1 | //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file implements the newly proposed standard C++ interfaces for hashing |
11 | // arbitrary data and building hash functions for user-defined types. This |
12 | // interface was originally proposed in N3333[1] and is currently under review |
13 | // for inclusion in a future TR and/or standard. |
14 | // |
15 | // The primary interfaces provide are comprised of one type and three functions: |
16 | // |
17 | // -- 'hash_code' class is an opaque type representing the hash code for some |
18 | // data. It is the intended product of hashing, and can be used to implement |
19 | // hash tables, checksumming, and other common uses of hashes. It is not an |
20 | // integer type (although it can be converted to one) because it is risky |
21 | // to assume much about the internals of a hash_code. In particular, each |
22 | // execution of the program has a high probability of producing a different |
23 | // hash_code for a given input. Thus their values are not stable to save or |
24 | // persist, and should only be used during the execution for the |
25 | // construction of hashing datastructures. |
26 | // |
27 | // -- 'hash_value' is a function designed to be overloaded for each |
28 | // user-defined type which wishes to be used within a hashing context. It |
29 | // should be overloaded within the user-defined type's namespace and found |
30 | // via ADL. Overloads for primitive types are provided by this library. |
31 | // |
32 | // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid |
33 | // programmers in easily and intuitively combining a set of data into |
34 | // a single hash_code for their object. They should only logically be used |
35 | // within the implementation of a 'hash_value' routine or similar context. |
36 | // |
37 | // Note that 'hash_combine_range' contains very special logic for hashing |
38 | // a contiguous array of integers or pointers. This logic is *extremely* fast, |
39 | // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were |
40 | // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys |
41 | // under 32-bytes. |
42 | // |
43 | //===----------------------------------------------------------------------===// |
44 | |
45 | #ifndef LLVM_ADT_HASHING_H |
46 | #define LLVM_ADT_HASHING_H |
47 | |
48 | #include "llvm/Support/DataTypes.h" |
49 | #include "llvm/Support/Host.h" |
50 | #include "llvm/Support/SwapByteOrder.h" |
51 | #include "llvm/Support/type_traits.h" |
52 | #include <algorithm> |
53 | #include <cassert> |
54 | #include <cstring> |
55 | #include <string> |
56 | #include <utility> |
57 | |
58 | namespace llvm { |
59 | |
60 | /// An opaque object representing a hash code. |
61 | /// |
62 | /// This object represents the result of hashing some entity. It is intended to |
63 | /// be used to implement hashtables or other hashing-based data structures. |
64 | /// While it wraps and exposes a numeric value, this value should not be |
65 | /// trusted to be stable or predictable across processes or executions. |
66 | /// |
67 | /// In order to obtain the hash_code for an object 'x': |
68 | /// \code |
69 | /// using llvm::hash_value; |
70 | /// llvm::hash_code code = hash_value(x); |
71 | /// \endcode |
72 | class hash_code { |
73 | size_t value; |
74 | |
75 | public: |
76 | /// Default construct a hash_code. |
77 | /// Note that this leaves the value uninitialized. |
78 | hash_code() = default; |
79 | |
80 | /// Form a hash code directly from a numerical value. |
81 | hash_code(size_t value) : value(value) {} |
82 | |
83 | /// Convert the hash code to its numerical value for use. |
84 | /*explicit*/ operator size_t() const { return value; } |
85 | |
86 | friend bool operator==(const hash_code &lhs, const hash_code &rhs) { |
87 | return lhs.value == rhs.value; |
88 | } |
89 | friend bool operator!=(const hash_code &lhs, const hash_code &rhs) { |
90 | return lhs.value != rhs.value; |
91 | } |
92 | |
93 | /// Allow a hash_code to be directly run through hash_value. |
94 | friend size_t hash_value(const hash_code &code) { return code.value; } |
95 | }; |
96 | |
97 | /// Compute a hash_code for any integer value. |
98 | /// |
99 | /// Note that this function is intended to compute the same hash_code for |
100 | /// a particular value without regard to the pre-promotion type. This is in |
101 | /// contrast to hash_combine which may produce different hash_codes for |
102 | /// differing argument types even if they would implicit promote to a common |
103 | /// type without changing the value. |
104 | template <typename T> |
105 | typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type |
106 | hash_value(T value); |
107 | |
108 | /// Compute a hash_code for a pointer's address. |
109 | /// |
110 | /// N.B.: This hashes the *address*. Not the value and not the type. |
111 | template <typename T> hash_code hash_value(const T *ptr); |
112 | |
113 | /// Compute a hash_code for a pair of objects. |
114 | template <typename T, typename U> |
115 | hash_code hash_value(const std::pair<T, U> &arg); |
116 | |
117 | /// Compute a hash_code for a standard string. |
118 | template <typename T> |
119 | hash_code hash_value(const std::basic_string<T> &arg); |
120 | |
121 | |
122 | /// Override the execution seed with a fixed value. |
123 | /// |
124 | /// This hashing library uses a per-execution seed designed to change on each |
125 | /// run with high probability in order to ensure that the hash codes are not |
126 | /// attackable and to ensure that output which is intended to be stable does |
127 | /// not rely on the particulars of the hash codes produced. |
128 | /// |
129 | /// That said, there are use cases where it is important to be able to |
130 | /// reproduce *exactly* a specific behavior. To that end, we provide a function |
131 | /// which will forcibly set the seed to a fixed value. This must be done at the |
132 | /// start of the program, before any hashes are computed. Also, it cannot be |
133 | /// undone. This makes it thread-hostile and very hard to use outside of |
134 | /// immediately on start of a simple program designed for reproducible |
135 | /// behavior. |
136 | void set_fixed_execution_hash_seed(uint64_t fixed_value); |
137 | |
138 | |
139 | // All of the implementation details of actually computing the various hash |
140 | // code values are held within this namespace. These routines are included in |
141 | // the header file mainly to allow inlining and constant propagation. |
142 | namespace hashing { |
143 | namespace detail { |
144 | |
145 | inline uint64_t fetch64(const char *p) { |
146 | uint64_t result; |
147 | memcpy(&result, p, sizeof(result)); |
148 | if (sys::IsBigEndianHost) |
149 | sys::swapByteOrder(result); |
150 | return result; |
151 | } |
152 | |
153 | inline uint32_t fetch32(const char *p) { |
154 | uint32_t result; |
155 | memcpy(&result, p, sizeof(result)); |
156 | if (sys::IsBigEndianHost) |
157 | sys::swapByteOrder(result); |
158 | return result; |
159 | } |
160 | |
161 | /// Some primes between 2^63 and 2^64 for various uses. |
162 | static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; |
163 | static const uint64_t k1 = 0xb492b66fbe98f273ULL; |
164 | static const uint64_t k2 = 0x9ae16a3b2f90404fULL; |
165 | static const uint64_t k3 = 0xc949d7c7509e6557ULL; |
166 | |
167 | /// Bitwise right rotate. |
168 | /// Normally this will compile to a single instruction, especially if the |
169 | /// shift is a manifest constant. |
170 | inline uint64_t rotate(uint64_t val, size_t shift) { |
171 | // Avoid shifting by 64: doing so yields an undefined result. |
172 | return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); |
173 | } |
174 | |
175 | inline uint64_t shift_mix(uint64_t val) { |
176 | return val ^ (val >> 47); |
177 | } |
178 | |
179 | inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) { |
180 | // Murmur-inspired hashing. |
181 | const uint64_t kMul = 0x9ddfea08eb382d69ULL; |
182 | uint64_t a = (low ^ high) * kMul; |
183 | a ^= (a >> 47); |
184 | uint64_t b = (high ^ a) * kMul; |
185 | b ^= (b >> 47); |
186 | b *= kMul; |
187 | return b; |
188 | } |
189 | |
190 | inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) { |
191 | uint8_t a = s[0]; |
192 | uint8_t b = s[len >> 1]; |
193 | uint8_t c = s[len - 1]; |
194 | uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); |
195 | uint32_t z = len + (static_cast<uint32_t>(c) << 2); |
196 | return shift_mix(y * k2 ^ z * k3 ^ seed) * k2; |
197 | } |
198 | |
199 | inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) { |
200 | uint64_t a = fetch32(s); |
201 | return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4)); |
202 | } |
203 | |
204 | inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) { |
205 | uint64_t a = fetch64(s); |
206 | uint64_t b = fetch64(s + len - 8); |
207 | return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b; |
208 | } |
209 | |
210 | inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) { |
211 | uint64_t a = fetch64(s) * k1; |
212 | uint64_t b = fetch64(s + 8); |
213 | uint64_t c = fetch64(s + len - 8) * k2; |
214 | uint64_t d = fetch64(s + len - 16) * k0; |
215 | return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d, |
216 | a + rotate(b ^ k3, 20) - c + len + seed); |
217 | } |
218 | |
219 | inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) { |
220 | uint64_t z = fetch64(s + 24); |
221 | uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0; |
222 | uint64_t b = rotate(a + z, 52); |
223 | uint64_t c = rotate(a, 37); |
224 | a += fetch64(s + 8); |
225 | c += rotate(a, 7); |
226 | a += fetch64(s + 16); |
227 | uint64_t vf = a + z; |
228 | uint64_t vs = b + rotate(a, 31) + c; |
229 | a = fetch64(s + 16) + fetch64(s + len - 32); |
230 | z = fetch64(s + len - 8); |
231 | b = rotate(a + z, 52); |
232 | c = rotate(a, 37); |
233 | a += fetch64(s + len - 24); |
234 | c += rotate(a, 7); |
235 | a += fetch64(s + len - 16); |
236 | uint64_t wf = a + z; |
237 | uint64_t ws = b + rotate(a, 31) + c; |
238 | uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0); |
239 | return shift_mix((seed ^ (r * k0)) + vs) * k2; |
240 | } |
241 | |
242 | inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) { |
243 | if (length >= 4 && length <= 8) |
244 | return hash_4to8_bytes(s, length, seed); |
245 | if (length > 8 && length <= 16) |
246 | return hash_9to16_bytes(s, length, seed); |
247 | if (length > 16 && length <= 32) |
248 | return hash_17to32_bytes(s, length, seed); |
249 | if (length > 32) |
250 | return hash_33to64_bytes(s, length, seed); |
251 | if (length != 0) |
252 | return hash_1to3_bytes(s, length, seed); |
253 | |
254 | return k2 ^ seed; |
255 | } |
256 | |
257 | /// The intermediate state used during hashing. |
258 | /// Currently, the algorithm for computing hash codes is based on CityHash and |
259 | /// keeps 56 bytes of arbitrary state. |
260 | struct hash_state { |
261 | uint64_t h0, h1, h2, h3, h4, h5, h6; |
262 | |
263 | /// Create a new hash_state structure and initialize it based on the |
264 | /// seed and the first 64-byte chunk. |
265 | /// This effectively performs the initial mix. |
266 | static hash_state create(const char *s, uint64_t seed) { |
267 | hash_state state = { |
268 | 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49), |
269 | seed * k1, shift_mix(seed), 0 }; |
270 | state.h6 = hash_16_bytes(state.h4, state.h5); |
271 | state.mix(s); |
272 | return state; |
273 | } |
274 | |
275 | /// Mix 32-bytes from the input sequence into the 16-bytes of 'a' |
276 | /// and 'b', including whatever is already in 'a' and 'b'. |
277 | static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) { |
278 | a += fetch64(s); |
279 | uint64_t c = fetch64(s + 24); |
280 | b = rotate(b + a + c, 21); |
281 | uint64_t d = a; |
282 | a += fetch64(s + 8) + fetch64(s + 16); |
283 | b += rotate(a, 44) + d; |
284 | a += c; |
285 | } |
286 | |
287 | /// Mix in a 64-byte buffer of data. |
288 | /// We mix all 64 bytes even when the chunk length is smaller, but we |
289 | /// record the actual length. |
290 | void mix(const char *s) { |
291 | h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1; |
292 | h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1; |
293 | h0 ^= h6; |
294 | h1 += h3 + fetch64(s + 40); |
295 | h2 = rotate(h2 + h5, 33) * k1; |
296 | h3 = h4 * k1; |
297 | h4 = h0 + h5; |
298 | mix_32_bytes(s, h3, h4); |
299 | h5 = h2 + h6; |
300 | h6 = h1 + fetch64(s + 16); |
301 | mix_32_bytes(s + 32, h5, h6); |
302 | std::swap(h2, h0); |
303 | } |
304 | |
305 | /// Compute the final 64-bit hash code value based on the current |
306 | /// state and the length of bytes hashed. |
307 | uint64_t finalize(size_t length) { |
308 | return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2, |
309 | hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0); |
310 | } |
311 | }; |
312 | |
313 | |
314 | /// A global, fixed seed-override variable. |
315 | /// |
316 | /// This variable can be set using the \see llvm::set_fixed_execution_seed |
317 | /// function. See that function for details. Do not, under any circumstances, |
318 | /// set or read this variable. |
319 | extern uint64_t fixed_seed_override; |
320 | |
321 | inline uint64_t get_execution_seed() { |
322 | // FIXME: This needs to be a per-execution seed. This is just a placeholder |
323 | // implementation. Switching to a per-execution seed is likely to flush out |
324 | // instability bugs and so will happen as its own commit. |
325 | // |
326 | // However, if there is a fixed seed override set the first time this is |
327 | // called, return that instead of the per-execution seed. |
328 | const uint64_t seed_prime = 0xff51afd7ed558ccdULL; |
329 | static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime; |
330 | return seed; |
331 | } |
332 | |
333 | |
334 | /// Trait to indicate whether a type's bits can be hashed directly. |
335 | /// |
336 | /// A type trait which is true if we want to combine values for hashing by |
337 | /// reading the underlying data. It is false if values of this type must |
338 | /// first be passed to hash_value, and the resulting hash_codes combined. |
339 | // |
340 | // FIXME: We want to replace is_integral_or_enum and is_pointer here with |
341 | // a predicate which asserts that comparing the underlying storage of two |
342 | // values of the type for equality is equivalent to comparing the two values |
343 | // for equality. For all the platforms we care about, this holds for integers |
344 | // and pointers, but there are platforms where it doesn't and we would like to |
345 | // support user-defined types which happen to satisfy this property. |
346 | template <typename T> struct is_hashable_data |
347 | : std::integral_constant<bool, ((is_integral_or_enum<T>::value || |
348 | std::is_pointer<T>::value) && |
349 | 64 % sizeof(T) == 0)> {}; |
350 | |
351 | // Special case std::pair to detect when both types are viable and when there |
352 | // is no alignment-derived padding in the pair. This is a bit of a lie because |
353 | // std::pair isn't truly POD, but it's close enough in all reasonable |
354 | // implementations for our use case of hashing the underlying data. |
355 | template <typename T, typename U> struct is_hashable_data<std::pair<T, U> > |
356 | : std::integral_constant<bool, (is_hashable_data<T>::value && |
357 | is_hashable_data<U>::value && |
358 | (sizeof(T) + sizeof(U)) == |
359 | sizeof(std::pair<T, U>))> {}; |
360 | |
361 | /// Helper to get the hashable data representation for a type. |
362 | /// This variant is enabled when the type itself can be used. |
363 | template <typename T> |
364 | typename std::enable_if<is_hashable_data<T>::value, T>::type |
365 | get_hashable_data(const T &value) { |
366 | return value; |
367 | } |
368 | /// Helper to get the hashable data representation for a type. |
369 | /// This variant is enabled when we must first call hash_value and use the |
370 | /// result as our data. |
371 | template <typename T> |
372 | typename std::enable_if<!is_hashable_data<T>::value, size_t>::type |
373 | get_hashable_data(const T &value) { |
374 | using ::llvm::hash_value; |
375 | return hash_value(value); |
376 | } |
377 | |
378 | /// Helper to store data from a value into a buffer and advance the |
379 | /// pointer into that buffer. |
380 | /// |
381 | /// This routine first checks whether there is enough space in the provided |
382 | /// buffer, and if not immediately returns false. If there is space, it |
383 | /// copies the underlying bytes of value into the buffer, advances the |
384 | /// buffer_ptr past the copied bytes, and returns true. |
385 | template <typename T> |
386 | bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value, |
387 | size_t offset = 0) { |
388 | size_t store_size = sizeof(value) - offset; |
389 | if (buffer_ptr + store_size > buffer_end) |
390 | return false; |
391 | const char *value_data = reinterpret_cast<const char *>(&value); |
392 | memcpy(buffer_ptr, value_data + offset, store_size); |
393 | buffer_ptr += store_size; |
394 | return true; |
395 | } |
396 | |
397 | /// Implement the combining of integral values into a hash_code. |
398 | /// |
399 | /// This overload is selected when the value type of the iterator is |
400 | /// integral. Rather than computing a hash_code for each object and then |
401 | /// combining them, this (as an optimization) directly combines the integers. |
402 | template <typename InputIteratorT> |
403 | hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) { |
404 | const uint64_t seed = get_execution_seed(); |
405 | char buffer[64], *buffer_ptr = buffer; |
406 | char *const buffer_end = std::end(buffer); |
407 | while (first != last && store_and_advance(buffer_ptr, buffer_end, |
408 | get_hashable_data(*first))) |
409 | ++first; |
410 | if (first == last) |
411 | return hash_short(buffer, buffer_ptr - buffer, seed); |
412 | assert(buffer_ptr == buffer_end); |
413 | |
414 | hash_state state = state.create(buffer, seed); |
415 | size_t length = 64; |
416 | while (first != last) { |
417 | // Fill up the buffer. We don't clear it, which re-mixes the last round |
418 | // when only a partial 64-byte chunk is left. |
419 | buffer_ptr = buffer; |
420 | while (first != last && store_and_advance(buffer_ptr, buffer_end, |
421 | get_hashable_data(*first))) |
422 | ++first; |
423 | |
424 | // Rotate the buffer if we did a partial fill in order to simulate doing |
425 | // a mix of the last 64-bytes. That is how the algorithm works when we |
426 | // have a contiguous byte sequence, and we want to emulate that here. |
427 | std::rotate(buffer, buffer_ptr, buffer_end); |
428 | |
429 | // Mix this chunk into the current state. |
430 | state.mix(buffer); |
431 | length += buffer_ptr - buffer; |
432 | }; |
433 | |
434 | return state.finalize(length); |
435 | } |
436 | |
437 | /// Implement the combining of integral values into a hash_code. |
438 | /// |
439 | /// This overload is selected when the value type of the iterator is integral |
440 | /// and when the input iterator is actually a pointer. Rather than computing |
441 | /// a hash_code for each object and then combining them, this (as an |
442 | /// optimization) directly combines the integers. Also, because the integers |
443 | /// are stored in contiguous memory, this routine avoids copying each value |
444 | /// and directly reads from the underlying memory. |
445 | template <typename ValueT> |
446 | typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type |
447 | hash_combine_range_impl(ValueT *first, ValueT *last) { |
448 | const uint64_t seed = get_execution_seed(); |
449 | const char *s_begin = reinterpret_cast<const char *>(first); |
450 | const char *s_end = reinterpret_cast<const char *>(last); |
451 | const size_t length = std::distance(s_begin, s_end); |
452 | if (length <= 64) |
453 | return hash_short(s_begin, length, seed); |
454 | |
455 | const char *s_aligned_end = s_begin + (length & ~63); |
456 | hash_state state = state.create(s_begin, seed); |
457 | s_begin += 64; |
458 | while (s_begin != s_aligned_end) { |
459 | state.mix(s_begin); |
460 | s_begin += 64; |
461 | } |
462 | if (length & 63) |
463 | state.mix(s_end - 64); |
464 | |
465 | return state.finalize(length); |
466 | } |
467 | |
468 | } // namespace detail |
469 | } // namespace hashing |
470 | |
471 | |
472 | /// Compute a hash_code for a sequence of values. |
473 | /// |
474 | /// This hashes a sequence of values. It produces the same hash_code as |
475 | /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences |
476 | /// and is significantly faster given pointers and types which can be hashed as |
477 | /// a sequence of bytes. |
478 | template <typename InputIteratorT> |
479 | hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) { |
480 | return ::llvm::hashing::detail::hash_combine_range_impl(first, last); |
481 | } |
482 | |
483 | |
484 | // Implementation details for hash_combine. |
485 | namespace hashing { |
486 | namespace detail { |
487 | |
488 | /// Helper class to manage the recursive combining of hash_combine |
489 | /// arguments. |
490 | /// |
491 | /// This class exists to manage the state and various calls involved in the |
492 | /// recursive combining of arguments used in hash_combine. It is particularly |
493 | /// useful at minimizing the code in the recursive calls to ease the pain |
494 | /// caused by a lack of variadic functions. |
495 | struct hash_combine_recursive_helper { |
496 | char buffer[64]; |
497 | hash_state state; |
498 | const uint64_t seed; |
499 | |
500 | public: |
501 | /// Construct a recursive hash combining helper. |
502 | /// |
503 | /// This sets up the state for a recursive hash combine, including getting |
504 | /// the seed and buffer setup. |
505 | hash_combine_recursive_helper() |
506 | : seed(get_execution_seed()) {} |
507 | |
508 | /// Combine one chunk of data into the current in-flight hash. |
509 | /// |
510 | /// This merges one chunk of data into the hash. First it tries to buffer |
511 | /// the data. If the buffer is full, it hashes the buffer into its |
512 | /// hash_state, empties it, and then merges the new chunk in. This also |
513 | /// handles cases where the data straddles the end of the buffer. |
514 | template <typename T> |
515 | char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) { |
516 | if (!store_and_advance(buffer_ptr, buffer_end, data)) { |
517 | // Check for skew which prevents the buffer from being packed, and do |
518 | // a partial store into the buffer to fill it. This is only a concern |
519 | // with the variadic combine because that formation can have varying |
520 | // argument types. |
521 | size_t partial_store_size = buffer_end - buffer_ptr; |
522 | memcpy(buffer_ptr, &data, partial_store_size); |
523 | |
524 | // If the store fails, our buffer is full and ready to hash. We have to |
525 | // either initialize the hash state (on the first full buffer) or mix |
526 | // this buffer into the existing hash state. Length tracks the *hashed* |
527 | // length, not the buffered length. |
528 | if (length == 0) { |
529 | state = state.create(buffer, seed); |
530 | length = 64; |
531 | } else { |
532 | // Mix this chunk into the current state and bump length up by 64. |
533 | state.mix(buffer); |
534 | length += 64; |
535 | } |
536 | // Reset the buffer_ptr to the head of the buffer for the next chunk of |
537 | // data. |
538 | buffer_ptr = buffer; |
539 | |
540 | // Try again to store into the buffer -- this cannot fail as we only |
541 | // store types smaller than the buffer. |
542 | if (!store_and_advance(buffer_ptr, buffer_end, data, |
543 | partial_store_size)) |
544 | abort(); |
545 | } |
546 | return buffer_ptr; |
547 | } |
548 | |
549 | /// Recursive, variadic combining method. |
550 | /// |
551 | /// This function recurses through each argument, combining that argument |
552 | /// into a single hash. |
553 | template <typename T, typename ...Ts> |
554 | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, |
555 | const T &arg, const Ts &...args) { |
556 | buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg)); |
557 | |
558 | // Recurse to the next argument. |
559 | return combine(length, buffer_ptr, buffer_end, args...); |
560 | } |
561 | |
562 | /// Base case for recursive, variadic combining. |
563 | /// |
564 | /// The base case when combining arguments recursively is reached when all |
565 | /// arguments have been handled. It flushes the remaining buffer and |
566 | /// constructs a hash_code. |
567 | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) { |
568 | // Check whether the entire set of values fit in the buffer. If so, we'll |
569 | // use the optimized short hashing routine and skip state entirely. |
570 | if (length == 0) |
571 | return hash_short(buffer, buffer_ptr - buffer, seed); |
572 | |
573 | // Mix the final buffer, rotating it if we did a partial fill in order to |
574 | // simulate doing a mix of the last 64-bytes. That is how the algorithm |
575 | // works when we have a contiguous byte sequence, and we want to emulate |
576 | // that here. |
577 | std::rotate(buffer, buffer_ptr, buffer_end); |
578 | |
579 | // Mix this chunk into the current state. |
580 | state.mix(buffer); |
581 | length += buffer_ptr - buffer; |
582 | |
583 | return state.finalize(length); |
584 | } |
585 | }; |
586 | |
587 | } // namespace detail |
588 | } // namespace hashing |
589 | |
590 | /// Combine values into a single hash_code. |
591 | /// |
592 | /// This routine accepts a varying number of arguments of any type. It will |
593 | /// attempt to combine them into a single hash_code. For user-defined types it |
594 | /// attempts to call a \see hash_value overload (via ADL) for the type. For |
595 | /// integer and pointer types it directly combines their data into the |
596 | /// resulting hash_code. |
597 | /// |
598 | /// The result is suitable for returning from a user's hash_value |
599 | /// *implementation* for their user-defined type. Consumers of a type should |
600 | /// *not* call this routine, they should instead call 'hash_value'. |
601 | template <typename ...Ts> hash_code hash_combine(const Ts &...args) { |
602 | // Recursively hash each argument using a helper class. |
603 | ::llvm::hashing::detail::hash_combine_recursive_helper helper; |
604 | return helper.combine(0, helper.buffer, helper.buffer + 64, args...); |
605 | } |
606 | |
607 | // Implementation details for implementations of hash_value overloads provided |
608 | // here. |
609 | namespace hashing { |
610 | namespace detail { |
611 | |
612 | /// Helper to hash the value of a single integer. |
613 | /// |
614 | /// Overloads for smaller integer types are not provided to ensure consistent |
615 | /// behavior in the presence of integral promotions. Essentially, |
616 | /// "hash_value('4')" and "hash_value('0' + 4)" should be the same. |
617 | inline hash_code hash_integer_value(uint64_t value) { |
618 | // Similar to hash_4to8_bytes but using a seed instead of length. |
619 | const uint64_t seed = get_execution_seed(); |
620 | const char *s = reinterpret_cast<const char *>(&value); |
621 | const uint64_t a = fetch32(s); |
622 | return hash_16_bytes(seed + (a << 3), fetch32(s + 4)); |
623 | } |
624 | |
625 | } // namespace detail |
626 | } // namespace hashing |
627 | |
628 | // Declared and documented above, but defined here so that any of the hashing |
629 | // infrastructure is available. |
630 | template <typename T> |
631 | typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type |
632 | hash_value(T value) { |
633 | return ::llvm::hashing::detail::hash_integer_value( |
634 | static_cast<uint64_t>(value)); |
635 | } |
636 | |
637 | // Declared and documented above, but defined here so that any of the hashing |
638 | // infrastructure is available. |
639 | template <typename T> hash_code hash_value(const T *ptr) { |
640 | return ::llvm::hashing::detail::hash_integer_value( |
641 | reinterpret_cast<uintptr_t>(ptr)); |
642 | } |
643 | |
644 | // Declared and documented above, but defined here so that any of the hashing |
645 | // infrastructure is available. |
646 | template <typename T, typename U> |
647 | hash_code hash_value(const std::pair<T, U> &arg) { |
648 | return hash_combine(arg.first, arg.second); |
649 | } |
650 | |
651 | // Declared and documented above, but defined here so that any of the hashing |
652 | // infrastructure is available. |
653 | template <typename T> |
654 | hash_code hash_value(const std::basic_string<T> &arg) { |
655 | return hash_combine_range(arg.begin(), arg.end()); |
656 | } |
657 | |
658 | } // namespace llvm |
659 | |
660 | #endif |
661 | |