| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * s_lock.h |
| 4 | * Hardware-dependent implementation of spinlocks. |
| 5 | * |
| 6 | * NOTE: none of the macros in this file are intended to be called directly. |
| 7 | * Call them through the hardware-independent macros in spin.h. |
| 8 | * |
| 9 | * The following hardware-dependent macros must be provided for each |
| 10 | * supported platform: |
| 11 | * |
| 12 | * void S_INIT_LOCK(slock_t *lock) |
| 13 | * Initialize a spinlock (to the unlocked state). |
| 14 | * |
| 15 | * int S_LOCK(slock_t *lock) |
| 16 | * Acquire a spinlock, waiting if necessary. |
| 17 | * Time out and abort() if unable to acquire the lock in a |
| 18 | * "reasonable" amount of time --- typically ~ 1 minute. |
| 19 | * Should return number of "delays"; see s_lock.c |
| 20 | * |
| 21 | * void S_UNLOCK(slock_t *lock) |
| 22 | * Unlock a previously acquired lock. |
| 23 | * |
| 24 | * bool S_LOCK_FREE(slock_t *lock) |
| 25 | * Tests if the lock is free. Returns true if free, false if locked. |
| 26 | * This does *not* change the state of the lock. |
| 27 | * |
| 28 | * void SPIN_DELAY(void) |
| 29 | * Delay operation to occur inside spinlock wait loop. |
| 30 | * |
| 31 | * Note to implementors: there are default implementations for all these |
| 32 | * macros at the bottom of the file. Check if your platform can use |
| 33 | * these or needs to override them. |
| 34 | * |
| 35 | * Usually, S_LOCK() is implemented in terms of even lower-level macros |
| 36 | * TAS() and TAS_SPIN(): |
| 37 | * |
| 38 | * int TAS(slock_t *lock) |
| 39 | * Atomic test-and-set instruction. Attempt to acquire the lock, |
| 40 | * but do *not* wait. Returns 0 if successful, nonzero if unable |
| 41 | * to acquire the lock. |
| 42 | * |
| 43 | * int TAS_SPIN(slock_t *lock) |
| 44 | * Like TAS(), but this version is used when waiting for a lock |
| 45 | * previously found to be contended. By default, this is the |
| 46 | * same as TAS(), but on some architectures it's better to poll a |
| 47 | * contended lock using an unlocked instruction and retry the |
| 48 | * atomic test-and-set only when it appears free. |
| 49 | * |
| 50 | * TAS() and TAS_SPIN() are NOT part of the API, and should never be called |
| 51 | * directly. |
| 52 | * |
| 53 | * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report |
| 54 | * failure to acquire a lock even when the lock is not locked. For example, |
| 55 | * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must |
| 56 | * always be used, even if you are certain the lock is free. |
| 57 | * |
| 58 | * It is the responsibility of these macros to make sure that the compiler |
| 59 | * does not re-order accesses to shared memory to precede the actual lock |
| 60 | * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this |
| 61 | * was the caller's responsibility, which meant that callers had to use |
| 62 | * volatile-qualified pointers to refer to both the spinlock itself and the |
| 63 | * shared data being accessed within the spinlocked critical section. This |
| 64 | * was notationally awkward, easy to forget (and thus error-prone), and |
| 65 | * prevented some useful compiler optimizations. For these reasons, we |
| 66 | * now require that the macros themselves prevent compiler re-ordering, |
| 67 | * so that the caller doesn't need to take special precautions. |
| 68 | * |
| 69 | * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and |
| 70 | * S_UNLOCK() macros must further include hardware-level memory fence |
| 71 | * instructions to prevent similar re-ordering at the hardware level. |
| 72 | * TAS() and TAS_SPIN() must guarantee that loads and stores issued after |
| 73 | * the macro are not executed until the lock has been obtained. Conversely, |
| 74 | * S_UNLOCK() must guarantee that loads and stores issued before the macro |
| 75 | * have been executed before the lock is released. |
| 76 | * |
| 77 | * On most supported platforms, TAS() uses a tas() function written |
| 78 | * in assembly language to execute a hardware atomic-test-and-set |
| 79 | * instruction. Equivalent OS-supplied mutex routines could be used too. |
| 80 | * |
| 81 | * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not |
| 82 | * defined), then we fall back on an emulation that uses SysV semaphores |
| 83 | * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS() |
| 84 | * implementation, because of the cost of a kernel call per lock or unlock. |
| 85 | * An old report is that Postgres spends around 40% of its time in semop(2) |
| 86 | * when using the SysV semaphore code. |
| 87 | * |
| 88 | * |
| 89 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 90 | * Portions Copyright (c) 1994, Regents of the University of California |
| 91 | * |
| 92 | * src/include/storage/s_lock.h |
| 93 | * |
| 94 | *------------------------------------------------------------------------- |
| 95 | */ |
| 96 | #ifndef S_LOCK_H |
| 97 | #define S_LOCK_H |
| 98 | |
| 99 | #ifdef FRONTEND |
| 100 | #error "s_lock.h may not be included from frontend code" |
| 101 | #endif |
| 102 | |
| 103 | #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */ |
| 104 | |
| 105 | #if defined(__GNUC__) || defined(__INTEL_COMPILER) |
| 106 | /************************************************************************* |
| 107 | * All the gcc inlines |
| 108 | * Gcc consistently defines the CPU as __cpu__. |
| 109 | * Other compilers use __cpu or __cpu__ so we test for both in those cases. |
| 110 | */ |
| 111 | |
| 112 | /*---------- |
| 113 | * Standard gcc asm format (assuming "volatile slock_t *lock"): |
| 114 | |
| 115 | __asm__ __volatile__( |
| 116 | " instruction \n" |
| 117 | " instruction \n" |
| 118 | " instruction \n" |
| 119 | : "=r"(_res), "+m"(*lock) // return register, in/out lock value |
| 120 | : "r"(lock) // lock pointer, in input register |
| 121 | : "memory", "cc"); // show clobbered registers here |
| 122 | |
| 123 | * The output-operands list (after first colon) should always include |
| 124 | * "+m"(*lock), whether or not the asm code actually refers to this |
| 125 | * operand directly. This ensures that gcc believes the value in the |
| 126 | * lock variable is used and set by the asm code. Also, the clobbers |
| 127 | * list (after third colon) should always include "memory"; this prevents |
| 128 | * gcc from thinking it can cache the values of shared-memory fields |
| 129 | * across the asm code. Add "cc" if your asm code changes the condition |
| 130 | * code register, and also list any temp registers the code uses. |
| 131 | *---------- |
| 132 | */ |
| 133 | |
| 134 | |
| 135 | #ifdef __i386__ /* 32-bit i386 */ |
| 136 | #define HAS_TEST_AND_SET |
| 137 | |
| 138 | typedef unsigned char slock_t; |
| 139 | |
| 140 | #define TAS(lock) tas(lock) |
| 141 | |
| 142 | static __inline__ int |
| 143 | tas(volatile slock_t *lock) |
| 144 | { |
| 145 | register slock_t _res = 1; |
| 146 | |
| 147 | /* |
| 148 | * Use a non-locking test before asserting the bus lock. Note that the |
| 149 | * extra test appears to be a small loss on some x86 platforms and a small |
| 150 | * win on others; it's by no means clear that we should keep it. |
| 151 | * |
| 152 | * When this was last tested, we didn't have separate TAS() and TAS_SPIN() |
| 153 | * macros. Nowadays it probably would be better to do a non-locking test |
| 154 | * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the |
| 155 | * testing to verify that. Without some empirical evidence, better to |
| 156 | * leave it alone. |
| 157 | */ |
| 158 | __asm__ __volatile__( |
| 159 | " cmpb $0,%1 \n" |
| 160 | " jne 1f \n" |
| 161 | " lock \n" |
| 162 | " xchgb %0,%1 \n" |
| 163 | "1: \n" |
| 164 | : "+q" (_res), "+m" (*lock) |
| 165 | : /* no inputs */ |
| 166 | : "memory" , "cc" ); |
| 167 | return (int) _res; |
| 168 | } |
| 169 | |
| 170 | #define SPIN_DELAY() spin_delay() |
| 171 | |
| 172 | static __inline__ void |
| 173 | spin_delay(void) |
| 174 | { |
| 175 | /* |
| 176 | * This sequence is equivalent to the PAUSE instruction ("rep" is |
| 177 | * ignored by old IA32 processors if the following instruction is |
| 178 | * not a string operation); the IA-32 Architecture Software |
| 179 | * Developer's Manual, Vol. 3, Section 7.7.2 describes why using |
| 180 | * PAUSE in the inner loop of a spin lock is necessary for good |
| 181 | * performance: |
| 182 | * |
| 183 | * The PAUSE instruction improves the performance of IA-32 |
| 184 | * processors supporting Hyper-Threading Technology when |
| 185 | * executing spin-wait loops and other routines where one |
| 186 | * thread is accessing a shared lock or semaphore in a tight |
| 187 | * polling loop. When executing a spin-wait loop, the |
| 188 | * processor can suffer a severe performance penalty when |
| 189 | * exiting the loop because it detects a possible memory order |
| 190 | * violation and flushes the core processor's pipeline. The |
| 191 | * PAUSE instruction provides a hint to the processor that the |
| 192 | * code sequence is a spin-wait loop. The processor uses this |
| 193 | * hint to avoid the memory order violation and prevent the |
| 194 | * pipeline flush. In addition, the PAUSE instruction |
| 195 | * de-pipelines the spin-wait loop to prevent it from |
| 196 | * consuming execution resources excessively. |
| 197 | */ |
| 198 | __asm__ __volatile__( |
| 199 | " rep; nop \n" ); |
| 200 | } |
| 201 | |
| 202 | #endif /* __i386__ */ |
| 203 | |
| 204 | |
| 205 | #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */ |
| 206 | #define HAS_TEST_AND_SET |
| 207 | |
| 208 | typedef unsigned char slock_t; |
| 209 | |
| 210 | #define TAS(lock) tas(lock) |
| 211 | |
| 212 | /* |
| 213 | * On Intel EM64T, it's a win to use a non-locking test before the xchg proper, |
| 214 | * but only when spinning. |
| 215 | * |
| 216 | * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T |
| 217 | * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is |
| 218 | * available at: |
| 219 | * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures |
| 220 | */ |
| 221 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
| 222 | |
| 223 | static __inline__ int |
| 224 | tas(volatile slock_t *lock) |
| 225 | { |
| 226 | register slock_t _res = 1; |
| 227 | |
| 228 | __asm__ __volatile__( |
| 229 | " lock \n" |
| 230 | " xchgb %0,%1 \n" |
| 231 | : "+q" (_res), "+m" (*lock) |
| 232 | : /* no inputs */ |
| 233 | : "memory" , "cc" ); |
| 234 | return (int) _res; |
| 235 | } |
| 236 | |
| 237 | #define SPIN_DELAY() spin_delay() |
| 238 | |
| 239 | static __inline__ void |
| 240 | spin_delay(void) |
| 241 | { |
| 242 | /* |
| 243 | * Adding a PAUSE in the spin delay loop is demonstrably a no-op on |
| 244 | * Opteron, but it may be of some use on EM64T, so we keep it. |
| 245 | */ |
| 246 | __asm__ __volatile__( |
| 247 | " rep; nop \n" ); |
| 248 | } |
| 249 | |
| 250 | #endif /* __x86_64__ */ |
| 251 | |
| 252 | |
| 253 | #if defined(__ia64__) || defined(__ia64) |
| 254 | /* |
| 255 | * Intel Itanium, gcc or Intel's compiler. |
| 256 | * |
| 257 | * Itanium has weak memory ordering, but we rely on the compiler to enforce |
| 258 | * strict ordering of accesses to volatile data. In particular, while the |
| 259 | * xchg instruction implicitly acts as a memory barrier with 'acquire' |
| 260 | * semantics, we do not have an explicit memory fence instruction in the |
| 261 | * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and |
| 262 | * trust that the compiler marks the generated store instruction with the |
| 263 | * ".rel" opcode. |
| 264 | * |
| 265 | * Testing shows that assumption to hold on gcc, although I could not find |
| 266 | * any explicit statement on that in the gcc manual. In Intel's compiler, |
| 267 | * the -m[no-]serialize-volatile option controls that, and testing shows that |
| 268 | * it is enabled by default. |
| 269 | * |
| 270 | * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64 |
| 271 | * (at least not in icc versions before 12.x). So we have to carry a separate |
| 272 | * compiler-intrinsic-based implementation for it. |
| 273 | */ |
| 274 | #define HAS_TEST_AND_SET |
| 275 | |
| 276 | typedef unsigned int slock_t; |
| 277 | |
| 278 | #define TAS(lock) tas(lock) |
| 279 | |
| 280 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ |
| 281 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
| 282 | |
| 283 | #ifndef __INTEL_COMPILER |
| 284 | |
| 285 | static __inline__ int |
| 286 | tas(volatile slock_t *lock) |
| 287 | { |
| 288 | long int ret; |
| 289 | |
| 290 | __asm__ __volatile__( |
| 291 | " xchg4 %0=%1,%2 \n" |
| 292 | : "=r" (ret), "+m" (*lock) |
| 293 | : "r" (1) |
| 294 | : "memory" ); |
| 295 | return (int) ret; |
| 296 | } |
| 297 | |
| 298 | #else /* __INTEL_COMPILER */ |
| 299 | |
| 300 | static __inline__ int |
| 301 | tas(volatile slock_t *lock) |
| 302 | { |
| 303 | int ret; |
| 304 | |
| 305 | ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */ |
| 306 | |
| 307 | return ret; |
| 308 | } |
| 309 | |
| 310 | /* icc can't use the regular gcc S_UNLOCK() macro either in this case */ |
| 311 | #define S_UNLOCK(lock) \ |
| 312 | do { __memory_barrier(); *(lock) = 0; } while (0) |
| 313 | |
| 314 | #endif /* __INTEL_COMPILER */ |
| 315 | #endif /* __ia64__ || __ia64 */ |
| 316 | |
| 317 | /* |
| 318 | * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available. |
| 319 | * |
| 320 | * We use the int-width variant of the builtin because it works on more chips |
| 321 | * than other widths. |
| 322 | */ |
| 323 | #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64) |
| 324 | #ifdef HAVE_GCC__SYNC_INT32_TAS |
| 325 | #define HAS_TEST_AND_SET |
| 326 | |
| 327 | #define TAS(lock) tas(lock) |
| 328 | |
| 329 | typedef int slock_t; |
| 330 | |
| 331 | static __inline__ int |
| 332 | tas(volatile slock_t *lock) |
| 333 | { |
| 334 | return __sync_lock_test_and_set(lock, 1); |
| 335 | } |
| 336 | |
| 337 | #define S_UNLOCK(lock) __sync_lock_release(lock) |
| 338 | |
| 339 | #endif /* HAVE_GCC__SYNC_INT32_TAS */ |
| 340 | #endif /* __arm__ || __arm || __aarch64__ || __aarch64 */ |
| 341 | |
| 342 | |
| 343 | /* S/390 and S/390x Linux (32- and 64-bit zSeries) */ |
| 344 | #if defined(__s390__) || defined(__s390x__) |
| 345 | #define HAS_TEST_AND_SET |
| 346 | |
| 347 | typedef unsigned int slock_t; |
| 348 | |
| 349 | #define TAS(lock) tas(lock) |
| 350 | |
| 351 | static __inline__ int |
| 352 | tas(volatile slock_t *lock) |
| 353 | { |
| 354 | int _res = 0; |
| 355 | |
| 356 | __asm__ __volatile__( |
| 357 | " cs %0,%3,0(%2) \n" |
| 358 | : "+d" (_res), "+m" (*lock) |
| 359 | : "a" (lock), "d" (1) |
| 360 | : "memory" , "cc" ); |
| 361 | return _res; |
| 362 | } |
| 363 | |
| 364 | #endif /* __s390__ || __s390x__ */ |
| 365 | |
| 366 | |
| 367 | #if defined(__sparc__) /* Sparc */ |
| 368 | /* |
| 369 | * Solaris has always run sparc processors in TSO (total store) mode, but |
| 370 | * linux didn't use to and the *BSDs still don't. So, be careful about |
| 371 | * acquire/release semantics. The CPU will treat superfluous membars as |
| 372 | * NOPs, so it's just code space. |
| 373 | */ |
| 374 | #define HAS_TEST_AND_SET |
| 375 | |
| 376 | typedef unsigned char slock_t; |
| 377 | |
| 378 | #define TAS(lock) tas(lock) |
| 379 | |
| 380 | static __inline__ int |
| 381 | tas(volatile slock_t *lock) |
| 382 | { |
| 383 | register slock_t _res; |
| 384 | |
| 385 | /* |
| 386 | * See comment in src/backend/port/tas/sunstudio_sparc.s for why this |
| 387 | * uses "ldstub", and that file uses "cas". gcc currently generates |
| 388 | * sparcv7-targeted binaries, so "cas" use isn't possible. |
| 389 | */ |
| 390 | __asm__ __volatile__( |
| 391 | " ldstub [%2], %0 \n" |
| 392 | : "=r" (_res), "+m" (*lock) |
| 393 | : "r" (lock) |
| 394 | : "memory" ); |
| 395 | #if defined(__sparcv7) || defined(__sparc_v7__) |
| 396 | /* |
| 397 | * No stbar or membar available, luckily no actually produced hardware |
| 398 | * requires a barrier. |
| 399 | */ |
| 400 | #elif defined(__sparcv8) || defined(__sparc_v8__) |
| 401 | /* stbar is available (and required for both PSO, RMO), membar isn't */ |
| 402 | __asm__ __volatile__ ("stbar \n" :::"memory" ); |
| 403 | #else |
| 404 | /* |
| 405 | * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire |
| 406 | * barrier for sparcv8+ upwards. |
| 407 | */ |
| 408 | __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n" :::"memory" ); |
| 409 | #endif |
| 410 | return (int) _res; |
| 411 | } |
| 412 | |
| 413 | #if defined(__sparcv7) || defined(__sparc_v7__) |
| 414 | /* |
| 415 | * No stbar or membar available, luckily no actually produced hardware |
| 416 | * requires a barrier. We fall through to the default gcc definition of |
| 417 | * S_UNLOCK in this case. |
| 418 | */ |
| 419 | #elif defined(__sparcv8) || defined(__sparc_v8__) |
| 420 | /* stbar is available (and required for both PSO, RMO), membar isn't */ |
| 421 | #define S_UNLOCK(lock) \ |
| 422 | do \ |
| 423 | { \ |
| 424 | __asm__ __volatile__ ("stbar \n":::"memory"); \ |
| 425 | *((volatile slock_t *) (lock)) = 0; \ |
| 426 | } while (0) |
| 427 | #else |
| 428 | /* |
| 429 | * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate |
| 430 | * release barrier for sparcv8+ upwards. |
| 431 | */ |
| 432 | #define S_UNLOCK(lock) \ |
| 433 | do \ |
| 434 | { \ |
| 435 | __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \ |
| 436 | *((volatile slock_t *) (lock)) = 0; \ |
| 437 | } while (0) |
| 438 | #endif |
| 439 | |
| 440 | #endif /* __sparc__ */ |
| 441 | |
| 442 | |
| 443 | /* PowerPC */ |
| 444 | #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) |
| 445 | #define HAS_TEST_AND_SET |
| 446 | |
| 447 | typedef unsigned int slock_t; |
| 448 | |
| 449 | #define TAS(lock) tas(lock) |
| 450 | |
| 451 | /* On PPC, it's a win to use a non-locking test before the lwarx */ |
| 452 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
| 453 | |
| 454 | /* |
| 455 | * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002, |
| 456 | * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop. |
| 457 | * On newer machines, we can use lwsync instead for better performance. |
| 458 | * |
| 459 | * Ordinarily, we'd code the branches here using GNU-style local symbols, that |
| 460 | * is "1f" referencing "1:" and so on. But some people run gcc on AIX with |
| 461 | * IBM's assembler as backend, and IBM's assembler doesn't do local symbols. |
| 462 | * So hand-code the branch offsets; fortunately, all PPC instructions are |
| 463 | * exactly 4 bytes each, so it's not too hard to count. |
| 464 | */ |
| 465 | static __inline__ int |
| 466 | tas(volatile slock_t *lock) |
| 467 | { |
| 468 | slock_t _t; |
| 469 | int _res; |
| 470 | |
| 471 | __asm__ __volatile__( |
| 472 | #ifdef USE_PPC_LWARX_MUTEX_HINT |
| 473 | " lwarx %0,0,%3,1 \n" |
| 474 | #else |
| 475 | " lwarx %0,0,%3 \n" |
| 476 | #endif |
| 477 | " cmpwi %0,0 \n" |
| 478 | " bne $+16 \n" /* branch to li %1,1 */ |
| 479 | " addi %0,%0,1 \n" |
| 480 | " stwcx. %0,0,%3 \n" |
| 481 | " beq $+12 \n" /* branch to lwsync/isync */ |
| 482 | " li %1,1 \n" |
| 483 | " b $+12 \n" /* branch to end of asm sequence */ |
| 484 | #ifdef USE_PPC_LWSYNC |
| 485 | " lwsync \n" |
| 486 | #else |
| 487 | " isync \n" |
| 488 | #endif |
| 489 | " li %1,0 \n" |
| 490 | |
| 491 | : "=&r" (_t), "=r" (_res), "+m" (*lock) |
| 492 | : "r" (lock) |
| 493 | : "memory" , "cc" ); |
| 494 | return _res; |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction. |
| 499 | * On newer machines, we can use lwsync instead for better performance. |
| 500 | */ |
| 501 | #ifdef USE_PPC_LWSYNC |
| 502 | #define S_UNLOCK(lock) \ |
| 503 | do \ |
| 504 | { \ |
| 505 | __asm__ __volatile__ (" lwsync \n" ::: "memory"); \ |
| 506 | *((volatile slock_t *) (lock)) = 0; \ |
| 507 | } while (0) |
| 508 | #else |
| 509 | #define S_UNLOCK(lock) \ |
| 510 | do \ |
| 511 | { \ |
| 512 | __asm__ __volatile__ (" sync \n" ::: "memory"); \ |
| 513 | *((volatile slock_t *) (lock)) = 0; \ |
| 514 | } while (0) |
| 515 | #endif /* USE_PPC_LWSYNC */ |
| 516 | |
| 517 | #endif /* powerpc */ |
| 518 | |
| 519 | |
| 520 | /* Linux Motorola 68k */ |
| 521 | #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__) |
| 522 | #define HAS_TEST_AND_SET |
| 523 | |
| 524 | typedef unsigned char slock_t; |
| 525 | |
| 526 | #define TAS(lock) tas(lock) |
| 527 | |
| 528 | static __inline__ int |
| 529 | tas(volatile slock_t *lock) |
| 530 | { |
| 531 | register int rv; |
| 532 | |
| 533 | __asm__ __volatile__( |
| 534 | " clrl %0 \n" |
| 535 | " tas %1 \n" |
| 536 | " sne %0 \n" |
| 537 | : "=d" (rv), "+m" (*lock) |
| 538 | : /* no inputs */ |
| 539 | : "memory" , "cc" ); |
| 540 | return rv; |
| 541 | } |
| 542 | |
| 543 | #endif /* (__mc68000__ || __m68k__) && __linux__ */ |
| 544 | |
| 545 | |
| 546 | /* Motorola 88k */ |
| 547 | #if defined(__m88k__) |
| 548 | #define HAS_TEST_AND_SET |
| 549 | |
| 550 | typedef unsigned int slock_t; |
| 551 | |
| 552 | #define TAS(lock) tas(lock) |
| 553 | |
| 554 | static __inline__ int |
| 555 | tas(volatile slock_t *lock) |
| 556 | { |
| 557 | register slock_t _res = 1; |
| 558 | |
| 559 | __asm__ __volatile__( |
| 560 | " xmem %0, %2, %%r0 \n" |
| 561 | : "+r" (_res), "+m" (*lock) |
| 562 | : "r" (lock) |
| 563 | : "memory" ); |
| 564 | return (int) _res; |
| 565 | } |
| 566 | |
| 567 | #endif /* __m88k__ */ |
| 568 | |
| 569 | |
| 570 | /* |
| 571 | * VAXen -- even multiprocessor ones |
| 572 | * (thanks to Tom Ivar Helbekkmo) |
| 573 | */ |
| 574 | #if defined(__vax__) |
| 575 | #define HAS_TEST_AND_SET |
| 576 | |
| 577 | typedef unsigned char slock_t; |
| 578 | |
| 579 | #define TAS(lock) tas(lock) |
| 580 | |
| 581 | static __inline__ int |
| 582 | tas(volatile slock_t *lock) |
| 583 | { |
| 584 | register int _res; |
| 585 | |
| 586 | __asm__ __volatile__( |
| 587 | " movl $1, %0 \n" |
| 588 | " bbssi $0, (%2), 1f \n" |
| 589 | " clrl %0 \n" |
| 590 | "1: \n" |
| 591 | : "=&r" (_res), "+m" (*lock) |
| 592 | : "r" (lock) |
| 593 | : "memory" ); |
| 594 | return _res; |
| 595 | } |
| 596 | |
| 597 | #endif /* __vax__ */ |
| 598 | |
| 599 | |
| 600 | #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */ |
| 601 | #define HAS_TEST_AND_SET |
| 602 | |
| 603 | typedef unsigned int slock_t; |
| 604 | |
| 605 | #define TAS(lock) tas(lock) |
| 606 | |
| 607 | /* |
| 608 | * Original MIPS-I processors lacked the LL/SC instructions, but if we are |
| 609 | * so unfortunate as to be running on one of those, we expect that the kernel |
| 610 | * will handle the illegal-instruction traps and emulate them for us. On |
| 611 | * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane |
| 612 | * choice because any other synchronization method must involve a kernel |
| 613 | * call. Unfortunately, many toolchains still default to MIPS-I as the |
| 614 | * codegen target; if the symbol __mips shows that that's the case, we |
| 615 | * have to force the assembler to accept LL/SC. |
| 616 | * |
| 617 | * R10000 and up processors require a separate SYNC, which has the same |
| 618 | * issues as LL/SC. |
| 619 | */ |
| 620 | #if __mips < 2 |
| 621 | #define MIPS_SET_MIPS2 " .set mips2 \n" |
| 622 | #else |
| 623 | #define MIPS_SET_MIPS2 |
| 624 | #endif |
| 625 | |
| 626 | static __inline__ int |
| 627 | tas(volatile slock_t *lock) |
| 628 | { |
| 629 | register volatile slock_t *_l = lock; |
| 630 | register int _res; |
| 631 | register int _tmp; |
| 632 | |
| 633 | __asm__ __volatile__( |
| 634 | " .set push \n" |
| 635 | MIPS_SET_MIPS2 |
| 636 | " .set noreorder \n" |
| 637 | " .set nomacro \n" |
| 638 | " ll %0, %2 \n" |
| 639 | " or %1, %0, 1 \n" |
| 640 | " sc %1, %2 \n" |
| 641 | " xori %1, 1 \n" |
| 642 | " or %0, %0, %1 \n" |
| 643 | " sync \n" |
| 644 | " .set pop " |
| 645 | : "=&r" (_res), "=&r" (_tmp), "+R" (*_l) |
| 646 | : /* no inputs */ |
| 647 | : "memory" ); |
| 648 | return _res; |
| 649 | } |
| 650 | |
| 651 | /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */ |
| 652 | #define S_UNLOCK(lock) \ |
| 653 | do \ |
| 654 | { \ |
| 655 | __asm__ __volatile__( \ |
| 656 | " .set push \n" \ |
| 657 | MIPS_SET_MIPS2 \ |
| 658 | " .set noreorder \n" \ |
| 659 | " .set nomacro \n" \ |
| 660 | " sync \n" \ |
| 661 | " .set pop " \ |
| 662 | : /* no outputs */ \ |
| 663 | : /* no inputs */ \ |
| 664 | : "memory"); \ |
| 665 | *((volatile slock_t *) (lock)) = 0; \ |
| 666 | } while (0) |
| 667 | |
| 668 | #endif /* __mips__ && !__sgi */ |
| 669 | |
| 670 | |
| 671 | #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */ |
| 672 | #define HAS_TEST_AND_SET |
| 673 | |
| 674 | #include <sys/tas.h> |
| 675 | |
| 676 | typedef int slock_t; |
| 677 | |
| 678 | #define TAS(lock) tas(lock) |
| 679 | |
| 680 | #endif /* __m32r__ */ |
| 681 | |
| 682 | |
| 683 | #if defined(__sh__) /* Renesas' SuperH */ |
| 684 | #define HAS_TEST_AND_SET |
| 685 | |
| 686 | typedef unsigned char slock_t; |
| 687 | |
| 688 | #define TAS(lock) tas(lock) |
| 689 | |
| 690 | static __inline__ int |
| 691 | tas(volatile slock_t *lock) |
| 692 | { |
| 693 | register int _res; |
| 694 | |
| 695 | /* |
| 696 | * This asm is coded as if %0 could be any register, but actually SuperH |
| 697 | * restricts the target of xor-immediate to be R0. That's handled by |
| 698 | * the "z" constraint on _res. |
| 699 | */ |
| 700 | __asm__ __volatile__( |
| 701 | " tas.b @%2 \n" |
| 702 | " movt %0 \n" |
| 703 | " xor #1,%0 \n" |
| 704 | : "=z" (_res), "+m" (*lock) |
| 705 | : "r" (lock) |
| 706 | : "memory" , "t" ); |
| 707 | return _res; |
| 708 | } |
| 709 | |
| 710 | #endif /* __sh__ */ |
| 711 | |
| 712 | |
| 713 | /* These live in s_lock.c, but only for gcc */ |
| 714 | |
| 715 | |
| 716 | #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */ |
| 717 | #define HAS_TEST_AND_SET |
| 718 | |
| 719 | typedef unsigned char slock_t; |
| 720 | #endif |
| 721 | |
| 722 | /* |
| 723 | * Default implementation of S_UNLOCK() for gcc/icc. |
| 724 | * |
| 725 | * Note that this implementation is unsafe for any platform that can reorder |
| 726 | * a memory access (either load or store) after a following store. That |
| 727 | * happens not to be possible on x86 and most legacy architectures (some are |
| 728 | * single-processor!), but many modern systems have weaker memory ordering. |
| 729 | * Those that do must define their own version of S_UNLOCK() rather than |
| 730 | * relying on this one. |
| 731 | */ |
| 732 | #if !defined(S_UNLOCK) |
| 733 | #define S_UNLOCK(lock) \ |
| 734 | do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0) |
| 735 | #endif |
| 736 | |
| 737 | #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */ |
| 738 | |
| 739 | |
| 740 | |
| 741 | /* |
| 742 | * --------------------------------------------------------------------- |
| 743 | * Platforms that use non-gcc inline assembly: |
| 744 | * --------------------------------------------------------------------- |
| 745 | */ |
| 746 | |
| 747 | #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */ |
| 748 | |
| 749 | |
| 750 | #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */ |
| 751 | /* |
| 752 | * HP's PA-RISC |
| 753 | * |
| 754 | * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because |
| 755 | * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte |
| 756 | * struct. The active word in the struct is whichever has the aligned address; |
| 757 | * the other three words just sit at -1. |
| 758 | * |
| 759 | * When using gcc, we can inline the required assembly code. |
| 760 | */ |
| 761 | #define HAS_TEST_AND_SET |
| 762 | |
| 763 | typedef struct |
| 764 | { |
| 765 | int sema[4]; |
| 766 | } slock_t; |
| 767 | |
| 768 | #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15)) |
| 769 | |
| 770 | #if defined(__GNUC__) |
| 771 | |
| 772 | static __inline__ int |
| 773 | tas(volatile slock_t *lock) |
| 774 | { |
| 775 | volatile int *lockword = TAS_ACTIVE_WORD(lock); |
| 776 | register int lockval; |
| 777 | |
| 778 | __asm__ __volatile__( |
| 779 | " ldcwx 0(0,%2),%0 \n" |
| 780 | : "=r" (lockval), "+m" (*lockword) |
| 781 | : "r" (lockword) |
| 782 | : "memory" ); |
| 783 | return (lockval == 0); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * The hppa implementation doesn't follow the rules of this files and provides |
| 788 | * a gcc specific implementation outside of the above defined(__GNUC__). It |
| 789 | * does so to avoid duplication between the HP compiler and gcc. So undefine |
| 790 | * the generic fallback S_UNLOCK from above. |
| 791 | */ |
| 792 | #ifdef S_UNLOCK |
| 793 | #undef S_UNLOCK |
| 794 | #endif |
| 795 | #define S_UNLOCK(lock) \ |
| 796 | do { \ |
| 797 | __asm__ __volatile__("" : : : "memory"); \ |
| 798 | *TAS_ACTIVE_WORD(lock) = -1; \ |
| 799 | } while (0) |
| 800 | |
| 801 | #endif /* __GNUC__ */ |
| 802 | |
| 803 | #define S_INIT_LOCK(lock) \ |
| 804 | do { \ |
| 805 | volatile slock_t *lock_ = (lock); \ |
| 806 | lock_->sema[0] = -1; \ |
| 807 | lock_->sema[1] = -1; \ |
| 808 | lock_->sema[2] = -1; \ |
| 809 | lock_->sema[3] = -1; \ |
| 810 | } while (0) |
| 811 | |
| 812 | #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0) |
| 813 | |
| 814 | #endif /* __hppa || __hppa__ */ |
| 815 | |
| 816 | |
| 817 | #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__) |
| 818 | /* |
| 819 | * HP-UX on Itanium, non-gcc/icc compiler |
| 820 | * |
| 821 | * We assume that the compiler enforces strict ordering of loads/stores on |
| 822 | * volatile data (see comments on the gcc-version earlier in this file). |
| 823 | * Note that this assumption does *not* hold if you use the |
| 824 | * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that. |
| 825 | * |
| 826 | * See also Implementing Spinlocks on the Intel Itanium Architecture and |
| 827 | * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of |
| 828 | * this writing, version 1.0 of the manual is available at: |
| 829 | * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf |
| 830 | */ |
| 831 | #define HAS_TEST_AND_SET |
| 832 | |
| 833 | typedef unsigned int slock_t; |
| 834 | |
| 835 | #include <ia64/sys/inline.h> |
| 836 | #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE) |
| 837 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ |
| 838 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
| 839 | #define S_UNLOCK(lock) \ |
| 840 | do { _Asm_mf(); (*(lock)) = 0; } while (0) |
| 841 | |
| 842 | #endif /* HPUX on IA64, non gcc/icc */ |
| 843 | |
| 844 | #if defined(_AIX) /* AIX */ |
| 845 | /* |
| 846 | * AIX (POWER) |
| 847 | */ |
| 848 | #define HAS_TEST_AND_SET |
| 849 | |
| 850 | #include <sys/atomic_op.h> |
| 851 | |
| 852 | typedef int slock_t; |
| 853 | |
| 854 | #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1) |
| 855 | #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0) |
| 856 | #endif /* _AIX */ |
| 857 | |
| 858 | |
| 859 | /* These are in sunstudio_(sparc|x86).s */ |
| 860 | |
| 861 | #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc)) |
| 862 | #define HAS_TEST_AND_SET |
| 863 | |
| 864 | #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus) |
| 865 | typedef unsigned int slock_t; |
| 866 | #else |
| 867 | typedef unsigned char slock_t; |
| 868 | #endif |
| 869 | |
| 870 | extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with, |
| 871 | slock_t cmp); |
| 872 | |
| 873 | #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0) |
| 874 | #endif |
| 875 | |
| 876 | |
| 877 | #ifdef _MSC_VER |
| 878 | typedef LONG slock_t; |
| 879 | |
| 880 | #define HAS_TEST_AND_SET |
| 881 | #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0)) |
| 882 | |
| 883 | #define SPIN_DELAY() spin_delay() |
| 884 | |
| 885 | /* If using Visual C++ on Win64, inline assembly is unavailable. |
| 886 | * Use a _mm_pause intrinsic instead of rep nop. |
| 887 | */ |
| 888 | #if defined(_WIN64) |
| 889 | static __forceinline void |
| 890 | spin_delay(void) |
| 891 | { |
| 892 | _mm_pause(); |
| 893 | } |
| 894 | #else |
| 895 | static __forceinline void |
| 896 | spin_delay(void) |
| 897 | { |
| 898 | /* See comment for gcc code. Same code, MASM syntax */ |
| 899 | __asm rep nop; |
| 900 | } |
| 901 | #endif |
| 902 | |
| 903 | #include <intrin.h> |
| 904 | #pragma intrinsic(_ReadWriteBarrier) |
| 905 | |
| 906 | #define S_UNLOCK(lock) \ |
| 907 | do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0) |
| 908 | |
| 909 | #endif |
| 910 | |
| 911 | |
| 912 | #endif /* !defined(HAS_TEST_AND_SET) */ |
| 913 | |
| 914 | |
| 915 | /* Blow up if we didn't have any way to do spinlocks */ |
| 916 | #ifndef HAS_TEST_AND_SET |
| 917 | #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org. |
| 918 | #endif |
| 919 | |
| 920 | |
| 921 | #else /* !HAVE_SPINLOCKS */ |
| 922 | |
| 923 | |
| 924 | /* |
| 925 | * Fake spinlock implementation using semaphores --- slow and prone |
| 926 | * to fall foul of kernel limits on number of semaphores, so don't use this |
| 927 | * unless you must! The subroutines appear in spin.c. |
| 928 | */ |
| 929 | typedef int slock_t; |
| 930 | |
| 931 | extern bool s_lock_free_sema(volatile slock_t *lock); |
| 932 | extern void s_unlock_sema(volatile slock_t *lock); |
| 933 | extern void s_init_lock_sema(volatile slock_t *lock, bool nested); |
| 934 | extern int tas_sema(volatile slock_t *lock); |
| 935 | |
| 936 | #define S_LOCK_FREE(lock) s_lock_free_sema(lock) |
| 937 | #define S_UNLOCK(lock) s_unlock_sema(lock) |
| 938 | #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false) |
| 939 | #define TAS(lock) tas_sema(lock) |
| 940 | |
| 941 | |
| 942 | #endif /* HAVE_SPINLOCKS */ |
| 943 | |
| 944 | |
| 945 | /* |
| 946 | * Default Definitions - override these above as needed. |
| 947 | */ |
| 948 | |
| 949 | #if !defined(S_LOCK) |
| 950 | #define S_LOCK(lock) \ |
| 951 | (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0) |
| 952 | #endif /* S_LOCK */ |
| 953 | |
| 954 | #if !defined(S_LOCK_FREE) |
| 955 | #define S_LOCK_FREE(lock) (*(lock) == 0) |
| 956 | #endif /* S_LOCK_FREE */ |
| 957 | |
| 958 | #if !defined(S_UNLOCK) |
| 959 | /* |
| 960 | * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This |
| 961 | * is unsafe if the platform can reorder a memory access (either load or |
| 962 | * store) after a following store; platforms where this is possible must |
| 963 | * define their own S_UNLOCK. But CPU reordering is not the only concern: |
| 964 | * if we simply defined S_UNLOCK() as an inline macro, the compiler might |
| 965 | * reorder instructions from inside the critical section to occur after the |
| 966 | * lock release. Since the compiler probably can't know what the external |
| 967 | * function s_unlock is doing, putting the same logic there should be adequate. |
| 968 | * A sufficiently-smart globally optimizing compiler could break that |
| 969 | * assumption, though, and the cost of a function call for every spinlock |
| 970 | * release may hurt performance significantly, so we use this implementation |
| 971 | * only for platforms where we don't know of a suitable intrinsic. For the |
| 972 | * most part, those are relatively obscure platform/compiler combinations to |
| 973 | * which the PostgreSQL project does not have access. |
| 974 | */ |
| 975 | #define USE_DEFAULT_S_UNLOCK |
| 976 | extern void s_unlock(volatile slock_t *lock); |
| 977 | #define S_UNLOCK(lock) s_unlock(lock) |
| 978 | #endif /* S_UNLOCK */ |
| 979 | |
| 980 | #if !defined(S_INIT_LOCK) |
| 981 | #define S_INIT_LOCK(lock) S_UNLOCK(lock) |
| 982 | #endif /* S_INIT_LOCK */ |
| 983 | |
| 984 | #if !defined(SPIN_DELAY) |
| 985 | #define SPIN_DELAY() ((void) 0) |
| 986 | #endif /* SPIN_DELAY */ |
| 987 | |
| 988 | #if !defined(TAS) |
| 989 | extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or |
| 990 | * s_lock.c */ |
| 991 | |
| 992 | #define TAS(lock) tas(lock) |
| 993 | #endif /* TAS */ |
| 994 | |
| 995 | #if !defined(TAS_SPIN) |
| 996 | #define TAS_SPIN(lock) TAS(lock) |
| 997 | #endif /* TAS_SPIN */ |
| 998 | |
| 999 | extern slock_t dummy_spinlock; |
| 1000 | |
| 1001 | /* |
| 1002 | * Platform-independent out-of-line support routines |
| 1003 | */ |
| 1004 | extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func); |
| 1005 | |
| 1006 | /* Support for dynamic adjustment of spins_per_delay */ |
| 1007 | #define DEFAULT_SPINS_PER_DELAY 100 |
| 1008 | |
| 1009 | extern void set_spins_per_delay(int shared_spins_per_delay); |
| 1010 | extern int update_spins_per_delay(int shared_spins_per_delay); |
| 1011 | |
| 1012 | /* |
| 1013 | * Support for spin delay which is useful in various places where |
| 1014 | * spinlock-like procedures take place. |
| 1015 | */ |
| 1016 | typedef struct |
| 1017 | { |
| 1018 | int spins; |
| 1019 | int delays; |
| 1020 | int cur_delay; |
| 1021 | const char *file; |
| 1022 | int line; |
| 1023 | const char *func; |
| 1024 | } SpinDelayStatus; |
| 1025 | |
| 1026 | static inline void |
| 1027 | init_spin_delay(SpinDelayStatus *status, |
| 1028 | const char *file, int line, const char *func) |
| 1029 | { |
| 1030 | status->spins = 0; |
| 1031 | status->delays = 0; |
| 1032 | status->cur_delay = 0; |
| 1033 | status->file = file; |
| 1034 | status->line = line; |
| 1035 | status->func = func; |
| 1036 | } |
| 1037 | |
| 1038 | #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO) |
| 1039 | void perform_spin_delay(SpinDelayStatus *status); |
| 1040 | void finish_spin_delay(SpinDelayStatus *status); |
| 1041 | |
| 1042 | #endif /* S_LOCK_H */ |
| 1043 | |