1/*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
12 *
13 * This code is licensed under the GNU GPL v2.
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
17 */
18
19#ifndef NAND_IO
20
21#include "qemu/osdep.h"
22#include "hw/hw.h"
23#include "hw/qdev-properties.h"
24#include "hw/block/flash.h"
25#include "sysemu/block-backend.h"
26#include "migration/vmstate.h"
27#include "qapi/error.h"
28#include "qemu/error-report.h"
29#include "qemu/module.h"
30
31# define NAND_CMD_READ0 0x00
32# define NAND_CMD_READ1 0x01
33# define NAND_CMD_READ2 0x50
34# define NAND_CMD_LPREAD2 0x30
35# define NAND_CMD_NOSERIALREAD2 0x35
36# define NAND_CMD_RANDOMREAD1 0x05
37# define NAND_CMD_RANDOMREAD2 0xe0
38# define NAND_CMD_READID 0x90
39# define NAND_CMD_RESET 0xff
40# define NAND_CMD_PAGEPROGRAM1 0x80
41# define NAND_CMD_PAGEPROGRAM2 0x10
42# define NAND_CMD_CACHEPROGRAM2 0x15
43# define NAND_CMD_BLOCKERASE1 0x60
44# define NAND_CMD_BLOCKERASE2 0xd0
45# define NAND_CMD_READSTATUS 0x70
46# define NAND_CMD_COPYBACKPRG1 0x85
47
48# define NAND_IOSTATUS_ERROR (1 << 0)
49# define NAND_IOSTATUS_PLANE0 (1 << 1)
50# define NAND_IOSTATUS_PLANE1 (1 << 2)
51# define NAND_IOSTATUS_PLANE2 (1 << 3)
52# define NAND_IOSTATUS_PLANE3 (1 << 4)
53# define NAND_IOSTATUS_READY (1 << 6)
54# define NAND_IOSTATUS_UNPROTCT (1 << 7)
55
56# define MAX_PAGE 0x800
57# define MAX_OOB 0x40
58
59typedef struct NANDFlashState NANDFlashState;
60struct NANDFlashState {
61 DeviceState parent_obj;
62
63 uint8_t manf_id, chip_id;
64 uint8_t buswidth; /* in BYTES */
65 int size, pages;
66 int page_shift, oob_shift, erase_shift, addr_shift;
67 uint8_t *storage;
68 BlockBackend *blk;
69 int mem_oob;
70
71 uint8_t cle, ale, ce, wp, gnd;
72
73 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
74 uint8_t *ioaddr;
75 int iolen;
76
77 uint32_t cmd;
78 uint64_t addr;
79 int addrlen;
80 int status;
81 int offset;
82
83 void (*blk_write)(NANDFlashState *s);
84 void (*blk_erase)(NANDFlashState *s);
85 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
86
87 uint32_t ioaddr_vmstate;
88};
89
90#define TYPE_NAND "nand"
91
92#define NAND(obj) \
93 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
94
95static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
96{
97 /* Like memcpy() but we logical-AND the data into the destination */
98 int i;
99 for (i = 0; i < n; i++) {
100 dest[i] &= src[i];
101 }
102}
103
104# define NAND_NO_AUTOINCR 0x00000001
105# define NAND_BUSWIDTH_16 0x00000002
106# define NAND_NO_PADDING 0x00000004
107# define NAND_CACHEPRG 0x00000008
108# define NAND_COPYBACK 0x00000010
109# define NAND_IS_AND 0x00000020
110# define NAND_4PAGE_ARRAY 0x00000040
111# define NAND_NO_READRDY 0x00000100
112# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
113
114# define NAND_IO
115
116# define PAGE(addr) ((addr) >> ADDR_SHIFT)
117# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
118# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
119# define OOB_SHIFT (PAGE_SHIFT - 5)
120# define OOB_SIZE (1 << OOB_SHIFT)
121# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
122# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
123
124# define PAGE_SIZE 256
125# define PAGE_SHIFT 8
126# define PAGE_SECTORS 1
127# define ADDR_SHIFT 8
128# include "nand.c"
129# define PAGE_SIZE 512
130# define PAGE_SHIFT 9
131# define PAGE_SECTORS 1
132# define ADDR_SHIFT 8
133# include "nand.c"
134# define PAGE_SIZE 2048
135# define PAGE_SHIFT 11
136# define PAGE_SECTORS 4
137# define ADDR_SHIFT 16
138# include "nand.c"
139
140/* Information based on Linux drivers/mtd/nand/nand_ids.c */
141static const struct {
142 int size;
143 int width;
144 int page_shift;
145 int erase_shift;
146 uint32_t options;
147} nand_flash_ids[0x100] = {
148 [0 ... 0xff] = { 0 },
149
150 [0x6e] = { 1, 8, 8, 4, 0 },
151 [0x64] = { 2, 8, 8, 4, 0 },
152 [0x6b] = { 4, 8, 9, 4, 0 },
153 [0xe8] = { 1, 8, 8, 4, 0 },
154 [0xec] = { 1, 8, 8, 4, 0 },
155 [0xea] = { 2, 8, 8, 4, 0 },
156 [0xd5] = { 4, 8, 9, 4, 0 },
157 [0xe3] = { 4, 8, 9, 4, 0 },
158 [0xe5] = { 4, 8, 9, 4, 0 },
159 [0xd6] = { 8, 8, 9, 4, 0 },
160
161 [0x39] = { 8, 8, 9, 4, 0 },
162 [0xe6] = { 8, 8, 9, 4, 0 },
163 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
164 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
165
166 [0x33] = { 16, 8, 9, 5, 0 },
167 [0x73] = { 16, 8, 9, 5, 0 },
168 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
170
171 [0x35] = { 32, 8, 9, 5, 0 },
172 [0x75] = { 32, 8, 9, 5, 0 },
173 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
174 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
175
176 [0x36] = { 64, 8, 9, 5, 0 },
177 [0x76] = { 64, 8, 9, 5, 0 },
178 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
179 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
180
181 [0x78] = { 128, 8, 9, 5, 0 },
182 [0x39] = { 128, 8, 9, 5, 0 },
183 [0x79] = { 128, 8, 9, 5, 0 },
184 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
185 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
186 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
187 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
188
189 [0x71] = { 256, 8, 9, 5, 0 },
190
191 /*
192 * These are the new chips with large page size. The pagesize and the
193 * erasesize is determined from the extended id bytes
194 */
195# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
196# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
197
198 /* 512 Megabit */
199 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
200 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
201 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
202 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
203
204 /* 1 Gigabit */
205 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
206 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
207 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
208 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
209
210 /* 2 Gigabit */
211 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
212 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
213 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
214 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
215
216 /* 4 Gigabit */
217 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
218 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
219 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
220 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
221
222 /* 8 Gigabit */
223 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
224 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
225 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
226 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
227
228 /* 16 Gigabit */
229 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
230 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
231 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
232 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
233};
234
235static void nand_reset(DeviceState *dev)
236{
237 NANDFlashState *s = NAND(dev);
238 s->cmd = NAND_CMD_READ0;
239 s->addr = 0;
240 s->addrlen = 0;
241 s->iolen = 0;
242 s->offset = 0;
243 s->status &= NAND_IOSTATUS_UNPROTCT;
244 s->status |= NAND_IOSTATUS_READY;
245}
246
247static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
248{
249 s->ioaddr[s->iolen++] = value;
250 for (value = s->buswidth; --value;) {
251 s->ioaddr[s->iolen++] = 0;
252 }
253}
254
255static void nand_command(NANDFlashState *s)
256{
257 unsigned int offset;
258 switch (s->cmd) {
259 case NAND_CMD_READ0:
260 s->iolen = 0;
261 break;
262
263 case NAND_CMD_READID:
264 s->ioaddr = s->io;
265 s->iolen = 0;
266 nand_pushio_byte(s, s->manf_id);
267 nand_pushio_byte(s, s->chip_id);
268 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
269 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
270 /* Page Size, Block Size, Spare Size; bit 6 indicates
271 * 8 vs 16 bit width NAND.
272 */
273 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
274 } else {
275 nand_pushio_byte(s, 0xc0); /* Multi-plane */
276 }
277 break;
278
279 case NAND_CMD_RANDOMREAD2:
280 case NAND_CMD_NOSERIALREAD2:
281 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
282 break;
283 offset = s->addr & ((1 << s->addr_shift) - 1);
284 s->blk_load(s, s->addr, offset);
285 if (s->gnd)
286 s->iolen = (1 << s->page_shift) - offset;
287 else
288 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
289 break;
290
291 case NAND_CMD_RESET:
292 nand_reset(DEVICE(s));
293 break;
294
295 case NAND_CMD_PAGEPROGRAM1:
296 s->ioaddr = s->io;
297 s->iolen = 0;
298 break;
299
300 case NAND_CMD_PAGEPROGRAM2:
301 if (s->wp) {
302 s->blk_write(s);
303 }
304 break;
305
306 case NAND_CMD_BLOCKERASE1:
307 break;
308
309 case NAND_CMD_BLOCKERASE2:
310 s->addr &= (1ull << s->addrlen * 8) - 1;
311 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
312 16 : 8;
313
314 if (s->wp) {
315 s->blk_erase(s);
316 }
317 break;
318
319 case NAND_CMD_READSTATUS:
320 s->ioaddr = s->io;
321 s->iolen = 0;
322 nand_pushio_byte(s, s->status);
323 break;
324
325 default:
326 printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
327 }
328}
329
330static int nand_pre_save(void *opaque)
331{
332 NANDFlashState *s = NAND(opaque);
333
334 s->ioaddr_vmstate = s->ioaddr - s->io;
335
336 return 0;
337}
338
339static int nand_post_load(void *opaque, int version_id)
340{
341 NANDFlashState *s = NAND(opaque);
342
343 if (s->ioaddr_vmstate > sizeof(s->io)) {
344 return -EINVAL;
345 }
346 s->ioaddr = s->io + s->ioaddr_vmstate;
347
348 return 0;
349}
350
351static const VMStateDescription vmstate_nand = {
352 .name = "nand",
353 .version_id = 1,
354 .minimum_version_id = 1,
355 .pre_save = nand_pre_save,
356 .post_load = nand_post_load,
357 .fields = (VMStateField[]) {
358 VMSTATE_UINT8(cle, NANDFlashState),
359 VMSTATE_UINT8(ale, NANDFlashState),
360 VMSTATE_UINT8(ce, NANDFlashState),
361 VMSTATE_UINT8(wp, NANDFlashState),
362 VMSTATE_UINT8(gnd, NANDFlashState),
363 VMSTATE_BUFFER(io, NANDFlashState),
364 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
365 VMSTATE_INT32(iolen, NANDFlashState),
366 VMSTATE_UINT32(cmd, NANDFlashState),
367 VMSTATE_UINT64(addr, NANDFlashState),
368 VMSTATE_INT32(addrlen, NANDFlashState),
369 VMSTATE_INT32(status, NANDFlashState),
370 VMSTATE_INT32(offset, NANDFlashState),
371 /* XXX: do we want to save s->storage too? */
372 VMSTATE_END_OF_LIST()
373 }
374};
375
376static void nand_realize(DeviceState *dev, Error **errp)
377{
378 int pagesize;
379 NANDFlashState *s = NAND(dev);
380 int ret;
381
382
383 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
384 s->size = nand_flash_ids[s->chip_id].size << 20;
385 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
386 s->page_shift = 11;
387 s->erase_shift = 6;
388 } else {
389 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
390 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
391 }
392
393 switch (1 << s->page_shift) {
394 case 256:
395 nand_init_256(s);
396 break;
397 case 512:
398 nand_init_512(s);
399 break;
400 case 2048:
401 nand_init_2048(s);
402 break;
403 default:
404 error_setg(errp, "Unsupported NAND block size %#x",
405 1 << s->page_shift);
406 return;
407 }
408
409 pagesize = 1 << s->oob_shift;
410 s->mem_oob = 1;
411 if (s->blk) {
412 if (blk_is_read_only(s->blk)) {
413 error_setg(errp, "Can't use a read-only drive");
414 return;
415 }
416 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
417 BLK_PERM_ALL, errp);
418 if (ret < 0) {
419 return;
420 }
421 if (blk_getlength(s->blk) >=
422 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
423 pagesize = 0;
424 s->mem_oob = 0;
425 }
426 } else {
427 pagesize += 1 << s->page_shift;
428 }
429 if (pagesize) {
430 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
431 0xff, s->pages * pagesize);
432 }
433 /* Give s->ioaddr a sane value in case we save state before it is used. */
434 s->ioaddr = s->io;
435}
436
437static Property nand_properties[] = {
438 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
439 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
440 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
441 DEFINE_PROP_END_OF_LIST(),
442};
443
444static void nand_class_init(ObjectClass *klass, void *data)
445{
446 DeviceClass *dc = DEVICE_CLASS(klass);
447
448 dc->realize = nand_realize;
449 dc->reset = nand_reset;
450 dc->vmsd = &vmstate_nand;
451 dc->props = nand_properties;
452}
453
454static const TypeInfo nand_info = {
455 .name = TYPE_NAND,
456 .parent = TYPE_DEVICE,
457 .instance_size = sizeof(NANDFlashState),
458 .class_init = nand_class_init,
459};
460
461static void nand_register_types(void)
462{
463 type_register_static(&nand_info);
464}
465
466/*
467 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
468 * outputs are R/B and eight I/O pins.
469 *
470 * CE, WP and R/B are active low.
471 */
472void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
473 uint8_t ce, uint8_t wp, uint8_t gnd)
474{
475 NANDFlashState *s = NAND(dev);
476
477 s->cle = cle;
478 s->ale = ale;
479 s->ce = ce;
480 s->wp = wp;
481 s->gnd = gnd;
482 if (wp) {
483 s->status |= NAND_IOSTATUS_UNPROTCT;
484 } else {
485 s->status &= ~NAND_IOSTATUS_UNPROTCT;
486 }
487}
488
489void nand_getpins(DeviceState *dev, int *rb)
490{
491 *rb = 1;
492}
493
494void nand_setio(DeviceState *dev, uint32_t value)
495{
496 int i;
497 NANDFlashState *s = NAND(dev);
498
499 if (!s->ce && s->cle) {
500 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
501 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
502 return;
503 if (value == NAND_CMD_RANDOMREAD1) {
504 s->addr &= ~((1 << s->addr_shift) - 1);
505 s->addrlen = 0;
506 return;
507 }
508 }
509 if (value == NAND_CMD_READ0) {
510 s->offset = 0;
511 } else if (value == NAND_CMD_READ1) {
512 s->offset = 0x100;
513 value = NAND_CMD_READ0;
514 } else if (value == NAND_CMD_READ2) {
515 s->offset = 1 << s->page_shift;
516 value = NAND_CMD_READ0;
517 }
518
519 s->cmd = value;
520
521 if (s->cmd == NAND_CMD_READSTATUS ||
522 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
523 s->cmd == NAND_CMD_BLOCKERASE1 ||
524 s->cmd == NAND_CMD_BLOCKERASE2 ||
525 s->cmd == NAND_CMD_NOSERIALREAD2 ||
526 s->cmd == NAND_CMD_RANDOMREAD2 ||
527 s->cmd == NAND_CMD_RESET) {
528 nand_command(s);
529 }
530
531 if (s->cmd != NAND_CMD_RANDOMREAD2) {
532 s->addrlen = 0;
533 }
534 }
535
536 if (s->ale) {
537 unsigned int shift = s->addrlen * 8;
538 uint64_t mask = ~(0xffull << shift);
539 uint64_t v = (uint64_t)value << shift;
540
541 s->addr = (s->addr & mask) | v;
542 s->addrlen ++;
543
544 switch (s->addrlen) {
545 case 1:
546 if (s->cmd == NAND_CMD_READID) {
547 nand_command(s);
548 }
549 break;
550 case 2: /* fix cache address as a byte address */
551 s->addr <<= (s->buswidth - 1);
552 break;
553 case 3:
554 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
555 (s->cmd == NAND_CMD_READ0 ||
556 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
557 nand_command(s);
558 }
559 break;
560 case 4:
561 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
562 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
563 (s->cmd == NAND_CMD_READ0 ||
564 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
565 nand_command(s);
566 }
567 break;
568 case 5:
569 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
570 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
571 (s->cmd == NAND_CMD_READ0 ||
572 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
573 nand_command(s);
574 }
575 break;
576 default:
577 break;
578 }
579 }
580
581 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
582 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
583 for (i = s->buswidth; i--; value >>= 8) {
584 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
585 }
586 }
587 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
588 if ((s->addr & ((1 << s->addr_shift) - 1)) <
589 (1 << s->page_shift) + (1 << s->oob_shift)) {
590 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
591 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
592 (uint8_t) (value & 0xff);
593 }
594 }
595 }
596}
597
598uint32_t nand_getio(DeviceState *dev)
599{
600 int offset;
601 uint32_t x = 0;
602 NANDFlashState *s = NAND(dev);
603
604 /* Allow sequential reading */
605 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
606 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
607 s->offset = 0;
608
609 s->blk_load(s, s->addr, offset);
610 if (s->gnd)
611 s->iolen = (1 << s->page_shift) - offset;
612 else
613 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
614 }
615
616 if (s->ce || s->iolen <= 0) {
617 return 0;
618 }
619
620 for (offset = s->buswidth; offset--;) {
621 x |= s->ioaddr[offset] << (offset << 3);
622 }
623 /* after receiving READ STATUS command all subsequent reads will
624 * return the status register value until another command is issued
625 */
626 if (s->cmd != NAND_CMD_READSTATUS) {
627 s->addr += s->buswidth;
628 s->ioaddr += s->buswidth;
629 s->iolen -= s->buswidth;
630 }
631 return x;
632}
633
634uint32_t nand_getbuswidth(DeviceState *dev)
635{
636 NANDFlashState *s = (NANDFlashState *) dev;
637 return s->buswidth << 3;
638}
639
640DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
641{
642 DeviceState *dev;
643
644 if (nand_flash_ids[chip_id].size == 0) {
645 hw_error("%s: Unsupported NAND chip ID.\n", __func__);
646 }
647 dev = DEVICE(object_new(TYPE_NAND));
648 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
649 qdev_prop_set_uint8(dev, "chip_id", chip_id);
650 if (blk) {
651 qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
652 }
653
654 qdev_init_nofail(dev);
655 return dev;
656}
657
658type_init(nand_register_types)
659
660#else
661
662/* Program a single page */
663static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
664{
665 uint64_t off, page, sector, soff;
666 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
667 if (PAGE(s->addr) >= s->pages)
668 return;
669
670 if (!s->blk) {
671 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
672 s->offset, s->io, s->iolen);
673 } else if (s->mem_oob) {
674 sector = SECTOR(s->addr);
675 off = (s->addr & PAGE_MASK) + s->offset;
676 soff = SECTOR_OFFSET(s->addr);
677 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
678 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
679 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
680 return;
681 }
682
683 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
684 if (off + s->iolen > PAGE_SIZE) {
685 page = PAGE(s->addr);
686 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
687 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
688 }
689
690 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
691 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
692 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
693 }
694 } else {
695 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
696 sector = off >> 9;
697 soff = off & 0x1ff;
698 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
699 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
700 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
701 return;
702 }
703
704 mem_and(iobuf + soff, s->io, s->iolen);
705
706 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
707 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
708 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
709 }
710 }
711 s->offset = 0;
712}
713
714/* Erase a single block */
715static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
716{
717 uint64_t i, page, addr;
718 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
719 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
720
721 if (PAGE(addr) >= s->pages) {
722 return;
723 }
724
725 if (!s->blk) {
726 memset(s->storage + PAGE_START(addr),
727 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
728 } else if (s->mem_oob) {
729 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
730 0xff, OOB_SIZE << s->erase_shift);
731 i = SECTOR(addr);
732 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
733 for (; i < page; i ++)
734 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
735 BDRV_SECTOR_SIZE, 0) < 0) {
736 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
737 }
738 } else {
739 addr = PAGE_START(addr);
740 page = addr >> 9;
741 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
742 BDRV_SECTOR_SIZE) < 0) {
743 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
744 }
745 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
746 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
747 BDRV_SECTOR_SIZE, 0) < 0) {
748 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
749 }
750
751 memset(iobuf, 0xff, 0x200);
752 i = (addr & ~0x1ff) + 0x200;
753 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
754 i < addr; i += 0x200) {
755 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
756 printf("%s: write error in sector %" PRIu64 "\n",
757 __func__, i >> 9);
758 }
759 }
760
761 page = i >> 9;
762 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
763 BDRV_SECTOR_SIZE) < 0) {
764 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
765 }
766 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
767 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
768 BDRV_SECTOR_SIZE, 0) < 0) {
769 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
770 }
771 }
772}
773
774static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
775 uint64_t addr, int offset)
776{
777 if (PAGE(addr) >= s->pages) {
778 return;
779 }
780
781 if (s->blk) {
782 if (s->mem_oob) {
783 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
784 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
785 printf("%s: read error in sector %" PRIu64 "\n",
786 __func__, SECTOR(addr));
787 }
788 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
789 s->storage + (PAGE(s->addr) << OOB_SHIFT),
790 OOB_SIZE);
791 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
792 } else {
793 if (blk_pread(s->blk, PAGE_START(addr), s->io,
794 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
795 printf("%s: read error in sector %" PRIu64 "\n",
796 __func__, PAGE_START(addr) >> 9);
797 }
798 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
799 }
800 } else {
801 memcpy(s->io, s->storage + PAGE_START(s->addr) +
802 offset, PAGE_SIZE + OOB_SIZE - offset);
803 s->ioaddr = s->io;
804 }
805}
806
807static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
808{
809 s->oob_shift = PAGE_SHIFT - 5;
810 s->pages = s->size >> PAGE_SHIFT;
811 s->addr_shift = ADDR_SHIFT;
812
813 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
814 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
815 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
816}
817
818# undef PAGE_SIZE
819# undef PAGE_SHIFT
820# undef PAGE_SECTORS
821# undef ADDR_SHIFT
822#endif /* NAND_IO */
823