| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * float.h |
| 4 | * Definitions for the built-in floating-point types |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/include/utils/float.h |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #ifndef FLOAT_H |
| 16 | #define FLOAT_H |
| 17 | |
| 18 | #include <math.h> |
| 19 | |
| 20 | #ifndef M_PI |
| 21 | /* From my RH5.2 gcc math.h file - thomas 2000-04-03 */ |
| 22 | #define M_PI 3.14159265358979323846 |
| 23 | #endif |
| 24 | |
| 25 | /* Radians per degree, a.k.a. PI / 180 */ |
| 26 | #define RADIANS_PER_DEGREE 0.0174532925199432957692 |
| 27 | |
| 28 | /* Visual C++ etc lacks NAN, and won't accept 0.0/0.0. */ |
| 29 | #if defined(WIN32) && !defined(NAN) |
| 30 | static const uint32 nan[2] = {0xffffffff, 0x7fffffff}; |
| 31 | |
| 32 | #define NAN (*(const float8 *) nan) |
| 33 | #endif |
| 34 | |
| 35 | extern PGDLLIMPORT int ; |
| 36 | |
| 37 | /* |
| 38 | * Utility functions in float.c |
| 39 | */ |
| 40 | extern int is_infinite(float8 val); |
| 41 | extern float8 float8in_internal(char *num, char **endptr_p, |
| 42 | const char *type_name, const char *orig_string); |
| 43 | extern float8 float8in_internal_opt_error(char *num, char **endptr_p, |
| 44 | const char *type_name, const char *orig_string, |
| 45 | bool *have_error); |
| 46 | extern char *float8out_internal(float8 num); |
| 47 | extern int float4_cmp_internal(float4 a, float4 b); |
| 48 | extern int float8_cmp_internal(float8 a, float8 b); |
| 49 | |
| 50 | /* |
| 51 | * Routines to provide reasonably platform-independent handling of |
| 52 | * infinity and NaN |
| 53 | * |
| 54 | * We assume that isinf() and isnan() are available and work per spec. |
| 55 | * (On some platforms, we have to supply our own; see src/port.) However, |
| 56 | * generating an Infinity or NaN in the first place is less well standardized; |
| 57 | * pre-C99 systems tend not to have C99's INFINITY and NaN macros. We |
| 58 | * centralize our workarounds for this here. |
| 59 | */ |
| 60 | |
| 61 | /* |
| 62 | * The funny placements of the two #pragmas is necessary because of a |
| 63 | * long lived bug in the Microsoft compilers. |
| 64 | * See http://support.microsoft.com/kb/120968/en-us for details |
| 65 | */ |
| 66 | #if (_MSC_VER >= 1800) |
| 67 | #pragma warning(disable:4756) |
| 68 | #endif |
| 69 | static inline float4 |
| 70 | get_float4_infinity(void) |
| 71 | { |
| 72 | #ifdef INFINITY |
| 73 | /* C99 standard way */ |
| 74 | return (float4) INFINITY; |
| 75 | #else |
| 76 | #if (_MSC_VER >= 1800) |
| 77 | #pragma warning(default:4756) |
| 78 | #endif |
| 79 | |
| 80 | /* |
| 81 | * On some platforms, HUGE_VAL is an infinity, elsewhere it's just the |
| 82 | * largest normal float8. We assume forcing an overflow will get us a |
| 83 | * true infinity. |
| 84 | */ |
| 85 | return (float4) (HUGE_VAL * HUGE_VAL); |
| 86 | #endif |
| 87 | } |
| 88 | |
| 89 | static inline float8 |
| 90 | get_float8_infinity(void) |
| 91 | { |
| 92 | #ifdef INFINITY |
| 93 | /* C99 standard way */ |
| 94 | return (float8) INFINITY; |
| 95 | #else |
| 96 | |
| 97 | /* |
| 98 | * On some platforms, HUGE_VAL is an infinity, elsewhere it's just the |
| 99 | * largest normal float8. We assume forcing an overflow will get us a |
| 100 | * true infinity. |
| 101 | */ |
| 102 | return (float8) (HUGE_VAL * HUGE_VAL); |
| 103 | #endif |
| 104 | } |
| 105 | |
| 106 | static inline float4 |
| 107 | get_float4_nan(void) |
| 108 | { |
| 109 | #ifdef NAN |
| 110 | /* C99 standard way */ |
| 111 | return (float4) NAN; |
| 112 | #else |
| 113 | /* Assume we can get a NAN via zero divide */ |
| 114 | return (float4) (0.0 / 0.0); |
| 115 | #endif |
| 116 | } |
| 117 | |
| 118 | static inline float8 |
| 119 | get_float8_nan(void) |
| 120 | { |
| 121 | /* (float8) NAN doesn't work on some NetBSD/MIPS releases */ |
| 122 | #if defined(NAN) && !(defined(__NetBSD__) && defined(__mips__)) |
| 123 | /* C99 standard way */ |
| 124 | return (float8) NAN; |
| 125 | #else |
| 126 | /* Assume we can get a NaN via zero divide */ |
| 127 | return (float8) (0.0 / 0.0); |
| 128 | #endif |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Checks to see if a float4/8 val has underflowed or overflowed |
| 133 | */ |
| 134 | |
| 135 | static inline void |
| 136 | check_float4_val(const float4 val, const bool inf_is_valid, |
| 137 | const bool zero_is_valid) |
| 138 | { |
| 139 | if (!inf_is_valid && unlikely(isinf(val))) |
| 140 | ereport(ERROR, |
| 141 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 142 | errmsg("value out of range: overflow" ))); |
| 143 | |
| 144 | if (!zero_is_valid && unlikely(val == 0.0)) |
| 145 | ereport(ERROR, |
| 146 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 147 | errmsg("value out of range: underflow" ))); |
| 148 | } |
| 149 | |
| 150 | static inline void |
| 151 | check_float8_val(const float8 val, const bool inf_is_valid, |
| 152 | const bool zero_is_valid) |
| 153 | { |
| 154 | if (!inf_is_valid && unlikely(isinf(val))) |
| 155 | ereport(ERROR, |
| 156 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 157 | errmsg("value out of range: overflow" ))); |
| 158 | |
| 159 | if (!zero_is_valid && unlikely(val == 0.0)) |
| 160 | ereport(ERROR, |
| 161 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 162 | errmsg("value out of range: underflow" ))); |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Routines for operations with the checks above |
| 167 | * |
| 168 | * There isn't any way to check for underflow of addition/subtraction |
| 169 | * because numbers near the underflow value have already been rounded to |
| 170 | * the point where we can't detect that the two values were originally |
| 171 | * different, e.g. on x86, '1e-45'::float4 == '2e-45'::float4 == |
| 172 | * 1.4013e-45. |
| 173 | */ |
| 174 | |
| 175 | static inline float4 |
| 176 | float4_pl(const float4 val1, const float4 val2) |
| 177 | { |
| 178 | float4 result; |
| 179 | |
| 180 | result = val1 + val2; |
| 181 | check_float4_val(result, isinf(val1) || isinf(val2), true); |
| 182 | |
| 183 | return result; |
| 184 | } |
| 185 | |
| 186 | static inline float8 |
| 187 | float8_pl(const float8 val1, const float8 val2) |
| 188 | { |
| 189 | float8 result; |
| 190 | |
| 191 | result = val1 + val2; |
| 192 | check_float8_val(result, isinf(val1) || isinf(val2), true); |
| 193 | |
| 194 | return result; |
| 195 | } |
| 196 | |
| 197 | static inline float4 |
| 198 | float4_mi(const float4 val1, const float4 val2) |
| 199 | { |
| 200 | float4 result; |
| 201 | |
| 202 | result = val1 - val2; |
| 203 | check_float4_val(result, isinf(val1) || isinf(val2), true); |
| 204 | |
| 205 | return result; |
| 206 | } |
| 207 | |
| 208 | static inline float8 |
| 209 | float8_mi(const float8 val1, const float8 val2) |
| 210 | { |
| 211 | float8 result; |
| 212 | |
| 213 | result = val1 - val2; |
| 214 | check_float8_val(result, isinf(val1) || isinf(val2), true); |
| 215 | |
| 216 | return result; |
| 217 | } |
| 218 | |
| 219 | static inline float4 |
| 220 | float4_mul(const float4 val1, const float4 val2) |
| 221 | { |
| 222 | float4 result; |
| 223 | |
| 224 | result = val1 * val2; |
| 225 | check_float4_val(result, isinf(val1) || isinf(val2), |
| 226 | val1 == 0.0f || val2 == 0.0f); |
| 227 | |
| 228 | return result; |
| 229 | } |
| 230 | |
| 231 | static inline float8 |
| 232 | float8_mul(const float8 val1, const float8 val2) |
| 233 | { |
| 234 | float8 result; |
| 235 | |
| 236 | result = val1 * val2; |
| 237 | check_float8_val(result, isinf(val1) || isinf(val2), |
| 238 | val1 == 0.0 || val2 == 0.0); |
| 239 | |
| 240 | return result; |
| 241 | } |
| 242 | |
| 243 | static inline float4 |
| 244 | float4_div(const float4 val1, const float4 val2) |
| 245 | { |
| 246 | float4 result; |
| 247 | |
| 248 | if (val2 == 0.0f) |
| 249 | ereport(ERROR, |
| 250 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 251 | errmsg("division by zero" ))); |
| 252 | |
| 253 | result = val1 / val2; |
| 254 | check_float4_val(result, isinf(val1) || isinf(val2), val1 == 0.0f); |
| 255 | |
| 256 | return result; |
| 257 | } |
| 258 | |
| 259 | static inline float8 |
| 260 | float8_div(const float8 val1, const float8 val2) |
| 261 | { |
| 262 | float8 result; |
| 263 | |
| 264 | if (val2 == 0.0) |
| 265 | ereport(ERROR, |
| 266 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 267 | errmsg("division by zero" ))); |
| 268 | |
| 269 | result = val1 / val2; |
| 270 | check_float8_val(result, isinf(val1) || isinf(val2), val1 == 0.0); |
| 271 | |
| 272 | return result; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Routines for NaN-aware comparisons |
| 277 | * |
| 278 | * We consider all NaNs to be equal and larger than any non-NaN. This is |
| 279 | * somewhat arbitrary; the important thing is to have a consistent sort |
| 280 | * order. |
| 281 | */ |
| 282 | |
| 283 | static inline bool |
| 284 | float4_eq(const float4 val1, const float4 val2) |
| 285 | { |
| 286 | return isnan(val1) ? isnan(val2) : !isnan(val2) && val1 == val2; |
| 287 | } |
| 288 | |
| 289 | static inline bool |
| 290 | float8_eq(const float8 val1, const float8 val2) |
| 291 | { |
| 292 | return isnan(val1) ? isnan(val2) : !isnan(val2) && val1 == val2; |
| 293 | } |
| 294 | |
| 295 | static inline bool |
| 296 | float4_ne(const float4 val1, const float4 val2) |
| 297 | { |
| 298 | return isnan(val1) ? !isnan(val2) : isnan(val2) || val1 != val2; |
| 299 | } |
| 300 | |
| 301 | static inline bool |
| 302 | float8_ne(const float8 val1, const float8 val2) |
| 303 | { |
| 304 | return isnan(val1) ? !isnan(val2) : isnan(val2) || val1 != val2; |
| 305 | } |
| 306 | |
| 307 | static inline bool |
| 308 | float4_lt(const float4 val1, const float4 val2) |
| 309 | { |
| 310 | return !isnan(val1) && (isnan(val2) || val1 < val2); |
| 311 | } |
| 312 | |
| 313 | static inline bool |
| 314 | float8_lt(const float8 val1, const float8 val2) |
| 315 | { |
| 316 | return !isnan(val1) && (isnan(val2) || val1 < val2); |
| 317 | } |
| 318 | |
| 319 | static inline bool |
| 320 | float4_le(const float4 val1, const float4 val2) |
| 321 | { |
| 322 | return isnan(val2) || (!isnan(val1) && val1 <= val2); |
| 323 | } |
| 324 | |
| 325 | static inline bool |
| 326 | float8_le(const float8 val1, const float8 val2) |
| 327 | { |
| 328 | return isnan(val2) || (!isnan(val1) && val1 <= val2); |
| 329 | } |
| 330 | |
| 331 | static inline bool |
| 332 | float4_gt(const float4 val1, const float4 val2) |
| 333 | { |
| 334 | return !isnan(val2) && (isnan(val1) || val1 > val2); |
| 335 | } |
| 336 | |
| 337 | static inline bool |
| 338 | float8_gt(const float8 val1, const float8 val2) |
| 339 | { |
| 340 | return !isnan(val2) && (isnan(val1) || val1 > val2); |
| 341 | } |
| 342 | |
| 343 | static inline bool |
| 344 | float4_ge(const float4 val1, const float4 val2) |
| 345 | { |
| 346 | return isnan(val1) || (!isnan(val2) && val1 >= val2); |
| 347 | } |
| 348 | |
| 349 | static inline bool |
| 350 | float8_ge(const float8 val1, const float8 val2) |
| 351 | { |
| 352 | return isnan(val1) || (!isnan(val2) && val1 >= val2); |
| 353 | } |
| 354 | |
| 355 | static inline float4 |
| 356 | float4_min(const float4 val1, const float4 val2) |
| 357 | { |
| 358 | return float4_lt(val1, val2) ? val1 : val2; |
| 359 | } |
| 360 | |
| 361 | static inline float8 |
| 362 | float8_min(const float8 val1, const float8 val2) |
| 363 | { |
| 364 | return float8_lt(val1, val2) ? val1 : val2; |
| 365 | } |
| 366 | |
| 367 | static inline float4 |
| 368 | float4_max(const float4 val1, const float4 val2) |
| 369 | { |
| 370 | return float4_gt(val1, val2) ? val1 : val2; |
| 371 | } |
| 372 | |
| 373 | static inline float8 |
| 374 | float8_max(const float8 val1, const float8 val2) |
| 375 | { |
| 376 | return float8_gt(val1, val2) ? val1 : val2; |
| 377 | } |
| 378 | |
| 379 | #endif /* FLOAT_H */ |
| 380 | |