel, ForkNumber forkNumber); |
573 | |
574 | |
575 | /* |
576 | * This callback should return true if the relation requires a TOAST table |
577 | * and false if it does not. It may wish to examine the relation's tuple |
578 | * descriptor before making a decision, but if it uses some other method |
579 | * of storing large values (or if it does not support them) it can simply |
580 | * return false. |
581 | */ |
582 | bool (*relation_needs_toast_table) (Relation rel); |
583 | |
584 | |
585 | /* ------------------------------------------------------------------------ |
586 | * Planner related functions. |
587 | * ------------------------------------------------------------------------ |
588 | */ |
589 | |
590 | /* |
591 | * See table_relation_estimate_size(). |
592 | * |
593 | * While block oriented, it shouldn't be too hard for an AM that doesn't |
594 | * internally use blocks to convert into a usable representation. |
595 | * |
596 | * This differs from the relation_size callback by returning size |
597 | * estimates (both relation size and tuple count) for planning purposes, |
598 | * rather than returning a currently correct estimate. |
599 | */ |
600 | void (*relation_estimate_size) (Relation rel, int32 *attr_widths, |
601 | BlockNumber *pages, double *tuples, |
602 | double *allvisfrac); |
603 | |
604 | |
605 | /* ------------------------------------------------------------------------ |
606 | * Executor related functions. |
607 | * ------------------------------------------------------------------------ |
608 | */ |
609 | |
610 | /* |
611 | * Prepare to fetch / check / return tuples from `tbmres->blockno` as part |
612 | * of a bitmap table scan. `scan` was started via table_beginscan_bm(). |
613 | * Return false if there are no tuples to be found on the page, true |
614 | * otherwise. |
615 | * |
616 | * This will typically read and pin the target block, and do the necessary |
617 | * work to allow scan_bitmap_next_tuple() to return tuples (e.g. it might |
618 | * make sense to perform tuple visibility checks at this time). For some |
619 | * AMs it will make more sense to do all the work referencing `tbmres` |
620 | * contents here, for others it might be better to defer more work to |
621 | * scan_bitmap_next_tuple. |
622 | * |
623 | * If `tbmres->blockno` is -1, this is a lossy scan and all visible tuples |
624 | * on the page have to be returned, otherwise the tuples at offsets in |
625 | * `tbmres->offsets` need to be returned. |
626 | * |
627 | * XXX: Currently this may only be implemented if the AM uses md.c as its |
628 | * storage manager, and uses ItemPointer->ip_blkid in a manner that maps |
629 | * blockids directly to the underlying storage. nodeBitmapHeapscan.c |
630 | * performs prefetching directly using that interface. This probably |
631 | * needs to be rectified at a later point. |
632 | * |
633 | * XXX: Currently this may only be implemented if the AM uses the |
634 | * visibilitymap, as nodeBitmapHeapscan.c unconditionally accesses it to |
635 | * perform prefetching. This probably needs to be rectified at a later |
636 | * point. |
637 | * |
638 | * Optional callback, but either both scan_bitmap_next_block and |
639 | * scan_bitmap_next_tuple need to exist, or neither. |
640 | */ |
641 | bool (*scan_bitmap_next_block) (TableScanDesc scan, |
642 | struct TBMIterateResult *tbmres); |
643 | |
644 | /* |
645 | * Fetch the next tuple of a bitmap table scan into `slot` and return true |
646 | * if a visible tuple was found, false otherwise. |
647 | * |
648 | * For some AMs it will make more sense to do all the work referencing |
649 | * `tbmres` contents in scan_bitmap_next_block, for others it might be |
650 | * better to defer more work to this callback. |
651 | * |
652 | * Optional callback, but either both scan_bitmap_next_block and |
653 | * scan_bitmap_next_tuple need to exist, or neither. |
654 | */ |
655 | bool (*scan_bitmap_next_tuple) (TableScanDesc scan, |
656 | struct TBMIterateResult *tbmres, |
657 | TupleTableSlot *slot); |
658 | |
659 | /* |
660 | * Prepare to fetch tuples from the next block in a sample scan. Return |
661 | * false if the sample scan is finished, true otherwise. `scan` was |
662 | * started via table_beginscan_sampling(). |
663 | * |
664 | * Typically this will first determine the target block by calling the |
665 | * TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively |
666 | * perform a sequential scan over all blocks. The determined block is |
667 | * then typically read and pinned. |
668 | * |
669 | * As the TsmRoutine interface is block based, a block needs to be passed |
670 | * to NextSampleBlock(). If that's not appropriate for an AM, it |
671 | * internally needs to perform mapping between the internal and a block |
672 | * based representation. |
673 | * |
674 | * Note that it's not acceptable to hold deadlock prone resources such as |
675 | * lwlocks until scan_sample_next_tuple() has exhausted the tuples on the |
676 | * block - the tuple is likely to be returned to an upper query node, and |
677 | * the next call could be off a long while. Holding buffer pins and such |
678 | * is obviously OK. |
679 | * |
680 | * Currently it is required to implement this interface, as there's no |
681 | * alternative way (contrary e.g. to bitmap scans) to implement sample |
682 | * scans. If infeasible to implement, the AM may raise an error. |
683 | */ |
684 | bool (*scan_sample_next_block) (TableScanDesc scan, |
685 | struct SampleScanState *scanstate); |
686 | |
687 | /* |
688 | * This callback, only called after scan_sample_next_block has returned |
689 | * true, should determine the next tuple to be returned from the selected |
690 | * block using the TsmRoutine's NextSampleTuple() callback. |
691 | * |
692 | * The callback needs to perform visibility checks, and only return |
693 | * visible tuples. That obviously can mean calling NextSampleTuple() |
694 | * multiple times. |
695 | * |
696 | * The TsmRoutine interface assumes that there's a maximum offset on a |
697 | * given page, so if that doesn't apply to an AM, it needs to emulate that |
698 | * assumption somehow. |
699 | */ |
700 | bool (*scan_sample_next_tuple) (TableScanDesc scan, |
701 | struct SampleScanState *scanstate, |
702 | TupleTableSlot *slot); |
703 | |
704 | } TableAmRoutine; |
705 | |
706 | |
707 | /* ---------------------------------------------------------------------------- |
708 | * Slot functions. |
709 | * ---------------------------------------------------------------------------- |
710 | */ |
711 | |
712 | /* |
713 | * Returns slot callbacks suitable for holding tuples of the appropriate type |
714 | * for the relation. Works for tables, views, foreign tables and partitioned |
715 | * tables. |
716 | */ |
717 | extern const TupleTableSlotOps *table_slot_callbacks(Relation rel); |
718 | |
719 | /* |
720 | * Returns slot using the callbacks returned by table_slot_callbacks(), and |
721 | * registers it on *reglist. |
722 | */ |
723 | extern TupleTableSlot *table_slot_create(Relation rel, List **reglist); |
724 | |
725 | |
726 | /* ---------------------------------------------------------------------------- |
727 | * Table scan functions. |
728 | * ---------------------------------------------------------------------------- |
729 | */ |
730 | |
731 | /* |
732 | * Start a scan of `rel`. Returned tuples pass a visibility test of |
733 | * `snapshot`, and if nkeys != 0, the results are filtered by those scan keys. |
734 | */ |
735 | static inline TableScanDesc |
736 | table_beginscan(Relation rel, Snapshot snapshot, |
737 | int nkeys, struct ScanKeyData *key) |
738 | { |
739 | uint32 flags = SO_TYPE_SEQSCAN | |
740 | SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE; |
741 | |
742 | return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags); |
743 | } |
744 | |
745 | /* |
746 | * Like table_beginscan(), but for scanning catalog. It'll automatically use a |
747 | * snapshot appropriate for scanning catalog relations. |
748 | */ |
749 | extern TableScanDesc table_beginscan_catalog(Relation rel, int nkeys, |
750 | struct ScanKeyData *key); |
751 | |
752 | /* |
753 | * Like table_beginscan(), but table_beginscan_strat() offers an extended API |
754 | * that lets the caller control whether a nondefault buffer access strategy |
755 | * can be used, and whether syncscan can be chosen (possibly resulting in the |
756 | * scan not starting from block zero). Both of these default to true with |
757 | * plain table_beginscan. |
758 | */ |
759 | static inline TableScanDesc |
760 | table_beginscan_strat(Relation rel, Snapshot snapshot, |
761 | int nkeys, struct ScanKeyData *key, |
762 | bool allow_strat, bool allow_sync) |
763 | { |
764 | uint32 flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE; |
765 | |
766 | if (allow_strat) |
767 | flags |= SO_ALLOW_STRAT; |
768 | if (allow_sync) |
769 | flags |= SO_ALLOW_SYNC; |
770 | |
771 | return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags); |
772 | } |
773 | |
774 | /* |
775 | * table_beginscan_bm is an alternative entry point for setting up a |
776 | * TableScanDesc for a bitmap heap scan. Although that scan technology is |
777 | * really quite unlike a standard seqscan, there is just enough commonality to |
778 | * make it worth using the same data structure. |
779 | */ |
780 | static inline TableScanDesc |
781 | table_beginscan_bm(Relation rel, Snapshot snapshot, |
782 | int nkeys, struct ScanKeyData *key) |
783 | { |
784 | uint32 flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE; |
785 | |
786 | return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags); |
787 | } |
788 | |
789 | /* |
790 | * table_beginscan_sampling is an alternative entry point for setting up a |
791 | * TableScanDesc for a TABLESAMPLE scan. As with bitmap scans, it's worth |
792 | * using the same data structure although the behavior is rather different. |
793 | * In addition to the options offered by table_beginscan_strat, this call |
794 | * also allows control of whether page-mode visibility checking is used. |
795 | */ |
796 | static inline TableScanDesc |
797 | table_beginscan_sampling(Relation rel, Snapshot snapshot, |
798 | int nkeys, struct ScanKeyData *key, |
799 | bool allow_strat, bool allow_sync, |
800 | bool allow_pagemode) |
801 | { |
802 | uint32 flags = SO_TYPE_SAMPLESCAN; |
803 | |
804 | if (allow_strat) |
805 | flags |= SO_ALLOW_STRAT; |
806 | if (allow_sync) |
807 | flags |= SO_ALLOW_SYNC; |
808 | if (allow_pagemode) |
809 | flags |= SO_ALLOW_PAGEMODE; |
810 | |
811 | return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags); |
812 | } |
813 | |
814 | /* |
815 | * table_beginscan_analyze is an alternative entry point for setting up a |
816 | * TableScanDesc for an ANALYZE scan. As with bitmap scans, it's worth using |
817 | * the same data structure although the behavior is rather different. |
818 | */ |
819 | static inline TableScanDesc |
820 | table_beginscan_analyze(Relation rel) |
821 | { |
822 | uint32 flags = SO_TYPE_ANALYZE; |
823 | |
824 | return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags); |
825 | } |
826 | |
827 | /* |
828 | * End relation scan. |
829 | */ |
830 | static inline void |
831 | table_endscan(TableScanDesc scan) |
832 | { |
833 | scan->rs_rd->rd_tableam->scan_end(scan); |
834 | } |
835 | |
836 | /* |
837 | * Restart a relation scan. |
838 | */ |
839 | static inline void |
840 | table_rescan(TableScanDesc scan, |
841 | struct ScanKeyData *key) |
842 | { |
843 | scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false); |
844 | } |
845 | |
846 | /* |
847 | * Restart a relation scan after changing params. |
848 | * |
849 | * This call allows changing the buffer strategy, syncscan, and pagemode |
850 | * options before starting a fresh scan. Note that although the actual use of |
851 | * syncscan might change (effectively, enabling or disabling reporting), the |
852 | * previously selected startblock will be kept. |
853 | */ |
854 | static inline void |
855 | table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key, |
856 | bool allow_strat, bool allow_sync, bool allow_pagemode) |
857 | { |
858 | scan->rs_rd->rd_tableam->scan_rescan(scan, key, true, |
859 | allow_strat, allow_sync, |
860 | allow_pagemode); |
861 | } |
862 | |
863 | /* |
864 | * Update snapshot used by the scan. |
865 | */ |
866 | extern void table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot); |
867 | |
868 | /* |
869 | * Return next tuple from `scan`, store in slot. |
870 | */ |
871 | static inline bool |
872 | table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot) |
873 | { |
874 | slot->tts_tableOid = RelationGetRelid(sscan->rs_rd); |
875 | return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot); |
876 | } |
877 | |
878 | |
879 | /* ---------------------------------------------------------------------------- |
880 | * Parallel table scan related functions. |
881 | * ---------------------------------------------------------------------------- |
882 | */ |
883 | |
884 | /* |
885 | * Estimate the size of shared memory needed for a parallel scan of this |
886 | * relation. |
887 | */ |
888 | extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot); |
889 | |
890 | /* |
891 | * Initialize ParallelTableScanDesc for a parallel scan of this |
892 | * relation. `pscan` needs to be sized according to parallelscan_estimate() |
893 | * for the same relation. Call this just once in the leader process; then, |
894 | * individual workers attach via table_beginscan_parallel. |
895 | */ |
896 | extern void table_parallelscan_initialize(Relation rel, |
897 | ParallelTableScanDesc pscan, |
898 | Snapshot snapshot); |
899 | |
900 | /* |
901 | * Begin a parallel scan. `pscan` needs to have been initialized with |
902 | * table_parallelscan_initialize(), for the same relation. The initialization |
903 | * does not need to have happened in this backend. |
904 | * |
905 | * Caller must hold a suitable lock on the relation. |
906 | */ |
907 | extern TableScanDesc table_beginscan_parallel(Relation rel, |
908 | ParallelTableScanDesc pscan); |
909 | |
910 | /* |
911 | * Restart a parallel scan. Call this in the leader process. Caller is |
912 | * responsible for making sure that all workers have finished the scan |
913 | * beforehand. |
914 | */ |
915 | static inline void |
916 | table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan) |
917 | { |
918 | rel->rd_tableam->parallelscan_reinitialize(rel, pscan); |
919 | } |
920 | |
921 | |
922 | /* ---------------------------------------------------------------------------- |
923 | * Index scan related functions. |
924 | * ---------------------------------------------------------------------------- |
925 | */ |
926 | |
927 | /* |
928 | * Prepare to fetch tuples from the relation, as needed when fetching tuples |
929 | * for an index scan. |
930 | * |
931 | * Tuples for an index scan can then be fetched via table_index_fetch_tuple(). |
932 | */ |
933 | static inline IndexFetchTableData * |
934 | table_index_fetch_begin(Relation rel) |
935 | { |
936 | return rel->rd_tableam->index_fetch_begin(rel); |
937 | } |
938 | |
939 | /* |
940 | * Reset index fetch. Typically this will release cross index fetch resources |
941 | * held in IndexFetchTableData. |
942 | */ |
943 | static inline void |
944 | table_index_fetch_reset(struct IndexFetchTableData *scan) |
945 | { |
946 | scan->rel->rd_tableam->index_fetch_reset(scan); |
947 | } |
948 | |
949 | /* |
950 | * Release resources and deallocate index fetch. |
951 | */ |
952 | static inline void |
953 | table_index_fetch_end(struct IndexFetchTableData *scan) |
954 | { |
955 | scan->rel->rd_tableam->index_fetch_end(scan); |
956 | } |
957 | |
958 | /* |
959 | * Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing |
960 | * a visibility test according to `snapshot`. If a tuple was found and passed |
961 | * the visibility test, returns true, false otherwise. |
962 | * |
963 | * *call_again needs to be false on the first call to table_index_fetch_tuple() for |
964 | * a tid. If there potentially is another tuple matching the tid, *call_again |
965 | * will be set to true, signalling that table_index_fetch_tuple() should be called |
966 | * again for the same tid. |
967 | * |
968 | * *all_dead, if all_dead is not NULL, will be set to true by |
969 | * table_index_fetch_tuple() iff it is guaranteed that no backend needs to see |
970 | * that tuple. Index AMs can use that to avoid returning that tid in future |
971 | * searches. |
972 | * |
973 | * The difference between this function and table_fetch_row_version is that |
974 | * this function returns the currently visible version of a row if the AM |
975 | * supports storing multiple row versions reachable via a single index entry |
976 | * (like heap's HOT). Whereas table_fetch_row_version only evaluates the |
977 | * tuple exactly at `tid`. Outside of index entry ->table tuple lookups, |
978 | * table_tuple_fetch_row_version is what's usually needed. |
979 | */ |
980 | static inline bool |
981 | table_index_fetch_tuple(struct IndexFetchTableData *scan, |
982 | ItemPointer tid, |
983 | Snapshot snapshot, |
984 | TupleTableSlot *slot, |
985 | bool *call_again, bool *all_dead) |
986 | { |
987 | |
988 | return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot, |
989 | slot, call_again, |
990 | all_dead); |
991 | } |
992 | |
993 | /* |
994 | * This is a convenience wrapper around table_index_fetch_tuple() which |
995 | * returns whether there are table tuple items corresponding to an index |
996 | * entry. This likely is only useful to verify if there's a conflict in a |
997 | * unique index. |
998 | */ |
999 | extern bool table_index_fetch_tuple_check(Relation rel, |
1000 | ItemPointer tid, |
1001 | Snapshot snapshot, |
1002 | bool *all_dead); |
1003 | |
1004 | |
1005 | /* ------------------------------------------------------------------------ |
1006 | * Functions for non-modifying operations on individual tuples |
1007 | * ------------------------------------------------------------------------ |
1008 | */ |
1009 | |
1010 | |
1011 | /* |
1012 | * Fetch tuple at `tid` into `slot`, after doing a visibility test according to |
1013 | * `snapshot`. If a tuple was found and passed the visibility test, returns |
1014 | * true, false otherwise. |
1015 | * |
1016 | * See table_index_fetch_tuple's comment about what the difference between |
1017 | * these functions is. It is correct to use this function outside of index |
1018 | * entry->table tuple lookups. |
1019 | */ |
1020 | static inline bool |
1021 | table_tuple_fetch_row_version(Relation rel, |
1022 | ItemPointer tid, |
1023 | Snapshot snapshot, |
1024 | TupleTableSlot *slot) |
1025 | { |
1026 | return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot); |
1027 | } |
1028 | |
1029 | /* |
1030 | * Verify that `tid` is a potentially valid tuple identifier. That doesn't |
1031 | * mean that the pointed to row needs to exist or be visible, but that |
1032 | * attempting to fetch the row (e.g. with table_get_latest_tid() or |
1033 | * table_fetch_row_version()) should not error out if called with that tid. |
1034 | * |
1035 | * `scan` needs to have been started via table_beginscan(). |
1036 | */ |
1037 | static inline bool |
1038 | table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid) |
1039 | { |
1040 | return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid); |
1041 | } |
1042 | |
1043 | /* |
1044 | * Return the latest version of the tuple at `tid`, by updating `tid` to |
1045 | * point at the newest version. |
1046 | */ |
1047 | extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid); |
1048 | |
1049 | /* |
1050 | * Return true iff tuple in slot satisfies the snapshot. |
1051 | * |
1052 | * This assumes the slot's tuple is valid, and of the appropriate type for the |
1053 | * AM. |
1054 | * |
1055 | * Some AMs might modify the data underlying the tuple as a side-effect. If so |
1056 | * they ought to mark the relevant buffer dirty. |
1057 | */ |
1058 | static inline bool |
1059 | table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot, |
1060 | Snapshot snapshot) |
1061 | { |
1062 | return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot); |
1063 | } |
1064 | |
1065 | /* |
1066 | * Compute the newest xid among the tuples pointed to by items. This is used |
1067 | * to compute what snapshots to conflict with when replaying WAL records for |
1068 | * page-level index vacuums. |
1069 | */ |
1070 | static inline TransactionId |
1071 | table_compute_xid_horizon_for_tuples(Relation rel, |
1072 | ItemPointerData *items, |
1073 | int nitems) |
1074 | { |
1075 | return rel->rd_tableam->compute_xid_horizon_for_tuples(rel, items, nitems); |
1076 | } |
1077 | |
1078 | |
1079 | /* ---------------------------------------------------------------------------- |
1080 | * Functions for manipulations of physical tuples. |
1081 | * ---------------------------------------------------------------------------- |
1082 | */ |
1083 | |
1084 | /* |
1085 | * Insert a tuple from a slot into table AM routine. |
1086 | * |
1087 | * The options bitmask allows the caller to specify options that may change the |
1088 | * behaviour of the AM. The AM will ignore options that it does not support. |
1089 | * |
1090 | * If the TABLE_INSERT_SKIP_WAL option is specified, the new tuple doesn't |
1091 | * need to be logged to WAL, even for a non-temp relation. It is the AMs |
1092 | * choice whether this optimization is supported. |
1093 | * |
1094 | * If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse |
1095 | * free space in the relation. This can save some cycles when we know the |
1096 | * relation is new and doesn't contain useful amounts of free space. |
1097 | * TABLE_INSERT_SKIP_FSM is commonly passed directly to |
1098 | * RelationGetBufferForTuple. See that method for more information. |
1099 | * |
1100 | * TABLE_INSERT_FROZEN should only be specified for inserts into |
1101 | * relfilenodes created during the current subtransaction and when |
1102 | * there are no prior snapshots or pre-existing portals open. |
1103 | * This causes rows to be frozen, which is an MVCC violation and |
1104 | * requires explicit options chosen by user. |
1105 | * |
1106 | * TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding |
1107 | * information for the tuple. This should solely be used during table rewrites |
1108 | * where RelationIsLogicallyLogged(relation) is not yet accurate for the new |
1109 | * relation. |
1110 | * |
1111 | * Note that most of these options will be applied when inserting into the |
1112 | * heap's TOAST table, too, if the tuple requires any out-of-line data. |
1113 | * |
1114 | * The BulkInsertState object (if any; bistate can be NULL for default |
1115 | * behavior) is also just passed through to RelationGetBufferForTuple. If |
1116 | * `bistate` is provided, table_finish_bulk_insert() needs to be called. |
1117 | * |
1118 | * On return the slot's tts_tid and tts_tableOid are updated to reflect the |
1119 | * insertion. But note that any toasting of fields within the slot is NOT |
1120 | * reflected in the slots contents. |
1121 | */ |
1122 | static inline void |
1123 | table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid, |
1124 | int options, struct BulkInsertStateData *bistate) |
1125 | { |
1126 | rel->rd_tableam->tuple_insert(rel, slot, cid, options, |
1127 | bistate); |
1128 | } |
1129 | |
1130 | /* |
1131 | * Perform a "speculative insertion". These can be backed out afterwards |
1132 | * without aborting the whole transaction. Other sessions can wait for the |
1133 | * speculative insertion to be confirmed, turning it into a regular tuple, or |
1134 | * aborted, as if it never existed. Speculatively inserted tuples behave as |
1135 | * "value locks" of short duration, used to implement INSERT .. ON CONFLICT. |
1136 | * |
1137 | * A transaction having performed a speculative insertion has to either abort, |
1138 | * or finish the speculative insertion with |
1139 | * table_tuple_complete_speculative(succeeded = ...). |
1140 | */ |
1141 | static inline void |
1142 | table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot, |
1143 | CommandId cid, int options, |
1144 | struct BulkInsertStateData *bistate, |
1145 | uint32 specToken) |
1146 | { |
1147 | rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options, |
1148 | bistate, specToken); |
1149 | } |
1150 | |
1151 | /* |
1152 | * Complete "speculative insertion" started in the same transaction. If |
1153 | * succeeded is true, the tuple is fully inserted, if false, it's removed. |
1154 | */ |
1155 | static inline void |
1156 | table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot, |
1157 | uint32 specToken, bool succeeded) |
1158 | { |
1159 | rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken, |
1160 | succeeded); |
1161 | } |
1162 | |
1163 | /* |
1164 | * Insert multiple tuples into a table. |
1165 | * |
1166 | * This is like table_insert(), but inserts multiple tuples in one |
1167 | * operation. That's often faster than calling table_insert() in a loop, |
1168 | * because e.g. the AM can reduce WAL logging and page locking overhead. |
1169 | * |
1170 | * Except for taking `nslots` tuples as input, as an array of TupleTableSlots |
1171 | * in `slots`, the parameters for table_multi_insert() are the same as for |
1172 | * table_tuple_insert(). |
1173 | * |
1174 | * Note: this leaks memory into the current memory context. You can create a |
1175 | * temporary context before calling this, if that's a problem. |
1176 | */ |
1177 | static inline void |
1178 | table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots, |
1179 | CommandId cid, int options, struct BulkInsertStateData *bistate) |
1180 | { |
1181 | rel->rd_tableam->multi_insert(rel, slots, nslots, |
1182 | cid, options, bistate); |
1183 | } |
1184 | |
1185 | /* |
1186 | * Delete a tuple. |
1187 | * |
1188 | * NB: do not call this directly unless prepared to deal with |
1189 | * concurrent-update conditions. Use simple_table_tuple_delete instead. |
1190 | * |
1191 | * Input parameters: |
1192 | * relation - table to be modified (caller must hold suitable lock) |
1193 | * tid - TID of tuple to be deleted |
1194 | * cid - delete command ID (used for visibility test, and stored into |
1195 | * cmax if successful) |
1196 | * crosscheck - if not InvalidSnapshot, also check tuple against this |
1197 | * wait - true if should wait for any conflicting update to commit/abort |
1198 | * Output parameters: |
1199 | * tmfd - filled in failure cases (see below) |
1200 | * changingPart - true iff the tuple is being moved to another partition |
1201 | * table due to an update of the partition key. Otherwise, false. |
1202 | * |
1203 | * Normal, successful return value is TM_Ok, which means we did actually |
1204 | * delete it. Failure return codes are TM_SelfModified, TM_Updated, and |
1205 | * TM_BeingModified (the last only possible if wait == false). |
1206 | * |
1207 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
1208 | * t_xmax, and, if possible, and, if possible, t_cmax. See comments for |
1209 | * struct TM_FailureData for additional info. |
1210 | */ |
1211 | static inline TM_Result |
1212 | table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid, |
1213 | Snapshot snapshot, Snapshot crosscheck, bool wait, |
1214 | TM_FailureData *tmfd, bool changingPart) |
1215 | { |
1216 | return rel->rd_tableam->tuple_delete(rel, tid, cid, |
1217 | snapshot, crosscheck, |
1218 | wait, tmfd, changingPart); |
1219 | } |
1220 | |
1221 | /* |
1222 | * Update a tuple. |
1223 | * |
1224 | * NB: do not call this directly unless you are prepared to deal with |
1225 | * concurrent-update conditions. Use simple_table_tuple_update instead. |
1226 | * |
1227 | * Input parameters: |
1228 | * relation - table to be modified (caller must hold suitable lock) |
1229 | * otid - TID of old tuple to be replaced |
1230 | * slot - newly constructed tuple data to store |
1231 | * cid - update command ID (used for visibility test, and stored into |
1232 | * cmax/cmin if successful) |
1233 | * crosscheck - if not InvalidSnapshot, also check old tuple against this |
1234 | * wait - true if should wait for any conflicting update to commit/abort |
1235 | * Output parameters: |
1236 | * tmfd - filled in failure cases (see below) |
1237 | * lockmode - filled with lock mode acquired on tuple |
1238 | * update_indexes - in success cases this is set to true if new index entries |
1239 | * are required for this tuple |
1240 | * |
1241 | * Normal, successful return value is TM_Ok, which means we did actually |
1242 | * update it. Failure return codes are TM_SelfModified, TM_Updated, and |
1243 | * TM_BeingModified (the last only possible if wait == false). |
1244 | * |
1245 | * On success, the slot's tts_tid and tts_tableOid are updated to match the new |
1246 | * stored tuple; in particular, slot->tts_tid is set to the TID where the |
1247 | * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT |
1248 | * update was done. However, any TOAST changes in the new tuple's |
1249 | * data are not reflected into *newtup. |
1250 | * |
1251 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
1252 | * t_xmax, and, if possible, t_cmax. See comments for struct TM_FailureData |
1253 | * for additional info. |
1254 | */ |
1255 | static inline TM_Result |
1256 | table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot, |
1257 | CommandId cid, Snapshot snapshot, Snapshot crosscheck, |
1258 | bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode, |
1259 | bool *update_indexes) |
1260 | { |
1261 | return rel->rd_tableam->tuple_update(rel, otid, slot, |
1262 | cid, snapshot, crosscheck, |
1263 | wait, tmfd, |
1264 | lockmode, update_indexes); |
1265 | } |
1266 | |
1267 | /* |
1268 | * Lock a tuple in the specified mode. |
1269 | * |
1270 | * Input parameters: |
1271 | * relation: relation containing tuple (caller must hold suitable lock) |
1272 | * tid: TID of tuple to lock |
1273 | * snapshot: snapshot to use for visibility determinations |
1274 | * cid: current command ID (used for visibility test, and stored into |
1275 | * tuple's cmax if lock is successful) |
1276 | * mode: lock mode desired |
1277 | * wait_policy: what to do if tuple lock is not available |
1278 | * flags: |
1279 | * If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to |
1280 | * also lock descendant tuples if lock modes don't conflict. |
1281 | * If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock |
1282 | * latest version. |
1283 | * |
1284 | * Output parameters: |
1285 | * *slot: contains the target tuple |
1286 | * *tmfd: filled in failure cases (see below) |
1287 | * |
1288 | * Function result may be: |
1289 | * TM_Ok: lock was successfully acquired |
1290 | * TM_Invisible: lock failed because tuple was never visible to us |
1291 | * TM_SelfModified: lock failed because tuple updated by self |
1292 | * TM_Updated: lock failed because tuple updated by other xact |
1293 | * TM_Deleted: lock failed because tuple deleted by other xact |
1294 | * TM_WouldBlock: lock couldn't be acquired and wait_policy is skip |
1295 | * |
1296 | * In the failure cases other than TM_Invisible and TM_Deleted, the routine |
1297 | * fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax. See |
1298 | * comments for struct TM_FailureData for additional info. |
1299 | */ |
1300 | static inline TM_Result |
1301 | table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot, |
1302 | TupleTableSlot *slot, CommandId cid, LockTupleMode mode, |
1303 | LockWaitPolicy wait_policy, uint8 flags, |
1304 | TM_FailureData *tmfd) |
1305 | { |
1306 | return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot, |
1307 | cid, mode, wait_policy, |
1308 | flags, tmfd); |
1309 | } |
1310 | |
1311 | /* |
1312 | * Perform operations necessary to complete insertions made via |
1313 | * tuple_insert and multi_insert with a BulkInsertState specified. This |
1314 | * e.g. may e.g. used to flush the relation when inserting with |
1315 | * TABLE_INSERT_SKIP_WAL specified. |
1316 | */ |
1317 | static inline void |
1318 | table_finish_bulk_insert(Relation rel, int options) |
1319 | { |
1320 | /* optional callback */ |
1321 | if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert) |
1322 | rel->rd_tableam->finish_bulk_insert(rel, options); |
1323 | } |
1324 | |
1325 | |
1326 | /* ------------------------------------------------------------------------ |
1327 | * DDL related functionality. |
1328 | * ------------------------------------------------------------------------ |
1329 | */ |
1330 | |
1331 | /* |
1332 | * Create storage for `rel` in `newrnode`, with persistence set to |
1333 | * `persistence`. |
1334 | * |
1335 | * This is used both during relation creation and various DDL operations to |
1336 | * create a new relfilenode that can be filled from scratch. When creating |
1337 | * new storage for an existing relfilenode, this should be called before the |
1338 | * relcache entry has been updated. |
1339 | * |
1340 | * *freezeXid, *minmulti are set to the xid / multixact horizon for the table |
1341 | * that pg_class.{relfrozenxid, relminmxid} have to be set to. |
1342 | */ |
1343 | static inline void |
1344 | table_relation_set_new_filenode(Relation rel, |
1345 | const RelFileNode *newrnode, |
1346 | char persistence, |
1347 | TransactionId *freezeXid, |
1348 | MultiXactId *minmulti) |
1349 | { |
1350 | rel->rd_tableam->relation_set_new_filenode(rel, newrnode, persistence, |
1351 | freezeXid, minmulti); |
1352 | } |
1353 | |
1354 | /* |
1355 | * Remove all table contents from `rel`, in a non-transactional manner. |
1356 | * Non-transactional meaning that there's no need to support rollbacks. This |
1357 | * commonly only is used to perform truncations for relfilenodes created in the |
1358 | * current transaction. |
1359 | */ |
1360 | static inline void |
1361 | table_relation_nontransactional_truncate(Relation rel) |
1362 | { |
1363 | rel->rd_tableam->relation_nontransactional_truncate(rel); |
1364 | } |
1365 | |
1366 | /* |
1367 | * Copy data from `rel` into the new relfilenode `newrnode`. The new |
1368 | * relfilenode may not have storage associated before this function is |
1369 | * called. This is only supposed to be used for low level operations like |
1370 | * changing a relation's tablespace. |
1371 | */ |
1372 | static inline void |
1373 | table_relation_copy_data(Relation rel, const RelFileNode *newrnode) |
1374 | { |
1375 | rel->rd_tableam->relation_copy_data(rel, newrnode); |
1376 | } |
1377 | |
1378 | /* |
1379 | * Copy data from `OldTable` into `NewTable`, as part of a CLUSTER or VACUUM |
1380 | * FULL. |
1381 | * |
1382 | * Additional Input parameters: |
1383 | * - use_sort - if true, the table contents are sorted appropriate for |
1384 | * `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied |
1385 | * in that index's order; if false and OldIndex is InvalidOid, no sorting is |
1386 | * performed |
1387 | * - OldIndex - see use_sort |
1388 | * - OldestXmin - computed by vacuum_set_xid_limits(), even when |
1389 | * not needed for the relation's AM |
1390 | * - *xid_cutoff - ditto |
1391 | * - *multi_cutoff - ditto |
1392 | * |
1393 | * Output parameters: |
1394 | * - *xid_cutoff - rel's new relfrozenxid value, may be invalid |
1395 | * - *multi_cutoff - rel's new relminmxid value, may be invalid |
1396 | * - *tups_vacuumed - stats, for logging, if appropriate for AM |
1397 | * - *tups_recently_dead - stats, for logging, if appropriate for AM |
1398 | */ |
1399 | static inline void |
1400 | table_relation_copy_for_cluster(Relation OldTable, Relation NewTable, |
1401 | Relation OldIndex, |
1402 | bool use_sort, |
1403 | TransactionId OldestXmin, |
1404 | TransactionId *xid_cutoff, |
1405 | MultiXactId *multi_cutoff, |
1406 | double *num_tuples, |
1407 | double *tups_vacuumed, |
1408 | double *tups_recently_dead) |
1409 | { |
1410 | OldTable->rd_tableam->relation_copy_for_cluster(OldTable, NewTable, OldIndex, |
1411 | use_sort, OldestXmin, |
1412 | xid_cutoff, multi_cutoff, |
1413 | num_tuples, tups_vacuumed, |
1414 | tups_recently_dead); |
1415 | } |
1416 | |
1417 | /* |
1418 | * Perform VACUUM on the relation. The VACUUM can be triggered by a user or by |
1419 | * autovacuum. The specific actions performed by the AM will depend heavily on |
1420 | * the individual AM. |
1421 | * |
1422 | * On entry a transaction needs to already been established, and the |
1423 | * table is locked with a ShareUpdateExclusive lock. |
1424 | * |
1425 | * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this |
1426 | * routine, even if (for ANALYZE) it is part of the same VACUUM command. |
1427 | */ |
1428 | static inline void |
1429 | table_relation_vacuum(Relation rel, struct VacuumParams *params, |
1430 | BufferAccessStrategy bstrategy) |
1431 | { |
1432 | rel->rd_tableam->relation_vacuum(rel, params, bstrategy); |
1433 | } |
1434 | |
1435 | /* |
1436 | * Prepare to analyze block `blockno` of `scan`. The scan needs to have been |
1437 | * started with table_beginscan_analyze(). Note that this routine might |
1438 | * acquire resources like locks that are held until |
1439 | * table_scan_analyze_next_tuple() returns false. |
1440 | * |
1441 | * Returns false if block is unsuitable for sampling, true otherwise. |
1442 | */ |
1443 | static inline bool |
1444 | table_scan_analyze_next_block(TableScanDesc scan, BlockNumber blockno, |
1445 | BufferAccessStrategy bstrategy) |
1446 | { |
1447 | return scan->rs_rd->rd_tableam->scan_analyze_next_block(scan, blockno, |
1448 | bstrategy); |
1449 | } |
1450 | |
1451 | /* |
1452 | * Iterate over tuples in the block selected with |
1453 | * table_scan_analyze_next_block() (which needs to have returned true, and |
1454 | * this routine may not have returned false for the same block before). If a |
1455 | * tuple that's suitable for sampling is found, true is returned and a tuple |
1456 | * is stored in `slot`. |
1457 | * |
1458 | * *liverows and *deadrows are incremented according to the encountered |
1459 | * tuples. |
1460 | */ |
1461 | static inline bool |
1462 | table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin, |
1463 | double *liverows, double *deadrows, |
1464 | TupleTableSlot *slot) |
1465 | { |
1466 | return scan->rs_rd->rd_tableam->scan_analyze_next_tuple(scan, OldestXmin, |
1467 | liverows, deadrows, |
1468 | slot); |
1469 | } |
1470 | |
1471 | /* |
1472 | * table_index_build_scan - scan the table to find tuples to be indexed |
1473 | * |
1474 | * This is called back from an access-method-specific index build procedure |
1475 | * after the AM has done whatever setup it needs. The parent table relation |
1476 | * is scanned to find tuples that should be entered into the index. Each |
1477 | * such tuple is passed to the AM's callback routine, which does the right |
1478 | * things to add it to the new index. After we return, the AM's index |
1479 | * build procedure does whatever cleanup it needs. |
1480 | * |
1481 | * The total count of live tuples is returned. This is for updating pg_class |
1482 | * statistics. (It's annoying not to be able to do that here, but we want to |
1483 | * merge that update with others; see index_update_stats.) Note that the |
1484 | * index AM itself must keep track of the number of index tuples; we don't do |
1485 | * so here because the AM might reject some of the tuples for its own reasons, |
1486 | * such as being unable to store NULLs. |
1487 | * |
1488 | * If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when |
1489 | * starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along. |
1490 | * |
1491 | * A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect |
1492 | * any potentially broken HOT chains. Currently, we set this if there are any |
1493 | * RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying |
1494 | * very hard to detect whether they're really incompatible with the chain tip. |
1495 | * This only really makes sense for heap AM, it might need to be generalized |
1496 | * for other AMs later. |
1497 | */ |
1498 | static inline double |
1499 | table_index_build_scan(Relation table_rel, |
1500 | Relation index_rel, |
1501 | struct IndexInfo *index_info, |
1502 | bool allow_sync, |
1503 | bool progress, |
1504 | IndexBuildCallback callback, |
1505 | void *callback_state, |
1506 | TableScanDesc scan) |
1507 | { |
1508 | return table_rel->rd_tableam->index_build_range_scan(table_rel, |
1509 | index_rel, |
1510 | index_info, |
1511 | allow_sync, |
1512 | false, |
1513 | progress, |
1514 | 0, |
1515 | InvalidBlockNumber, |
1516 | callback, |
1517 | callback_state, |
1518 | scan); |
1519 | } |
1520 | |
1521 | /* |
1522 | * As table_index_build_scan(), except that instead of scanning the complete |
1523 | * table, only the given number of blocks are scanned. Scan to end-of-rel can |
1524 | * be signalled by passing InvalidBlockNumber as numblocks. Note that |
1525 | * restricting the range to scan cannot be done when requesting syncscan. |
1526 | * |
1527 | * When "anyvisible" mode is requested, all tuples visible to any transaction |
1528 | * are indexed and counted as live, including those inserted or deleted by |
1529 | * transactions that are still in progress. |
1530 | */ |
1531 | static inline double |
1532 | table_index_build_range_scan(Relation table_rel, |
1533 | Relation index_rel, |
1534 | struct IndexInfo *index_info, |
1535 | bool allow_sync, |
1536 | bool anyvisible, |
1537 | bool progress, |
1538 | BlockNumber start_blockno, |
1539 | BlockNumber numblocks, |
1540 | IndexBuildCallback callback, |
1541 | void *callback_state, |
1542 | TableScanDesc scan) |
1543 | { |
1544 | return table_rel->rd_tableam->index_build_range_scan(table_rel, |
1545 | index_rel, |
1546 | index_info, |
1547 | allow_sync, |
1548 | anyvisible, |
1549 | progress, |
1550 | start_blockno, |
1551 | numblocks, |
1552 | callback, |
1553 | callback_state, |
1554 | scan); |
1555 | } |
1556 | |
1557 | /* |
1558 | * table_index_validate_scan - second table scan for concurrent index build |
1559 | * |
1560 | * See validate_index() for an explanation. |
1561 | */ |
1562 | static inline void |
1563 | table_index_validate_scan(Relation table_rel, |
1564 | Relation index_rel, |
1565 | struct IndexInfo *index_info, |
1566 | Snapshot snapshot, |
1567 | struct ValidateIndexState *state) |
1568 | { |
1569 | table_rel->rd_tableam->index_validate_scan(table_rel, |
1570 | index_rel, |
1571 | index_info, |
1572 | snapshot, |
1573 | state); |
1574 | } |
1575 | |
1576 | |
1577 | /* ---------------------------------------------------------------------------- |
1578 | * Miscellaneous functionality |
1579 | * ---------------------------------------------------------------------------- |
1580 | */ |
1581 | |
1582 | /* |
1583 | * Return the current size of `rel` in bytes. If `forkNumber` is |
1584 | * InvalidForkNumber, return the relation's overall size, otherwise the size |
1585 | * for the indicated fork. |
1586 | * |
1587 | * Note that the overall size might not be the equivalent of the sum of sizes |
1588 | * for the individual forks for some AMs, e.g. because the AMs storage does |
1589 | * not neatly map onto the builtin types of forks. |
1590 | */ |
1591 | static inline uint64 |
1592 | table_relation_size(Relation rel, ForkNumber forkNumber) |
1593 | { |
1594 | return rel->rd_tableam->relation_size(rel, forkNumber); |
1595 | } |
1596 | |
1597 | /* |
1598 | * table_relation_needs_toast_table - does this relation need a toast table? |
1599 | */ |
1600 | static inline bool |
1601 | table_relation_needs_toast_table(Relation rel) |
1602 | { |
1603 | return rel->rd_tableam->relation_needs_toast_table(rel); |
1604 | } |
1605 | |
1606 | |
1607 | /* ---------------------------------------------------------------------------- |
1608 | * Planner related functionality |
1609 | * ---------------------------------------------------------------------------- |
1610 | */ |
1611 | |
1612 | /* |
1613 | * Estimate the current size of the relation, as an AM specific workhorse for |
1614 | * estimate_rel_size(). Look there for an explanation of the parameters. |
1615 | */ |
1616 | static inline void |
1617 | table_relation_estimate_size(Relation rel, int32 *attr_widths, |
1618 | BlockNumber *pages, double *tuples, |
1619 | double *allvisfrac) |
1620 | { |
1621 | rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples, |
1622 | allvisfrac); |
1623 | } |
1624 | |
1625 | |
1626 | /* ---------------------------------------------------------------------------- |
1627 | * Executor related functionality |
1628 | * ---------------------------------------------------------------------------- |
1629 | */ |
1630 | |
1631 | /* |
1632 | * Prepare to fetch / check / return tuples from `tbmres->blockno` as part of |
1633 | * a bitmap table scan. `scan` needs to have been started via |
1634 | * table_beginscan_bm(). Returns false if there are no tuples to be found on |
1635 | * the page, true otherwise. |
1636 | * |
1637 | * Note, this is an optionally implemented function, therefore should only be |
1638 | * used after verifying the presence (at plan time or such). |
1639 | */ |
1640 | static inline bool |
1641 | table_scan_bitmap_next_block(TableScanDesc scan, |
1642 | struct TBMIterateResult *tbmres) |
1643 | { |
1644 | return scan->rs_rd->rd_tableam->scan_bitmap_next_block(scan, |
1645 | tbmres); |
1646 | } |
1647 | |
1648 | /* |
1649 | * Fetch the next tuple of a bitmap table scan into `slot` and return true if |
1650 | * a visible tuple was found, false otherwise. |
1651 | * table_scan_bitmap_next_block() needs to previously have selected a |
1652 | * block (i.e. returned true), and no previous |
1653 | * table_scan_bitmap_next_tuple() for the same block may have |
1654 | * returned false. |
1655 | */ |
1656 | static inline bool |
1657 | table_scan_bitmap_next_tuple(TableScanDesc scan, |
1658 | struct TBMIterateResult *tbmres, |
1659 | TupleTableSlot *slot) |
1660 | { |
1661 | return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan, |
1662 | tbmres, |
1663 | slot); |
1664 | } |
1665 | |
1666 | /* |
1667 | * Prepare to fetch tuples from the next block in a sample scan. Returns false |
1668 | * if the sample scan is finished, true otherwise. `scan` needs to have been |
1669 | * started via table_beginscan_sampling(). |
1670 | * |
1671 | * This will call the TsmRoutine's NextSampleBlock() callback if necessary |
1672 | * (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the |
1673 | * underlying relation. |
1674 | */ |
1675 | static inline bool |
1676 | table_scan_sample_next_block(TableScanDesc scan, |
1677 | struct SampleScanState *scanstate) |
1678 | { |
1679 | return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate); |
1680 | } |
1681 | |
1682 | /* |
1683 | * Fetch the next sample tuple into `slot` and return true if a visible tuple |
1684 | * was found, false otherwise. table_scan_sample_next_block() needs to |
1685 | * previously have selected a block (i.e. returned true), and no previous |
1686 | * table_scan_sample_next_tuple() for the same block may have returned false. |
1687 | * |
1688 | * This will call the TsmRoutine's NextSampleTuple() callback. |
1689 | */ |
1690 | static inline bool |
1691 | table_scan_sample_next_tuple(TableScanDesc scan, |
1692 | struct SampleScanState *scanstate, |
1693 | TupleTableSlot *slot) |
1694 | { |
1695 | return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate, |
1696 | slot); |
1697 | } |
1698 | |
1699 | |
1700 | /* ---------------------------------------------------------------------------- |
1701 | * Functions to make modifications a bit simpler. |
1702 | * ---------------------------------------------------------------------------- |
1703 | */ |
1704 | |
1705 | extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot); |
1706 | extern void simple_table_tuple_delete(Relation rel, ItemPointer tid, |
1707 | Snapshot snapshot); |
1708 | extern void simple_table_tuple_update(Relation rel, ItemPointer otid, |
1709 | TupleTableSlot *slot, Snapshot snapshot, |
1710 | bool *update_indexes); |
1711 | |
1712 | |
1713 | /* ---------------------------------------------------------------------------- |
1714 | * Helper functions to implement parallel scans for block oriented AMs. |
1715 | * ---------------------------------------------------------------------------- |
1716 | */ |
1717 | |
1718 | extern Size table_block_parallelscan_estimate(Relation rel); |
1719 | extern Size table_block_parallelscan_initialize(Relation rel, |
1720 | ParallelTableScanDesc pscan); |
1721 | extern void table_block_parallelscan_reinitialize(Relation rel, |
1722 | ParallelTableScanDesc pscan); |
1723 | extern BlockNumber table_block_parallelscan_nextpage(Relation rel, |
1724 | ParallelBlockTableScanDesc pbscan); |
1725 | extern void table_block_parallelscan_startblock_init(Relation rel, |
1726 | ParallelBlockTableScanDesc pbscan); |
1727 | |
1728 | |
1729 | /* ---------------------------------------------------------------------------- |
1730 | * Functions in tableamapi.c |
1731 | * ---------------------------------------------------------------------------- |
1732 | */ |
1733 | |
1734 | extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler); |
1735 | extern const TableAmRoutine *GetHeapamTableAmRoutine(void); |
1736 | extern bool check_default_table_access_method(char **newval, void **, |
1737 | GucSource source); |
1738 | |
1739 | #endif /* TABLEAM_H */ |
1740 | |