1 | /* |
2 | * simplehash.h |
3 | * |
4 | * Hash table implementation which will be specialized to user-defined |
5 | * types, by including this file to generate the required code. It's |
6 | * probably not worthwhile to do so for hash tables that aren't performance |
7 | * or space sensitive. |
8 | * |
9 | * Usage notes: |
10 | * |
11 | * To generate a hash-table and associated functions for a use case several |
12 | * macros have to be #define'ed before this file is included. Including |
13 | * the file #undef's all those, so a new hash table can be generated |
14 | * afterwards. |
15 | * The relevant parameters are: |
16 | * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo' |
17 | * will result in hash table type 'foo_hash' and functions like |
18 | * 'foo_insert'/'foo_lookup' and so forth. |
19 | * - SH_ELEMENT_TYPE - type of the contained elements |
20 | * - SH_KEY_TYPE - type of the hashtable's key |
21 | * - SH_DECLARE - if defined function prototypes and type declarations are |
22 | * generated |
23 | * - SH_DEFINE - if defined function definitions are generated |
24 | * - SH_SCOPE - in which scope (e.g. extern, static inline) do function |
25 | * declarations reside |
26 | * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions |
27 | * are defined, so you can supply your own |
28 | * The following parameters are only relevant when SH_DEFINE is defined: |
29 | * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key |
30 | * - SH_EQUAL(table, a, b) - compare two table keys |
31 | * - SH_HASH_KEY(table, key) - generate hash for the key |
32 | * - SH_STORE_HASH - if defined the hash is stored in the elements |
33 | * - SH_GET_HASH(tb, a) - return the field to store the hash in |
34 | * |
35 | * For examples of usage look at tidbitmap.c (file local definition) and |
36 | * execnodes.h/execGrouping.c (exposed declaration, file local |
37 | * implementation). |
38 | * |
39 | * Hash table design: |
40 | * |
41 | * The hash table design chosen is a variant of linear open-addressing. The |
42 | * reason for doing so is that linear addressing is CPU cache & pipeline |
43 | * friendly. The biggest disadvantage of simple linear addressing schemes |
44 | * are highly variable lookup times due to clustering, and deletions |
45 | * leaving a lot of tombstones around. To address these issues a variant |
46 | * of "robin hood" hashing is employed. Robin hood hashing optimizes |
47 | * chaining lengths by moving elements close to their optimal bucket |
48 | * ("rich" elements), out of the way if a to-be-inserted element is further |
49 | * away from its optimal position (i.e. it's "poor"). While that can make |
50 | * insertions slower, the average lookup performance is a lot better, and |
51 | * higher fill factors can be used in a still performant manner. To avoid |
52 | * tombstones - which normally solve the issue that a deleted node's |
53 | * presence is relevant to determine whether a lookup needs to continue |
54 | * looking or is done - buckets following a deleted element are shifted |
55 | * backwards, unless they're empty or already at their optimal position. |
56 | */ |
57 | |
58 | /* helpers */ |
59 | #define SH_MAKE_PREFIX(a) CppConcat(a,_) |
60 | #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name) |
61 | #define SH_MAKE_NAME_(a,b) CppConcat(a,b) |
62 | |
63 | /* name macros for: */ |
64 | |
65 | /* type declarations */ |
66 | #define SH_TYPE SH_MAKE_NAME(hash) |
67 | #define SH_STATUS SH_MAKE_NAME(status) |
68 | #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY) |
69 | #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE) |
70 | #define SH_ITERATOR SH_MAKE_NAME(iterator) |
71 | |
72 | /* function declarations */ |
73 | #define SH_CREATE SH_MAKE_NAME(create) |
74 | #define SH_DESTROY SH_MAKE_NAME(destroy) |
75 | #define SH_RESET SH_MAKE_NAME(reset) |
76 | #define SH_INSERT SH_MAKE_NAME(insert) |
77 | #define SH_DELETE SH_MAKE_NAME(delete) |
78 | #define SH_LOOKUP SH_MAKE_NAME(lookup) |
79 | #define SH_GROW SH_MAKE_NAME(grow) |
80 | #define SH_START_ITERATE SH_MAKE_NAME(start_iterate) |
81 | #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at) |
82 | #define SH_ITERATE SH_MAKE_NAME(iterate) |
83 | #define SH_ALLOCATE SH_MAKE_NAME(allocate) |
84 | #define SH_FREE SH_MAKE_NAME(free) |
85 | #define SH_STAT SH_MAKE_NAME(stat) |
86 | |
87 | /* internal helper functions (no externally visible prototypes) */ |
88 | #define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters) |
89 | #define SH_NEXT SH_MAKE_NAME(next) |
90 | #define SH_PREV SH_MAKE_NAME(prev) |
91 | #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance) |
92 | #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket) |
93 | #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash) |
94 | |
95 | /* generate forward declarations necessary to use the hash table */ |
96 | #ifdef SH_DECLARE |
97 | |
98 | /* type definitions */ |
99 | typedef struct SH_TYPE |
100 | { |
101 | /* |
102 | * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash |
103 | * tables. Note that the maximum number of elements is lower |
104 | * (SH_MAX_FILLFACTOR) |
105 | */ |
106 | uint64 size; |
107 | |
108 | /* how many elements have valid contents */ |
109 | uint32 members; |
110 | |
111 | /* mask for bucket and size calculations, based on size */ |
112 | uint32 sizemask; |
113 | |
114 | /* boundary after which to grow hashtable */ |
115 | uint32 grow_threshold; |
116 | |
117 | /* hash buckets */ |
118 | SH_ELEMENT_TYPE *data; |
119 | |
120 | /* memory context to use for allocations */ |
121 | MemoryContext ctx; |
122 | |
123 | /* user defined data, useful for callbacks */ |
124 | void *private_data; |
125 | } SH_TYPE; |
126 | |
127 | typedef enum SH_STATUS |
128 | { |
129 | SH_STATUS_EMPTY = 0x00, |
130 | SH_STATUS_IN_USE = 0x01 |
131 | } SH_STATUS; |
132 | |
133 | typedef struct SH_ITERATOR |
134 | { |
135 | uint32 cur; /* current element */ |
136 | uint32 end; |
137 | bool done; /* iterator exhausted? */ |
138 | } SH_ITERATOR; |
139 | |
140 | /* externally visible function prototypes */ |
141 | SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements, |
142 | void *private_data); |
143 | SH_SCOPE void SH_DESTROY(SH_TYPE * tb); |
144 | SH_SCOPE void SH_RESET(SH_TYPE * tb); |
145 | SH_SCOPE void SH_GROW(SH_TYPE * tb, uint32 newsize); |
146 | SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found); |
147 | SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key); |
148 | SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key); |
149 | SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
150 | SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at); |
151 | SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
152 | SH_SCOPE void SH_STAT(SH_TYPE * tb); |
153 | |
154 | #endif /* SH_DECLARE */ |
155 | |
156 | |
157 | /* generate implementation of the hash table */ |
158 | #ifdef SH_DEFINE |
159 | |
160 | #include "utils/memutils.h" |
161 | |
162 | /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */ |
163 | #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1) |
164 | |
165 | /* normal fillfactor, unless already close to maximum */ |
166 | #ifndef SH_FILLFACTOR |
167 | #define SH_FILLFACTOR (0.9) |
168 | #endif |
169 | /* increase fillfactor if we otherwise would error out */ |
170 | #define SH_MAX_FILLFACTOR (0.98) |
171 | /* grow if actual and optimal location bigger than */ |
172 | #ifndef SH_GROW_MAX_DIB |
173 | #define SH_GROW_MAX_DIB 25 |
174 | #endif |
175 | /* grow if more than elements to move when inserting */ |
176 | #ifndef SH_GROW_MAX_MOVE |
177 | #define SH_GROW_MAX_MOVE 150 |
178 | #endif |
179 | #ifndef SH_GROW_MIN_FILLFACTOR |
180 | /* but do not grow due to SH_GROW_MAX_* if below */ |
181 | #define SH_GROW_MIN_FILLFACTOR 0.1 |
182 | #endif |
183 | |
184 | #ifdef SH_STORE_HASH |
185 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey)) |
186 | #else |
187 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey)) |
188 | #endif |
189 | |
190 | /* |
191 | * Wrap the following definitions in include guards, to avoid multiple |
192 | * definition errors if this header is included more than once. The rest of |
193 | * the file deliberately has no include guards, because it can be included |
194 | * with different parameters to define functions and types with non-colliding |
195 | * names. |
196 | */ |
197 | #ifndef SIMPLEHASH_H |
198 | #define SIMPLEHASH_H |
199 | |
200 | /* FIXME: can we move these to a central location? */ |
201 | |
202 | /* calculate ceil(log base 2) of num */ |
203 | static inline uint64 |
204 | sh_log2(uint64 num) |
205 | { |
206 | int i; |
207 | uint64 limit; |
208 | |
209 | for (i = 0, limit = 1; limit < num; i++, limit <<= 1) |
210 | ; |
211 | return i; |
212 | } |
213 | |
214 | /* calculate first power of 2 >= num */ |
215 | static inline uint64 |
216 | sh_pow2(uint64 num) |
217 | { |
218 | return ((uint64) 1) << sh_log2(num); |
219 | } |
220 | |
221 | #endif |
222 | |
223 | /* |
224 | * Compute sizing parameters for hashtable. Called when creating and growing |
225 | * the hashtable. |
226 | */ |
227 | static inline void |
228 | SH_COMPUTE_PARAMETERS(SH_TYPE * tb, uint32 newsize) |
229 | { |
230 | uint64 size; |
231 | |
232 | /* supporting zero sized hashes would complicate matters */ |
233 | size = Max(newsize, 2); |
234 | |
235 | /* round up size to the next power of 2, that's how bucketing works */ |
236 | size = sh_pow2(size); |
237 | Assert(size <= SH_MAX_SIZE); |
238 | |
239 | /* |
240 | * Verify that allocation of ->data is possible on this platform, without |
241 | * overflowing Size. |
242 | */ |
243 | if ((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= MaxAllocHugeSize) |
244 | elog(ERROR, "hash table too large" ); |
245 | |
246 | /* now set size */ |
247 | tb->size = size; |
248 | |
249 | if (tb->size == SH_MAX_SIZE) |
250 | tb->sizemask = 0; |
251 | else |
252 | tb->sizemask = tb->size - 1; |
253 | |
254 | /* |
255 | * Compute the next threshold at which we need to grow the hash table |
256 | * again. |
257 | */ |
258 | if (tb->size == SH_MAX_SIZE) |
259 | tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR; |
260 | else |
261 | tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR; |
262 | } |
263 | |
264 | /* return the optimal bucket for the hash */ |
265 | static inline uint32 |
266 | SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash) |
267 | { |
268 | return hash & tb->sizemask; |
269 | } |
270 | |
271 | /* return next bucket after the current, handling wraparound */ |
272 | static inline uint32 |
273 | SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
274 | { |
275 | curelem = (curelem + 1) & tb->sizemask; |
276 | |
277 | Assert(curelem != startelem); |
278 | |
279 | return curelem; |
280 | } |
281 | |
282 | /* return bucket before the current, handling wraparound */ |
283 | static inline uint32 |
284 | SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
285 | { |
286 | curelem = (curelem - 1) & tb->sizemask; |
287 | |
288 | Assert(curelem != startelem); |
289 | |
290 | return curelem; |
291 | } |
292 | |
293 | /* return distance between bucket and its optimal position */ |
294 | static inline uint32 |
295 | SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket) |
296 | { |
297 | if (optimal <= bucket) |
298 | return bucket - optimal; |
299 | else |
300 | return (tb->size + bucket) - optimal; |
301 | } |
302 | |
303 | static inline uint32 |
304 | SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry) |
305 | { |
306 | #ifdef SH_STORE_HASH |
307 | return SH_GET_HASH(tb, entry); |
308 | #else |
309 | return SH_HASH_KEY(tb, entry->SH_KEY); |
310 | #endif |
311 | } |
312 | |
313 | /* default memory allocator function */ |
314 | static inline void *SH_ALLOCATE(SH_TYPE * type, Size size); |
315 | static inline void SH_FREE(SH_TYPE * type, void *pointer); |
316 | |
317 | #ifndef SH_USE_NONDEFAULT_ALLOCATOR |
318 | |
319 | /* default memory allocator function */ |
320 | static inline void * |
321 | SH_ALLOCATE(SH_TYPE * type, Size size) |
322 | { |
323 | return MemoryContextAllocExtended(type->ctx, size, |
324 | MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO); |
325 | } |
326 | |
327 | /* default memory free function */ |
328 | static inline void |
329 | SH_FREE(SH_TYPE * type, void *pointer) |
330 | { |
331 | pfree(pointer); |
332 | } |
333 | |
334 | #endif |
335 | |
336 | /* |
337 | * Create a hash table with enough space for `nelements` distinct members. |
338 | * Memory for the hash table is allocated from the passed-in context. If |
339 | * desired, the array of elements can be allocated using a passed-in allocator; |
340 | * this could be useful in order to place the array of elements in a shared |
341 | * memory, or in a context that will outlive the rest of the hash table. |
342 | * Memory other than for the array of elements will still be allocated from |
343 | * the passed-in context. |
344 | */ |
345 | SH_SCOPE SH_TYPE * |
346 | SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data) |
347 | { |
348 | SH_TYPE *tb; |
349 | uint64 size; |
350 | |
351 | tb = MemoryContextAllocZero(ctx, sizeof(SH_TYPE)); |
352 | tb->ctx = ctx; |
353 | tb->private_data = private_data; |
354 | |
355 | /* increase nelements by fillfactor, want to store nelements elements */ |
356 | size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR); |
357 | |
358 | SH_COMPUTE_PARAMETERS(tb, size); |
359 | |
360 | tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size); |
361 | |
362 | return tb; |
363 | } |
364 | |
365 | /* destroy a previously created hash table */ |
366 | SH_SCOPE void |
367 | SH_DESTROY(SH_TYPE * tb) |
368 | { |
369 | SH_FREE(tb, tb->data); |
370 | pfree(tb); |
371 | } |
372 | |
373 | /* reset the contents of a previously created hash table */ |
374 | SH_SCOPE void |
375 | SH_RESET(SH_TYPE * tb) |
376 | { |
377 | memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size); |
378 | tb->members = 0; |
379 | } |
380 | |
381 | /* |
382 | * Grow a hash table to at least `newsize` buckets. |
383 | * |
384 | * Usually this will automatically be called by insertions/deletions, when |
385 | * necessary. But resizing to the exact input size can be advantageous |
386 | * performance-wise, when known at some point. |
387 | */ |
388 | SH_SCOPE void |
389 | SH_GROW(SH_TYPE * tb, uint32 newsize) |
390 | { |
391 | uint64 oldsize = tb->size; |
392 | SH_ELEMENT_TYPE *olddata = tb->data; |
393 | SH_ELEMENT_TYPE *newdata; |
394 | uint32 i; |
395 | uint32 startelem = 0; |
396 | uint32 copyelem; |
397 | |
398 | Assert(oldsize == sh_pow2(oldsize)); |
399 | Assert(oldsize != SH_MAX_SIZE); |
400 | Assert(oldsize < newsize); |
401 | |
402 | /* compute parameters for new table */ |
403 | SH_COMPUTE_PARAMETERS(tb, newsize); |
404 | |
405 | tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size); |
406 | |
407 | newdata = tb->data; |
408 | |
409 | /* |
410 | * Copy entries from the old data to newdata. We theoretically could use |
411 | * SH_INSERT here, to avoid code duplication, but that's more general than |
412 | * we need. We neither want tb->members increased, nor do we need to do |
413 | * deal with deleted elements, nor do we need to compare keys. So a |
414 | * special-cased implementation is lot faster. As resizing can be time |
415 | * consuming and frequent, that's worthwhile to optimize. |
416 | * |
417 | * To be able to simply move entries over, we have to start not at the |
418 | * first bucket (i.e olddata[0]), but find the first bucket that's either |
419 | * empty, or is occupied by an entry at its optimal position. Such a |
420 | * bucket has to exist in any table with a load factor under 1, as not all |
421 | * buckets are occupied, i.e. there always has to be an empty bucket. By |
422 | * starting at such a bucket we can move the entries to the larger table, |
423 | * without having to deal with conflicts. |
424 | */ |
425 | |
426 | /* search for the first element in the hash that's not wrapped around */ |
427 | for (i = 0; i < oldsize; i++) |
428 | { |
429 | SH_ELEMENT_TYPE *oldentry = &olddata[i]; |
430 | uint32 hash; |
431 | uint32 optimal; |
432 | |
433 | if (oldentry->status != SH_STATUS_IN_USE) |
434 | { |
435 | startelem = i; |
436 | break; |
437 | } |
438 | |
439 | hash = SH_ENTRY_HASH(tb, oldentry); |
440 | optimal = SH_INITIAL_BUCKET(tb, hash); |
441 | |
442 | if (optimal == i) |
443 | { |
444 | startelem = i; |
445 | break; |
446 | } |
447 | } |
448 | |
449 | /* and copy all elements in the old table */ |
450 | copyelem = startelem; |
451 | for (i = 0; i < oldsize; i++) |
452 | { |
453 | SH_ELEMENT_TYPE *oldentry = &olddata[copyelem]; |
454 | |
455 | if (oldentry->status == SH_STATUS_IN_USE) |
456 | { |
457 | uint32 hash; |
458 | uint32 startelem; |
459 | uint32 curelem; |
460 | SH_ELEMENT_TYPE *newentry; |
461 | |
462 | hash = SH_ENTRY_HASH(tb, oldentry); |
463 | startelem = SH_INITIAL_BUCKET(tb, hash); |
464 | curelem = startelem; |
465 | |
466 | /* find empty element to put data into */ |
467 | while (true) |
468 | { |
469 | newentry = &newdata[curelem]; |
470 | |
471 | if (newentry->status == SH_STATUS_EMPTY) |
472 | { |
473 | break; |
474 | } |
475 | |
476 | curelem = SH_NEXT(tb, curelem, startelem); |
477 | } |
478 | |
479 | /* copy entry to new slot */ |
480 | memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE)); |
481 | } |
482 | |
483 | /* can't use SH_NEXT here, would use new size */ |
484 | copyelem++; |
485 | if (copyelem >= oldsize) |
486 | { |
487 | copyelem = 0; |
488 | } |
489 | } |
490 | |
491 | SH_FREE(tb, olddata); |
492 | } |
493 | |
494 | /* |
495 | * Insert the key key into the hash-table, set *found to true if the key |
496 | * already exists, false otherwise. Returns the hash-table entry in either |
497 | * case. |
498 | */ |
499 | SH_SCOPE SH_ELEMENT_TYPE * |
500 | SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found) |
501 | { |
502 | uint32 hash = SH_HASH_KEY(tb, key); |
503 | uint32 startelem; |
504 | uint32 curelem; |
505 | SH_ELEMENT_TYPE *data; |
506 | uint32 insertdist; |
507 | |
508 | restart: |
509 | insertdist = 0; |
510 | |
511 | /* |
512 | * We do the grow check even if the key is actually present, to avoid |
513 | * doing the check inside the loop. This also lets us avoid having to |
514 | * re-find our position in the hashtable after resizing. |
515 | * |
516 | * Note that this also reached when resizing the table due to |
517 | * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE. |
518 | */ |
519 | if (unlikely(tb->members >= tb->grow_threshold)) |
520 | { |
521 | if (tb->size == SH_MAX_SIZE) |
522 | { |
523 | elog(ERROR, "hash table size exceeded" ); |
524 | } |
525 | |
526 | /* |
527 | * When optimizing, it can be very useful to print these out. |
528 | */ |
529 | /* SH_STAT(tb); */ |
530 | SH_GROW(tb, tb->size * 2); |
531 | /* SH_STAT(tb); */ |
532 | } |
533 | |
534 | /* perform insert, start bucket search at optimal location */ |
535 | data = tb->data; |
536 | startelem = SH_INITIAL_BUCKET(tb, hash); |
537 | curelem = startelem; |
538 | while (true) |
539 | { |
540 | uint32 curdist; |
541 | uint32 curhash; |
542 | uint32 curoptimal; |
543 | SH_ELEMENT_TYPE *entry = &data[curelem]; |
544 | |
545 | /* any empty bucket can directly be used */ |
546 | if (entry->status == SH_STATUS_EMPTY) |
547 | { |
548 | tb->members++; |
549 | entry->SH_KEY = key; |
550 | #ifdef SH_STORE_HASH |
551 | SH_GET_HASH(tb, entry) = hash; |
552 | #endif |
553 | entry->status = SH_STATUS_IN_USE; |
554 | *found = false; |
555 | return entry; |
556 | } |
557 | |
558 | /* |
559 | * If the bucket is not empty, we either found a match (in which case |
560 | * we're done), or we have to decide whether to skip over or move the |
561 | * colliding entry. When the colliding element's distance to its |
562 | * optimal position is smaller than the to-be-inserted entry's, we |
563 | * shift the colliding entry (and its followers) forward by one. |
564 | */ |
565 | |
566 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
567 | { |
568 | Assert(entry->status == SH_STATUS_IN_USE); |
569 | *found = true; |
570 | return entry; |
571 | } |
572 | |
573 | curhash = SH_ENTRY_HASH(tb, entry); |
574 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
575 | curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem); |
576 | |
577 | if (insertdist > curdist) |
578 | { |
579 | SH_ELEMENT_TYPE *lastentry = entry; |
580 | uint32 emptyelem = curelem; |
581 | uint32 moveelem; |
582 | int32 emptydist = 0; |
583 | |
584 | /* find next empty bucket */ |
585 | while (true) |
586 | { |
587 | SH_ELEMENT_TYPE *emptyentry; |
588 | |
589 | emptyelem = SH_NEXT(tb, emptyelem, startelem); |
590 | emptyentry = &data[emptyelem]; |
591 | |
592 | if (emptyentry->status == SH_STATUS_EMPTY) |
593 | { |
594 | lastentry = emptyentry; |
595 | break; |
596 | } |
597 | |
598 | /* |
599 | * To avoid negative consequences from overly imbalanced |
600 | * hashtables, grow the hashtable if collisions would require |
601 | * us to move a lot of entries. The most likely cause of such |
602 | * imbalance is filling a (currently) small table, from a |
603 | * currently big one, in hash-table order. Don't grow if the |
604 | * hashtable would be too empty, to prevent quick space |
605 | * explosion for some weird edge cases. |
606 | */ |
607 | if (unlikely(++emptydist > SH_GROW_MAX_MOVE) && |
608 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
609 | { |
610 | tb->grow_threshold = 0; |
611 | goto restart; |
612 | } |
613 | } |
614 | |
615 | /* shift forward, starting at last occupied element */ |
616 | |
617 | /* |
618 | * TODO: This could be optimized to be one memcpy in may cases, |
619 | * excepting wrapping around at the end of ->data. Hasn't shown up |
620 | * in profiles so far though. |
621 | */ |
622 | moveelem = emptyelem; |
623 | while (moveelem != curelem) |
624 | { |
625 | SH_ELEMENT_TYPE *moveentry; |
626 | |
627 | moveelem = SH_PREV(tb, moveelem, startelem); |
628 | moveentry = &data[moveelem]; |
629 | |
630 | memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE)); |
631 | lastentry = moveentry; |
632 | } |
633 | |
634 | /* and fill the now empty spot */ |
635 | tb->members++; |
636 | |
637 | entry->SH_KEY = key; |
638 | #ifdef SH_STORE_HASH |
639 | SH_GET_HASH(tb, entry) = hash; |
640 | #endif |
641 | entry->status = SH_STATUS_IN_USE; |
642 | *found = false; |
643 | return entry; |
644 | } |
645 | |
646 | curelem = SH_NEXT(tb, curelem, startelem); |
647 | insertdist++; |
648 | |
649 | /* |
650 | * To avoid negative consequences from overly imbalanced hashtables, |
651 | * grow the hashtable if collisions lead to large runs. The most |
652 | * likely cause of such imbalance is filling a (currently) small |
653 | * table, from a currently big one, in hash-table order. Don't grow |
654 | * if the hashtable would be too empty, to prevent quick space |
655 | * explosion for some weird edge cases. |
656 | */ |
657 | if (unlikely(insertdist > SH_GROW_MAX_DIB) && |
658 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
659 | { |
660 | tb->grow_threshold = 0; |
661 | goto restart; |
662 | } |
663 | } |
664 | } |
665 | |
666 | /* |
667 | * Lookup up entry in hash table. Returns NULL if key not present. |
668 | */ |
669 | SH_SCOPE SH_ELEMENT_TYPE * |
670 | SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key) |
671 | { |
672 | uint32 hash = SH_HASH_KEY(tb, key); |
673 | const uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
674 | uint32 curelem = startelem; |
675 | |
676 | while (true) |
677 | { |
678 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
679 | |
680 | if (entry->status == SH_STATUS_EMPTY) |
681 | { |
682 | return NULL; |
683 | } |
684 | |
685 | Assert(entry->status == SH_STATUS_IN_USE); |
686 | |
687 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
688 | return entry; |
689 | |
690 | /* |
691 | * TODO: we could stop search based on distance. If the current |
692 | * buckets's distance-from-optimal is smaller than what we've skipped |
693 | * already, the entry doesn't exist. Probably only do so if |
694 | * SH_STORE_HASH is defined, to avoid re-computing hashes? |
695 | */ |
696 | |
697 | curelem = SH_NEXT(tb, curelem, startelem); |
698 | } |
699 | } |
700 | |
701 | /* |
702 | * Delete entry from hash table. Returns whether to-be-deleted key was |
703 | * present. |
704 | */ |
705 | SH_SCOPE bool |
706 | SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key) |
707 | { |
708 | uint32 hash = SH_HASH_KEY(tb, key); |
709 | uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
710 | uint32 curelem = startelem; |
711 | |
712 | while (true) |
713 | { |
714 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
715 | |
716 | if (entry->status == SH_STATUS_EMPTY) |
717 | return false; |
718 | |
719 | if (entry->status == SH_STATUS_IN_USE && |
720 | SH_COMPARE_KEYS(tb, hash, key, entry)) |
721 | { |
722 | SH_ELEMENT_TYPE *lastentry = entry; |
723 | |
724 | tb->members--; |
725 | |
726 | /* |
727 | * Backward shift following elements till either an empty element |
728 | * or an element at its optimal position is encountered. |
729 | * |
730 | * While that sounds expensive, the average chain length is short, |
731 | * and deletions would otherwise require tombstones. |
732 | */ |
733 | while (true) |
734 | { |
735 | SH_ELEMENT_TYPE *curentry; |
736 | uint32 curhash; |
737 | uint32 curoptimal; |
738 | |
739 | curelem = SH_NEXT(tb, curelem, startelem); |
740 | curentry = &tb->data[curelem]; |
741 | |
742 | if (curentry->status != SH_STATUS_IN_USE) |
743 | { |
744 | lastentry->status = SH_STATUS_EMPTY; |
745 | break; |
746 | } |
747 | |
748 | curhash = SH_ENTRY_HASH(tb, curentry); |
749 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
750 | |
751 | /* current is at optimal position, done */ |
752 | if (curoptimal == curelem) |
753 | { |
754 | lastentry->status = SH_STATUS_EMPTY; |
755 | break; |
756 | } |
757 | |
758 | /* shift */ |
759 | memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE)); |
760 | |
761 | lastentry = curentry; |
762 | } |
763 | |
764 | return true; |
765 | } |
766 | |
767 | /* TODO: return false; if distance too big */ |
768 | |
769 | curelem = SH_NEXT(tb, curelem, startelem); |
770 | } |
771 | } |
772 | |
773 | /* |
774 | * Initialize iterator. |
775 | */ |
776 | SH_SCOPE void |
777 | SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
778 | { |
779 | int i; |
780 | uint64 startelem = PG_UINT64_MAX; |
781 | |
782 | /* |
783 | * Search for the first empty element. As deletions during iterations are |
784 | * supported, we want to start/end at an element that cannot be affected |
785 | * by elements being shifted. |
786 | */ |
787 | for (i = 0; i < tb->size; i++) |
788 | { |
789 | SH_ELEMENT_TYPE *entry = &tb->data[i]; |
790 | |
791 | if (entry->status != SH_STATUS_IN_USE) |
792 | { |
793 | startelem = i; |
794 | break; |
795 | } |
796 | } |
797 | |
798 | Assert(startelem < SH_MAX_SIZE); |
799 | |
800 | /* |
801 | * Iterate backwards, that allows the current element to be deleted, even |
802 | * if there are backward shifts |
803 | */ |
804 | iter->cur = startelem; |
805 | iter->end = iter->cur; |
806 | iter->done = false; |
807 | } |
808 | |
809 | /* |
810 | * Initialize iterator to a specific bucket. That's really only useful for |
811 | * cases where callers are partially iterating over the hashspace, and that |
812 | * iteration deletes and inserts elements based on visited entries. Doing that |
813 | * repeatedly could lead to an unbalanced keyspace when always starting at the |
814 | * same position. |
815 | */ |
816 | SH_SCOPE void |
817 | SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at) |
818 | { |
819 | /* |
820 | * Iterate backwards, that allows the current element to be deleted, even |
821 | * if there are backward shifts. |
822 | */ |
823 | iter->cur = at & tb->sizemask; /* ensure at is within a valid range */ |
824 | iter->end = iter->cur; |
825 | iter->done = false; |
826 | } |
827 | |
828 | /* |
829 | * Iterate over all entries in the hash-table. Return the next occupied entry, |
830 | * or NULL if done. |
831 | * |
832 | * During iteration the current entry in the hash table may be deleted, |
833 | * without leading to elements being skipped or returned twice. Additionally |
834 | * the rest of the table may be modified (i.e. there can be insertions or |
835 | * deletions), but if so, there's neither a guarantee that all nodes are |
836 | * visited at least once, nor a guarantee that a node is visited at most once. |
837 | */ |
838 | SH_SCOPE SH_ELEMENT_TYPE * |
839 | SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
840 | { |
841 | while (!iter->done) |
842 | { |
843 | SH_ELEMENT_TYPE *elem; |
844 | |
845 | elem = &tb->data[iter->cur]; |
846 | |
847 | /* next element in backward direction */ |
848 | iter->cur = (iter->cur - 1) & tb->sizemask; |
849 | |
850 | if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask)) |
851 | iter->done = true; |
852 | if (elem->status == SH_STATUS_IN_USE) |
853 | { |
854 | return elem; |
855 | } |
856 | } |
857 | |
858 | return NULL; |
859 | } |
860 | |
861 | /* |
862 | * Report some statistics about the state of the hashtable. For |
863 | * debugging/profiling purposes only. |
864 | */ |
865 | SH_SCOPE void |
866 | SH_STAT(SH_TYPE * tb) |
867 | { |
868 | uint32 max_chain_length = 0; |
869 | uint32 total_chain_length = 0; |
870 | double avg_chain_length; |
871 | double fillfactor; |
872 | uint32 i; |
873 | |
874 | uint32 *collisions = palloc0(tb->size * sizeof(uint32)); |
875 | uint32 total_collisions = 0; |
876 | uint32 max_collisions = 0; |
877 | double avg_collisions; |
878 | |
879 | for (i = 0; i < tb->size; i++) |
880 | { |
881 | uint32 hash; |
882 | uint32 optimal; |
883 | uint32 dist; |
884 | SH_ELEMENT_TYPE *elem; |
885 | |
886 | elem = &tb->data[i]; |
887 | |
888 | if (elem->status != SH_STATUS_IN_USE) |
889 | continue; |
890 | |
891 | hash = SH_ENTRY_HASH(tb, elem); |
892 | optimal = SH_INITIAL_BUCKET(tb, hash); |
893 | dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i); |
894 | |
895 | if (dist > max_chain_length) |
896 | max_chain_length = dist; |
897 | total_chain_length += dist; |
898 | |
899 | collisions[optimal]++; |
900 | } |
901 | |
902 | for (i = 0; i < tb->size; i++) |
903 | { |
904 | uint32 curcoll = collisions[i]; |
905 | |
906 | if (curcoll == 0) |
907 | continue; |
908 | |
909 | /* single contained element is not a collision */ |
910 | curcoll--; |
911 | total_collisions += curcoll; |
912 | if (curcoll > max_collisions) |
913 | max_collisions = curcoll; |
914 | } |
915 | |
916 | if (tb->members > 0) |
917 | { |
918 | fillfactor = tb->members / ((double) tb->size); |
919 | avg_chain_length = ((double) total_chain_length) / tb->members; |
920 | avg_collisions = ((double) total_collisions) / tb->members; |
921 | } |
922 | else |
923 | { |
924 | fillfactor = 0; |
925 | avg_chain_length = 0; |
926 | avg_collisions = 0; |
927 | } |
928 | |
929 | elog(LOG, "size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %i, avg_collisions: %f" , |
930 | tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length, |
931 | total_collisions, max_collisions, avg_collisions); |
932 | } |
933 | |
934 | #endif /* SH_DEFINE */ |
935 | |
936 | |
937 | /* undefine external parameters, so next hash table can be defined */ |
938 | #undef SH_PREFIX |
939 | #undef SH_KEY_TYPE |
940 | #undef SH_KEY |
941 | #undef SH_ELEMENT_TYPE |
942 | #undef SH_HASH_KEY |
943 | #undef SH_SCOPE |
944 | #undef SH_DECLARE |
945 | #undef SH_DEFINE |
946 | #undef SH_GET_HASH |
947 | #undef SH_STORE_HASH |
948 | #undef SH_USE_NONDEFAULT_ALLOCATOR |
949 | #undef SH_EQUAL |
950 | |
951 | /* undefine locally declared macros */ |
952 | #undef SH_MAKE_PREFIX |
953 | #undef SH_MAKE_NAME |
954 | #undef SH_MAKE_NAME_ |
955 | #undef SH_FILLFACTOR |
956 | #undef SH_MAX_FILLFACTOR |
957 | #undef SH_GROW_MAX_DIB |
958 | #undef SH_GROW_MAX_MOVE |
959 | #undef SH_GROW_MIN_FILLFACTOR |
960 | #undef SH_MAX_SIZE |
961 | |
962 | /* types */ |
963 | #undef SH_TYPE |
964 | #undef SH_STATUS |
965 | #undef SH_STATUS_EMPTY |
966 | #undef SH_STATUS_IN_USE |
967 | #undef SH_ITERATOR |
968 | |
969 | /* external function names */ |
970 | #undef SH_CREATE |
971 | #undef SH_DESTROY |
972 | #undef SH_RESET |
973 | #undef SH_INSERT |
974 | #undef SH_DELETE |
975 | #undef SH_LOOKUP |
976 | #undef SH_GROW |
977 | #undef SH_START_ITERATE |
978 | #undef SH_START_ITERATE_AT |
979 | #undef SH_ITERATE |
980 | #undef SH_ALLOCATE |
981 | #undef SH_FREE |
982 | #undef SH_STAT |
983 | |
984 | /* internal function names */ |
985 | #undef SH_COMPUTE_PARAMETERS |
986 | #undef SH_COMPARE_KEYS |
987 | #undef SH_INITIAL_BUCKET |
988 | #undef SH_NEXT |
989 | #undef SH_PREV |
990 | #undef SH_DISTANCE_FROM_OPTIMAL |
991 | #undef SH_ENTRY_HASH |
992 | |