1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file contains some functions that are useful for math stuff. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
15 | #define |
16 | |
17 | #include "llvm/Support/Compiler.h" |
18 | #include "llvm/Support/SwapByteOrder.h" |
19 | #include <algorithm> |
20 | #include <cassert> |
21 | #include <climits> |
22 | #include <cstring> |
23 | #include <limits> |
24 | #include <type_traits> |
25 | |
26 | #ifdef __ANDROID_NDK__ |
27 | #include <android/api-level.h> |
28 | #endif |
29 | |
30 | #ifdef _MSC_VER |
31 | // Declare these intrinsics manually rather including intrin.h. It's very |
32 | // expensive, and MathExtras.h is popular. |
33 | // #include <intrin.h> |
34 | extern "C" { |
35 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
36 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
37 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
38 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
39 | } |
40 | #endif |
41 | |
42 | namespace llvm { |
43 | /// The behavior an operation has on an input of 0. |
44 | enum ZeroBehavior { |
45 | /// The returned value is undefined. |
46 | ZB_Undefined, |
47 | /// The returned value is numeric_limits<T>::max() |
48 | ZB_Max, |
49 | /// The returned value is numeric_limits<T>::digits |
50 | ZB_Width |
51 | }; |
52 | |
53 | namespace detail { |
54 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
55 | static std::size_t count(T Val, ZeroBehavior) { |
56 | if (!Val) |
57 | return std::numeric_limits<T>::digits; |
58 | if (Val & 0x1) |
59 | return 0; |
60 | |
61 | // Bisection method. |
62 | std::size_t ZeroBits = 0; |
63 | T Shift = std::numeric_limits<T>::digits >> 1; |
64 | T Mask = std::numeric_limits<T>::max() >> Shift; |
65 | while (Shift) { |
66 | if ((Val & Mask) == 0) { |
67 | Val >>= Shift; |
68 | ZeroBits |= Shift; |
69 | } |
70 | Shift >>= 1; |
71 | Mask >>= Shift; |
72 | } |
73 | return ZeroBits; |
74 | } |
75 | }; |
76 | |
77 | #if __GNUC__ >= 4 || defined(_MSC_VER) |
78 | template <typename T> struct TrailingZerosCounter<T, 4> { |
79 | static std::size_t count(T Val, ZeroBehavior ZB) { |
80 | if (ZB != ZB_Undefined && Val == 0) |
81 | return 32; |
82 | |
83 | #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) |
84 | return __builtin_ctz(Val); |
85 | #elif defined(_MSC_VER) |
86 | unsigned long Index; |
87 | _BitScanForward(&Index, Val); |
88 | return Index; |
89 | #endif |
90 | } |
91 | }; |
92 | |
93 | #if !defined(_MSC_VER) || defined(_M_X64) |
94 | template <typename T> struct TrailingZerosCounter<T, 8> { |
95 | static std::size_t count(T Val, ZeroBehavior ZB) { |
96 | if (ZB != ZB_Undefined && Val == 0) |
97 | return 64; |
98 | |
99 | #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) |
100 | return __builtin_ctzll(Val); |
101 | #elif defined(_MSC_VER) |
102 | unsigned long Index; |
103 | _BitScanForward64(&Index, Val); |
104 | return Index; |
105 | #endif |
106 | } |
107 | }; |
108 | #endif |
109 | #endif |
110 | } // namespace detail |
111 | |
112 | /// Count number of 0's from the least significant bit to the most |
113 | /// stopping at the first 1. |
114 | /// |
115 | /// Only unsigned integral types are allowed. |
116 | /// |
117 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
118 | /// valid arguments. |
119 | template <typename T> |
120 | std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
121 | static_assert(std::numeric_limits<T>::is_integer && |
122 | !std::numeric_limits<T>::is_signed, |
123 | "Only unsigned integral types are allowed." ); |
124 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
125 | } |
126 | |
127 | namespace detail { |
128 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
129 | static std::size_t count(T Val, ZeroBehavior) { |
130 | if (!Val) |
131 | return std::numeric_limits<T>::digits; |
132 | |
133 | // Bisection method. |
134 | std::size_t ZeroBits = 0; |
135 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
136 | T Tmp = Val >> Shift; |
137 | if (Tmp) |
138 | Val = Tmp; |
139 | else |
140 | ZeroBits |= Shift; |
141 | } |
142 | return ZeroBits; |
143 | } |
144 | }; |
145 | |
146 | #if __GNUC__ >= 4 || defined(_MSC_VER) |
147 | template <typename T> struct LeadingZerosCounter<T, 4> { |
148 | static std::size_t count(T Val, ZeroBehavior ZB) { |
149 | if (ZB != ZB_Undefined && Val == 0) |
150 | return 32; |
151 | |
152 | #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) |
153 | return __builtin_clz(Val); |
154 | #elif defined(_MSC_VER) |
155 | unsigned long Index; |
156 | _BitScanReverse(&Index, Val); |
157 | return Index ^ 31; |
158 | #endif |
159 | } |
160 | }; |
161 | |
162 | #if !defined(_MSC_VER) || defined(_M_X64) |
163 | template <typename T> struct LeadingZerosCounter<T, 8> { |
164 | static std::size_t count(T Val, ZeroBehavior ZB) { |
165 | if (ZB != ZB_Undefined && Val == 0) |
166 | return 64; |
167 | |
168 | #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) |
169 | return __builtin_clzll(Val); |
170 | #elif defined(_MSC_VER) |
171 | unsigned long Index; |
172 | _BitScanReverse64(&Index, Val); |
173 | return Index ^ 63; |
174 | #endif |
175 | } |
176 | }; |
177 | #endif |
178 | #endif |
179 | } // namespace detail |
180 | |
181 | /// Count number of 0's from the most significant bit to the least |
182 | /// stopping at the first 1. |
183 | /// |
184 | /// Only unsigned integral types are allowed. |
185 | /// |
186 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
187 | /// valid arguments. |
188 | template <typename T> |
189 | std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
190 | static_assert(std::numeric_limits<T>::is_integer && |
191 | !std::numeric_limits<T>::is_signed, |
192 | "Only unsigned integral types are allowed." ); |
193 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
194 | } |
195 | |
196 | /// Get the index of the first set bit starting from the least |
197 | /// significant bit. |
198 | /// |
199 | /// Only unsigned integral types are allowed. |
200 | /// |
201 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
202 | /// valid arguments. |
203 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
204 | if (ZB == ZB_Max && Val == 0) |
205 | return std::numeric_limits<T>::max(); |
206 | |
207 | return countTrailingZeros(Val, ZB_Undefined); |
208 | } |
209 | |
210 | /// Create a bitmask with the N right-most bits set to 1, and all other |
211 | /// bits set to 0. Only unsigned types are allowed. |
212 | template <typename T> T maskTrailingOnes(unsigned N) { |
213 | static_assert(std::is_unsigned<T>::value, "Invalid type!" ); |
214 | const unsigned Bits = CHAR_BIT * sizeof(T); |
215 | assert(N <= Bits && "Invalid bit index" ); |
216 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
217 | } |
218 | |
219 | /// Create a bitmask with the N left-most bits set to 1, and all other |
220 | /// bits set to 0. Only unsigned types are allowed. |
221 | template <typename T> T maskLeadingOnes(unsigned N) { |
222 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
223 | } |
224 | |
225 | /// Create a bitmask with the N right-most bits set to 0, and all other |
226 | /// bits set to 1. Only unsigned types are allowed. |
227 | template <typename T> T maskTrailingZeros(unsigned N) { |
228 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
229 | } |
230 | |
231 | /// Create a bitmask with the N left-most bits set to 0, and all other |
232 | /// bits set to 1. Only unsigned types are allowed. |
233 | template <typename T> T maskLeadingZeros(unsigned N) { |
234 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
235 | } |
236 | |
237 | /// Get the index of the last set bit starting from the least |
238 | /// significant bit. |
239 | /// |
240 | /// Only unsigned integral types are allowed. |
241 | /// |
242 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
243 | /// valid arguments. |
244 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
245 | if (ZB == ZB_Max && Val == 0) |
246 | return std::numeric_limits<T>::max(); |
247 | |
248 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
249 | // in the __builtin_clz intrinsic on x86. |
250 | return countLeadingZeros(Val, ZB_Undefined) ^ |
251 | (std::numeric_limits<T>::digits - 1); |
252 | } |
253 | |
254 | /// Macro compressed bit reversal table for 256 bits. |
255 | /// |
256 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
257 | static const unsigned char BitReverseTable256[256] = { |
258 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
259 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
260 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
261 | R6(0), R6(2), R6(1), R6(3) |
262 | #undef R2 |
263 | #undef R4 |
264 | #undef R6 |
265 | }; |
266 | |
267 | /// Reverse the bits in \p Val. |
268 | template <typename T> |
269 | T reverseBits(T Val) { |
270 | unsigned char in[sizeof(Val)]; |
271 | unsigned char out[sizeof(Val)]; |
272 | std::memcpy(in, &Val, sizeof(Val)); |
273 | for (unsigned i = 0; i < sizeof(Val); ++i) |
274 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
275 | std::memcpy(&Val, out, sizeof(Val)); |
276 | return Val; |
277 | } |
278 | |
279 | // NOTE: The following support functions use the _32/_64 extensions instead of |
280 | // type overloading so that signed and unsigned integers can be used without |
281 | // ambiguity. |
282 | |
283 | /// Return the high 32 bits of a 64 bit value. |
284 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
285 | return static_cast<uint32_t>(Value >> 32); |
286 | } |
287 | |
288 | /// Return the low 32 bits of a 64 bit value. |
289 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
290 | return static_cast<uint32_t>(Value); |
291 | } |
292 | |
293 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
294 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
295 | return ((uint64_t)High << 32) | (uint64_t)Low; |
296 | } |
297 | |
298 | /// Checks if an integer fits into the given bit width. |
299 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
300 | return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); |
301 | } |
302 | // Template specializations to get better code for common cases. |
303 | template <> constexpr inline bool isInt<8>(int64_t x) { |
304 | return static_cast<int8_t>(x) == x; |
305 | } |
306 | template <> constexpr inline bool isInt<16>(int64_t x) { |
307 | return static_cast<int16_t>(x) == x; |
308 | } |
309 | template <> constexpr inline bool isInt<32>(int64_t x) { |
310 | return static_cast<int32_t>(x) == x; |
311 | } |
312 | |
313 | /// Checks if a signed integer is an N bit number shifted left by S. |
314 | template <unsigned N, unsigned S> |
315 | constexpr inline bool isShiftedInt(int64_t x) { |
316 | static_assert( |
317 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number." ); |
318 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide." ); |
319 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
320 | } |
321 | |
322 | /// Checks if an unsigned integer fits into the given bit width. |
323 | /// |
324 | /// This is written as two functions rather than as simply |
325 | /// |
326 | /// return N >= 64 || X < (UINT64_C(1) << N); |
327 | /// |
328 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
329 | /// left too many places. |
330 | template <unsigned N> |
331 | constexpr inline typename std::enable_if<(N < 64), bool>::type |
332 | isUInt(uint64_t X) { |
333 | static_assert(N > 0, "isUInt<0> doesn't make sense" ); |
334 | return X < (UINT64_C(1) << (N)); |
335 | } |
336 | template <unsigned N> |
337 | constexpr inline typename std::enable_if<N >= 64, bool>::type |
338 | isUInt(uint64_t X) { |
339 | return true; |
340 | } |
341 | |
342 | // Template specializations to get better code for common cases. |
343 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
344 | return static_cast<uint8_t>(x) == x; |
345 | } |
346 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
347 | return static_cast<uint16_t>(x) == x; |
348 | } |
349 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
350 | return static_cast<uint32_t>(x) == x; |
351 | } |
352 | |
353 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
354 | template <unsigned N, unsigned S> |
355 | constexpr inline bool isShiftedUInt(uint64_t x) { |
356 | static_assert( |
357 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)" ); |
358 | static_assert(N + S <= 64, |
359 | "isShiftedUInt<N, S> with N + S > 64 is too wide." ); |
360 | // Per the two static_asserts above, S must be strictly less than 64. So |
361 | // 1 << S is not undefined behavior. |
362 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
363 | } |
364 | |
365 | /// Gets the maximum value for a N-bit unsigned integer. |
366 | inline uint64_t maxUIntN(uint64_t N) { |
367 | assert(N > 0 && N <= 64 && "integer width out of range" ); |
368 | |
369 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
370 | // (uint64_t(1) << N) - 1 |
371 | // without checking first that N != 64. But this works and doesn't have a |
372 | // branch. |
373 | return UINT64_MAX >> (64 - N); |
374 | } |
375 | |
376 | /// Gets the minimum value for a N-bit signed integer. |
377 | inline int64_t minIntN(int64_t N) { |
378 | assert(N > 0 && N <= 64 && "integer width out of range" ); |
379 | |
380 | return -(UINT64_C(1)<<(N-1)); |
381 | } |
382 | |
383 | /// Gets the maximum value for a N-bit signed integer. |
384 | inline int64_t maxIntN(int64_t N) { |
385 | assert(N > 0 && N <= 64 && "integer width out of range" ); |
386 | |
387 | // This relies on two's complement wraparound when N == 64, so we convert to |
388 | // int64_t only at the very end to avoid UB. |
389 | return (UINT64_C(1) << (N - 1)) - 1; |
390 | } |
391 | |
392 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
393 | inline bool isUIntN(unsigned N, uint64_t x) { |
394 | return N >= 64 || x <= maxUIntN(N); |
395 | } |
396 | |
397 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
398 | inline bool isIntN(unsigned N, int64_t x) { |
399 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
400 | } |
401 | |
402 | /// Return true if the argument is a non-empty sequence of ones starting at the |
403 | /// least significant bit with the remainder zero (32 bit version). |
404 | /// Ex. isMask_32(0x0000FFFFU) == true. |
405 | constexpr inline bool isMask_32(uint32_t Value) { |
406 | return Value && ((Value + 1) & Value) == 0; |
407 | } |
408 | |
409 | /// Return true if the argument is a non-empty sequence of ones starting at the |
410 | /// least significant bit with the remainder zero (64 bit version). |
411 | constexpr inline bool isMask_64(uint64_t Value) { |
412 | return Value && ((Value + 1) & Value) == 0; |
413 | } |
414 | |
415 | /// Return true if the argument contains a non-empty sequence of ones with the |
416 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
417 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
418 | return Value && isMask_32((Value - 1) | Value); |
419 | } |
420 | |
421 | /// Return true if the argument contains a non-empty sequence of ones with the |
422 | /// remainder zero (64 bit version.) |
423 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
424 | return Value && isMask_64((Value - 1) | Value); |
425 | } |
426 | |
427 | /// Return true if the argument is a power of two > 0. |
428 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
429 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
430 | return Value && !(Value & (Value - 1)); |
431 | } |
432 | |
433 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
434 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
435 | return Value && !(Value & (Value - 1)); |
436 | } |
437 | |
438 | /// Return a byte-swapped representation of the 16-bit argument. |
439 | inline uint16_t ByteSwap_16(uint16_t Value) { |
440 | return sys::SwapByteOrder_16(Value); |
441 | } |
442 | |
443 | /// Return a byte-swapped representation of the 32-bit argument. |
444 | inline uint32_t ByteSwap_32(uint32_t Value) { |
445 | return sys::SwapByteOrder_32(Value); |
446 | } |
447 | |
448 | /// Return a byte-swapped representation of the 64-bit argument. |
449 | inline uint64_t ByteSwap_64(uint64_t Value) { |
450 | return sys::SwapByteOrder_64(Value); |
451 | } |
452 | |
453 | /// Count the number of ones from the most significant bit to the first |
454 | /// zero bit. |
455 | /// |
456 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
457 | /// Only unsigned integral types are allowed. |
458 | /// |
459 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
460 | /// ZB_Undefined are valid arguments. |
461 | template <typename T> |
462 | std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
463 | static_assert(std::numeric_limits<T>::is_integer && |
464 | !std::numeric_limits<T>::is_signed, |
465 | "Only unsigned integral types are allowed." ); |
466 | return countLeadingZeros<T>(~Value, ZB); |
467 | } |
468 | |
469 | /// Count the number of ones from the least significant bit to the first |
470 | /// zero bit. |
471 | /// |
472 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
473 | /// Only unsigned integral types are allowed. |
474 | /// |
475 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
476 | /// ZB_Undefined are valid arguments. |
477 | template <typename T> |
478 | std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
479 | static_assert(std::numeric_limits<T>::is_integer && |
480 | !std::numeric_limits<T>::is_signed, |
481 | "Only unsigned integral types are allowed." ); |
482 | return countTrailingZeros<T>(~Value, ZB); |
483 | } |
484 | |
485 | namespace detail { |
486 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
487 | static unsigned count(T Value) { |
488 | // Generic version, forward to 32 bits. |
489 | static_assert(SizeOfT <= 4, "Not implemented!" ); |
490 | #if __GNUC__ >= 4 |
491 | return __builtin_popcount(Value); |
492 | #else |
493 | uint32_t v = Value; |
494 | v = v - ((v >> 1) & 0x55555555); |
495 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
496 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
497 | #endif |
498 | } |
499 | }; |
500 | |
501 | template <typename T> struct PopulationCounter<T, 8> { |
502 | static unsigned count(T Value) { |
503 | #if __GNUC__ >= 4 |
504 | return __builtin_popcountll(Value); |
505 | #else |
506 | uint64_t v = Value; |
507 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
508 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
509 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
510 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
511 | #endif |
512 | } |
513 | }; |
514 | } // namespace detail |
515 | |
516 | /// Count the number of set bits in a value. |
517 | /// Ex. countPopulation(0xF000F000) = 8 |
518 | /// Returns 0 if the word is zero. |
519 | template <typename T> |
520 | inline unsigned countPopulation(T Value) { |
521 | static_assert(std::numeric_limits<T>::is_integer && |
522 | !std::numeric_limits<T>::is_signed, |
523 | "Only unsigned integral types are allowed." ); |
524 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
525 | } |
526 | |
527 | /// Return the log base 2 of the specified value. |
528 | inline double Log2(double Value) { |
529 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
530 | return __builtin_log(Value) / __builtin_log(2.0); |
531 | #else |
532 | return log2(Value); |
533 | #endif |
534 | } |
535 | |
536 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
537 | /// (32 bit edition.) |
538 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
539 | inline unsigned Log2_32(uint32_t Value) { |
540 | return 31 - countLeadingZeros(Value); |
541 | } |
542 | |
543 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
544 | /// (64 bit edition.) |
545 | inline unsigned Log2_64(uint64_t Value) { |
546 | return 63 - countLeadingZeros(Value); |
547 | } |
548 | |
549 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
550 | /// (32 bit edition). |
551 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
552 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
553 | return 32 - countLeadingZeros(Value - 1); |
554 | } |
555 | |
556 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
557 | /// (64 bit edition.) |
558 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
559 | return 64 - countLeadingZeros(Value - 1); |
560 | } |
561 | |
562 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
563 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
564 | while (B) { |
565 | uint64_t T = B; |
566 | B = A % B; |
567 | A = T; |
568 | } |
569 | return A; |
570 | } |
571 | |
572 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
573 | inline double BitsToDouble(uint64_t Bits) { |
574 | double D; |
575 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes" ); |
576 | memcpy(&D, &Bits, sizeof(Bits)); |
577 | return D; |
578 | } |
579 | |
580 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
581 | inline float BitsToFloat(uint32_t Bits) { |
582 | float F; |
583 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes" ); |
584 | memcpy(&F, &Bits, sizeof(Bits)); |
585 | return F; |
586 | } |
587 | |
588 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
589 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
590 | /// notably x86, so this routine cannot be used if these bits are needed. |
591 | inline uint64_t DoubleToBits(double Double) { |
592 | uint64_t Bits; |
593 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes" ); |
594 | memcpy(&Bits, &Double, sizeof(Double)); |
595 | return Bits; |
596 | } |
597 | |
598 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
599 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
600 | /// notably x86, so this routine cannot be used if these bits are needed. |
601 | inline uint32_t FloatToBits(float Float) { |
602 | uint32_t Bits; |
603 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes" ); |
604 | memcpy(&Bits, &Float, sizeof(Float)); |
605 | return Bits; |
606 | } |
607 | |
608 | /// A and B are either alignments or offsets. Return the minimum alignment that |
609 | /// may be assumed after adding the two together. |
610 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
611 | // The largest power of 2 that divides both A and B. |
612 | // |
613 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
614 | // MSVC warning C4146 |
615 | // return (A | B) & -(A | B); |
616 | return (A | B) & (1 + ~(A | B)); |
617 | } |
618 | |
619 | /// Aligns \c Addr to \c Alignment bytes, rounding up. |
620 | /// |
621 | /// Alignment should be a power of two. This method rounds up, so |
622 | /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. |
623 | inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { |
624 | assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && |
625 | "Alignment is not a power of two!" ); |
626 | |
627 | assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); |
628 | |
629 | return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); |
630 | } |
631 | |
632 | /// Returns the necessary adjustment for aligning \c Ptr to \c Alignment |
633 | /// bytes, rounding up. |
634 | inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { |
635 | return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; |
636 | } |
637 | |
638 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
639 | /// Returns zero on overflow. |
640 | inline uint64_t NextPowerOf2(uint64_t A) { |
641 | A |= (A >> 1); |
642 | A |= (A >> 2); |
643 | A |= (A >> 4); |
644 | A |= (A >> 8); |
645 | A |= (A >> 16); |
646 | A |= (A >> 32); |
647 | return A + 1; |
648 | } |
649 | |
650 | /// Returns the power of two which is less than or equal to the given value. |
651 | /// Essentially, it is a floor operation across the domain of powers of two. |
652 | inline uint64_t PowerOf2Floor(uint64_t A) { |
653 | if (!A) return 0; |
654 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
655 | } |
656 | |
657 | /// Returns the power of two which is greater than or equal to the given value. |
658 | /// Essentially, it is a ceil operation across the domain of powers of two. |
659 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
660 | if (!A) |
661 | return 0; |
662 | return NextPowerOf2(A - 1); |
663 | } |
664 | |
665 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
666 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
667 | /// |
668 | /// If non-zero \p Skew is specified, the return value will be a minimal |
669 | /// integer that is greater than or equal to \p Value and equal to |
670 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
671 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
672 | /// |
673 | /// Examples: |
674 | /// \code |
675 | /// alignTo(5, 8) = 8 |
676 | /// alignTo(17, 8) = 24 |
677 | /// alignTo(~0LL, 8) = 0 |
678 | /// alignTo(321, 255) = 510 |
679 | /// |
680 | /// alignTo(5, 8, 7) = 7 |
681 | /// alignTo(17, 8, 1) = 17 |
682 | /// alignTo(~0LL, 8, 3) = 3 |
683 | /// alignTo(321, 255, 42) = 552 |
684 | /// \endcode |
685 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
686 | assert(Align != 0u && "Align can't be 0." ); |
687 | Skew %= Align; |
688 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
689 | } |
690 | |
691 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
692 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
693 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
694 | static_assert(Align != 0u, "Align must be non-zero" ); |
695 | return (Value + Align - 1) / Align * Align; |
696 | } |
697 | |
698 | /// Returns the integer ceil(Numerator / Denominator). |
699 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
700 | return alignTo(Numerator, Denominator) / Denominator; |
701 | } |
702 | |
703 | /// \c alignTo for contexts where a constant expression is required. |
704 | /// \sa alignTo |
705 | /// |
706 | /// \todo FIXME: remove when \c constexpr becomes really \c constexpr |
707 | template <uint64_t Align> |
708 | struct AlignTo { |
709 | static_assert(Align != 0u, "Align must be non-zero" ); |
710 | template <uint64_t Value> |
711 | struct from_value { |
712 | static const uint64_t value = (Value + Align - 1) / Align * Align; |
713 | }; |
714 | }; |
715 | |
716 | /// Returns the largest uint64_t less than or equal to \p Value and is |
717 | /// \p Skew mod \p Align. \p Align must be non-zero |
718 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
719 | assert(Align != 0u && "Align can't be 0." ); |
720 | Skew %= Align; |
721 | return (Value - Skew) / Align * Align + Skew; |
722 | } |
723 | |
724 | /// Returns the offset to the next integer (mod 2**64) that is greater than |
725 | /// or equal to \p Value and is a multiple of \p Align. \p Align must be |
726 | /// non-zero. |
727 | inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { |
728 | return alignTo(Value, Align) - Value; |
729 | } |
730 | |
731 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
732 | /// Requires 0 < B <= 32. |
733 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
734 | static_assert(B > 0, "Bit width can't be 0." ); |
735 | static_assert(B <= 32, "Bit width out of range." ); |
736 | return int32_t(X << (32 - B)) >> (32 - B); |
737 | } |
738 | |
739 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
740 | /// Requires 0 < B < 32. |
741 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
742 | assert(B > 0 && "Bit width can't be 0." ); |
743 | assert(B <= 32 && "Bit width out of range." ); |
744 | return int32_t(X << (32 - B)) >> (32 - B); |
745 | } |
746 | |
747 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
748 | /// Requires 0 < B < 64. |
749 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
750 | static_assert(B > 0, "Bit width can't be 0." ); |
751 | static_assert(B <= 64, "Bit width out of range." ); |
752 | return int64_t(x << (64 - B)) >> (64 - B); |
753 | } |
754 | |
755 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
756 | /// Requires 0 < B < 64. |
757 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
758 | assert(B > 0 && "Bit width can't be 0." ); |
759 | assert(B <= 64 && "Bit width out of range." ); |
760 | return int64_t(X << (64 - B)) >> (64 - B); |
761 | } |
762 | |
763 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
764 | /// value of the result. |
765 | template <typename T> |
766 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
767 | AbsoluteDifference(T X, T Y) { |
768 | return std::max(X, Y) - std::min(X, Y); |
769 | } |
770 | |
771 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
772 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
773 | /// the result is larger than the maximum representable value of type T. |
774 | template <typename T> |
775 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
776 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
777 | bool Dummy; |
778 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
779 | // Hacker's Delight, p. 29 |
780 | T Z = X + Y; |
781 | Overflowed = (Z < X || Z < Y); |
782 | if (Overflowed) |
783 | return std::numeric_limits<T>::max(); |
784 | else |
785 | return Z; |
786 | } |
787 | |
788 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
789 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
790 | /// the result is larger than the maximum representable value of type T. |
791 | template <typename T> |
792 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
793 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
794 | bool Dummy; |
795 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
796 | |
797 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
798 | // because it fails for uint16_t (where multiplication can have undefined |
799 | // behavior due to promotion to int), and requires a division in addition |
800 | // to the multiplication. |
801 | |
802 | Overflowed = false; |
803 | |
804 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
805 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
806 | // will necessarily be less than Log2Max as desired. |
807 | int Log2Z = Log2_64(X) + Log2_64(Y); |
808 | const T Max = std::numeric_limits<T>::max(); |
809 | int Log2Max = Log2_64(Max); |
810 | if (Log2Z < Log2Max) { |
811 | return X * Y; |
812 | } |
813 | if (Log2Z > Log2Max) { |
814 | Overflowed = true; |
815 | return Max; |
816 | } |
817 | |
818 | // We're going to use the top bit, and maybe overflow one |
819 | // bit past it. Multiply all but the bottom bit then add |
820 | // that on at the end. |
821 | T Z = (X >> 1) * Y; |
822 | if (Z & ~(Max >> 1)) { |
823 | Overflowed = true; |
824 | return Max; |
825 | } |
826 | Z <<= 1; |
827 | if (X & 1) |
828 | return SaturatingAdd(Z, Y, ResultOverflowed); |
829 | |
830 | return Z; |
831 | } |
832 | |
833 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
834 | /// the product. Clamp the result to the maximum representable value of T on |
835 | /// overflow. ResultOverflowed indicates if the result is larger than the |
836 | /// maximum representable value of type T. |
837 | template <typename T> |
838 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
839 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
840 | bool Dummy; |
841 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
842 | |
843 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
844 | if (Overflowed) |
845 | return Product; |
846 | |
847 | return SaturatingAdd(A, Product, &Overflowed); |
848 | } |
849 | |
850 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
851 | extern const float huge_valf; |
852 | } // End llvm namespace |
853 | |
854 | #endif |
855 | |