| 1 | /*------------------------------------------------------------------------- | 
| 2 |  * | 
| 3 |  * s_lock.h | 
| 4 |  *	   Hardware-dependent implementation of spinlocks. | 
| 5 |  * | 
| 6 |  *	NOTE: none of the macros in this file are intended to be called directly. | 
| 7 |  *	Call them through the hardware-independent macros in spin.h. | 
| 8 |  * | 
| 9 |  *	The following hardware-dependent macros must be provided for each | 
| 10 |  *	supported platform: | 
| 11 |  * | 
| 12 |  *	void S_INIT_LOCK(slock_t *lock) | 
| 13 |  *		Initialize a spinlock (to the unlocked state). | 
| 14 |  * | 
| 15 |  *	int S_LOCK(slock_t *lock) | 
| 16 |  *		Acquire a spinlock, waiting if necessary. | 
| 17 |  *		Time out and abort() if unable to acquire the lock in a | 
| 18 |  *		"reasonable" amount of time --- typically ~ 1 minute. | 
| 19 |  *		Should return number of "delays"; see s_lock.c | 
| 20 |  * | 
| 21 |  *	void S_UNLOCK(slock_t *lock) | 
| 22 |  *		Unlock a previously acquired lock. | 
| 23 |  * | 
| 24 |  *	bool S_LOCK_FREE(slock_t *lock) | 
| 25 |  *		Tests if the lock is free. Returns true if free, false if locked. | 
| 26 |  *		This does *not* change the state of the lock. | 
| 27 |  * | 
| 28 |  *	void SPIN_DELAY(void) | 
| 29 |  *		Delay operation to occur inside spinlock wait loop. | 
| 30 |  * | 
| 31 |  *	Note to implementors: there are default implementations for all these | 
| 32 |  *	macros at the bottom of the file.  Check if your platform can use | 
| 33 |  *	these or needs to override them. | 
| 34 |  * | 
| 35 |  *  Usually, S_LOCK() is implemented in terms of even lower-level macros | 
| 36 |  *	TAS() and TAS_SPIN(): | 
| 37 |  * | 
| 38 |  *	int TAS(slock_t *lock) | 
| 39 |  *		Atomic test-and-set instruction.  Attempt to acquire the lock, | 
| 40 |  *		but do *not* wait.	Returns 0 if successful, nonzero if unable | 
| 41 |  *		to acquire the lock. | 
| 42 |  * | 
| 43 |  *	int TAS_SPIN(slock_t *lock) | 
| 44 |  *		Like TAS(), but this version is used when waiting for a lock | 
| 45 |  *		previously found to be contended.  By default, this is the | 
| 46 |  *		same as TAS(), but on some architectures it's better to poll a | 
| 47 |  *		contended lock using an unlocked instruction and retry the | 
| 48 |  *		atomic test-and-set only when it appears free. | 
| 49 |  * | 
| 50 |  *	TAS() and TAS_SPIN() are NOT part of the API, and should never be called | 
| 51 |  *	directly. | 
| 52 |  * | 
| 53 |  *	CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report | 
| 54 |  *	failure to acquire a lock even when the lock is not locked.  For example, | 
| 55 |  *	on Alpha TAS() will "fail" if interrupted.  Therefore a retry loop must | 
| 56 |  *	always be used, even if you are certain the lock is free. | 
| 57 |  * | 
| 58 |  *	It is the responsibility of these macros to make sure that the compiler | 
| 59 |  *	does not re-order accesses to shared memory to precede the actual lock | 
| 60 |  *	acquisition, or follow the lock release.  Prior to PostgreSQL 9.5, this | 
| 61 |  *	was the caller's responsibility, which meant that callers had to use | 
| 62 |  *	volatile-qualified pointers to refer to both the spinlock itself and the | 
| 63 |  *	shared data being accessed within the spinlocked critical section.  This | 
| 64 |  *	was notationally awkward, easy to forget (and thus error-prone), and | 
| 65 |  *	prevented some useful compiler optimizations.  For these reasons, we | 
| 66 |  *	now require that the macros themselves prevent compiler re-ordering, | 
| 67 |  *	so that the caller doesn't need to take special precautions. | 
| 68 |  * | 
| 69 |  *	On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and | 
| 70 |  *	S_UNLOCK() macros must further include hardware-level memory fence | 
| 71 |  *	instructions to prevent similar re-ordering at the hardware level. | 
| 72 |  *	TAS() and TAS_SPIN() must guarantee that loads and stores issued after | 
| 73 |  *	the macro are not executed until the lock has been obtained.  Conversely, | 
| 74 |  *	S_UNLOCK() must guarantee that loads and stores issued before the macro | 
| 75 |  *	have been executed before the lock is released. | 
| 76 |  * | 
| 77 |  *	On most supported platforms, TAS() uses a tas() function written | 
| 78 |  *	in assembly language to execute a hardware atomic-test-and-set | 
| 79 |  *	instruction.  Equivalent OS-supplied mutex routines could be used too. | 
| 80 |  * | 
| 81 |  *	If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not | 
| 82 |  *	defined), then we fall back on an emulation that uses SysV semaphores | 
| 83 |  *	(see spin.c).  This emulation will be MUCH MUCH slower than a proper TAS() | 
| 84 |  *	implementation, because of the cost of a kernel call per lock or unlock. | 
| 85 |  *	An old report is that Postgres spends around 40% of its time in semop(2) | 
| 86 |  *	when using the SysV semaphore code. | 
| 87 |  * | 
| 88 |  * | 
| 89 |  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group | 
| 90 |  * Portions Copyright (c) 1994, Regents of the University of California | 
| 91 |  * | 
| 92 |  *	  src/include/storage/s_lock.h | 
| 93 |  * | 
| 94 |  *------------------------------------------------------------------------- | 
| 95 |  */ | 
| 96 | #ifndef S_LOCK_H | 
| 97 | #define S_LOCK_H | 
| 98 |  | 
| 99 | #ifdef FRONTEND | 
| 100 | #error "s_lock.h may not be included from frontend code" | 
| 101 | #endif | 
| 102 |  | 
| 103 | #ifdef HAVE_SPINLOCKS	/* skip spinlocks if requested */ | 
| 104 |  | 
| 105 | #if defined(__GNUC__) || defined(__INTEL_COMPILER) | 
| 106 | /************************************************************************* | 
| 107 |  * All the gcc inlines | 
| 108 |  * Gcc consistently defines the CPU as __cpu__. | 
| 109 |  * Other compilers use __cpu or __cpu__ so we test for both in those cases. | 
| 110 |  */ | 
| 111 |  | 
| 112 | /*---------- | 
| 113 |  * Standard gcc asm format (assuming "volatile slock_t *lock"): | 
| 114 |  | 
| 115 | 	__asm__ __volatile__( | 
| 116 | 		"	instruction	\n" | 
| 117 | 		"	instruction	\n" | 
| 118 | 		"	instruction	\n" | 
| 119 | :		"=r"(_res), "+m"(*lock)		// return register, in/out lock value | 
| 120 | :		"r"(lock)					// lock pointer, in input register | 
| 121 | :		"memory", "cc");			// show clobbered registers here | 
| 122 |  | 
| 123 |  * The output-operands list (after first colon) should always include | 
| 124 |  * "+m"(*lock), whether or not the asm code actually refers to this | 
| 125 |  * operand directly.  This ensures that gcc believes the value in the | 
| 126 |  * lock variable is used and set by the asm code.  Also, the clobbers | 
| 127 |  * list (after third colon) should always include "memory"; this prevents | 
| 128 |  * gcc from thinking it can cache the values of shared-memory fields | 
| 129 |  * across the asm code.  Add "cc" if your asm code changes the condition | 
| 130 |  * code register, and also list any temp registers the code uses. | 
| 131 |  *---------- | 
| 132 |  */ | 
| 133 |  | 
| 134 |  | 
| 135 | #ifdef __i386__		/* 32-bit i386 */ | 
| 136 | #define HAS_TEST_AND_SET | 
| 137 |  | 
| 138 | typedef unsigned char slock_t; | 
| 139 |  | 
| 140 | #define TAS(lock) tas(lock) | 
| 141 |  | 
| 142 | static __inline__ int | 
| 143 | tas(volatile slock_t *lock) | 
| 144 | { | 
| 145 | 	register slock_t _res = 1; | 
| 146 |  | 
| 147 | 	/* | 
| 148 | 	 * Use a non-locking test before asserting the bus lock.  Note that the | 
| 149 | 	 * extra test appears to be a small loss on some x86 platforms and a small | 
| 150 | 	 * win on others; it's by no means clear that we should keep it. | 
| 151 | 	 * | 
| 152 | 	 * When this was last tested, we didn't have separate TAS() and TAS_SPIN() | 
| 153 | 	 * macros.  Nowadays it probably would be better to do a non-locking test | 
| 154 | 	 * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the | 
| 155 | 	 * testing to verify that.  Without some empirical evidence, better to | 
| 156 | 	 * leave it alone. | 
| 157 | 	 */ | 
| 158 | 	__asm__ __volatile__( | 
| 159 | 		"	cmpb	$0,%1	\n"  | 
| 160 | 		"	jne		1f		\n"  | 
| 161 | 		"	lock			\n"  | 
| 162 | 		"	xchgb	%0,%1	\n"  | 
| 163 | 		"1: \n"  | 
| 164 | :		"+q" (_res), "+m" (*lock) | 
| 165 | :		/* no inputs */ | 
| 166 | :		"memory" , "cc" ); | 
| 167 | 	return (int) _res; | 
| 168 | } | 
| 169 |  | 
| 170 | #define SPIN_DELAY() spin_delay() | 
| 171 |  | 
| 172 | static __inline__ void | 
| 173 | spin_delay(void) | 
| 174 | { | 
| 175 | 	/* | 
| 176 | 	 * This sequence is equivalent to the PAUSE instruction ("rep" is | 
| 177 | 	 * ignored by old IA32 processors if the following instruction is | 
| 178 | 	 * not a string operation); the IA-32 Architecture Software | 
| 179 | 	 * Developer's Manual, Vol. 3, Section 7.7.2 describes why using | 
| 180 | 	 * PAUSE in the inner loop of a spin lock is necessary for good | 
| 181 | 	 * performance: | 
| 182 | 	 * | 
| 183 | 	 *     The PAUSE instruction improves the performance of IA-32 | 
| 184 | 	 *     processors supporting Hyper-Threading Technology when | 
| 185 | 	 *     executing spin-wait loops and other routines where one | 
| 186 | 	 *     thread is accessing a shared lock or semaphore in a tight | 
| 187 | 	 *     polling loop. When executing a spin-wait loop, the | 
| 188 | 	 *     processor can suffer a severe performance penalty when | 
| 189 | 	 *     exiting the loop because it detects a possible memory order | 
| 190 | 	 *     violation and flushes the core processor's pipeline. The | 
| 191 | 	 *     PAUSE instruction provides a hint to the processor that the | 
| 192 | 	 *     code sequence is a spin-wait loop. The processor uses this | 
| 193 | 	 *     hint to avoid the memory order violation and prevent the | 
| 194 | 	 *     pipeline flush. In addition, the PAUSE instruction | 
| 195 | 	 *     de-pipelines the spin-wait loop to prevent it from | 
| 196 | 	 *     consuming execution resources excessively. | 
| 197 | 	 */ | 
| 198 | 	__asm__ __volatile__( | 
| 199 | 		" rep; nop			\n" ); | 
| 200 | } | 
| 201 |  | 
| 202 | #endif	 /* __i386__ */ | 
| 203 |  | 
| 204 |  | 
| 205 | #ifdef __x86_64__		/* AMD Opteron, Intel EM64T */ | 
| 206 | #define HAS_TEST_AND_SET | 
| 207 |  | 
| 208 | typedef unsigned char slock_t; | 
| 209 |  | 
| 210 | #define TAS(lock) tas(lock) | 
| 211 |  | 
| 212 | /* | 
| 213 |  * On Intel EM64T, it's a win to use a non-locking test before the xchg proper, | 
| 214 |  * but only when spinning. | 
| 215 |  * | 
| 216 |  * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T | 
| 217 |  * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is | 
| 218 |  * available at: | 
| 219 |  * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures | 
| 220 |  */ | 
| 221 | #define TAS_SPIN(lock)    (*(lock) ? 1 : TAS(lock)) | 
| 222 |  | 
| 223 | static __inline__ int | 
| 224 | tas(volatile slock_t *lock) | 
| 225 | { | 
| 226 | 	register slock_t _res = 1; | 
| 227 |  | 
| 228 | 	__asm__ __volatile__( | 
| 229 | 		"	lock			\n"  | 
| 230 | 		"	xchgb	%0,%1	\n"  | 
| 231 | :		"+q" (_res), "+m" (*lock) | 
| 232 | :		/* no inputs */ | 
| 233 | :		"memory" , "cc" ); | 
| 234 | 	return (int) _res; | 
| 235 | } | 
| 236 |  | 
| 237 | #define SPIN_DELAY() spin_delay() | 
| 238 |  | 
| 239 | static __inline__ void | 
| 240 | spin_delay(void) | 
| 241 | { | 
| 242 | 	/* | 
| 243 | 	 * Adding a PAUSE in the spin delay loop is demonstrably a no-op on | 
| 244 | 	 * Opteron, but it may be of some use on EM64T, so we keep it. | 
| 245 | 	 */ | 
| 246 | 	__asm__ __volatile__( | 
| 247 | 		" rep; nop			\n" ); | 
| 248 | } | 
| 249 |  | 
| 250 | #endif	 /* __x86_64__ */ | 
| 251 |  | 
| 252 |  | 
| 253 | #if defined(__ia64__) || defined(__ia64) | 
| 254 | /* | 
| 255 |  * Intel Itanium, gcc or Intel's compiler. | 
| 256 |  * | 
| 257 |  * Itanium has weak memory ordering, but we rely on the compiler to enforce | 
| 258 |  * strict ordering of accesses to volatile data.  In particular, while the | 
| 259 |  * xchg instruction implicitly acts as a memory barrier with 'acquire' | 
| 260 |  * semantics, we do not have an explicit memory fence instruction in the | 
| 261 |  * S_UNLOCK macro.  We use a regular assignment to clear the spinlock, and | 
| 262 |  * trust that the compiler marks the generated store instruction with the | 
| 263 |  * ".rel" opcode. | 
| 264 |  * | 
| 265 |  * Testing shows that assumption to hold on gcc, although I could not find | 
| 266 |  * any explicit statement on that in the gcc manual.  In Intel's compiler, | 
| 267 |  * the -m[no-]serialize-volatile option controls that, and testing shows that | 
| 268 |  * it is enabled by default. | 
| 269 |  * | 
| 270 |  * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64 | 
| 271 |  * (at least not in icc versions before 12.x).  So we have to carry a separate | 
| 272 |  * compiler-intrinsic-based implementation for it. | 
| 273 |  */ | 
| 274 | #define HAS_TEST_AND_SET | 
| 275 |  | 
| 276 | typedef unsigned int slock_t; | 
| 277 |  | 
| 278 | #define TAS(lock) tas(lock) | 
| 279 |  | 
| 280 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ | 
| 281 | #define TAS_SPIN(lock)	(*(lock) ? 1 : TAS(lock)) | 
| 282 |  | 
| 283 | #ifndef __INTEL_COMPILER | 
| 284 |  | 
| 285 | static __inline__ int | 
| 286 | tas(volatile slock_t *lock) | 
| 287 | { | 
| 288 | 	long int	ret; | 
| 289 |  | 
| 290 | 	__asm__ __volatile__( | 
| 291 | 		"	xchg4 	%0=%1,%2	\n"  | 
| 292 | :		"=r" (ret), "+m" (*lock) | 
| 293 | :		"r" (1) | 
| 294 | :		"memory" ); | 
| 295 | 	return (int) ret; | 
| 296 | } | 
| 297 |  | 
| 298 | #else /* __INTEL_COMPILER */ | 
| 299 |  | 
| 300 | static __inline__ int | 
| 301 | tas(volatile slock_t *lock) | 
| 302 | { | 
| 303 | 	int		ret; | 
| 304 |  | 
| 305 | 	ret = _InterlockedExchange(lock,1);	/* this is a xchg asm macro */ | 
| 306 |  | 
| 307 | 	return ret; | 
| 308 | } | 
| 309 |  | 
| 310 | /* icc can't use the regular gcc S_UNLOCK() macro either in this case */ | 
| 311 | #define S_UNLOCK(lock)	\ | 
| 312 | 	do { __memory_barrier(); *(lock) = 0; } while (0) | 
| 313 |  | 
| 314 | #endif /* __INTEL_COMPILER */ | 
| 315 | #endif	 /* __ia64__ || __ia64 */ | 
| 316 |  | 
| 317 | /* | 
| 318 |  * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available. | 
| 319 |  * | 
| 320 |  * We use the int-width variant of the builtin because it works on more chips | 
| 321 |  * than other widths. | 
| 322 |  */ | 
| 323 | #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64) | 
| 324 | #ifdef HAVE_GCC__SYNC_INT32_TAS | 
| 325 | #define HAS_TEST_AND_SET | 
| 326 |  | 
| 327 | #define TAS(lock) tas(lock) | 
| 328 |  | 
| 329 | typedef int slock_t; | 
| 330 |  | 
| 331 | static __inline__ int | 
| 332 | tas(volatile slock_t *lock) | 
| 333 | { | 
| 334 | 	return __sync_lock_test_and_set(lock, 1); | 
| 335 | } | 
| 336 |  | 
| 337 | #define S_UNLOCK(lock) __sync_lock_release(lock) | 
| 338 |  | 
| 339 | #endif	 /* HAVE_GCC__SYNC_INT32_TAS */ | 
| 340 | #endif	 /* __arm__ || __arm || __aarch64__ || __aarch64 */ | 
| 341 |  | 
| 342 |  | 
| 343 | /* S/390 and S/390x Linux (32- and 64-bit zSeries) */ | 
| 344 | #if defined(__s390__) || defined(__s390x__) | 
| 345 | #define HAS_TEST_AND_SET | 
| 346 |  | 
| 347 | typedef unsigned int slock_t; | 
| 348 |  | 
| 349 | #define TAS(lock)	   tas(lock) | 
| 350 |  | 
| 351 | static __inline__ int | 
| 352 | tas(volatile slock_t *lock) | 
| 353 | { | 
| 354 | 	int			_res = 0; | 
| 355 |  | 
| 356 | 	__asm__	__volatile__( | 
| 357 | 		"	cs 	%0,%3,0(%2)		\n"  | 
| 358 | :		"+d" (_res), "+m" (*lock) | 
| 359 | :		"a" (lock), "d" (1) | 
| 360 | :		"memory" , "cc" ); | 
| 361 | 	return _res; | 
| 362 | } | 
| 363 |  | 
| 364 | #endif	 /* __s390__ || __s390x__ */ | 
| 365 |  | 
| 366 |  | 
| 367 | #if defined(__sparc__)		/* Sparc */ | 
| 368 | /* | 
| 369 |  * Solaris has always run sparc processors in TSO (total store) mode, but | 
| 370 |  * linux didn't use to and the *BSDs still don't. So, be careful about | 
| 371 |  * acquire/release semantics. The CPU will treat superfluous membars as | 
| 372 |  * NOPs, so it's just code space. | 
| 373 |  */ | 
| 374 | #define HAS_TEST_AND_SET | 
| 375 |  | 
| 376 | typedef unsigned char slock_t; | 
| 377 |  | 
| 378 | #define TAS(lock) tas(lock) | 
| 379 |  | 
| 380 | static __inline__ int | 
| 381 | tas(volatile slock_t *lock) | 
| 382 | { | 
| 383 | 	register slock_t _res; | 
| 384 |  | 
| 385 | 	/* | 
| 386 | 	 *	See comment in src/backend/port/tas/sunstudio_sparc.s for why this | 
| 387 | 	 *	uses "ldstub", and that file uses "cas".  gcc currently generates | 
| 388 | 	 *	sparcv7-targeted binaries, so "cas" use isn't possible. | 
| 389 | 	 */ | 
| 390 | 	__asm__ __volatile__( | 
| 391 | 		"	ldstub	[%2], %0	\n"  | 
| 392 | :		"=r" (_res), "+m" (*lock) | 
| 393 | :		"r" (lock) | 
| 394 | :		"memory" ); | 
| 395 | #if defined(__sparcv7) || defined(__sparc_v7__) | 
| 396 | 	/* | 
| 397 | 	 * No stbar or membar available, luckily no actually produced hardware | 
| 398 | 	 * requires a barrier. | 
| 399 | 	 */ | 
| 400 | #elif defined(__sparcv8) || defined(__sparc_v8__) | 
| 401 | 	/* stbar is available (and required for both PSO, RMO), membar isn't */ | 
| 402 | 	__asm__ __volatile__ ("stbar	 \n" :::"memory" ); | 
| 403 | #else | 
| 404 | 	/* | 
| 405 | 	 * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire | 
| 406 | 	 * barrier for sparcv8+ upwards. | 
| 407 | 	 */ | 
| 408 | 	__asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n" :::"memory" ); | 
| 409 | #endif | 
| 410 | 	return (int) _res; | 
| 411 | } | 
| 412 |  | 
| 413 | #if defined(__sparcv7) || defined(__sparc_v7__) | 
| 414 | /* | 
| 415 |  * No stbar or membar available, luckily no actually produced hardware | 
| 416 |  * requires a barrier.  We fall through to the default gcc definition of | 
| 417 |  * S_UNLOCK in this case. | 
| 418 |  */ | 
| 419 | #elif defined(__sparcv8) || defined(__sparc_v8__) | 
| 420 | /* stbar is available (and required for both PSO, RMO), membar isn't */ | 
| 421 | #define S_UNLOCK(lock)	\ | 
| 422 | do \ | 
| 423 | { \ | 
| 424 | 	__asm__ __volatile__ ("stbar	 \n":::"memory"); \ | 
| 425 | 	*((volatile slock_t *) (lock)) = 0; \ | 
| 426 | } while (0) | 
| 427 | #else | 
| 428 | /* | 
| 429 |  * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate | 
| 430 |  * release barrier for sparcv8+ upwards. | 
| 431 |  */ | 
| 432 | #define S_UNLOCK(lock)	\ | 
| 433 | do \ | 
| 434 | { \ | 
| 435 | 	__asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \ | 
| 436 | 	*((volatile slock_t *) (lock)) = 0; \ | 
| 437 | } while (0) | 
| 438 | #endif | 
| 439 |  | 
| 440 | #endif	 /* __sparc__ */ | 
| 441 |  | 
| 442 |  | 
| 443 | /* PowerPC */ | 
| 444 | #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) | 
| 445 | #define HAS_TEST_AND_SET | 
| 446 |  | 
| 447 | typedef unsigned int slock_t; | 
| 448 |  | 
| 449 | #define TAS(lock) tas(lock) | 
| 450 |  | 
| 451 | /* On PPC, it's a win to use a non-locking test before the lwarx */ | 
| 452 | #define TAS_SPIN(lock)	(*(lock) ? 1 : TAS(lock)) | 
| 453 |  | 
| 454 | /* | 
| 455 |  * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002, | 
| 456 |  * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop. | 
| 457 |  * On newer machines, we can use lwsync instead for better performance. | 
| 458 |  * | 
| 459 |  * Ordinarily, we'd code the branches here using GNU-style local symbols, that | 
| 460 |  * is "1f" referencing "1:" and so on.  But some people run gcc on AIX with | 
| 461 |  * IBM's assembler as backend, and IBM's assembler doesn't do local symbols. | 
| 462 |  * So hand-code the branch offsets; fortunately, all PPC instructions are | 
| 463 |  * exactly 4 bytes each, so it's not too hard to count. | 
| 464 |  */ | 
| 465 | static __inline__ int | 
| 466 | tas(volatile slock_t *lock) | 
| 467 | { | 
| 468 | 	slock_t _t; | 
| 469 | 	int _res; | 
| 470 |  | 
| 471 | 	__asm__ __volatile__( | 
| 472 | #ifdef USE_PPC_LWARX_MUTEX_HINT | 
| 473 | "	lwarx   %0,0,%3,1	\n"  | 
| 474 | #else | 
| 475 | "	lwarx   %0,0,%3		\n"  | 
| 476 | #endif | 
| 477 | "	cmpwi   %0,0		\n"  | 
| 478 | "	bne     $+16		\n" 		/* branch to li %1,1 */ | 
| 479 | "	addi    %0,%0,1		\n"  | 
| 480 | "	stwcx.  %0,0,%3		\n"  | 
| 481 | "	beq     $+12		\n" 		/* branch to lwsync/isync */ | 
| 482 | "	li      %1,1		\n"  | 
| 483 | "	b       $+12		\n" 		/* branch to end of asm sequence */ | 
| 484 | #ifdef USE_PPC_LWSYNC | 
| 485 | "	lwsync				\n"  | 
| 486 | #else | 
| 487 | "	isync				\n"  | 
| 488 | #endif | 
| 489 | "	li      %1,0		\n"  | 
| 490 |  | 
| 491 | :	"=&r" (_t), "=r" (_res), "+m" (*lock) | 
| 492 | :	"r" (lock) | 
| 493 | :	"memory" , "cc" ); | 
| 494 | 	return _res; | 
| 495 | } | 
| 496 |  | 
| 497 | /* | 
| 498 |  * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction. | 
| 499 |  * On newer machines, we can use lwsync instead for better performance. | 
| 500 |  */ | 
| 501 | #ifdef USE_PPC_LWSYNC | 
| 502 | #define S_UNLOCK(lock)	\ | 
| 503 | do \ | 
| 504 | { \ | 
| 505 | 	__asm__ __volatile__ ("	lwsync \n" ::: "memory"); \ | 
| 506 | 	*((volatile slock_t *) (lock)) = 0; \ | 
| 507 | } while (0) | 
| 508 | #else | 
| 509 | #define S_UNLOCK(lock)	\ | 
| 510 | do \ | 
| 511 | { \ | 
| 512 | 	__asm__ __volatile__ ("	sync \n" ::: "memory"); \ | 
| 513 | 	*((volatile slock_t *) (lock)) = 0; \ | 
| 514 | } while (0) | 
| 515 | #endif /* USE_PPC_LWSYNC */ | 
| 516 |  | 
| 517 | #endif /* powerpc */ | 
| 518 |  | 
| 519 |  | 
| 520 | /* Linux Motorola 68k */ | 
| 521 | #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__) | 
| 522 | #define HAS_TEST_AND_SET | 
| 523 |  | 
| 524 | typedef unsigned char slock_t; | 
| 525 |  | 
| 526 | #define TAS(lock) tas(lock) | 
| 527 |  | 
| 528 | static __inline__ int | 
| 529 | tas(volatile slock_t *lock) | 
| 530 | { | 
| 531 | 	register int rv; | 
| 532 |  | 
| 533 | 	__asm__	__volatile__( | 
| 534 | 		"	clrl	%0		\n"  | 
| 535 | 		"	tas		%1		\n"  | 
| 536 | 		"	sne		%0		\n"  | 
| 537 | :		"=d" (rv), "+m" (*lock) | 
| 538 | :		/* no inputs */ | 
| 539 | :		"memory" , "cc" ); | 
| 540 | 	return rv; | 
| 541 | } | 
| 542 |  | 
| 543 | #endif	 /* (__mc68000__ || __m68k__) && __linux__ */ | 
| 544 |  | 
| 545 |  | 
| 546 | /* Motorola 88k */ | 
| 547 | #if defined(__m88k__) | 
| 548 | #define HAS_TEST_AND_SET | 
| 549 |  | 
| 550 | typedef unsigned int slock_t; | 
| 551 |  | 
| 552 | #define TAS(lock) tas(lock) | 
| 553 |  | 
| 554 | static __inline__ int | 
| 555 | tas(volatile slock_t *lock) | 
| 556 | { | 
| 557 | 	register slock_t _res = 1; | 
| 558 |  | 
| 559 | 	__asm__ __volatile__( | 
| 560 | 		"	xmem	%0, %2, %%r0	\n"  | 
| 561 | :		"+r" (_res), "+m" (*lock) | 
| 562 | :		"r" (lock) | 
| 563 | :		"memory" ); | 
| 564 | 	return (int) _res; | 
| 565 | } | 
| 566 |  | 
| 567 | #endif	 /* __m88k__ */ | 
| 568 |  | 
| 569 |  | 
| 570 | /* | 
| 571 |  * VAXen -- even multiprocessor ones | 
| 572 |  * (thanks to Tom Ivar Helbekkmo) | 
| 573 |  */ | 
| 574 | #if defined(__vax__) | 
| 575 | #define HAS_TEST_AND_SET | 
| 576 |  | 
| 577 | typedef unsigned char slock_t; | 
| 578 |  | 
| 579 | #define TAS(lock) tas(lock) | 
| 580 |  | 
| 581 | static __inline__ int | 
| 582 | tas(volatile slock_t *lock) | 
| 583 | { | 
| 584 | 	register int	_res; | 
| 585 |  | 
| 586 | 	__asm__ __volatile__( | 
| 587 | 		"	movl 	$1, %0			\n"  | 
| 588 | 		"	bbssi	$0, (%2), 1f	\n"  | 
| 589 | 		"	clrl	%0				\n"  | 
| 590 | 		"1: \n"  | 
| 591 | :		"=&r" (_res), "+m" (*lock) | 
| 592 | :		"r" (lock) | 
| 593 | :		"memory" ); | 
| 594 | 	return _res; | 
| 595 | } | 
| 596 |  | 
| 597 | #endif	 /* __vax__ */ | 
| 598 |  | 
| 599 |  | 
| 600 | #if defined(__mips__) && !defined(__sgi)	/* non-SGI MIPS */ | 
| 601 | #define HAS_TEST_AND_SET | 
| 602 |  | 
| 603 | typedef unsigned int slock_t; | 
| 604 |  | 
| 605 | #define TAS(lock) tas(lock) | 
| 606 |  | 
| 607 | /* | 
| 608 |  * Original MIPS-I processors lacked the LL/SC instructions, but if we are | 
| 609 |  * so unfortunate as to be running on one of those, we expect that the kernel | 
| 610 |  * will handle the illegal-instruction traps and emulate them for us.  On | 
| 611 |  * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane | 
| 612 |  * choice because any other synchronization method must involve a kernel | 
| 613 |  * call.  Unfortunately, many toolchains still default to MIPS-I as the | 
| 614 |  * codegen target; if the symbol __mips shows that that's the case, we | 
| 615 |  * have to force the assembler to accept LL/SC. | 
| 616 |  * | 
| 617 |  * R10000 and up processors require a separate SYNC, which has the same | 
| 618 |  * issues as LL/SC. | 
| 619 |  */ | 
| 620 | #if __mips < 2 | 
| 621 | #define MIPS_SET_MIPS2	"       .set mips2          \n" | 
| 622 | #else | 
| 623 | #define MIPS_SET_MIPS2 | 
| 624 | #endif | 
| 625 |  | 
| 626 | static __inline__ int | 
| 627 | tas(volatile slock_t *lock) | 
| 628 | { | 
| 629 | 	register volatile slock_t *_l = lock; | 
| 630 | 	register int _res; | 
| 631 | 	register int _tmp; | 
| 632 |  | 
| 633 | 	__asm__ __volatile__( | 
| 634 | 		"       .set push           \n"  | 
| 635 | 		MIPS_SET_MIPS2 | 
| 636 | 		"       .set noreorder      \n"  | 
| 637 | 		"       .set nomacro        \n"  | 
| 638 | 		"       ll      %0, %2      \n"  | 
| 639 | 		"       or      %1, %0, 1   \n"  | 
| 640 | 		"       sc      %1, %2      \n"  | 
| 641 | 		"       xori    %1, 1       \n"  | 
| 642 | 		"       or      %0, %0, %1  \n"  | 
| 643 | 		"       sync                \n"  | 
| 644 | 		"       .set pop              "  | 
| 645 | :		"=&r"  (_res), "=&r"  (_tmp), "+R"  (*_l) | 
| 646 | :		/* no inputs */ | 
| 647 | :		"memory" ); | 
| 648 | 	return _res; | 
| 649 | } | 
| 650 |  | 
| 651 | /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */ | 
| 652 | #define S_UNLOCK(lock)	\ | 
| 653 | do \ | 
| 654 | { \ | 
| 655 | 	__asm__ __volatile__( \ | 
| 656 | 		"       .set push           \n" \ | 
| 657 | 		MIPS_SET_MIPS2 \ | 
| 658 | 		"       .set noreorder      \n" \ | 
| 659 | 		"       .set nomacro        \n" \ | 
| 660 | 		"       sync                \n" \ | 
| 661 | 		"       .set pop              " \ | 
| 662 | :		/* no outputs */ \ | 
| 663 | :		/* no inputs */	\ | 
| 664 | :		"memory"); \ | 
| 665 | 	*((volatile slock_t *) (lock)) = 0; \ | 
| 666 | } while (0) | 
| 667 |  | 
| 668 | #endif /* __mips__ && !__sgi */ | 
| 669 |  | 
| 670 |  | 
| 671 | #if defined(__m32r__) && defined(HAVE_SYS_TAS_H)	/* Renesas' M32R */ | 
| 672 | #define HAS_TEST_AND_SET | 
| 673 |  | 
| 674 | #include <sys/tas.h> | 
| 675 |  | 
| 676 | typedef int slock_t; | 
| 677 |  | 
| 678 | #define TAS(lock) tas(lock) | 
| 679 |  | 
| 680 | #endif /* __m32r__ */ | 
| 681 |  | 
| 682 |  | 
| 683 | #if defined(__sh__)				/* Renesas' SuperH */ | 
| 684 | #define HAS_TEST_AND_SET | 
| 685 |  | 
| 686 | typedef unsigned char slock_t; | 
| 687 |  | 
| 688 | #define TAS(lock) tas(lock) | 
| 689 |  | 
| 690 | static __inline__ int | 
| 691 | tas(volatile slock_t *lock) | 
| 692 | { | 
| 693 | 	register int _res; | 
| 694 |  | 
| 695 | 	/* | 
| 696 | 	 * This asm is coded as if %0 could be any register, but actually SuperH | 
| 697 | 	 * restricts the target of xor-immediate to be R0.  That's handled by | 
| 698 | 	 * the "z" constraint on _res. | 
| 699 | 	 */ | 
| 700 | 	__asm__ __volatile__( | 
| 701 | 		"	tas.b @%2    \n"  | 
| 702 | 		"	movt  %0     \n"  | 
| 703 | 		"	xor   #1,%0  \n"  | 
| 704 | :		"=z" (_res), "+m" (*lock) | 
| 705 | :		"r" (lock) | 
| 706 | :		"memory" , "t" ); | 
| 707 | 	return _res; | 
| 708 | } | 
| 709 |  | 
| 710 | #endif	 /* __sh__ */ | 
| 711 |  | 
| 712 |  | 
| 713 | /* These live in s_lock.c, but only for gcc */ | 
| 714 |  | 
| 715 |  | 
| 716 | #if defined(__m68k__) && !defined(__linux__)	/* non-Linux Motorola 68k */ | 
| 717 | #define HAS_TEST_AND_SET | 
| 718 |  | 
| 719 | typedef unsigned char slock_t; | 
| 720 | #endif | 
| 721 |  | 
| 722 | /* | 
| 723 |  * Default implementation of S_UNLOCK() for gcc/icc. | 
| 724 |  * | 
| 725 |  * Note that this implementation is unsafe for any platform that can reorder | 
| 726 |  * a memory access (either load or store) after a following store.  That | 
| 727 |  * happens not to be possible on x86 and most legacy architectures (some are | 
| 728 |  * single-processor!), but many modern systems have weaker memory ordering. | 
| 729 |  * Those that do must define their own version of S_UNLOCK() rather than | 
| 730 |  * relying on this one. | 
| 731 |  */ | 
| 732 | #if !defined(S_UNLOCK) | 
| 733 | #define S_UNLOCK(lock)	\ | 
| 734 | 	do { __asm__ __volatile__("" : : : "memory");  *(lock) = 0; } while (0) | 
| 735 | #endif | 
| 736 |  | 
| 737 | #endif	/* defined(__GNUC__) || defined(__INTEL_COMPILER) */ | 
| 738 |  | 
| 739 |  | 
| 740 |  | 
| 741 | /* | 
| 742 |  * --------------------------------------------------------------------- | 
| 743 |  * Platforms that use non-gcc inline assembly: | 
| 744 |  * --------------------------------------------------------------------- | 
| 745 |  */ | 
| 746 |  | 
| 747 | #if !defined(HAS_TEST_AND_SET)	/* We didn't trigger above, let's try here */ | 
| 748 |  | 
| 749 |  | 
| 750 | #if defined(__hppa) || defined(__hppa__)	/* HP PA-RISC, GCC and HP compilers */ | 
| 751 | /* | 
| 752 |  * HP's PA-RISC | 
| 753 |  * | 
| 754 |  * See src/backend/port/hpux/tas.c.template for details about LDCWX.  Because | 
| 755 |  * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte | 
| 756 |  * struct.  The active word in the struct is whichever has the aligned address; | 
| 757 |  * the other three words just sit at -1. | 
| 758 |  * | 
| 759 |  * When using gcc, we can inline the required assembly code. | 
| 760 |  */ | 
| 761 | #define HAS_TEST_AND_SET | 
| 762 |  | 
| 763 | typedef struct | 
| 764 | { | 
| 765 | 	int			sema[4]; | 
| 766 | } slock_t; | 
| 767 |  | 
| 768 | #define TAS_ACTIVE_WORD(lock)	((volatile int *) (((uintptr_t) (lock) + 15) & ~15)) | 
| 769 |  | 
| 770 | #if defined(__GNUC__) | 
| 771 |  | 
| 772 | static __inline__ int | 
| 773 | tas(volatile slock_t *lock) | 
| 774 | { | 
| 775 | 	volatile int *lockword = TAS_ACTIVE_WORD(lock); | 
| 776 | 	register int lockval; | 
| 777 |  | 
| 778 | 	__asm__ __volatile__( | 
| 779 | 		"	ldcwx	0(0,%2),%0	\n"  | 
| 780 | :		"=r" (lockval), "+m" (*lockword) | 
| 781 | :		"r" (lockword) | 
| 782 | :		"memory" ); | 
| 783 | 	return (lockval == 0); | 
| 784 | } | 
| 785 |  | 
| 786 | /* | 
| 787 |  * The hppa implementation doesn't follow the rules of this files and provides | 
| 788 |  * a gcc specific implementation outside of the above defined(__GNUC__). It | 
| 789 |  * does so to avoid duplication between the HP compiler and gcc. So undefine | 
| 790 |  * the generic fallback S_UNLOCK from above. | 
| 791 |  */ | 
| 792 | #ifdef S_UNLOCK | 
| 793 | #undef S_UNLOCK | 
| 794 | #endif | 
| 795 | #define S_UNLOCK(lock)	\ | 
| 796 | 	do { \ | 
| 797 | 		__asm__ __volatile__("" : : : "memory"); \ | 
| 798 | 		*TAS_ACTIVE_WORD(lock) = -1; \ | 
| 799 | 	} while (0) | 
| 800 |  | 
| 801 | #endif /* __GNUC__ */ | 
| 802 |  | 
| 803 | #define S_INIT_LOCK(lock) \ | 
| 804 | 	do { \ | 
| 805 | 		volatile slock_t *lock_ = (lock); \ | 
| 806 | 		lock_->sema[0] = -1; \ | 
| 807 | 		lock_->sema[1] = -1; \ | 
| 808 | 		lock_->sema[2] = -1; \ | 
| 809 | 		lock_->sema[3] = -1; \ | 
| 810 | 	} while (0) | 
| 811 |  | 
| 812 | #define S_LOCK_FREE(lock)	(*TAS_ACTIVE_WORD(lock) != 0) | 
| 813 |  | 
| 814 | #endif	 /* __hppa || __hppa__ */ | 
| 815 |  | 
| 816 |  | 
| 817 | #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__) | 
| 818 | /* | 
| 819 |  * HP-UX on Itanium, non-gcc/icc compiler | 
| 820 |  * | 
| 821 |  * We assume that the compiler enforces strict ordering of loads/stores on | 
| 822 |  * volatile data (see comments on the gcc-version earlier in this file). | 
| 823 |  * Note that this assumption does *not* hold if you use the | 
| 824 |  * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that. | 
| 825 |  * | 
| 826 |  * See also Implementing Spinlocks on the Intel Itanium Architecture and | 
| 827 |  * PA-RISC, by Tor Ekqvist and David Graves, for more information.  As of | 
| 828 |  * this writing, version 1.0 of the manual is available at: | 
| 829 |  * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf | 
| 830 |  */ | 
| 831 | #define HAS_TEST_AND_SET | 
| 832 |  | 
| 833 | typedef unsigned int slock_t; | 
| 834 |  | 
| 835 | #include <ia64/sys/inline.h> | 
| 836 | #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE) | 
| 837 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ | 
| 838 | #define TAS_SPIN(lock)	(*(lock) ? 1 : TAS(lock)) | 
| 839 | #define S_UNLOCK(lock)	\ | 
| 840 | 	do { _Asm_mf(); (*(lock)) = 0; } while (0) | 
| 841 |  | 
| 842 | #endif	/* HPUX on IA64, non gcc/icc */ | 
| 843 |  | 
| 844 | #if defined(_AIX)	/* AIX */ | 
| 845 | /* | 
| 846 |  * AIX (POWER) | 
| 847 |  */ | 
| 848 | #define HAS_TEST_AND_SET | 
| 849 |  | 
| 850 | #include <sys/atomic_op.h> | 
| 851 |  | 
| 852 | typedef int slock_t; | 
| 853 |  | 
| 854 | #define TAS(lock)			_check_lock((slock_t *) (lock), 0, 1) | 
| 855 | #define S_UNLOCK(lock)		_clear_lock((slock_t *) (lock), 0) | 
| 856 | #endif	 /* _AIX */ | 
| 857 |  | 
| 858 |  | 
| 859 | /* These are in sunstudio_(sparc|x86).s */ | 
| 860 |  | 
| 861 | #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc)) | 
| 862 | #define HAS_TEST_AND_SET | 
| 863 |  | 
| 864 | #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus) | 
| 865 | typedef unsigned int slock_t; | 
| 866 | #else | 
| 867 | typedef unsigned char slock_t; | 
| 868 | #endif | 
| 869 |  | 
| 870 | extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with, | 
| 871 | 									  slock_t cmp); | 
| 872 |  | 
| 873 | #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0) | 
| 874 | #endif | 
| 875 |  | 
| 876 |  | 
| 877 | #ifdef _MSC_VER | 
| 878 | typedef LONG slock_t; | 
| 879 |  | 
| 880 | #define HAS_TEST_AND_SET | 
| 881 | #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0)) | 
| 882 |  | 
| 883 | #define SPIN_DELAY() spin_delay() | 
| 884 |  | 
| 885 | /* If using Visual C++ on Win64, inline assembly is unavailable. | 
| 886 |  * Use a _mm_pause intrinsic instead of rep nop. | 
| 887 |  */ | 
| 888 | #if defined(_WIN64) | 
| 889 | static __forceinline void | 
| 890 | spin_delay(void) | 
| 891 | { | 
| 892 | 	_mm_pause(); | 
| 893 | } | 
| 894 | #else | 
| 895 | static __forceinline void | 
| 896 | spin_delay(void) | 
| 897 | { | 
| 898 | 	/* See comment for gcc code. Same code, MASM syntax */ | 
| 899 | 	__asm rep nop; | 
| 900 | } | 
| 901 | #endif | 
| 902 |  | 
| 903 | #include <intrin.h> | 
| 904 | #pragma intrinsic(_ReadWriteBarrier) | 
| 905 |  | 
| 906 | #define S_UNLOCK(lock)	\ | 
| 907 | 	do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0) | 
| 908 |  | 
| 909 | #endif | 
| 910 |  | 
| 911 |  | 
| 912 | #endif	/* !defined(HAS_TEST_AND_SET) */ | 
| 913 |  | 
| 914 |  | 
| 915 | /* Blow up if we didn't have any way to do spinlocks */ | 
| 916 | #ifndef HAS_TEST_AND_SET | 
| 917 | #error PostgreSQL does not have native spinlock support on this platform.  To continue the compilation, rerun configure using --disable-spinlocks.  However, performance will be poor.  Please report this to pgsql-bugs@lists.postgresql.org. | 
| 918 | #endif | 
| 919 |  | 
| 920 |  | 
| 921 | #else	/* !HAVE_SPINLOCKS */ | 
| 922 |  | 
| 923 |  | 
| 924 | /* | 
| 925 |  * Fake spinlock implementation using semaphores --- slow and prone | 
| 926 |  * to fall foul of kernel limits on number of semaphores, so don't use this | 
| 927 |  * unless you must!  The subroutines appear in spin.c. | 
| 928 |  */ | 
| 929 | typedef int slock_t; | 
| 930 |  | 
| 931 | extern bool s_lock_free_sema(volatile slock_t *lock); | 
| 932 | extern void s_unlock_sema(volatile slock_t *lock); | 
| 933 | extern void s_init_lock_sema(volatile slock_t *lock, bool nested); | 
| 934 | extern int	tas_sema(volatile slock_t *lock); | 
| 935 |  | 
| 936 | #define S_LOCK_FREE(lock)	s_lock_free_sema(lock) | 
| 937 | #define S_UNLOCK(lock)	 s_unlock_sema(lock) | 
| 938 | #define S_INIT_LOCK(lock)	s_init_lock_sema(lock, false) | 
| 939 | #define TAS(lock)	tas_sema(lock) | 
| 940 |  | 
| 941 |  | 
| 942 | #endif	/* HAVE_SPINLOCKS */ | 
| 943 |  | 
| 944 |  | 
| 945 | /* | 
| 946 |  * Default Definitions - override these above as needed. | 
| 947 |  */ | 
| 948 |  | 
| 949 | #if !defined(S_LOCK) | 
| 950 | #define S_LOCK(lock) \ | 
| 951 | 	(TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0) | 
| 952 | #endif	 /* S_LOCK */ | 
| 953 |  | 
| 954 | #if !defined(S_LOCK_FREE) | 
| 955 | #define S_LOCK_FREE(lock)	(*(lock) == 0) | 
| 956 | #endif	 /* S_LOCK_FREE */ | 
| 957 |  | 
| 958 | #if !defined(S_UNLOCK) | 
| 959 | /* | 
| 960 |  * Our default implementation of S_UNLOCK is essentially *(lock) = 0.  This | 
| 961 |  * is unsafe if the platform can reorder a memory access (either load or | 
| 962 |  * store) after a following store; platforms where this is possible must | 
| 963 |  * define their own S_UNLOCK.  But CPU reordering is not the only concern: | 
| 964 |  * if we simply defined S_UNLOCK() as an inline macro, the compiler might | 
| 965 |  * reorder instructions from inside the critical section to occur after the | 
| 966 |  * lock release.  Since the compiler probably can't know what the external | 
| 967 |  * function s_unlock is doing, putting the same logic there should be adequate. | 
| 968 |  * A sufficiently-smart globally optimizing compiler could break that | 
| 969 |  * assumption, though, and the cost of a function call for every spinlock | 
| 970 |  * release may hurt performance significantly, so we use this implementation | 
| 971 |  * only for platforms where we don't know of a suitable intrinsic.  For the | 
| 972 |  * most part, those are relatively obscure platform/compiler combinations to | 
| 973 |  * which the PostgreSQL project does not have access. | 
| 974 |  */ | 
| 975 | #define USE_DEFAULT_S_UNLOCK | 
| 976 | extern void s_unlock(volatile slock_t *lock); | 
| 977 | #define S_UNLOCK(lock)		s_unlock(lock) | 
| 978 | #endif	 /* S_UNLOCK */ | 
| 979 |  | 
| 980 | #if !defined(S_INIT_LOCK) | 
| 981 | #define S_INIT_LOCK(lock)	S_UNLOCK(lock) | 
| 982 | #endif	 /* S_INIT_LOCK */ | 
| 983 |  | 
| 984 | #if !defined(SPIN_DELAY) | 
| 985 | #define SPIN_DELAY()	((void) 0) | 
| 986 | #endif	 /* SPIN_DELAY */ | 
| 987 |  | 
| 988 | #if !defined(TAS) | 
| 989 | extern int	tas(volatile slock_t *lock);		/* in port/.../tas.s, or | 
| 990 | 												 * s_lock.c */ | 
| 991 |  | 
| 992 | #define TAS(lock)		tas(lock) | 
| 993 | #endif	 /* TAS */ | 
| 994 |  | 
| 995 | #if !defined(TAS_SPIN) | 
| 996 | #define TAS_SPIN(lock)	TAS(lock) | 
| 997 | #endif	 /* TAS_SPIN */ | 
| 998 |  | 
| 999 | extern slock_t dummy_spinlock; | 
| 1000 |  | 
| 1001 | /* | 
| 1002 |  * Platform-independent out-of-line support routines | 
| 1003 |  */ | 
| 1004 | extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func); | 
| 1005 |  | 
| 1006 | /* Support for dynamic adjustment of spins_per_delay */ | 
| 1007 | #define DEFAULT_SPINS_PER_DELAY  100 | 
| 1008 |  | 
| 1009 | extern void set_spins_per_delay(int shared_spins_per_delay); | 
| 1010 | extern int	update_spins_per_delay(int shared_spins_per_delay); | 
| 1011 |  | 
| 1012 | /* | 
| 1013 |  * Support for spin delay which is useful in various places where | 
| 1014 |  * spinlock-like procedures take place. | 
| 1015 |  */ | 
| 1016 | typedef struct | 
| 1017 | { | 
| 1018 | 	int			spins; | 
| 1019 | 	int			delays; | 
| 1020 | 	int			cur_delay; | 
| 1021 | 	const char *file; | 
| 1022 | 	int			line; | 
| 1023 | 	const char *func; | 
| 1024 | } SpinDelayStatus; | 
| 1025 |  | 
| 1026 | static inline void | 
| 1027 | init_spin_delay(SpinDelayStatus *status, | 
| 1028 | 				const char *file, int line, const char *func) | 
| 1029 | { | 
| 1030 | 	status->spins = 0; | 
| 1031 | 	status->delays = 0; | 
| 1032 | 	status->cur_delay = 0; | 
| 1033 | 	status->file = file; | 
| 1034 | 	status->line = line; | 
| 1035 | 	status->func = func; | 
| 1036 | } | 
| 1037 |  | 
| 1038 | #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO) | 
| 1039 | void perform_spin_delay(SpinDelayStatus *status); | 
| 1040 | void finish_spin_delay(SpinDelayStatus *status); | 
| 1041 |  | 
| 1042 | #endif	 /* S_LOCK_H */ | 
| 1043 |  |