1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * s_lock.h |
4 | * Hardware-dependent implementation of spinlocks. |
5 | * |
6 | * NOTE: none of the macros in this file are intended to be called directly. |
7 | * Call them through the hardware-independent macros in spin.h. |
8 | * |
9 | * The following hardware-dependent macros must be provided for each |
10 | * supported platform: |
11 | * |
12 | * void S_INIT_LOCK(slock_t *lock) |
13 | * Initialize a spinlock (to the unlocked state). |
14 | * |
15 | * int S_LOCK(slock_t *lock) |
16 | * Acquire a spinlock, waiting if necessary. |
17 | * Time out and abort() if unable to acquire the lock in a |
18 | * "reasonable" amount of time --- typically ~ 1 minute. |
19 | * Should return number of "delays"; see s_lock.c |
20 | * |
21 | * void S_UNLOCK(slock_t *lock) |
22 | * Unlock a previously acquired lock. |
23 | * |
24 | * bool S_LOCK_FREE(slock_t *lock) |
25 | * Tests if the lock is free. Returns true if free, false if locked. |
26 | * This does *not* change the state of the lock. |
27 | * |
28 | * void SPIN_DELAY(void) |
29 | * Delay operation to occur inside spinlock wait loop. |
30 | * |
31 | * Note to implementors: there are default implementations for all these |
32 | * macros at the bottom of the file. Check if your platform can use |
33 | * these or needs to override them. |
34 | * |
35 | * Usually, S_LOCK() is implemented in terms of even lower-level macros |
36 | * TAS() and TAS_SPIN(): |
37 | * |
38 | * int TAS(slock_t *lock) |
39 | * Atomic test-and-set instruction. Attempt to acquire the lock, |
40 | * but do *not* wait. Returns 0 if successful, nonzero if unable |
41 | * to acquire the lock. |
42 | * |
43 | * int TAS_SPIN(slock_t *lock) |
44 | * Like TAS(), but this version is used when waiting for a lock |
45 | * previously found to be contended. By default, this is the |
46 | * same as TAS(), but on some architectures it's better to poll a |
47 | * contended lock using an unlocked instruction and retry the |
48 | * atomic test-and-set only when it appears free. |
49 | * |
50 | * TAS() and TAS_SPIN() are NOT part of the API, and should never be called |
51 | * directly. |
52 | * |
53 | * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report |
54 | * failure to acquire a lock even when the lock is not locked. For example, |
55 | * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must |
56 | * always be used, even if you are certain the lock is free. |
57 | * |
58 | * It is the responsibility of these macros to make sure that the compiler |
59 | * does not re-order accesses to shared memory to precede the actual lock |
60 | * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this |
61 | * was the caller's responsibility, which meant that callers had to use |
62 | * volatile-qualified pointers to refer to both the spinlock itself and the |
63 | * shared data being accessed within the spinlocked critical section. This |
64 | * was notationally awkward, easy to forget (and thus error-prone), and |
65 | * prevented some useful compiler optimizations. For these reasons, we |
66 | * now require that the macros themselves prevent compiler re-ordering, |
67 | * so that the caller doesn't need to take special precautions. |
68 | * |
69 | * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and |
70 | * S_UNLOCK() macros must further include hardware-level memory fence |
71 | * instructions to prevent similar re-ordering at the hardware level. |
72 | * TAS() and TAS_SPIN() must guarantee that loads and stores issued after |
73 | * the macro are not executed until the lock has been obtained. Conversely, |
74 | * S_UNLOCK() must guarantee that loads and stores issued before the macro |
75 | * have been executed before the lock is released. |
76 | * |
77 | * On most supported platforms, TAS() uses a tas() function written |
78 | * in assembly language to execute a hardware atomic-test-and-set |
79 | * instruction. Equivalent OS-supplied mutex routines could be used too. |
80 | * |
81 | * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not |
82 | * defined), then we fall back on an emulation that uses SysV semaphores |
83 | * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS() |
84 | * implementation, because of the cost of a kernel call per lock or unlock. |
85 | * An old report is that Postgres spends around 40% of its time in semop(2) |
86 | * when using the SysV semaphore code. |
87 | * |
88 | * |
89 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
90 | * Portions Copyright (c) 1994, Regents of the University of California |
91 | * |
92 | * src/include/storage/s_lock.h |
93 | * |
94 | *------------------------------------------------------------------------- |
95 | */ |
96 | #ifndef S_LOCK_H |
97 | #define S_LOCK_H |
98 | |
99 | #ifdef FRONTEND |
100 | #error "s_lock.h may not be included from frontend code" |
101 | #endif |
102 | |
103 | #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */ |
104 | |
105 | #if defined(__GNUC__) || defined(__INTEL_COMPILER) |
106 | /************************************************************************* |
107 | * All the gcc inlines |
108 | * Gcc consistently defines the CPU as __cpu__. |
109 | * Other compilers use __cpu or __cpu__ so we test for both in those cases. |
110 | */ |
111 | |
112 | /*---------- |
113 | * Standard gcc asm format (assuming "volatile slock_t *lock"): |
114 | |
115 | __asm__ __volatile__( |
116 | " instruction \n" |
117 | " instruction \n" |
118 | " instruction \n" |
119 | : "=r"(_res), "+m"(*lock) // return register, in/out lock value |
120 | : "r"(lock) // lock pointer, in input register |
121 | : "memory", "cc"); // show clobbered registers here |
122 | |
123 | * The output-operands list (after first colon) should always include |
124 | * "+m"(*lock), whether or not the asm code actually refers to this |
125 | * operand directly. This ensures that gcc believes the value in the |
126 | * lock variable is used and set by the asm code. Also, the clobbers |
127 | * list (after third colon) should always include "memory"; this prevents |
128 | * gcc from thinking it can cache the values of shared-memory fields |
129 | * across the asm code. Add "cc" if your asm code changes the condition |
130 | * code register, and also list any temp registers the code uses. |
131 | *---------- |
132 | */ |
133 | |
134 | |
135 | #ifdef __i386__ /* 32-bit i386 */ |
136 | #define HAS_TEST_AND_SET |
137 | |
138 | typedef unsigned char slock_t; |
139 | |
140 | #define TAS(lock) tas(lock) |
141 | |
142 | static __inline__ int |
143 | tas(volatile slock_t *lock) |
144 | { |
145 | register slock_t _res = 1; |
146 | |
147 | /* |
148 | * Use a non-locking test before asserting the bus lock. Note that the |
149 | * extra test appears to be a small loss on some x86 platforms and a small |
150 | * win on others; it's by no means clear that we should keep it. |
151 | * |
152 | * When this was last tested, we didn't have separate TAS() and TAS_SPIN() |
153 | * macros. Nowadays it probably would be better to do a non-locking test |
154 | * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the |
155 | * testing to verify that. Without some empirical evidence, better to |
156 | * leave it alone. |
157 | */ |
158 | __asm__ __volatile__( |
159 | " cmpb $0,%1 \n" |
160 | " jne 1f \n" |
161 | " lock \n" |
162 | " xchgb %0,%1 \n" |
163 | "1: \n" |
164 | : "+q" (_res), "+m" (*lock) |
165 | : /* no inputs */ |
166 | : "memory" , "cc" ); |
167 | return (int) _res; |
168 | } |
169 | |
170 | #define SPIN_DELAY() spin_delay() |
171 | |
172 | static __inline__ void |
173 | spin_delay(void) |
174 | { |
175 | /* |
176 | * This sequence is equivalent to the PAUSE instruction ("rep" is |
177 | * ignored by old IA32 processors if the following instruction is |
178 | * not a string operation); the IA-32 Architecture Software |
179 | * Developer's Manual, Vol. 3, Section 7.7.2 describes why using |
180 | * PAUSE in the inner loop of a spin lock is necessary for good |
181 | * performance: |
182 | * |
183 | * The PAUSE instruction improves the performance of IA-32 |
184 | * processors supporting Hyper-Threading Technology when |
185 | * executing spin-wait loops and other routines where one |
186 | * thread is accessing a shared lock or semaphore in a tight |
187 | * polling loop. When executing a spin-wait loop, the |
188 | * processor can suffer a severe performance penalty when |
189 | * exiting the loop because it detects a possible memory order |
190 | * violation and flushes the core processor's pipeline. The |
191 | * PAUSE instruction provides a hint to the processor that the |
192 | * code sequence is a spin-wait loop. The processor uses this |
193 | * hint to avoid the memory order violation and prevent the |
194 | * pipeline flush. In addition, the PAUSE instruction |
195 | * de-pipelines the spin-wait loop to prevent it from |
196 | * consuming execution resources excessively. |
197 | */ |
198 | __asm__ __volatile__( |
199 | " rep; nop \n" ); |
200 | } |
201 | |
202 | #endif /* __i386__ */ |
203 | |
204 | |
205 | #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */ |
206 | #define HAS_TEST_AND_SET |
207 | |
208 | typedef unsigned char slock_t; |
209 | |
210 | #define TAS(lock) tas(lock) |
211 | |
212 | /* |
213 | * On Intel EM64T, it's a win to use a non-locking test before the xchg proper, |
214 | * but only when spinning. |
215 | * |
216 | * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T |
217 | * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is |
218 | * available at: |
219 | * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures |
220 | */ |
221 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
222 | |
223 | static __inline__ int |
224 | tas(volatile slock_t *lock) |
225 | { |
226 | register slock_t _res = 1; |
227 | |
228 | __asm__ __volatile__( |
229 | " lock \n" |
230 | " xchgb %0,%1 \n" |
231 | : "+q" (_res), "+m" (*lock) |
232 | : /* no inputs */ |
233 | : "memory" , "cc" ); |
234 | return (int) _res; |
235 | } |
236 | |
237 | #define SPIN_DELAY() spin_delay() |
238 | |
239 | static __inline__ void |
240 | spin_delay(void) |
241 | { |
242 | /* |
243 | * Adding a PAUSE in the spin delay loop is demonstrably a no-op on |
244 | * Opteron, but it may be of some use on EM64T, so we keep it. |
245 | */ |
246 | __asm__ __volatile__( |
247 | " rep; nop \n" ); |
248 | } |
249 | |
250 | #endif /* __x86_64__ */ |
251 | |
252 | |
253 | #if defined(__ia64__) || defined(__ia64) |
254 | /* |
255 | * Intel Itanium, gcc or Intel's compiler. |
256 | * |
257 | * Itanium has weak memory ordering, but we rely on the compiler to enforce |
258 | * strict ordering of accesses to volatile data. In particular, while the |
259 | * xchg instruction implicitly acts as a memory barrier with 'acquire' |
260 | * semantics, we do not have an explicit memory fence instruction in the |
261 | * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and |
262 | * trust that the compiler marks the generated store instruction with the |
263 | * ".rel" opcode. |
264 | * |
265 | * Testing shows that assumption to hold on gcc, although I could not find |
266 | * any explicit statement on that in the gcc manual. In Intel's compiler, |
267 | * the -m[no-]serialize-volatile option controls that, and testing shows that |
268 | * it is enabled by default. |
269 | * |
270 | * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64 |
271 | * (at least not in icc versions before 12.x). So we have to carry a separate |
272 | * compiler-intrinsic-based implementation for it. |
273 | */ |
274 | #define HAS_TEST_AND_SET |
275 | |
276 | typedef unsigned int slock_t; |
277 | |
278 | #define TAS(lock) tas(lock) |
279 | |
280 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ |
281 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
282 | |
283 | #ifndef __INTEL_COMPILER |
284 | |
285 | static __inline__ int |
286 | tas(volatile slock_t *lock) |
287 | { |
288 | long int ret; |
289 | |
290 | __asm__ __volatile__( |
291 | " xchg4 %0=%1,%2 \n" |
292 | : "=r" (ret), "+m" (*lock) |
293 | : "r" (1) |
294 | : "memory" ); |
295 | return (int) ret; |
296 | } |
297 | |
298 | #else /* __INTEL_COMPILER */ |
299 | |
300 | static __inline__ int |
301 | tas(volatile slock_t *lock) |
302 | { |
303 | int ret; |
304 | |
305 | ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */ |
306 | |
307 | return ret; |
308 | } |
309 | |
310 | /* icc can't use the regular gcc S_UNLOCK() macro either in this case */ |
311 | #define S_UNLOCK(lock) \ |
312 | do { __memory_barrier(); *(lock) = 0; } while (0) |
313 | |
314 | #endif /* __INTEL_COMPILER */ |
315 | #endif /* __ia64__ || __ia64 */ |
316 | |
317 | /* |
318 | * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available. |
319 | * |
320 | * We use the int-width variant of the builtin because it works on more chips |
321 | * than other widths. |
322 | */ |
323 | #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64) |
324 | #ifdef HAVE_GCC__SYNC_INT32_TAS |
325 | #define HAS_TEST_AND_SET |
326 | |
327 | #define TAS(lock) tas(lock) |
328 | |
329 | typedef int slock_t; |
330 | |
331 | static __inline__ int |
332 | tas(volatile slock_t *lock) |
333 | { |
334 | return __sync_lock_test_and_set(lock, 1); |
335 | } |
336 | |
337 | #define S_UNLOCK(lock) __sync_lock_release(lock) |
338 | |
339 | #endif /* HAVE_GCC__SYNC_INT32_TAS */ |
340 | #endif /* __arm__ || __arm || __aarch64__ || __aarch64 */ |
341 | |
342 | |
343 | /* S/390 and S/390x Linux (32- and 64-bit zSeries) */ |
344 | #if defined(__s390__) || defined(__s390x__) |
345 | #define HAS_TEST_AND_SET |
346 | |
347 | typedef unsigned int slock_t; |
348 | |
349 | #define TAS(lock) tas(lock) |
350 | |
351 | static __inline__ int |
352 | tas(volatile slock_t *lock) |
353 | { |
354 | int _res = 0; |
355 | |
356 | __asm__ __volatile__( |
357 | " cs %0,%3,0(%2) \n" |
358 | : "+d" (_res), "+m" (*lock) |
359 | : "a" (lock), "d" (1) |
360 | : "memory" , "cc" ); |
361 | return _res; |
362 | } |
363 | |
364 | #endif /* __s390__ || __s390x__ */ |
365 | |
366 | |
367 | #if defined(__sparc__) /* Sparc */ |
368 | /* |
369 | * Solaris has always run sparc processors in TSO (total store) mode, but |
370 | * linux didn't use to and the *BSDs still don't. So, be careful about |
371 | * acquire/release semantics. The CPU will treat superfluous membars as |
372 | * NOPs, so it's just code space. |
373 | */ |
374 | #define HAS_TEST_AND_SET |
375 | |
376 | typedef unsigned char slock_t; |
377 | |
378 | #define TAS(lock) tas(lock) |
379 | |
380 | static __inline__ int |
381 | tas(volatile slock_t *lock) |
382 | { |
383 | register slock_t _res; |
384 | |
385 | /* |
386 | * See comment in src/backend/port/tas/sunstudio_sparc.s for why this |
387 | * uses "ldstub", and that file uses "cas". gcc currently generates |
388 | * sparcv7-targeted binaries, so "cas" use isn't possible. |
389 | */ |
390 | __asm__ __volatile__( |
391 | " ldstub [%2], %0 \n" |
392 | : "=r" (_res), "+m" (*lock) |
393 | : "r" (lock) |
394 | : "memory" ); |
395 | #if defined(__sparcv7) || defined(__sparc_v7__) |
396 | /* |
397 | * No stbar or membar available, luckily no actually produced hardware |
398 | * requires a barrier. |
399 | */ |
400 | #elif defined(__sparcv8) || defined(__sparc_v8__) |
401 | /* stbar is available (and required for both PSO, RMO), membar isn't */ |
402 | __asm__ __volatile__ ("stbar \n" :::"memory" ); |
403 | #else |
404 | /* |
405 | * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire |
406 | * barrier for sparcv8+ upwards. |
407 | */ |
408 | __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n" :::"memory" ); |
409 | #endif |
410 | return (int) _res; |
411 | } |
412 | |
413 | #if defined(__sparcv7) || defined(__sparc_v7__) |
414 | /* |
415 | * No stbar or membar available, luckily no actually produced hardware |
416 | * requires a barrier. We fall through to the default gcc definition of |
417 | * S_UNLOCK in this case. |
418 | */ |
419 | #elif defined(__sparcv8) || defined(__sparc_v8__) |
420 | /* stbar is available (and required for both PSO, RMO), membar isn't */ |
421 | #define S_UNLOCK(lock) \ |
422 | do \ |
423 | { \ |
424 | __asm__ __volatile__ ("stbar \n":::"memory"); \ |
425 | *((volatile slock_t *) (lock)) = 0; \ |
426 | } while (0) |
427 | #else |
428 | /* |
429 | * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate |
430 | * release barrier for sparcv8+ upwards. |
431 | */ |
432 | #define S_UNLOCK(lock) \ |
433 | do \ |
434 | { \ |
435 | __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \ |
436 | *((volatile slock_t *) (lock)) = 0; \ |
437 | } while (0) |
438 | #endif |
439 | |
440 | #endif /* __sparc__ */ |
441 | |
442 | |
443 | /* PowerPC */ |
444 | #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) |
445 | #define HAS_TEST_AND_SET |
446 | |
447 | typedef unsigned int slock_t; |
448 | |
449 | #define TAS(lock) tas(lock) |
450 | |
451 | /* On PPC, it's a win to use a non-locking test before the lwarx */ |
452 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
453 | |
454 | /* |
455 | * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002, |
456 | * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop. |
457 | * On newer machines, we can use lwsync instead for better performance. |
458 | * |
459 | * Ordinarily, we'd code the branches here using GNU-style local symbols, that |
460 | * is "1f" referencing "1:" and so on. But some people run gcc on AIX with |
461 | * IBM's assembler as backend, and IBM's assembler doesn't do local symbols. |
462 | * So hand-code the branch offsets; fortunately, all PPC instructions are |
463 | * exactly 4 bytes each, so it's not too hard to count. |
464 | */ |
465 | static __inline__ int |
466 | tas(volatile slock_t *lock) |
467 | { |
468 | slock_t _t; |
469 | int _res; |
470 | |
471 | __asm__ __volatile__( |
472 | #ifdef USE_PPC_LWARX_MUTEX_HINT |
473 | " lwarx %0,0,%3,1 \n" |
474 | #else |
475 | " lwarx %0,0,%3 \n" |
476 | #endif |
477 | " cmpwi %0,0 \n" |
478 | " bne $+16 \n" /* branch to li %1,1 */ |
479 | " addi %0,%0,1 \n" |
480 | " stwcx. %0,0,%3 \n" |
481 | " beq $+12 \n" /* branch to lwsync/isync */ |
482 | " li %1,1 \n" |
483 | " b $+12 \n" /* branch to end of asm sequence */ |
484 | #ifdef USE_PPC_LWSYNC |
485 | " lwsync \n" |
486 | #else |
487 | " isync \n" |
488 | #endif |
489 | " li %1,0 \n" |
490 | |
491 | : "=&r" (_t), "=r" (_res), "+m" (*lock) |
492 | : "r" (lock) |
493 | : "memory" , "cc" ); |
494 | return _res; |
495 | } |
496 | |
497 | /* |
498 | * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction. |
499 | * On newer machines, we can use lwsync instead for better performance. |
500 | */ |
501 | #ifdef USE_PPC_LWSYNC |
502 | #define S_UNLOCK(lock) \ |
503 | do \ |
504 | { \ |
505 | __asm__ __volatile__ (" lwsync \n" ::: "memory"); \ |
506 | *((volatile slock_t *) (lock)) = 0; \ |
507 | } while (0) |
508 | #else |
509 | #define S_UNLOCK(lock) \ |
510 | do \ |
511 | { \ |
512 | __asm__ __volatile__ (" sync \n" ::: "memory"); \ |
513 | *((volatile slock_t *) (lock)) = 0; \ |
514 | } while (0) |
515 | #endif /* USE_PPC_LWSYNC */ |
516 | |
517 | #endif /* powerpc */ |
518 | |
519 | |
520 | /* Linux Motorola 68k */ |
521 | #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__) |
522 | #define HAS_TEST_AND_SET |
523 | |
524 | typedef unsigned char slock_t; |
525 | |
526 | #define TAS(lock) tas(lock) |
527 | |
528 | static __inline__ int |
529 | tas(volatile slock_t *lock) |
530 | { |
531 | register int rv; |
532 | |
533 | __asm__ __volatile__( |
534 | " clrl %0 \n" |
535 | " tas %1 \n" |
536 | " sne %0 \n" |
537 | : "=d" (rv), "+m" (*lock) |
538 | : /* no inputs */ |
539 | : "memory" , "cc" ); |
540 | return rv; |
541 | } |
542 | |
543 | #endif /* (__mc68000__ || __m68k__) && __linux__ */ |
544 | |
545 | |
546 | /* Motorola 88k */ |
547 | #if defined(__m88k__) |
548 | #define HAS_TEST_AND_SET |
549 | |
550 | typedef unsigned int slock_t; |
551 | |
552 | #define TAS(lock) tas(lock) |
553 | |
554 | static __inline__ int |
555 | tas(volatile slock_t *lock) |
556 | { |
557 | register slock_t _res = 1; |
558 | |
559 | __asm__ __volatile__( |
560 | " xmem %0, %2, %%r0 \n" |
561 | : "+r" (_res), "+m" (*lock) |
562 | : "r" (lock) |
563 | : "memory" ); |
564 | return (int) _res; |
565 | } |
566 | |
567 | #endif /* __m88k__ */ |
568 | |
569 | |
570 | /* |
571 | * VAXen -- even multiprocessor ones |
572 | * (thanks to Tom Ivar Helbekkmo) |
573 | */ |
574 | #if defined(__vax__) |
575 | #define HAS_TEST_AND_SET |
576 | |
577 | typedef unsigned char slock_t; |
578 | |
579 | #define TAS(lock) tas(lock) |
580 | |
581 | static __inline__ int |
582 | tas(volatile slock_t *lock) |
583 | { |
584 | register int _res; |
585 | |
586 | __asm__ __volatile__( |
587 | " movl $1, %0 \n" |
588 | " bbssi $0, (%2), 1f \n" |
589 | " clrl %0 \n" |
590 | "1: \n" |
591 | : "=&r" (_res), "+m" (*lock) |
592 | : "r" (lock) |
593 | : "memory" ); |
594 | return _res; |
595 | } |
596 | |
597 | #endif /* __vax__ */ |
598 | |
599 | |
600 | #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */ |
601 | #define HAS_TEST_AND_SET |
602 | |
603 | typedef unsigned int slock_t; |
604 | |
605 | #define TAS(lock) tas(lock) |
606 | |
607 | /* |
608 | * Original MIPS-I processors lacked the LL/SC instructions, but if we are |
609 | * so unfortunate as to be running on one of those, we expect that the kernel |
610 | * will handle the illegal-instruction traps and emulate them for us. On |
611 | * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane |
612 | * choice because any other synchronization method must involve a kernel |
613 | * call. Unfortunately, many toolchains still default to MIPS-I as the |
614 | * codegen target; if the symbol __mips shows that that's the case, we |
615 | * have to force the assembler to accept LL/SC. |
616 | * |
617 | * R10000 and up processors require a separate SYNC, which has the same |
618 | * issues as LL/SC. |
619 | */ |
620 | #if __mips < 2 |
621 | #define MIPS_SET_MIPS2 " .set mips2 \n" |
622 | #else |
623 | #define MIPS_SET_MIPS2 |
624 | #endif |
625 | |
626 | static __inline__ int |
627 | tas(volatile slock_t *lock) |
628 | { |
629 | register volatile slock_t *_l = lock; |
630 | register int _res; |
631 | register int _tmp; |
632 | |
633 | __asm__ __volatile__( |
634 | " .set push \n" |
635 | MIPS_SET_MIPS2 |
636 | " .set noreorder \n" |
637 | " .set nomacro \n" |
638 | " ll %0, %2 \n" |
639 | " or %1, %0, 1 \n" |
640 | " sc %1, %2 \n" |
641 | " xori %1, 1 \n" |
642 | " or %0, %0, %1 \n" |
643 | " sync \n" |
644 | " .set pop " |
645 | : "=&r" (_res), "=&r" (_tmp), "+R" (*_l) |
646 | : /* no inputs */ |
647 | : "memory" ); |
648 | return _res; |
649 | } |
650 | |
651 | /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */ |
652 | #define S_UNLOCK(lock) \ |
653 | do \ |
654 | { \ |
655 | __asm__ __volatile__( \ |
656 | " .set push \n" \ |
657 | MIPS_SET_MIPS2 \ |
658 | " .set noreorder \n" \ |
659 | " .set nomacro \n" \ |
660 | " sync \n" \ |
661 | " .set pop " \ |
662 | : /* no outputs */ \ |
663 | : /* no inputs */ \ |
664 | : "memory"); \ |
665 | *((volatile slock_t *) (lock)) = 0; \ |
666 | } while (0) |
667 | |
668 | #endif /* __mips__ && !__sgi */ |
669 | |
670 | |
671 | #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */ |
672 | #define HAS_TEST_AND_SET |
673 | |
674 | #include <sys/tas.h> |
675 | |
676 | typedef int slock_t; |
677 | |
678 | #define TAS(lock) tas(lock) |
679 | |
680 | #endif /* __m32r__ */ |
681 | |
682 | |
683 | #if defined(__sh__) /* Renesas' SuperH */ |
684 | #define HAS_TEST_AND_SET |
685 | |
686 | typedef unsigned char slock_t; |
687 | |
688 | #define TAS(lock) tas(lock) |
689 | |
690 | static __inline__ int |
691 | tas(volatile slock_t *lock) |
692 | { |
693 | register int _res; |
694 | |
695 | /* |
696 | * This asm is coded as if %0 could be any register, but actually SuperH |
697 | * restricts the target of xor-immediate to be R0. That's handled by |
698 | * the "z" constraint on _res. |
699 | */ |
700 | __asm__ __volatile__( |
701 | " tas.b @%2 \n" |
702 | " movt %0 \n" |
703 | " xor #1,%0 \n" |
704 | : "=z" (_res), "+m" (*lock) |
705 | : "r" (lock) |
706 | : "memory" , "t" ); |
707 | return _res; |
708 | } |
709 | |
710 | #endif /* __sh__ */ |
711 | |
712 | |
713 | /* These live in s_lock.c, but only for gcc */ |
714 | |
715 | |
716 | #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */ |
717 | #define HAS_TEST_AND_SET |
718 | |
719 | typedef unsigned char slock_t; |
720 | #endif |
721 | |
722 | /* |
723 | * Default implementation of S_UNLOCK() for gcc/icc. |
724 | * |
725 | * Note that this implementation is unsafe for any platform that can reorder |
726 | * a memory access (either load or store) after a following store. That |
727 | * happens not to be possible on x86 and most legacy architectures (some are |
728 | * single-processor!), but many modern systems have weaker memory ordering. |
729 | * Those that do must define their own version of S_UNLOCK() rather than |
730 | * relying on this one. |
731 | */ |
732 | #if !defined(S_UNLOCK) |
733 | #define S_UNLOCK(lock) \ |
734 | do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0) |
735 | #endif |
736 | |
737 | #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */ |
738 | |
739 | |
740 | |
741 | /* |
742 | * --------------------------------------------------------------------- |
743 | * Platforms that use non-gcc inline assembly: |
744 | * --------------------------------------------------------------------- |
745 | */ |
746 | |
747 | #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */ |
748 | |
749 | |
750 | #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */ |
751 | /* |
752 | * HP's PA-RISC |
753 | * |
754 | * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because |
755 | * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte |
756 | * struct. The active word in the struct is whichever has the aligned address; |
757 | * the other three words just sit at -1. |
758 | * |
759 | * When using gcc, we can inline the required assembly code. |
760 | */ |
761 | #define HAS_TEST_AND_SET |
762 | |
763 | typedef struct |
764 | { |
765 | int sema[4]; |
766 | } slock_t; |
767 | |
768 | #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15)) |
769 | |
770 | #if defined(__GNUC__) |
771 | |
772 | static __inline__ int |
773 | tas(volatile slock_t *lock) |
774 | { |
775 | volatile int *lockword = TAS_ACTIVE_WORD(lock); |
776 | register int lockval; |
777 | |
778 | __asm__ __volatile__( |
779 | " ldcwx 0(0,%2),%0 \n" |
780 | : "=r" (lockval), "+m" (*lockword) |
781 | : "r" (lockword) |
782 | : "memory" ); |
783 | return (lockval == 0); |
784 | } |
785 | |
786 | /* |
787 | * The hppa implementation doesn't follow the rules of this files and provides |
788 | * a gcc specific implementation outside of the above defined(__GNUC__). It |
789 | * does so to avoid duplication between the HP compiler and gcc. So undefine |
790 | * the generic fallback S_UNLOCK from above. |
791 | */ |
792 | #ifdef S_UNLOCK |
793 | #undef S_UNLOCK |
794 | #endif |
795 | #define S_UNLOCK(lock) \ |
796 | do { \ |
797 | __asm__ __volatile__("" : : : "memory"); \ |
798 | *TAS_ACTIVE_WORD(lock) = -1; \ |
799 | } while (0) |
800 | |
801 | #endif /* __GNUC__ */ |
802 | |
803 | #define S_INIT_LOCK(lock) \ |
804 | do { \ |
805 | volatile slock_t *lock_ = (lock); \ |
806 | lock_->sema[0] = -1; \ |
807 | lock_->sema[1] = -1; \ |
808 | lock_->sema[2] = -1; \ |
809 | lock_->sema[3] = -1; \ |
810 | } while (0) |
811 | |
812 | #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0) |
813 | |
814 | #endif /* __hppa || __hppa__ */ |
815 | |
816 | |
817 | #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__) |
818 | /* |
819 | * HP-UX on Itanium, non-gcc/icc compiler |
820 | * |
821 | * We assume that the compiler enforces strict ordering of loads/stores on |
822 | * volatile data (see comments on the gcc-version earlier in this file). |
823 | * Note that this assumption does *not* hold if you use the |
824 | * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that. |
825 | * |
826 | * See also Implementing Spinlocks on the Intel Itanium Architecture and |
827 | * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of |
828 | * this writing, version 1.0 of the manual is available at: |
829 | * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf |
830 | */ |
831 | #define HAS_TEST_AND_SET |
832 | |
833 | typedef unsigned int slock_t; |
834 | |
835 | #include <ia64/sys/inline.h> |
836 | #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE) |
837 | /* On IA64, it's a win to use a non-locking test before the xchg proper */ |
838 | #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) |
839 | #define S_UNLOCK(lock) \ |
840 | do { _Asm_mf(); (*(lock)) = 0; } while (0) |
841 | |
842 | #endif /* HPUX on IA64, non gcc/icc */ |
843 | |
844 | #if defined(_AIX) /* AIX */ |
845 | /* |
846 | * AIX (POWER) |
847 | */ |
848 | #define HAS_TEST_AND_SET |
849 | |
850 | #include <sys/atomic_op.h> |
851 | |
852 | typedef int slock_t; |
853 | |
854 | #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1) |
855 | #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0) |
856 | #endif /* _AIX */ |
857 | |
858 | |
859 | /* These are in sunstudio_(sparc|x86).s */ |
860 | |
861 | #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc)) |
862 | #define HAS_TEST_AND_SET |
863 | |
864 | #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus) |
865 | typedef unsigned int slock_t; |
866 | #else |
867 | typedef unsigned char slock_t; |
868 | #endif |
869 | |
870 | extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with, |
871 | slock_t cmp); |
872 | |
873 | #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0) |
874 | #endif |
875 | |
876 | |
877 | #ifdef _MSC_VER |
878 | typedef LONG slock_t; |
879 | |
880 | #define HAS_TEST_AND_SET |
881 | #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0)) |
882 | |
883 | #define SPIN_DELAY() spin_delay() |
884 | |
885 | /* If using Visual C++ on Win64, inline assembly is unavailable. |
886 | * Use a _mm_pause intrinsic instead of rep nop. |
887 | */ |
888 | #if defined(_WIN64) |
889 | static __forceinline void |
890 | spin_delay(void) |
891 | { |
892 | _mm_pause(); |
893 | } |
894 | #else |
895 | static __forceinline void |
896 | spin_delay(void) |
897 | { |
898 | /* See comment for gcc code. Same code, MASM syntax */ |
899 | __asm rep nop; |
900 | } |
901 | #endif |
902 | |
903 | #include <intrin.h> |
904 | #pragma intrinsic(_ReadWriteBarrier) |
905 | |
906 | #define S_UNLOCK(lock) \ |
907 | do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0) |
908 | |
909 | #endif |
910 | |
911 | |
912 | #endif /* !defined(HAS_TEST_AND_SET) */ |
913 | |
914 | |
915 | /* Blow up if we didn't have any way to do spinlocks */ |
916 | #ifndef HAS_TEST_AND_SET |
917 | #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org. |
918 | #endif |
919 | |
920 | |
921 | #else /* !HAVE_SPINLOCKS */ |
922 | |
923 | |
924 | /* |
925 | * Fake spinlock implementation using semaphores --- slow and prone |
926 | * to fall foul of kernel limits on number of semaphores, so don't use this |
927 | * unless you must! The subroutines appear in spin.c. |
928 | */ |
929 | typedef int slock_t; |
930 | |
931 | extern bool s_lock_free_sema(volatile slock_t *lock); |
932 | extern void s_unlock_sema(volatile slock_t *lock); |
933 | extern void s_init_lock_sema(volatile slock_t *lock, bool nested); |
934 | extern int tas_sema(volatile slock_t *lock); |
935 | |
936 | #define S_LOCK_FREE(lock) s_lock_free_sema(lock) |
937 | #define S_UNLOCK(lock) s_unlock_sema(lock) |
938 | #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false) |
939 | #define TAS(lock) tas_sema(lock) |
940 | |
941 | |
942 | #endif /* HAVE_SPINLOCKS */ |
943 | |
944 | |
945 | /* |
946 | * Default Definitions - override these above as needed. |
947 | */ |
948 | |
949 | #if !defined(S_LOCK) |
950 | #define S_LOCK(lock) \ |
951 | (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0) |
952 | #endif /* S_LOCK */ |
953 | |
954 | #if !defined(S_LOCK_FREE) |
955 | #define S_LOCK_FREE(lock) (*(lock) == 0) |
956 | #endif /* S_LOCK_FREE */ |
957 | |
958 | #if !defined(S_UNLOCK) |
959 | /* |
960 | * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This |
961 | * is unsafe if the platform can reorder a memory access (either load or |
962 | * store) after a following store; platforms where this is possible must |
963 | * define their own S_UNLOCK. But CPU reordering is not the only concern: |
964 | * if we simply defined S_UNLOCK() as an inline macro, the compiler might |
965 | * reorder instructions from inside the critical section to occur after the |
966 | * lock release. Since the compiler probably can't know what the external |
967 | * function s_unlock is doing, putting the same logic there should be adequate. |
968 | * A sufficiently-smart globally optimizing compiler could break that |
969 | * assumption, though, and the cost of a function call for every spinlock |
970 | * release may hurt performance significantly, so we use this implementation |
971 | * only for platforms where we don't know of a suitable intrinsic. For the |
972 | * most part, those are relatively obscure platform/compiler combinations to |
973 | * which the PostgreSQL project does not have access. |
974 | */ |
975 | #define USE_DEFAULT_S_UNLOCK |
976 | extern void s_unlock(volatile slock_t *lock); |
977 | #define S_UNLOCK(lock) s_unlock(lock) |
978 | #endif /* S_UNLOCK */ |
979 | |
980 | #if !defined(S_INIT_LOCK) |
981 | #define S_INIT_LOCK(lock) S_UNLOCK(lock) |
982 | #endif /* S_INIT_LOCK */ |
983 | |
984 | #if !defined(SPIN_DELAY) |
985 | #define SPIN_DELAY() ((void) 0) |
986 | #endif /* SPIN_DELAY */ |
987 | |
988 | #if !defined(TAS) |
989 | extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or |
990 | * s_lock.c */ |
991 | |
992 | #define TAS(lock) tas(lock) |
993 | #endif /* TAS */ |
994 | |
995 | #if !defined(TAS_SPIN) |
996 | #define TAS_SPIN(lock) TAS(lock) |
997 | #endif /* TAS_SPIN */ |
998 | |
999 | extern slock_t dummy_spinlock; |
1000 | |
1001 | /* |
1002 | * Platform-independent out-of-line support routines |
1003 | */ |
1004 | extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func); |
1005 | |
1006 | /* Support for dynamic adjustment of spins_per_delay */ |
1007 | #define DEFAULT_SPINS_PER_DELAY 100 |
1008 | |
1009 | extern void set_spins_per_delay(int shared_spins_per_delay); |
1010 | extern int update_spins_per_delay(int shared_spins_per_delay); |
1011 | |
1012 | /* |
1013 | * Support for spin delay which is useful in various places where |
1014 | * spinlock-like procedures take place. |
1015 | */ |
1016 | typedef struct |
1017 | { |
1018 | int spins; |
1019 | int delays; |
1020 | int cur_delay; |
1021 | const char *file; |
1022 | int line; |
1023 | const char *func; |
1024 | } SpinDelayStatus; |
1025 | |
1026 | static inline void |
1027 | init_spin_delay(SpinDelayStatus *status, |
1028 | const char *file, int line, const char *func) |
1029 | { |
1030 | status->spins = 0; |
1031 | status->delays = 0; |
1032 | status->cur_delay = 0; |
1033 | status->file = file; |
1034 | status->line = line; |
1035 | status->func = func; |
1036 | } |
1037 | |
1038 | #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO) |
1039 | void perform_spin_delay(SpinDelayStatus *status); |
1040 | void finish_spin_delay(SpinDelayStatus *status); |
1041 | |
1042 | #endif /* S_LOCK_H */ |
1043 | |