| 1 | /* |
| 2 | * simplehash.h |
| 3 | * |
| 4 | * Hash table implementation which will be specialized to user-defined |
| 5 | * types, by including this file to generate the required code. It's |
| 6 | * probably not worthwhile to do so for hash tables that aren't performance |
| 7 | * or space sensitive. |
| 8 | * |
| 9 | * Usage notes: |
| 10 | * |
| 11 | * To generate a hash-table and associated functions for a use case several |
| 12 | * macros have to be #define'ed before this file is included. Including |
| 13 | * the file #undef's all those, so a new hash table can be generated |
| 14 | * afterwards. |
| 15 | * The relevant parameters are: |
| 16 | * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo' |
| 17 | * will result in hash table type 'foo_hash' and functions like |
| 18 | * 'foo_insert'/'foo_lookup' and so forth. |
| 19 | * - SH_ELEMENT_TYPE - type of the contained elements |
| 20 | * - SH_KEY_TYPE - type of the hashtable's key |
| 21 | * - SH_DECLARE - if defined function prototypes and type declarations are |
| 22 | * generated |
| 23 | * - SH_DEFINE - if defined function definitions are generated |
| 24 | * - SH_SCOPE - in which scope (e.g. extern, static inline) do function |
| 25 | * declarations reside |
| 26 | * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions |
| 27 | * are defined, so you can supply your own |
| 28 | * The following parameters are only relevant when SH_DEFINE is defined: |
| 29 | * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key |
| 30 | * - SH_EQUAL(table, a, b) - compare two table keys |
| 31 | * - SH_HASH_KEY(table, key) - generate hash for the key |
| 32 | * - SH_STORE_HASH - if defined the hash is stored in the elements |
| 33 | * - SH_GET_HASH(tb, a) - return the field to store the hash in |
| 34 | * |
| 35 | * For examples of usage look at tidbitmap.c (file local definition) and |
| 36 | * execnodes.h/execGrouping.c (exposed declaration, file local |
| 37 | * implementation). |
| 38 | * |
| 39 | * Hash table design: |
| 40 | * |
| 41 | * The hash table design chosen is a variant of linear open-addressing. The |
| 42 | * reason for doing so is that linear addressing is CPU cache & pipeline |
| 43 | * friendly. The biggest disadvantage of simple linear addressing schemes |
| 44 | * are highly variable lookup times due to clustering, and deletions |
| 45 | * leaving a lot of tombstones around. To address these issues a variant |
| 46 | * of "robin hood" hashing is employed. Robin hood hashing optimizes |
| 47 | * chaining lengths by moving elements close to their optimal bucket |
| 48 | * ("rich" elements), out of the way if a to-be-inserted element is further |
| 49 | * away from its optimal position (i.e. it's "poor"). While that can make |
| 50 | * insertions slower, the average lookup performance is a lot better, and |
| 51 | * higher fill factors can be used in a still performant manner. To avoid |
| 52 | * tombstones - which normally solve the issue that a deleted node's |
| 53 | * presence is relevant to determine whether a lookup needs to continue |
| 54 | * looking or is done - buckets following a deleted element are shifted |
| 55 | * backwards, unless they're empty or already at their optimal position. |
| 56 | */ |
| 57 | |
| 58 | /* helpers */ |
| 59 | #define SH_MAKE_PREFIX(a) CppConcat(a,_) |
| 60 | #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name) |
| 61 | #define SH_MAKE_NAME_(a,b) CppConcat(a,b) |
| 62 | |
| 63 | /* name macros for: */ |
| 64 | |
| 65 | /* type declarations */ |
| 66 | #define SH_TYPE SH_MAKE_NAME(hash) |
| 67 | #define SH_STATUS SH_MAKE_NAME(status) |
| 68 | #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY) |
| 69 | #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE) |
| 70 | #define SH_ITERATOR SH_MAKE_NAME(iterator) |
| 71 | |
| 72 | /* function declarations */ |
| 73 | #define SH_CREATE SH_MAKE_NAME(create) |
| 74 | #define SH_DESTROY SH_MAKE_NAME(destroy) |
| 75 | #define SH_RESET SH_MAKE_NAME(reset) |
| 76 | #define SH_INSERT SH_MAKE_NAME(insert) |
| 77 | #define SH_DELETE SH_MAKE_NAME(delete) |
| 78 | #define SH_LOOKUP SH_MAKE_NAME(lookup) |
| 79 | #define SH_GROW SH_MAKE_NAME(grow) |
| 80 | #define SH_START_ITERATE SH_MAKE_NAME(start_iterate) |
| 81 | #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at) |
| 82 | #define SH_ITERATE SH_MAKE_NAME(iterate) |
| 83 | #define SH_ALLOCATE SH_MAKE_NAME(allocate) |
| 84 | #define SH_FREE SH_MAKE_NAME(free) |
| 85 | #define SH_STAT SH_MAKE_NAME(stat) |
| 86 | |
| 87 | /* internal helper functions (no externally visible prototypes) */ |
| 88 | #define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters) |
| 89 | #define SH_NEXT SH_MAKE_NAME(next) |
| 90 | #define SH_PREV SH_MAKE_NAME(prev) |
| 91 | #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance) |
| 92 | #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket) |
| 93 | #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash) |
| 94 | |
| 95 | /* generate forward declarations necessary to use the hash table */ |
| 96 | #ifdef SH_DECLARE |
| 97 | |
| 98 | /* type definitions */ |
| 99 | typedef struct SH_TYPE |
| 100 | { |
| 101 | /* |
| 102 | * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash |
| 103 | * tables. Note that the maximum number of elements is lower |
| 104 | * (SH_MAX_FILLFACTOR) |
| 105 | */ |
| 106 | uint64 size; |
| 107 | |
| 108 | /* how many elements have valid contents */ |
| 109 | uint32 members; |
| 110 | |
| 111 | /* mask for bucket and size calculations, based on size */ |
| 112 | uint32 sizemask; |
| 113 | |
| 114 | /* boundary after which to grow hashtable */ |
| 115 | uint32 grow_threshold; |
| 116 | |
| 117 | /* hash buckets */ |
| 118 | SH_ELEMENT_TYPE *data; |
| 119 | |
| 120 | /* memory context to use for allocations */ |
| 121 | MemoryContext ctx; |
| 122 | |
| 123 | /* user defined data, useful for callbacks */ |
| 124 | void *private_data; |
| 125 | } SH_TYPE; |
| 126 | |
| 127 | typedef enum SH_STATUS |
| 128 | { |
| 129 | SH_STATUS_EMPTY = 0x00, |
| 130 | SH_STATUS_IN_USE = 0x01 |
| 131 | } SH_STATUS; |
| 132 | |
| 133 | typedef struct SH_ITERATOR |
| 134 | { |
| 135 | uint32 cur; /* current element */ |
| 136 | uint32 end; |
| 137 | bool done; /* iterator exhausted? */ |
| 138 | } SH_ITERATOR; |
| 139 | |
| 140 | /* externally visible function prototypes */ |
| 141 | SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements, |
| 142 | void *private_data); |
| 143 | SH_SCOPE void SH_DESTROY(SH_TYPE * tb); |
| 144 | SH_SCOPE void SH_RESET(SH_TYPE * tb); |
| 145 | SH_SCOPE void SH_GROW(SH_TYPE * tb, uint32 newsize); |
| 146 | SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found); |
| 147 | SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key); |
| 148 | SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key); |
| 149 | SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
| 150 | SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at); |
| 151 | SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
| 152 | SH_SCOPE void SH_STAT(SH_TYPE * tb); |
| 153 | |
| 154 | #endif /* SH_DECLARE */ |
| 155 | |
| 156 | |
| 157 | /* generate implementation of the hash table */ |
| 158 | #ifdef SH_DEFINE |
| 159 | |
| 160 | #include "utils/memutils.h" |
| 161 | |
| 162 | /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */ |
| 163 | #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1) |
| 164 | |
| 165 | /* normal fillfactor, unless already close to maximum */ |
| 166 | #ifndef SH_FILLFACTOR |
| 167 | #define SH_FILLFACTOR (0.9) |
| 168 | #endif |
| 169 | /* increase fillfactor if we otherwise would error out */ |
| 170 | #define SH_MAX_FILLFACTOR (0.98) |
| 171 | /* grow if actual and optimal location bigger than */ |
| 172 | #ifndef SH_GROW_MAX_DIB |
| 173 | #define SH_GROW_MAX_DIB 25 |
| 174 | #endif |
| 175 | /* grow if more than elements to move when inserting */ |
| 176 | #ifndef SH_GROW_MAX_MOVE |
| 177 | #define SH_GROW_MAX_MOVE 150 |
| 178 | #endif |
| 179 | #ifndef SH_GROW_MIN_FILLFACTOR |
| 180 | /* but do not grow due to SH_GROW_MAX_* if below */ |
| 181 | #define SH_GROW_MIN_FILLFACTOR 0.1 |
| 182 | #endif |
| 183 | |
| 184 | #ifdef SH_STORE_HASH |
| 185 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey)) |
| 186 | #else |
| 187 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey)) |
| 188 | #endif |
| 189 | |
| 190 | /* |
| 191 | * Wrap the following definitions in include guards, to avoid multiple |
| 192 | * definition errors if this header is included more than once. The rest of |
| 193 | * the file deliberately has no include guards, because it can be included |
| 194 | * with different parameters to define functions and types with non-colliding |
| 195 | * names. |
| 196 | */ |
| 197 | #ifndef SIMPLEHASH_H |
| 198 | #define SIMPLEHASH_H |
| 199 | |
| 200 | /* FIXME: can we move these to a central location? */ |
| 201 | |
| 202 | /* calculate ceil(log base 2) of num */ |
| 203 | static inline uint64 |
| 204 | sh_log2(uint64 num) |
| 205 | { |
| 206 | int i; |
| 207 | uint64 limit; |
| 208 | |
| 209 | for (i = 0, limit = 1; limit < num; i++, limit <<= 1) |
| 210 | ; |
| 211 | return i; |
| 212 | } |
| 213 | |
| 214 | /* calculate first power of 2 >= num */ |
| 215 | static inline uint64 |
| 216 | sh_pow2(uint64 num) |
| 217 | { |
| 218 | return ((uint64) 1) << sh_log2(num); |
| 219 | } |
| 220 | |
| 221 | #endif |
| 222 | |
| 223 | /* |
| 224 | * Compute sizing parameters for hashtable. Called when creating and growing |
| 225 | * the hashtable. |
| 226 | */ |
| 227 | static inline void |
| 228 | SH_COMPUTE_PARAMETERS(SH_TYPE * tb, uint32 newsize) |
| 229 | { |
| 230 | uint64 size; |
| 231 | |
| 232 | /* supporting zero sized hashes would complicate matters */ |
| 233 | size = Max(newsize, 2); |
| 234 | |
| 235 | /* round up size to the next power of 2, that's how bucketing works */ |
| 236 | size = sh_pow2(size); |
| 237 | Assert(size <= SH_MAX_SIZE); |
| 238 | |
| 239 | /* |
| 240 | * Verify that allocation of ->data is possible on this platform, without |
| 241 | * overflowing Size. |
| 242 | */ |
| 243 | if ((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= MaxAllocHugeSize) |
| 244 | elog(ERROR, "hash table too large" ); |
| 245 | |
| 246 | /* now set size */ |
| 247 | tb->size = size; |
| 248 | |
| 249 | if (tb->size == SH_MAX_SIZE) |
| 250 | tb->sizemask = 0; |
| 251 | else |
| 252 | tb->sizemask = tb->size - 1; |
| 253 | |
| 254 | /* |
| 255 | * Compute the next threshold at which we need to grow the hash table |
| 256 | * again. |
| 257 | */ |
| 258 | if (tb->size == SH_MAX_SIZE) |
| 259 | tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR; |
| 260 | else |
| 261 | tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR; |
| 262 | } |
| 263 | |
| 264 | /* return the optimal bucket for the hash */ |
| 265 | static inline uint32 |
| 266 | SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash) |
| 267 | { |
| 268 | return hash & tb->sizemask; |
| 269 | } |
| 270 | |
| 271 | /* return next bucket after the current, handling wraparound */ |
| 272 | static inline uint32 |
| 273 | SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
| 274 | { |
| 275 | curelem = (curelem + 1) & tb->sizemask; |
| 276 | |
| 277 | Assert(curelem != startelem); |
| 278 | |
| 279 | return curelem; |
| 280 | } |
| 281 | |
| 282 | /* return bucket before the current, handling wraparound */ |
| 283 | static inline uint32 |
| 284 | SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
| 285 | { |
| 286 | curelem = (curelem - 1) & tb->sizemask; |
| 287 | |
| 288 | Assert(curelem != startelem); |
| 289 | |
| 290 | return curelem; |
| 291 | } |
| 292 | |
| 293 | /* return distance between bucket and its optimal position */ |
| 294 | static inline uint32 |
| 295 | SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket) |
| 296 | { |
| 297 | if (optimal <= bucket) |
| 298 | return bucket - optimal; |
| 299 | else |
| 300 | return (tb->size + bucket) - optimal; |
| 301 | } |
| 302 | |
| 303 | static inline uint32 |
| 304 | SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry) |
| 305 | { |
| 306 | #ifdef SH_STORE_HASH |
| 307 | return SH_GET_HASH(tb, entry); |
| 308 | #else |
| 309 | return SH_HASH_KEY(tb, entry->SH_KEY); |
| 310 | #endif |
| 311 | } |
| 312 | |
| 313 | /* default memory allocator function */ |
| 314 | static inline void *SH_ALLOCATE(SH_TYPE * type, Size size); |
| 315 | static inline void SH_FREE(SH_TYPE * type, void *pointer); |
| 316 | |
| 317 | #ifndef SH_USE_NONDEFAULT_ALLOCATOR |
| 318 | |
| 319 | /* default memory allocator function */ |
| 320 | static inline void * |
| 321 | SH_ALLOCATE(SH_TYPE * type, Size size) |
| 322 | { |
| 323 | return MemoryContextAllocExtended(type->ctx, size, |
| 324 | MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO); |
| 325 | } |
| 326 | |
| 327 | /* default memory free function */ |
| 328 | static inline void |
| 329 | SH_FREE(SH_TYPE * type, void *pointer) |
| 330 | { |
| 331 | pfree(pointer); |
| 332 | } |
| 333 | |
| 334 | #endif |
| 335 | |
| 336 | /* |
| 337 | * Create a hash table with enough space for `nelements` distinct members. |
| 338 | * Memory for the hash table is allocated from the passed-in context. If |
| 339 | * desired, the array of elements can be allocated using a passed-in allocator; |
| 340 | * this could be useful in order to place the array of elements in a shared |
| 341 | * memory, or in a context that will outlive the rest of the hash table. |
| 342 | * Memory other than for the array of elements will still be allocated from |
| 343 | * the passed-in context. |
| 344 | */ |
| 345 | SH_SCOPE SH_TYPE * |
| 346 | SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data) |
| 347 | { |
| 348 | SH_TYPE *tb; |
| 349 | uint64 size; |
| 350 | |
| 351 | tb = MemoryContextAllocZero(ctx, sizeof(SH_TYPE)); |
| 352 | tb->ctx = ctx; |
| 353 | tb->private_data = private_data; |
| 354 | |
| 355 | /* increase nelements by fillfactor, want to store nelements elements */ |
| 356 | size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR); |
| 357 | |
| 358 | SH_COMPUTE_PARAMETERS(tb, size); |
| 359 | |
| 360 | tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size); |
| 361 | |
| 362 | return tb; |
| 363 | } |
| 364 | |
| 365 | /* destroy a previously created hash table */ |
| 366 | SH_SCOPE void |
| 367 | SH_DESTROY(SH_TYPE * tb) |
| 368 | { |
| 369 | SH_FREE(tb, tb->data); |
| 370 | pfree(tb); |
| 371 | } |
| 372 | |
| 373 | /* reset the contents of a previously created hash table */ |
| 374 | SH_SCOPE void |
| 375 | SH_RESET(SH_TYPE * tb) |
| 376 | { |
| 377 | memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size); |
| 378 | tb->members = 0; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * Grow a hash table to at least `newsize` buckets. |
| 383 | * |
| 384 | * Usually this will automatically be called by insertions/deletions, when |
| 385 | * necessary. But resizing to the exact input size can be advantageous |
| 386 | * performance-wise, when known at some point. |
| 387 | */ |
| 388 | SH_SCOPE void |
| 389 | SH_GROW(SH_TYPE * tb, uint32 newsize) |
| 390 | { |
| 391 | uint64 oldsize = tb->size; |
| 392 | SH_ELEMENT_TYPE *olddata = tb->data; |
| 393 | SH_ELEMENT_TYPE *newdata; |
| 394 | uint32 i; |
| 395 | uint32 startelem = 0; |
| 396 | uint32 copyelem; |
| 397 | |
| 398 | Assert(oldsize == sh_pow2(oldsize)); |
| 399 | Assert(oldsize != SH_MAX_SIZE); |
| 400 | Assert(oldsize < newsize); |
| 401 | |
| 402 | /* compute parameters for new table */ |
| 403 | SH_COMPUTE_PARAMETERS(tb, newsize); |
| 404 | |
| 405 | tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size); |
| 406 | |
| 407 | newdata = tb->data; |
| 408 | |
| 409 | /* |
| 410 | * Copy entries from the old data to newdata. We theoretically could use |
| 411 | * SH_INSERT here, to avoid code duplication, but that's more general than |
| 412 | * we need. We neither want tb->members increased, nor do we need to do |
| 413 | * deal with deleted elements, nor do we need to compare keys. So a |
| 414 | * special-cased implementation is lot faster. As resizing can be time |
| 415 | * consuming and frequent, that's worthwhile to optimize. |
| 416 | * |
| 417 | * To be able to simply move entries over, we have to start not at the |
| 418 | * first bucket (i.e olddata[0]), but find the first bucket that's either |
| 419 | * empty, or is occupied by an entry at its optimal position. Such a |
| 420 | * bucket has to exist in any table with a load factor under 1, as not all |
| 421 | * buckets are occupied, i.e. there always has to be an empty bucket. By |
| 422 | * starting at such a bucket we can move the entries to the larger table, |
| 423 | * without having to deal with conflicts. |
| 424 | */ |
| 425 | |
| 426 | /* search for the first element in the hash that's not wrapped around */ |
| 427 | for (i = 0; i < oldsize; i++) |
| 428 | { |
| 429 | SH_ELEMENT_TYPE *oldentry = &olddata[i]; |
| 430 | uint32 hash; |
| 431 | uint32 optimal; |
| 432 | |
| 433 | if (oldentry->status != SH_STATUS_IN_USE) |
| 434 | { |
| 435 | startelem = i; |
| 436 | break; |
| 437 | } |
| 438 | |
| 439 | hash = SH_ENTRY_HASH(tb, oldentry); |
| 440 | optimal = SH_INITIAL_BUCKET(tb, hash); |
| 441 | |
| 442 | if (optimal == i) |
| 443 | { |
| 444 | startelem = i; |
| 445 | break; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | /* and copy all elements in the old table */ |
| 450 | copyelem = startelem; |
| 451 | for (i = 0; i < oldsize; i++) |
| 452 | { |
| 453 | SH_ELEMENT_TYPE *oldentry = &olddata[copyelem]; |
| 454 | |
| 455 | if (oldentry->status == SH_STATUS_IN_USE) |
| 456 | { |
| 457 | uint32 hash; |
| 458 | uint32 startelem; |
| 459 | uint32 curelem; |
| 460 | SH_ELEMENT_TYPE *newentry; |
| 461 | |
| 462 | hash = SH_ENTRY_HASH(tb, oldentry); |
| 463 | startelem = SH_INITIAL_BUCKET(tb, hash); |
| 464 | curelem = startelem; |
| 465 | |
| 466 | /* find empty element to put data into */ |
| 467 | while (true) |
| 468 | { |
| 469 | newentry = &newdata[curelem]; |
| 470 | |
| 471 | if (newentry->status == SH_STATUS_EMPTY) |
| 472 | { |
| 473 | break; |
| 474 | } |
| 475 | |
| 476 | curelem = SH_NEXT(tb, curelem, startelem); |
| 477 | } |
| 478 | |
| 479 | /* copy entry to new slot */ |
| 480 | memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE)); |
| 481 | } |
| 482 | |
| 483 | /* can't use SH_NEXT here, would use new size */ |
| 484 | copyelem++; |
| 485 | if (copyelem >= oldsize) |
| 486 | { |
| 487 | copyelem = 0; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | SH_FREE(tb, olddata); |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * Insert the key key into the hash-table, set *found to true if the key |
| 496 | * already exists, false otherwise. Returns the hash-table entry in either |
| 497 | * case. |
| 498 | */ |
| 499 | SH_SCOPE SH_ELEMENT_TYPE * |
| 500 | SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found) |
| 501 | { |
| 502 | uint32 hash = SH_HASH_KEY(tb, key); |
| 503 | uint32 startelem; |
| 504 | uint32 curelem; |
| 505 | SH_ELEMENT_TYPE *data; |
| 506 | uint32 insertdist; |
| 507 | |
| 508 | restart: |
| 509 | insertdist = 0; |
| 510 | |
| 511 | /* |
| 512 | * We do the grow check even if the key is actually present, to avoid |
| 513 | * doing the check inside the loop. This also lets us avoid having to |
| 514 | * re-find our position in the hashtable after resizing. |
| 515 | * |
| 516 | * Note that this also reached when resizing the table due to |
| 517 | * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE. |
| 518 | */ |
| 519 | if (unlikely(tb->members >= tb->grow_threshold)) |
| 520 | { |
| 521 | if (tb->size == SH_MAX_SIZE) |
| 522 | { |
| 523 | elog(ERROR, "hash table size exceeded" ); |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * When optimizing, it can be very useful to print these out. |
| 528 | */ |
| 529 | /* SH_STAT(tb); */ |
| 530 | SH_GROW(tb, tb->size * 2); |
| 531 | /* SH_STAT(tb); */ |
| 532 | } |
| 533 | |
| 534 | /* perform insert, start bucket search at optimal location */ |
| 535 | data = tb->data; |
| 536 | startelem = SH_INITIAL_BUCKET(tb, hash); |
| 537 | curelem = startelem; |
| 538 | while (true) |
| 539 | { |
| 540 | uint32 curdist; |
| 541 | uint32 curhash; |
| 542 | uint32 curoptimal; |
| 543 | SH_ELEMENT_TYPE *entry = &data[curelem]; |
| 544 | |
| 545 | /* any empty bucket can directly be used */ |
| 546 | if (entry->status == SH_STATUS_EMPTY) |
| 547 | { |
| 548 | tb->members++; |
| 549 | entry->SH_KEY = key; |
| 550 | #ifdef SH_STORE_HASH |
| 551 | SH_GET_HASH(tb, entry) = hash; |
| 552 | #endif |
| 553 | entry->status = SH_STATUS_IN_USE; |
| 554 | *found = false; |
| 555 | return entry; |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * If the bucket is not empty, we either found a match (in which case |
| 560 | * we're done), or we have to decide whether to skip over or move the |
| 561 | * colliding entry. When the colliding element's distance to its |
| 562 | * optimal position is smaller than the to-be-inserted entry's, we |
| 563 | * shift the colliding entry (and its followers) forward by one. |
| 564 | */ |
| 565 | |
| 566 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
| 567 | { |
| 568 | Assert(entry->status == SH_STATUS_IN_USE); |
| 569 | *found = true; |
| 570 | return entry; |
| 571 | } |
| 572 | |
| 573 | curhash = SH_ENTRY_HASH(tb, entry); |
| 574 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
| 575 | curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem); |
| 576 | |
| 577 | if (insertdist > curdist) |
| 578 | { |
| 579 | SH_ELEMENT_TYPE *lastentry = entry; |
| 580 | uint32 emptyelem = curelem; |
| 581 | uint32 moveelem; |
| 582 | int32 emptydist = 0; |
| 583 | |
| 584 | /* find next empty bucket */ |
| 585 | while (true) |
| 586 | { |
| 587 | SH_ELEMENT_TYPE *emptyentry; |
| 588 | |
| 589 | emptyelem = SH_NEXT(tb, emptyelem, startelem); |
| 590 | emptyentry = &data[emptyelem]; |
| 591 | |
| 592 | if (emptyentry->status == SH_STATUS_EMPTY) |
| 593 | { |
| 594 | lastentry = emptyentry; |
| 595 | break; |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * To avoid negative consequences from overly imbalanced |
| 600 | * hashtables, grow the hashtable if collisions would require |
| 601 | * us to move a lot of entries. The most likely cause of such |
| 602 | * imbalance is filling a (currently) small table, from a |
| 603 | * currently big one, in hash-table order. Don't grow if the |
| 604 | * hashtable would be too empty, to prevent quick space |
| 605 | * explosion for some weird edge cases. |
| 606 | */ |
| 607 | if (unlikely(++emptydist > SH_GROW_MAX_MOVE) && |
| 608 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
| 609 | { |
| 610 | tb->grow_threshold = 0; |
| 611 | goto restart; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | /* shift forward, starting at last occupied element */ |
| 616 | |
| 617 | /* |
| 618 | * TODO: This could be optimized to be one memcpy in may cases, |
| 619 | * excepting wrapping around at the end of ->data. Hasn't shown up |
| 620 | * in profiles so far though. |
| 621 | */ |
| 622 | moveelem = emptyelem; |
| 623 | while (moveelem != curelem) |
| 624 | { |
| 625 | SH_ELEMENT_TYPE *moveentry; |
| 626 | |
| 627 | moveelem = SH_PREV(tb, moveelem, startelem); |
| 628 | moveentry = &data[moveelem]; |
| 629 | |
| 630 | memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE)); |
| 631 | lastentry = moveentry; |
| 632 | } |
| 633 | |
| 634 | /* and fill the now empty spot */ |
| 635 | tb->members++; |
| 636 | |
| 637 | entry->SH_KEY = key; |
| 638 | #ifdef SH_STORE_HASH |
| 639 | SH_GET_HASH(tb, entry) = hash; |
| 640 | #endif |
| 641 | entry->status = SH_STATUS_IN_USE; |
| 642 | *found = false; |
| 643 | return entry; |
| 644 | } |
| 645 | |
| 646 | curelem = SH_NEXT(tb, curelem, startelem); |
| 647 | insertdist++; |
| 648 | |
| 649 | /* |
| 650 | * To avoid negative consequences from overly imbalanced hashtables, |
| 651 | * grow the hashtable if collisions lead to large runs. The most |
| 652 | * likely cause of such imbalance is filling a (currently) small |
| 653 | * table, from a currently big one, in hash-table order. Don't grow |
| 654 | * if the hashtable would be too empty, to prevent quick space |
| 655 | * explosion for some weird edge cases. |
| 656 | */ |
| 657 | if (unlikely(insertdist > SH_GROW_MAX_DIB) && |
| 658 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
| 659 | { |
| 660 | tb->grow_threshold = 0; |
| 661 | goto restart; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * Lookup up entry in hash table. Returns NULL if key not present. |
| 668 | */ |
| 669 | SH_SCOPE SH_ELEMENT_TYPE * |
| 670 | SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key) |
| 671 | { |
| 672 | uint32 hash = SH_HASH_KEY(tb, key); |
| 673 | const uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
| 674 | uint32 curelem = startelem; |
| 675 | |
| 676 | while (true) |
| 677 | { |
| 678 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
| 679 | |
| 680 | if (entry->status == SH_STATUS_EMPTY) |
| 681 | { |
| 682 | return NULL; |
| 683 | } |
| 684 | |
| 685 | Assert(entry->status == SH_STATUS_IN_USE); |
| 686 | |
| 687 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
| 688 | return entry; |
| 689 | |
| 690 | /* |
| 691 | * TODO: we could stop search based on distance. If the current |
| 692 | * buckets's distance-from-optimal is smaller than what we've skipped |
| 693 | * already, the entry doesn't exist. Probably only do so if |
| 694 | * SH_STORE_HASH is defined, to avoid re-computing hashes? |
| 695 | */ |
| 696 | |
| 697 | curelem = SH_NEXT(tb, curelem, startelem); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Delete entry from hash table. Returns whether to-be-deleted key was |
| 703 | * present. |
| 704 | */ |
| 705 | SH_SCOPE bool |
| 706 | SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key) |
| 707 | { |
| 708 | uint32 hash = SH_HASH_KEY(tb, key); |
| 709 | uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
| 710 | uint32 curelem = startelem; |
| 711 | |
| 712 | while (true) |
| 713 | { |
| 714 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
| 715 | |
| 716 | if (entry->status == SH_STATUS_EMPTY) |
| 717 | return false; |
| 718 | |
| 719 | if (entry->status == SH_STATUS_IN_USE && |
| 720 | SH_COMPARE_KEYS(tb, hash, key, entry)) |
| 721 | { |
| 722 | SH_ELEMENT_TYPE *lastentry = entry; |
| 723 | |
| 724 | tb->members--; |
| 725 | |
| 726 | /* |
| 727 | * Backward shift following elements till either an empty element |
| 728 | * or an element at its optimal position is encountered. |
| 729 | * |
| 730 | * While that sounds expensive, the average chain length is short, |
| 731 | * and deletions would otherwise require tombstones. |
| 732 | */ |
| 733 | while (true) |
| 734 | { |
| 735 | SH_ELEMENT_TYPE *curentry; |
| 736 | uint32 curhash; |
| 737 | uint32 curoptimal; |
| 738 | |
| 739 | curelem = SH_NEXT(tb, curelem, startelem); |
| 740 | curentry = &tb->data[curelem]; |
| 741 | |
| 742 | if (curentry->status != SH_STATUS_IN_USE) |
| 743 | { |
| 744 | lastentry->status = SH_STATUS_EMPTY; |
| 745 | break; |
| 746 | } |
| 747 | |
| 748 | curhash = SH_ENTRY_HASH(tb, curentry); |
| 749 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
| 750 | |
| 751 | /* current is at optimal position, done */ |
| 752 | if (curoptimal == curelem) |
| 753 | { |
| 754 | lastentry->status = SH_STATUS_EMPTY; |
| 755 | break; |
| 756 | } |
| 757 | |
| 758 | /* shift */ |
| 759 | memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE)); |
| 760 | |
| 761 | lastentry = curentry; |
| 762 | } |
| 763 | |
| 764 | return true; |
| 765 | } |
| 766 | |
| 767 | /* TODO: return false; if distance too big */ |
| 768 | |
| 769 | curelem = SH_NEXT(tb, curelem, startelem); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Initialize iterator. |
| 775 | */ |
| 776 | SH_SCOPE void |
| 777 | SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
| 778 | { |
| 779 | int i; |
| 780 | uint64 startelem = PG_UINT64_MAX; |
| 781 | |
| 782 | /* |
| 783 | * Search for the first empty element. As deletions during iterations are |
| 784 | * supported, we want to start/end at an element that cannot be affected |
| 785 | * by elements being shifted. |
| 786 | */ |
| 787 | for (i = 0; i < tb->size; i++) |
| 788 | { |
| 789 | SH_ELEMENT_TYPE *entry = &tb->data[i]; |
| 790 | |
| 791 | if (entry->status != SH_STATUS_IN_USE) |
| 792 | { |
| 793 | startelem = i; |
| 794 | break; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | Assert(startelem < SH_MAX_SIZE); |
| 799 | |
| 800 | /* |
| 801 | * Iterate backwards, that allows the current element to be deleted, even |
| 802 | * if there are backward shifts |
| 803 | */ |
| 804 | iter->cur = startelem; |
| 805 | iter->end = iter->cur; |
| 806 | iter->done = false; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * Initialize iterator to a specific bucket. That's really only useful for |
| 811 | * cases where callers are partially iterating over the hashspace, and that |
| 812 | * iteration deletes and inserts elements based on visited entries. Doing that |
| 813 | * repeatedly could lead to an unbalanced keyspace when always starting at the |
| 814 | * same position. |
| 815 | */ |
| 816 | SH_SCOPE void |
| 817 | SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at) |
| 818 | { |
| 819 | /* |
| 820 | * Iterate backwards, that allows the current element to be deleted, even |
| 821 | * if there are backward shifts. |
| 822 | */ |
| 823 | iter->cur = at & tb->sizemask; /* ensure at is within a valid range */ |
| 824 | iter->end = iter->cur; |
| 825 | iter->done = false; |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * Iterate over all entries in the hash-table. Return the next occupied entry, |
| 830 | * or NULL if done. |
| 831 | * |
| 832 | * During iteration the current entry in the hash table may be deleted, |
| 833 | * without leading to elements being skipped or returned twice. Additionally |
| 834 | * the rest of the table may be modified (i.e. there can be insertions or |
| 835 | * deletions), but if so, there's neither a guarantee that all nodes are |
| 836 | * visited at least once, nor a guarantee that a node is visited at most once. |
| 837 | */ |
| 838 | SH_SCOPE SH_ELEMENT_TYPE * |
| 839 | SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
| 840 | { |
| 841 | while (!iter->done) |
| 842 | { |
| 843 | SH_ELEMENT_TYPE *elem; |
| 844 | |
| 845 | elem = &tb->data[iter->cur]; |
| 846 | |
| 847 | /* next element in backward direction */ |
| 848 | iter->cur = (iter->cur - 1) & tb->sizemask; |
| 849 | |
| 850 | if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask)) |
| 851 | iter->done = true; |
| 852 | if (elem->status == SH_STATUS_IN_USE) |
| 853 | { |
| 854 | return elem; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | return NULL; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Report some statistics about the state of the hashtable. For |
| 863 | * debugging/profiling purposes only. |
| 864 | */ |
| 865 | SH_SCOPE void |
| 866 | SH_STAT(SH_TYPE * tb) |
| 867 | { |
| 868 | uint32 max_chain_length = 0; |
| 869 | uint32 total_chain_length = 0; |
| 870 | double avg_chain_length; |
| 871 | double fillfactor; |
| 872 | uint32 i; |
| 873 | |
| 874 | uint32 *collisions = palloc0(tb->size * sizeof(uint32)); |
| 875 | uint32 total_collisions = 0; |
| 876 | uint32 max_collisions = 0; |
| 877 | double avg_collisions; |
| 878 | |
| 879 | for (i = 0; i < tb->size; i++) |
| 880 | { |
| 881 | uint32 hash; |
| 882 | uint32 optimal; |
| 883 | uint32 dist; |
| 884 | SH_ELEMENT_TYPE *elem; |
| 885 | |
| 886 | elem = &tb->data[i]; |
| 887 | |
| 888 | if (elem->status != SH_STATUS_IN_USE) |
| 889 | continue; |
| 890 | |
| 891 | hash = SH_ENTRY_HASH(tb, elem); |
| 892 | optimal = SH_INITIAL_BUCKET(tb, hash); |
| 893 | dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i); |
| 894 | |
| 895 | if (dist > max_chain_length) |
| 896 | max_chain_length = dist; |
| 897 | total_chain_length += dist; |
| 898 | |
| 899 | collisions[optimal]++; |
| 900 | } |
| 901 | |
| 902 | for (i = 0; i < tb->size; i++) |
| 903 | { |
| 904 | uint32 curcoll = collisions[i]; |
| 905 | |
| 906 | if (curcoll == 0) |
| 907 | continue; |
| 908 | |
| 909 | /* single contained element is not a collision */ |
| 910 | curcoll--; |
| 911 | total_collisions += curcoll; |
| 912 | if (curcoll > max_collisions) |
| 913 | max_collisions = curcoll; |
| 914 | } |
| 915 | |
| 916 | if (tb->members > 0) |
| 917 | { |
| 918 | fillfactor = tb->members / ((double) tb->size); |
| 919 | avg_chain_length = ((double) total_chain_length) / tb->members; |
| 920 | avg_collisions = ((double) total_collisions) / tb->members; |
| 921 | } |
| 922 | else |
| 923 | { |
| 924 | fillfactor = 0; |
| 925 | avg_chain_length = 0; |
| 926 | avg_collisions = 0; |
| 927 | } |
| 928 | |
| 929 | elog(LOG, "size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %i, avg_collisions: %f" , |
| 930 | tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length, |
| 931 | total_collisions, max_collisions, avg_collisions); |
| 932 | } |
| 933 | |
| 934 | #endif /* SH_DEFINE */ |
| 935 | |
| 936 | |
| 937 | /* undefine external parameters, so next hash table can be defined */ |
| 938 | #undef SH_PREFIX |
| 939 | #undef SH_KEY_TYPE |
| 940 | #undef SH_KEY |
| 941 | #undef SH_ELEMENT_TYPE |
| 942 | #undef SH_HASH_KEY |
| 943 | #undef SH_SCOPE |
| 944 | #undef SH_DECLARE |
| 945 | #undef SH_DEFINE |
| 946 | #undef SH_GET_HASH |
| 947 | #undef SH_STORE_HASH |
| 948 | #undef SH_USE_NONDEFAULT_ALLOCATOR |
| 949 | #undef SH_EQUAL |
| 950 | |
| 951 | /* undefine locally declared macros */ |
| 952 | #undef SH_MAKE_PREFIX |
| 953 | #undef SH_MAKE_NAME |
| 954 | #undef SH_MAKE_NAME_ |
| 955 | #undef SH_FILLFACTOR |
| 956 | #undef SH_MAX_FILLFACTOR |
| 957 | #undef SH_GROW_MAX_DIB |
| 958 | #undef SH_GROW_MAX_MOVE |
| 959 | #undef SH_GROW_MIN_FILLFACTOR |
| 960 | #undef SH_MAX_SIZE |
| 961 | |
| 962 | /* types */ |
| 963 | #undef SH_TYPE |
| 964 | #undef SH_STATUS |
| 965 | #undef SH_STATUS_EMPTY |
| 966 | #undef SH_STATUS_IN_USE |
| 967 | #undef SH_ITERATOR |
| 968 | |
| 969 | /* external function names */ |
| 970 | #undef SH_CREATE |
| 971 | #undef SH_DESTROY |
| 972 | #undef SH_RESET |
| 973 | #undef SH_INSERT |
| 974 | #undef SH_DELETE |
| 975 | #undef SH_LOOKUP |
| 976 | #undef SH_GROW |
| 977 | #undef SH_START_ITERATE |
| 978 | #undef SH_START_ITERATE_AT |
| 979 | #undef SH_ITERATE |
| 980 | #undef SH_ALLOCATE |
| 981 | #undef SH_FREE |
| 982 | #undef SH_STAT |
| 983 | |
| 984 | /* internal function names */ |
| 985 | #undef SH_COMPUTE_PARAMETERS |
| 986 | #undef SH_COMPARE_KEYS |
| 987 | #undef SH_INITIAL_BUCKET |
| 988 | #undef SH_NEXT |
| 989 | #undef SH_PREV |
| 990 | #undef SH_DISTANCE_FROM_OPTIMAL |
| 991 | #undef SH_ENTRY_HASH |
| 992 | |