| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * int.h |
| 4 | * Routines to perform integer math, while checking for overflows. |
| 5 | * |
| 6 | * The routines in this file are intended to be well defined C, without |
| 7 | * relying on compiler flags like -fwrapv. |
| 8 | * |
| 9 | * To reduce the overhead of these routines try to use compiler intrinsics |
| 10 | * where available. That's not that important for the 16, 32 bit cases, but |
| 11 | * the 64 bit cases can be considerably faster with intrinsics. In case no |
| 12 | * intrinsics are available 128 bit math is used where available. |
| 13 | * |
| 14 | * Copyright (c) 2017-2019, PostgreSQL Global Development Group |
| 15 | * |
| 16 | * src/include/common/int.h |
| 17 | * |
| 18 | *------------------------------------------------------------------------- |
| 19 | */ |
| 20 | #ifndef COMMON_INT_H |
| 21 | #define COMMON_INT_H |
| 22 | |
| 23 | /* |
| 24 | * If a + b overflows, return true, otherwise store the result of a + b into |
| 25 | * *result. The content of *result is implementation defined in case of |
| 26 | * overflow. |
| 27 | */ |
| 28 | static inline bool |
| 29 | pg_add_s16_overflow(int16 a, int16 b, int16 *result) |
| 30 | { |
| 31 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 32 | return __builtin_add_overflow(a, b, result); |
| 33 | #else |
| 34 | int32 res = (int32) a + (int32) b; |
| 35 | |
| 36 | if (res > PG_INT16_MAX || res < PG_INT16_MIN) |
| 37 | { |
| 38 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 39 | return true; |
| 40 | } |
| 41 | *result = (int16) res; |
| 42 | return false; |
| 43 | #endif |
| 44 | } |
| 45 | |
| 46 | /* |
| 47 | * If a - b overflows, return true, otherwise store the result of a - b into |
| 48 | * *result. The content of *result is implementation defined in case of |
| 49 | * overflow. |
| 50 | */ |
| 51 | static inline bool |
| 52 | pg_sub_s16_overflow(int16 a, int16 b, int16 *result) |
| 53 | { |
| 54 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 55 | return __builtin_sub_overflow(a, b, result); |
| 56 | #else |
| 57 | int32 res = (int32) a - (int32) b; |
| 58 | |
| 59 | if (res > PG_INT16_MAX || res < PG_INT16_MIN) |
| 60 | { |
| 61 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 62 | return true; |
| 63 | } |
| 64 | *result = (int16) res; |
| 65 | return false; |
| 66 | #endif |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * If a * b overflows, return true, otherwise store the result of a * b into |
| 71 | * *result. The content of *result is implementation defined in case of |
| 72 | * overflow. |
| 73 | */ |
| 74 | static inline bool |
| 75 | pg_mul_s16_overflow(int16 a, int16 b, int16 *result) |
| 76 | { |
| 77 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 78 | return __builtin_mul_overflow(a, b, result); |
| 79 | #else |
| 80 | int32 res = (int32) a * (int32) b; |
| 81 | |
| 82 | if (res > PG_INT16_MAX || res < PG_INT16_MIN) |
| 83 | { |
| 84 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 85 | return true; |
| 86 | } |
| 87 | *result = (int16) res; |
| 88 | return false; |
| 89 | #endif |
| 90 | } |
| 91 | |
| 92 | /* |
| 93 | * If a + b overflows, return true, otherwise store the result of a + b into |
| 94 | * *result. The content of *result is implementation defined in case of |
| 95 | * overflow. |
| 96 | */ |
| 97 | static inline bool |
| 98 | pg_add_s32_overflow(int32 a, int32 b, int32 *result) |
| 99 | { |
| 100 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 101 | return __builtin_add_overflow(a, b, result); |
| 102 | #else |
| 103 | int64 res = (int64) a + (int64) b; |
| 104 | |
| 105 | if (res > PG_INT32_MAX || res < PG_INT32_MIN) |
| 106 | { |
| 107 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 108 | return true; |
| 109 | } |
| 110 | *result = (int32) res; |
| 111 | return false; |
| 112 | #endif |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * If a - b overflows, return true, otherwise store the result of a - b into |
| 117 | * *result. The content of *result is implementation defined in case of |
| 118 | * overflow. |
| 119 | */ |
| 120 | static inline bool |
| 121 | pg_sub_s32_overflow(int32 a, int32 b, int32 *result) |
| 122 | { |
| 123 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 124 | return __builtin_sub_overflow(a, b, result); |
| 125 | #else |
| 126 | int64 res = (int64) a - (int64) b; |
| 127 | |
| 128 | if (res > PG_INT32_MAX || res < PG_INT32_MIN) |
| 129 | { |
| 130 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 131 | return true; |
| 132 | } |
| 133 | *result = (int32) res; |
| 134 | return false; |
| 135 | #endif |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * If a * b overflows, return true, otherwise store the result of a * b into |
| 140 | * *result. The content of *result is implementation defined in case of |
| 141 | * overflow. |
| 142 | */ |
| 143 | static inline bool |
| 144 | pg_mul_s32_overflow(int32 a, int32 b, int32 *result) |
| 145 | { |
| 146 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 147 | return __builtin_mul_overflow(a, b, result); |
| 148 | #else |
| 149 | int64 res = (int64) a * (int64) b; |
| 150 | |
| 151 | if (res > PG_INT32_MAX || res < PG_INT32_MIN) |
| 152 | { |
| 153 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 154 | return true; |
| 155 | } |
| 156 | *result = (int32) res; |
| 157 | return false; |
| 158 | #endif |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * If a + b overflows, return true, otherwise store the result of a + b into |
| 163 | * *result. The content of *result is implementation defined in case of |
| 164 | * overflow. |
| 165 | */ |
| 166 | static inline bool |
| 167 | pg_add_s64_overflow(int64 a, int64 b, int64 *result) |
| 168 | { |
| 169 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 170 | return __builtin_add_overflow(a, b, result); |
| 171 | #elif defined(HAVE_INT128) |
| 172 | int128 res = (int128) a + (int128) b; |
| 173 | |
| 174 | if (res > PG_INT64_MAX || res < PG_INT64_MIN) |
| 175 | { |
| 176 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 177 | return true; |
| 178 | } |
| 179 | *result = (int64) res; |
| 180 | return false; |
| 181 | #else |
| 182 | if ((a > 0 && b > 0 && a > PG_INT64_MAX - b) || |
| 183 | (a < 0 && b < 0 && a < PG_INT64_MIN - b)) |
| 184 | { |
| 185 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 186 | return true; |
| 187 | } |
| 188 | *result = a + b; |
| 189 | return false; |
| 190 | #endif |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * If a - b overflows, return true, otherwise store the result of a - b into |
| 195 | * *result. The content of *result is implementation defined in case of |
| 196 | * overflow. |
| 197 | */ |
| 198 | static inline bool |
| 199 | pg_sub_s64_overflow(int64 a, int64 b, int64 *result) |
| 200 | { |
| 201 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 202 | return __builtin_sub_overflow(a, b, result); |
| 203 | #elif defined(HAVE_INT128) |
| 204 | int128 res = (int128) a - (int128) b; |
| 205 | |
| 206 | if (res > PG_INT64_MAX || res < PG_INT64_MIN) |
| 207 | { |
| 208 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 209 | return true; |
| 210 | } |
| 211 | *result = (int64) res; |
| 212 | return false; |
| 213 | #else |
| 214 | if ((a < 0 && b > 0 && a < PG_INT64_MIN + b) || |
| 215 | (a > 0 && b < 0 && a > PG_INT64_MAX + b)) |
| 216 | { |
| 217 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 218 | return true; |
| 219 | } |
| 220 | *result = a - b; |
| 221 | return false; |
| 222 | #endif |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * If a * b overflows, return true, otherwise store the result of a * b into |
| 227 | * *result. The content of *result is implementation defined in case of |
| 228 | * overflow. |
| 229 | */ |
| 230 | static inline bool |
| 231 | pg_mul_s64_overflow(int64 a, int64 b, int64 *result) |
| 232 | { |
| 233 | #if defined(HAVE__BUILTIN_OP_OVERFLOW) |
| 234 | return __builtin_mul_overflow(a, b, result); |
| 235 | #elif defined(HAVE_INT128) |
| 236 | int128 res = (int128) a * (int128) b; |
| 237 | |
| 238 | if (res > PG_INT64_MAX || res < PG_INT64_MIN) |
| 239 | { |
| 240 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 241 | return true; |
| 242 | } |
| 243 | *result = (int64) res; |
| 244 | return false; |
| 245 | #else |
| 246 | /* |
| 247 | * Overflow can only happen if at least one value is outside the range |
| 248 | * sqrt(min)..sqrt(max) so check that first as the division can be quite a |
| 249 | * bit more expensive than the multiplication. |
| 250 | * |
| 251 | * Multiplying by 0 or 1 can't overflow of course and checking for 0 |
| 252 | * separately avoids any risk of dividing by 0. Be careful about dividing |
| 253 | * INT_MIN by -1 also, note reversing the a and b to ensure we're always |
| 254 | * dividing it by a positive value. |
| 255 | * |
| 256 | */ |
| 257 | if ((a > PG_INT32_MAX || a < PG_INT32_MIN || |
| 258 | b > PG_INT32_MAX || b < PG_INT32_MIN) && |
| 259 | a != 0 && a != 1 && b != 0 && b != 1 && |
| 260 | ((a > 0 && b > 0 && a > PG_INT64_MAX / b) || |
| 261 | (a > 0 && b < 0 && b < PG_INT64_MIN / a) || |
| 262 | (a < 0 && b > 0 && a < PG_INT64_MIN / b) || |
| 263 | (a < 0 && b < 0 && a < PG_INT64_MAX / b))) |
| 264 | { |
| 265 | *result = 0x5EED; /* to avoid spurious warnings */ |
| 266 | return true; |
| 267 | } |
| 268 | *result = a * b; |
| 269 | return false; |
| 270 | #endif |
| 271 | } |
| 272 | |
| 273 | #endif /* COMMON_INT_H */ |
| 274 | |