| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * atomics.h |
| 4 | * Atomic operations. |
| 5 | * |
| 6 | * Hardware and compiler dependent functions for manipulating memory |
| 7 | * atomically and dealing with cache coherency. Used to implement locking |
| 8 | * facilities and lockless algorithms/data structures. |
| 9 | * |
| 10 | * To bring up postgres on a platform/compiler at the very least |
| 11 | * implementations for the following operations should be provided: |
| 12 | * * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier() |
| 13 | * * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32() |
| 14 | * * pg_atomic_test_set_flag(), pg_atomic_init_flag(), pg_atomic_clear_flag() |
| 15 | * * PG_HAVE_8BYTE_SINGLE_COPY_ATOMICITY should be defined if appropriate. |
| 16 | * |
| 17 | * There exist generic, hardware independent, implementations for several |
| 18 | * compilers which might be sufficient, although possibly not optimal, for a |
| 19 | * new platform. If no such generic implementation is available spinlocks (or |
| 20 | * even OS provided semaphores) will be used to implement the API. |
| 21 | * |
| 22 | * Implement _u64 atomics if and only if your platform can use them |
| 23 | * efficiently (and obviously correctly). |
| 24 | * |
| 25 | * Use higher level functionality (lwlocks, spinlocks, heavyweight locks) |
| 26 | * whenever possible. Writing correct code using these facilities is hard. |
| 27 | * |
| 28 | * For an introduction to using memory barriers within the PostgreSQL backend, |
| 29 | * see src/backend/storage/lmgr/README.barrier |
| 30 | * |
| 31 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 32 | * Portions Copyright (c) 1994, Regents of the University of California |
| 33 | * |
| 34 | * src/include/port/atomics.h |
| 35 | * |
| 36 | *------------------------------------------------------------------------- |
| 37 | */ |
| 38 | #ifndef ATOMICS_H |
| 39 | #define ATOMICS_H |
| 40 | |
| 41 | #ifdef FRONTEND |
| 42 | #error "atomics.h may not be included from frontend code" |
| 43 | #endif |
| 44 | |
| 45 | #define INSIDE_ATOMICS_H |
| 46 | |
| 47 | #include <limits.h> |
| 48 | |
| 49 | /* |
| 50 | * First a set of architecture specific files is included. |
| 51 | * |
| 52 | * These files can provide the full set of atomics or can do pretty much |
| 53 | * nothing if all the compilers commonly used on these platforms provide |
| 54 | * usable generics. |
| 55 | * |
| 56 | * Don't add an inline assembly of the actual atomic operations if all the |
| 57 | * common implementations of your platform provide intrinsics. Intrinsics are |
| 58 | * much easier to understand and potentially support more architectures. |
| 59 | * |
| 60 | * It will often make sense to define memory barrier semantics here, since |
| 61 | * e.g. generic compiler intrinsics for x86 memory barriers can't know that |
| 62 | * postgres doesn't need x86 read/write barriers do anything more than a |
| 63 | * compiler barrier. |
| 64 | * |
| 65 | */ |
| 66 | #if defined(__arm__) || defined(__arm) || \ |
| 67 | defined(__aarch64__) || defined(__aarch64) |
| 68 | #include "port/atomics/arch-arm.h" |
| 69 | #elif defined(__i386__) || defined(__i386) || defined(__x86_64__) |
| 70 | #include "port/atomics/arch-x86.h" |
| 71 | #elif defined(__ia64__) || defined(__ia64) |
| 72 | #include "port/atomics/arch-ia64.h" |
| 73 | #elif defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) |
| 74 | #include "port/atomics/arch-ppc.h" |
| 75 | #elif defined(__hppa) || defined(__hppa__) |
| 76 | #include "port/atomics/arch-hppa.h" |
| 77 | #endif |
| 78 | |
| 79 | /* |
| 80 | * Compiler specific, but architecture independent implementations. |
| 81 | * |
| 82 | * Provide architecture independent implementations of the atomic |
| 83 | * facilities. At the very least compiler barriers should be provided, but a |
| 84 | * full implementation of |
| 85 | * * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier() |
| 86 | * * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32() |
| 87 | * using compiler intrinsics are a good idea. |
| 88 | */ |
| 89 | /* |
| 90 | * Given a gcc-compatible xlc compiler, prefer the xlc implementation. The |
| 91 | * ppc64le "IBM XL C/C++ for Linux, V13.1.2" implements both interfaces, but |
| 92 | * __sync_lock_test_and_set() of one-byte types elicits SIGSEGV. |
| 93 | */ |
| 94 | #if defined(__IBMC__) || defined(__IBMCPP__) |
| 95 | #include "port/atomics/generic-xlc.h" |
| 96 | /* gcc or compatible, including clang and icc */ |
| 97 | #elif defined(__GNUC__) || defined(__INTEL_COMPILER) |
| 98 | #include "port/atomics/generic-gcc.h" |
| 99 | #elif defined(_MSC_VER) |
| 100 | #include "port/atomics/generic-msvc.h" |
| 101 | #elif defined(__hpux) && defined(__ia64) && !defined(__GNUC__) |
| 102 | #include "port/atomics/generic-acc.h" |
| 103 | #elif defined(__SUNPRO_C) && !defined(__GNUC__) |
| 104 | #include "port/atomics/generic-sunpro.h" |
| 105 | #else |
| 106 | /* |
| 107 | * Unsupported compiler, we'll likely use slower fallbacks... At least |
| 108 | * compiler barriers should really be provided. |
| 109 | */ |
| 110 | #endif |
| 111 | |
| 112 | /* |
| 113 | * Provide a full fallback of the pg_*_barrier(), pg_atomic**_flag and |
| 114 | * pg_atomic_* APIs for platforms without sufficient spinlock and/or atomics |
| 115 | * support. In the case of spinlock backed atomics the emulation is expected |
| 116 | * to be efficient, although less so than native atomics support. |
| 117 | */ |
| 118 | #include "port/atomics/fallback.h" |
| 119 | |
| 120 | /* |
| 121 | * Provide additional operations using supported infrastructure. These are |
| 122 | * expected to be efficient if the underlying atomic operations are efficient. |
| 123 | */ |
| 124 | #include "port/atomics/generic.h" |
| 125 | |
| 126 | |
| 127 | /* |
| 128 | * pg_compiler_barrier - prevent the compiler from moving code across |
| 129 | * |
| 130 | * A compiler barrier need not (and preferably should not) emit any actual |
| 131 | * machine code, but must act as an optimization fence: the compiler must not |
| 132 | * reorder loads or stores to main memory around the barrier. However, the |
| 133 | * CPU may still reorder loads or stores at runtime, if the architecture's |
| 134 | * memory model permits this. |
| 135 | */ |
| 136 | #define pg_compiler_barrier() pg_compiler_barrier_impl() |
| 137 | |
| 138 | /* |
| 139 | * pg_memory_barrier - prevent the CPU from reordering memory access |
| 140 | * |
| 141 | * A memory barrier must act as a compiler barrier, and in addition must |
| 142 | * guarantee that all loads and stores issued prior to the barrier are |
| 143 | * completed before any loads or stores issued after the barrier. Unless |
| 144 | * loads and stores are totally ordered (which is not the case on most |
| 145 | * architectures) this requires issuing some sort of memory fencing |
| 146 | * instruction. |
| 147 | */ |
| 148 | #define pg_memory_barrier() pg_memory_barrier_impl() |
| 149 | |
| 150 | /* |
| 151 | * pg_(read|write)_barrier - prevent the CPU from reordering memory access |
| 152 | * |
| 153 | * A read barrier must act as a compiler barrier, and in addition must |
| 154 | * guarantee that any loads issued prior to the barrier are completed before |
| 155 | * any loads issued after the barrier. Similarly, a write barrier acts |
| 156 | * as a compiler barrier, and also orders stores. Read and write barriers |
| 157 | * are thus weaker than a full memory barrier, but stronger than a compiler |
| 158 | * barrier. In practice, on machines with strong memory ordering, read and |
| 159 | * write barriers may require nothing more than a compiler barrier. |
| 160 | */ |
| 161 | #define pg_read_barrier() pg_read_barrier_impl() |
| 162 | #define pg_write_barrier() pg_write_barrier_impl() |
| 163 | |
| 164 | /* |
| 165 | * Spinloop delay - Allow CPU to relax in busy loops |
| 166 | */ |
| 167 | #define pg_spin_delay() pg_spin_delay_impl() |
| 168 | |
| 169 | /* |
| 170 | * pg_atomic_init_flag - initialize atomic flag. |
| 171 | * |
| 172 | * No barrier semantics. |
| 173 | */ |
| 174 | static inline void |
| 175 | pg_atomic_init_flag(volatile pg_atomic_flag *ptr) |
| 176 | { |
| 177 | pg_atomic_init_flag_impl(ptr); |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * pg_atomic_test_and_set_flag - TAS() |
| 182 | * |
| 183 | * Returns true if the flag has successfully been set, false otherwise. |
| 184 | * |
| 185 | * Acquire (including read barrier) semantics. |
| 186 | */ |
| 187 | static inline bool |
| 188 | pg_atomic_test_set_flag(volatile pg_atomic_flag *ptr) |
| 189 | { |
| 190 | return pg_atomic_test_set_flag_impl(ptr); |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * pg_atomic_unlocked_test_flag - Check if the lock is free |
| 195 | * |
| 196 | * Returns true if the flag currently is not set, false otherwise. |
| 197 | * |
| 198 | * No barrier semantics. |
| 199 | */ |
| 200 | static inline bool |
| 201 | pg_atomic_unlocked_test_flag(volatile pg_atomic_flag *ptr) |
| 202 | { |
| 203 | return pg_atomic_unlocked_test_flag_impl(ptr); |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * pg_atomic_clear_flag - release lock set by TAS() |
| 208 | * |
| 209 | * Release (including write barrier) semantics. |
| 210 | */ |
| 211 | static inline void |
| 212 | pg_atomic_clear_flag(volatile pg_atomic_flag *ptr) |
| 213 | { |
| 214 | pg_atomic_clear_flag_impl(ptr); |
| 215 | } |
| 216 | |
| 217 | |
| 218 | /* |
| 219 | * pg_atomic_init_u32 - initialize atomic variable |
| 220 | * |
| 221 | * Has to be done before any concurrent usage.. |
| 222 | * |
| 223 | * No barrier semantics. |
| 224 | */ |
| 225 | static inline void |
| 226 | pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val) |
| 227 | { |
| 228 | AssertPointerAlignment(ptr, 4); |
| 229 | |
| 230 | pg_atomic_init_u32_impl(ptr, val); |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * pg_atomic_read_u32 - unlocked read from atomic variable. |
| 235 | * |
| 236 | * The read is guaranteed to return a value as it has been written by this or |
| 237 | * another process at some point in the past. There's however no cache |
| 238 | * coherency interaction guaranteeing the value hasn't since been written to |
| 239 | * again. |
| 240 | * |
| 241 | * No barrier semantics. |
| 242 | */ |
| 243 | static inline uint32 |
| 244 | pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr) |
| 245 | { |
| 246 | AssertPointerAlignment(ptr, 4); |
| 247 | return pg_atomic_read_u32_impl(ptr); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * pg_atomic_write_u32 - write to atomic variable. |
| 252 | * |
| 253 | * The write is guaranteed to succeed as a whole, i.e. it's not possible to |
| 254 | * observe a partial write for any reader. Note that this correctly interacts |
| 255 | * with pg_atomic_compare_exchange_u32, in contrast to |
| 256 | * pg_atomic_unlocked_write_u32(). |
| 257 | * |
| 258 | * No barrier semantics. |
| 259 | */ |
| 260 | static inline void |
| 261 | pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val) |
| 262 | { |
| 263 | AssertPointerAlignment(ptr, 4); |
| 264 | |
| 265 | pg_atomic_write_u32_impl(ptr, val); |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * pg_atomic_unlocked_write_u32 - unlocked write to atomic variable. |
| 270 | * |
| 271 | * The write is guaranteed to succeed as a whole, i.e. it's not possible to |
| 272 | * observe a partial write for any reader. But note that writing this way is |
| 273 | * not guaranteed to correctly interact with read-modify-write operations like |
| 274 | * pg_atomic_compare_exchange_u32. This should only be used in cases where |
| 275 | * minor performance regressions due to atomics emulation are unacceptable. |
| 276 | * |
| 277 | * No barrier semantics. |
| 278 | */ |
| 279 | static inline void |
| 280 | pg_atomic_unlocked_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val) |
| 281 | { |
| 282 | AssertPointerAlignment(ptr, 4); |
| 283 | |
| 284 | pg_atomic_unlocked_write_u32_impl(ptr, val); |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * pg_atomic_exchange_u32 - exchange newval with current value |
| 289 | * |
| 290 | * Returns the old value of 'ptr' before the swap. |
| 291 | * |
| 292 | * Full barrier semantics. |
| 293 | */ |
| 294 | static inline uint32 |
| 295 | pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval) |
| 296 | { |
| 297 | AssertPointerAlignment(ptr, 4); |
| 298 | |
| 299 | return pg_atomic_exchange_u32_impl(ptr, newval); |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * pg_atomic_compare_exchange_u32 - CAS operation |
| 304 | * |
| 305 | * Atomically compare the current value of ptr with *expected and store newval |
| 306 | * iff ptr and *expected have the same value. The current value of *ptr will |
| 307 | * always be stored in *expected. |
| 308 | * |
| 309 | * Return true if values have been exchanged, false otherwise. |
| 310 | * |
| 311 | * Full barrier semantics. |
| 312 | */ |
| 313 | static inline bool |
| 314 | pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, |
| 315 | uint32 *expected, uint32 newval) |
| 316 | { |
| 317 | AssertPointerAlignment(ptr, 4); |
| 318 | AssertPointerAlignment(expected, 4); |
| 319 | |
| 320 | return pg_atomic_compare_exchange_u32_impl(ptr, expected, newval); |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * pg_atomic_fetch_add_u32 - atomically add to variable |
| 325 | * |
| 326 | * Returns the value of ptr before the arithmetic operation. |
| 327 | * |
| 328 | * Full barrier semantics. |
| 329 | */ |
| 330 | static inline uint32 |
| 331 | pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_) |
| 332 | { |
| 333 | AssertPointerAlignment(ptr, 4); |
| 334 | return pg_atomic_fetch_add_u32_impl(ptr, add_); |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * pg_atomic_fetch_sub_u32 - atomically subtract from variable |
| 339 | * |
| 340 | * Returns the value of ptr before the arithmetic operation. Note that sub_ |
| 341 | * may not be INT_MIN due to platform limitations. |
| 342 | * |
| 343 | * Full barrier semantics. |
| 344 | */ |
| 345 | static inline uint32 |
| 346 | pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_) |
| 347 | { |
| 348 | AssertPointerAlignment(ptr, 4); |
| 349 | Assert(sub_ != INT_MIN); |
| 350 | return pg_atomic_fetch_sub_u32_impl(ptr, sub_); |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * pg_atomic_fetch_and_u32 - atomically bit-and and_ with variable |
| 355 | * |
| 356 | * Returns the value of ptr before the arithmetic operation. |
| 357 | * |
| 358 | * Full barrier semantics. |
| 359 | */ |
| 360 | static inline uint32 |
| 361 | pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_) |
| 362 | { |
| 363 | AssertPointerAlignment(ptr, 4); |
| 364 | return pg_atomic_fetch_and_u32_impl(ptr, and_); |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * pg_atomic_fetch_or_u32 - atomically bit-or or_ with variable |
| 369 | * |
| 370 | * Returns the value of ptr before the arithmetic operation. |
| 371 | * |
| 372 | * Full barrier semantics. |
| 373 | */ |
| 374 | static inline uint32 |
| 375 | pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_) |
| 376 | { |
| 377 | AssertPointerAlignment(ptr, 4); |
| 378 | return pg_atomic_fetch_or_u32_impl(ptr, or_); |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * pg_atomic_add_fetch_u32 - atomically add to variable |
| 383 | * |
| 384 | * Returns the value of ptr after the arithmetic operation. |
| 385 | * |
| 386 | * Full barrier semantics. |
| 387 | */ |
| 388 | static inline uint32 |
| 389 | pg_atomic_add_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 add_) |
| 390 | { |
| 391 | AssertPointerAlignment(ptr, 4); |
| 392 | return pg_atomic_add_fetch_u32_impl(ptr, add_); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * pg_atomic_sub_fetch_u32 - atomically subtract from variable |
| 397 | * |
| 398 | * Returns the value of ptr after the arithmetic operation. Note that sub_ may |
| 399 | * not be INT_MIN due to platform limitations. |
| 400 | * |
| 401 | * Full barrier semantics. |
| 402 | */ |
| 403 | static inline uint32 |
| 404 | pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_) |
| 405 | { |
| 406 | AssertPointerAlignment(ptr, 4); |
| 407 | Assert(sub_ != INT_MIN); |
| 408 | return pg_atomic_sub_fetch_u32_impl(ptr, sub_); |
| 409 | } |
| 410 | |
| 411 | /* ---- |
| 412 | * The 64 bit operations have the same semantics as their 32bit counterparts |
| 413 | * if they are available. Check the corresponding 32bit function for |
| 414 | * documentation. |
| 415 | * ---- |
| 416 | */ |
| 417 | static inline void |
| 418 | pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val) |
| 419 | { |
| 420 | /* |
| 421 | * Can't necessarily enforce alignment - and don't need it - when using |
| 422 | * the spinlock based fallback implementation. Therefore only assert when |
| 423 | * not using it. |
| 424 | */ |
| 425 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 426 | AssertPointerAlignment(ptr, 8); |
| 427 | #endif |
| 428 | pg_atomic_init_u64_impl(ptr, val); |
| 429 | } |
| 430 | |
| 431 | static inline uint64 |
| 432 | pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr) |
| 433 | { |
| 434 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 435 | AssertPointerAlignment(ptr, 8); |
| 436 | #endif |
| 437 | return pg_atomic_read_u64_impl(ptr); |
| 438 | } |
| 439 | |
| 440 | static inline void |
| 441 | pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val) |
| 442 | { |
| 443 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 444 | AssertPointerAlignment(ptr, 8); |
| 445 | #endif |
| 446 | pg_atomic_write_u64_impl(ptr, val); |
| 447 | } |
| 448 | |
| 449 | static inline uint64 |
| 450 | pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval) |
| 451 | { |
| 452 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 453 | AssertPointerAlignment(ptr, 8); |
| 454 | #endif |
| 455 | return pg_atomic_exchange_u64_impl(ptr, newval); |
| 456 | } |
| 457 | |
| 458 | static inline bool |
| 459 | pg_atomic_compare_exchange_u64(volatile pg_atomic_uint64 *ptr, |
| 460 | uint64 *expected, uint64 newval) |
| 461 | { |
| 462 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 463 | AssertPointerAlignment(ptr, 8); |
| 464 | AssertPointerAlignment(expected, 8); |
| 465 | #endif |
| 466 | return pg_atomic_compare_exchange_u64_impl(ptr, expected, newval); |
| 467 | } |
| 468 | |
| 469 | static inline uint64 |
| 470 | pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_) |
| 471 | { |
| 472 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 473 | AssertPointerAlignment(ptr, 8); |
| 474 | #endif |
| 475 | return pg_atomic_fetch_add_u64_impl(ptr, add_); |
| 476 | } |
| 477 | |
| 478 | static inline uint64 |
| 479 | pg_atomic_fetch_sub_u64(volatile pg_atomic_uint64 *ptr, int64 sub_) |
| 480 | { |
| 481 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 482 | AssertPointerAlignment(ptr, 8); |
| 483 | #endif |
| 484 | Assert(sub_ != PG_INT64_MIN); |
| 485 | return pg_atomic_fetch_sub_u64_impl(ptr, sub_); |
| 486 | } |
| 487 | |
| 488 | static inline uint64 |
| 489 | pg_atomic_fetch_and_u64(volatile pg_atomic_uint64 *ptr, uint64 and_) |
| 490 | { |
| 491 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 492 | AssertPointerAlignment(ptr, 8); |
| 493 | #endif |
| 494 | return pg_atomic_fetch_and_u64_impl(ptr, and_); |
| 495 | } |
| 496 | |
| 497 | static inline uint64 |
| 498 | pg_atomic_fetch_or_u64(volatile pg_atomic_uint64 *ptr, uint64 or_) |
| 499 | { |
| 500 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 501 | AssertPointerAlignment(ptr, 8); |
| 502 | #endif |
| 503 | return pg_atomic_fetch_or_u64_impl(ptr, or_); |
| 504 | } |
| 505 | |
| 506 | static inline uint64 |
| 507 | pg_atomic_add_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 add_) |
| 508 | { |
| 509 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 510 | AssertPointerAlignment(ptr, 8); |
| 511 | #endif |
| 512 | return pg_atomic_add_fetch_u64_impl(ptr, add_); |
| 513 | } |
| 514 | |
| 515 | static inline uint64 |
| 516 | pg_atomic_sub_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 sub_) |
| 517 | { |
| 518 | #ifndef PG_HAVE_ATOMIC_U64_SIMULATION |
| 519 | AssertPointerAlignment(ptr, 8); |
| 520 | #endif |
| 521 | Assert(sub_ != PG_INT64_MIN); |
| 522 | return pg_atomic_sub_fetch_u64_impl(ptr, sub_); |
| 523 | } |
| 524 | |
| 525 | #undef INSIDE_ATOMICS_H |
| 526 | |
| 527 | #endif /* ATOMICS_H */ |
| 528 | |