1/*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14#ifndef MEMORY_H
15#define MEMORY_H
16
17#ifndef CONFIG_USER_ONLY
18
19#include "exec/cpu-common.h"
20#include "exec/hwaddr.h"
21#include "exec/memattrs.h"
22#include "exec/memop.h"
23#include "exec/ramlist.h"
24#include "qemu/bswap.h"
25#include "qemu/queue.h"
26#include "qemu/int128.h"
27#include "qemu/notify.h"
28#include "qom/object.h"
29#include "qemu/rcu.h"
30
31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33#define MAX_PHYS_ADDR_SPACE_BITS 62
34#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36#define TYPE_MEMORY_REGION "qemu:memory-region"
37#define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39
40#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41#define IOMMU_MEMORY_REGION(obj) \
42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43#define IOMMU_MEMORY_REGION_CLASS(klass) \
44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45 TYPE_IOMMU_MEMORY_REGION)
46#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48 TYPE_IOMMU_MEMORY_REGION)
49
50extern bool global_dirty_log;
51
52typedef struct MemoryRegionOps MemoryRegionOps;
53typedef struct MemoryRegionMmio MemoryRegionMmio;
54
55struct MemoryRegionMmio {
56 CPUReadMemoryFunc *read[3];
57 CPUWriteMemoryFunc *write[3];
58};
59
60typedef struct IOMMUTLBEntry IOMMUTLBEntry;
61
62/* See address_space_translate: bit 0 is read, bit 1 is write. */
63typedef enum {
64 IOMMU_NONE = 0,
65 IOMMU_RO = 1,
66 IOMMU_WO = 2,
67 IOMMU_RW = 3,
68} IOMMUAccessFlags;
69
70#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
71
72struct IOMMUTLBEntry {
73 AddressSpace *target_as;
74 hwaddr iova;
75 hwaddr translated_addr;
76 hwaddr addr_mask; /* 0xfff = 4k translation */
77 IOMMUAccessFlags perm;
78};
79
80/*
81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82 * register with one or multiple IOMMU Notifier capability bit(s).
83 */
84typedef enum {
85 IOMMU_NOTIFIER_NONE = 0,
86 /* Notify cache invalidations */
87 IOMMU_NOTIFIER_UNMAP = 0x1,
88 /* Notify entry changes (newly created entries) */
89 IOMMU_NOTIFIER_MAP = 0x2,
90} IOMMUNotifierFlag;
91
92#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
93
94struct IOMMUNotifier;
95typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96 IOMMUTLBEntry *data);
97
98struct IOMMUNotifier {
99 IOMMUNotify notify;
100 IOMMUNotifierFlag notifier_flags;
101 /* Notify for address space range start <= addr <= end */
102 hwaddr start;
103 hwaddr end;
104 int iommu_idx;
105 QLIST_ENTRY(IOMMUNotifier) node;
106};
107typedef struct IOMMUNotifier IOMMUNotifier;
108
109/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110#define RAM_PREALLOC (1 << 0)
111
112/* RAM is mmap-ed with MAP_SHARED */
113#define RAM_SHARED (1 << 1)
114
115/* Only a portion of RAM (used_length) is actually used, and migrated.
116 * This used_length size can change across reboots.
117 */
118#define RAM_RESIZEABLE (1 << 2)
119
120/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121 * zero the page and wake waiting processes.
122 * (Set during postcopy)
123 */
124#define RAM_UF_ZEROPAGE (1 << 3)
125
126/* RAM can be migrated */
127#define RAM_MIGRATABLE (1 << 4)
128
129/* RAM is a persistent kind memory */
130#define RAM_PMEM (1 << 5)
131
132static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133 IOMMUNotifierFlag flags,
134 hwaddr start, hwaddr end,
135 int iommu_idx)
136{
137 n->notify = fn;
138 n->notifier_flags = flags;
139 n->start = start;
140 n->end = end;
141 n->iommu_idx = iommu_idx;
142}
143
144/*
145 * Memory region callbacks
146 */
147struct MemoryRegionOps {
148 /* Read from the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 uint64_t (*read)(void *opaque,
151 hwaddr addr,
152 unsigned size);
153 /* Write to the memory region. @addr is relative to @mr; @size is
154 * in bytes. */
155 void (*write)(void *opaque,
156 hwaddr addr,
157 uint64_t data,
158 unsigned size);
159
160 MemTxResult (*read_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t *data,
163 unsigned size,
164 MemTxAttrs attrs);
165 MemTxResult (*write_with_attrs)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size,
169 MemTxAttrs attrs);
170
171 enum device_endian endianness;
172 /* Guest-visible constraints: */
173 struct {
174 /* If nonzero, specify bounds on access sizes beyond which a machine
175 * check is thrown.
176 */
177 unsigned min_access_size;
178 unsigned max_access_size;
179 /* If true, unaligned accesses are supported. Otherwise unaligned
180 * accesses throw machine checks.
181 */
182 bool unaligned;
183 /*
184 * If present, and returns #false, the transaction is not accepted
185 * by the device (and results in machine dependent behaviour such
186 * as a machine check exception).
187 */
188 bool (*accepts)(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs);
191 } valid;
192 /* Internal implementation constraints: */
193 struct {
194 /* If nonzero, specifies the minimum size implemented. Smaller sizes
195 * will be rounded upwards and a partial result will be returned.
196 */
197 unsigned min_access_size;
198 /* If nonzero, specifies the maximum size implemented. Larger sizes
199 * will be done as a series of accesses with smaller sizes.
200 */
201 unsigned max_access_size;
202 /* If true, unaligned accesses are supported. Otherwise all accesses
203 * are converted to (possibly multiple) naturally aligned accesses.
204 */
205 bool unaligned;
206 } impl;
207};
208
209typedef struct MemoryRegionClass {
210 /* private */
211 ObjectClass parent_class;
212} MemoryRegionClass;
213
214
215enum IOMMUMemoryRegionAttr {
216 IOMMU_ATTR_SPAPR_TCE_FD
217};
218
219/**
220 * IOMMUMemoryRegionClass:
221 *
222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223 * and provide an implementation of at least the @translate method here
224 * to handle requests to the memory region. Other methods are optional.
225 *
226 * The IOMMU implementation must use the IOMMU notifier infrastructure
227 * to report whenever mappings are changed, by calling
228 * memory_region_notify_iommu() (or, if necessary, by calling
229 * memory_region_notify_one() for each registered notifier).
230 *
231 * Conceptually an IOMMU provides a mapping from input address
232 * to an output TLB entry. If the IOMMU is aware of memory transaction
233 * attributes and the output TLB entry depends on the transaction
234 * attributes, we represent this using IOMMU indexes. Each index
235 * selects a particular translation table that the IOMMU has:
236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
237 * @translate takes an input address and an IOMMU index
238 * and the mapping returned can only depend on the input address and the
239 * IOMMU index.
240 *
241 * Most IOMMUs don't care about the transaction attributes and support
242 * only a single IOMMU index. A more complex IOMMU might have one index
243 * for secure transactions and one for non-secure transactions.
244 */
245typedef struct IOMMUMemoryRegionClass {
246 /* private */
247 MemoryRegionClass parent_class;
248
249 /*
250 * Return a TLB entry that contains a given address.
251 *
252 * The IOMMUAccessFlags indicated via @flag are optional and may
253 * be specified as IOMMU_NONE to indicate that the caller needs
254 * the full translation information for both reads and writes. If
255 * the access flags are specified then the IOMMU implementation
256 * may use this as an optimization, to stop doing a page table
257 * walk as soon as it knows that the requested permissions are not
258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259 * full page table walk and report the permissions in the returned
260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261 * return different mappings for reads and writes.)
262 *
263 * The returned information remains valid while the caller is
264 * holding the big QEMU lock or is inside an RCU critical section;
265 * if the caller wishes to cache the mapping beyond that it must
266 * register an IOMMU notifier so it can invalidate its cached
267 * information when the IOMMU mapping changes.
268 *
269 * @iommu: the IOMMUMemoryRegion
270 * @hwaddr: address to be translated within the memory region
271 * @flag: requested access permissions
272 * @iommu_idx: IOMMU index for the translation
273 */
274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275 IOMMUAccessFlags flag, int iommu_idx);
276 /* Returns minimum supported page size in bytes.
277 * If this method is not provided then the minimum is assumed to
278 * be TARGET_PAGE_SIZE.
279 *
280 * @iommu: the IOMMUMemoryRegion
281 */
282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283 /* Called when IOMMU Notifier flag changes (ie when the set of
284 * events which IOMMU users are requesting notification for changes).
285 * Optional method -- need not be provided if the IOMMU does not
286 * need to know exactly which events must be notified.
287 *
288 * @iommu: the IOMMUMemoryRegion
289 * @old_flags: events which previously needed to be notified
290 * @new_flags: events which now need to be notified
291 */
292 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
293 IOMMUNotifierFlag old_flags,
294 IOMMUNotifierFlag new_flags);
295 /* Called to handle memory_region_iommu_replay().
296 *
297 * The default implementation of memory_region_iommu_replay() is to
298 * call the IOMMU translate method for every page in the address space
299 * with flag == IOMMU_NONE and then call the notifier if translate
300 * returns a valid mapping. If this method is implemented then it
301 * overrides the default behaviour, and must provide the full semantics
302 * of memory_region_iommu_replay(), by calling @notifier for every
303 * translation present in the IOMMU.
304 *
305 * Optional method -- an IOMMU only needs to provide this method
306 * if the default is inefficient or produces undesirable side effects.
307 *
308 * Note: this is not related to record-and-replay functionality.
309 */
310 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
311
312 /* Get IOMMU misc attributes. This is an optional method that
313 * can be used to allow users of the IOMMU to get implementation-specific
314 * information. The IOMMU implements this method to handle calls
315 * by IOMMU users to memory_region_iommu_get_attr() by filling in
316 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
317 * the IOMMU supports. If the method is unimplemented then
318 * memory_region_iommu_get_attr() will always return -EINVAL.
319 *
320 * @iommu: the IOMMUMemoryRegion
321 * @attr: attribute being queried
322 * @data: memory to fill in with the attribute data
323 *
324 * Returns 0 on success, or a negative errno; in particular
325 * returns -EINVAL for unrecognized or unimplemented attribute types.
326 */
327 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
328 void *data);
329
330 /* Return the IOMMU index to use for a given set of transaction attributes.
331 *
332 * Optional method: if an IOMMU only supports a single IOMMU index then
333 * the default implementation of memory_region_iommu_attrs_to_index()
334 * will return 0.
335 *
336 * The indexes supported by an IOMMU must be contiguous, starting at 0.
337 *
338 * @iommu: the IOMMUMemoryRegion
339 * @attrs: memory transaction attributes
340 */
341 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
342
343 /* Return the number of IOMMU indexes this IOMMU supports.
344 *
345 * Optional method: if this method is not provided, then
346 * memory_region_iommu_num_indexes() will return 1, indicating that
347 * only a single IOMMU index is supported.
348 *
349 * @iommu: the IOMMUMemoryRegion
350 */
351 int (*num_indexes)(IOMMUMemoryRegion *iommu);
352} IOMMUMemoryRegionClass;
353
354typedef struct CoalescedMemoryRange CoalescedMemoryRange;
355typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
356
357struct MemoryRegion {
358 Object parent_obj;
359
360 /* All fields are private - violators will be prosecuted */
361
362 /* The following fields should fit in a cache line */
363 bool romd_mode;
364 bool ram;
365 bool subpage;
366 bool readonly; /* For RAM regions */
367 bool nonvolatile;
368 bool rom_device;
369 bool flush_coalesced_mmio;
370 bool global_locking;
371 uint8_t dirty_log_mask;
372 bool is_iommu;
373 RAMBlock *ram_block;
374 Object *owner;
375
376 const MemoryRegionOps *ops;
377 void *opaque;
378 MemoryRegion *container;
379 Int128 size;
380 hwaddr addr;
381 void (*destructor)(MemoryRegion *mr);
382 uint64_t align;
383 bool terminates;
384 bool ram_device;
385 bool enabled;
386 bool warning_printed; /* For reservations */
387 uint8_t vga_logging_count;
388 MemoryRegion *alias;
389 hwaddr alias_offset;
390 int32_t priority;
391 QTAILQ_HEAD(, MemoryRegion) subregions;
392 QTAILQ_ENTRY(MemoryRegion) subregions_link;
393 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
394 const char *name;
395 unsigned ioeventfd_nb;
396 MemoryRegionIoeventfd *ioeventfds;
397};
398
399struct IOMMUMemoryRegion {
400 MemoryRegion parent_obj;
401
402 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
403 IOMMUNotifierFlag iommu_notify_flags;
404};
405
406#define IOMMU_NOTIFIER_FOREACH(n, mr) \
407 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
408
409/**
410 * MemoryListener: callbacks structure for updates to the physical memory map
411 *
412 * Allows a component to adjust to changes in the guest-visible memory map.
413 * Use with memory_listener_register() and memory_listener_unregister().
414 */
415struct MemoryListener {
416 void (*begin)(MemoryListener *listener);
417 void (*commit)(MemoryListener *listener);
418 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
419 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
420 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
421 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
422 int old, int new);
423 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
424 int old, int new);
425 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
426 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
427 void (*log_global_start)(MemoryListener *listener);
428 void (*log_global_stop)(MemoryListener *listener);
429 void (*log_global_after_sync)(MemoryListener *listener);
430 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
431 bool match_data, uint64_t data, EventNotifier *e);
432 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
433 bool match_data, uint64_t data, EventNotifier *e);
434 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
435 hwaddr addr, hwaddr len);
436 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
437 hwaddr addr, hwaddr len);
438 /* Lower = earlier (during add), later (during del) */
439 unsigned priority;
440 AddressSpace *address_space;
441 QTAILQ_ENTRY(MemoryListener) link;
442 QTAILQ_ENTRY(MemoryListener) link_as;
443};
444
445/**
446 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
447 */
448struct AddressSpace {
449 /* All fields are private. */
450 struct rcu_head rcu;
451 char *name;
452 MemoryRegion *root;
453
454 /* Accessed via RCU. */
455 struct FlatView *current_map;
456
457 int ioeventfd_nb;
458 struct MemoryRegionIoeventfd *ioeventfds;
459 QTAILQ_HEAD(, MemoryListener) listeners;
460 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
461};
462
463typedef struct AddressSpaceDispatch AddressSpaceDispatch;
464typedef struct FlatRange FlatRange;
465
466/* Flattened global view of current active memory hierarchy. Kept in sorted
467 * order.
468 */
469struct FlatView {
470 struct rcu_head rcu;
471 unsigned ref;
472 FlatRange *ranges;
473 unsigned nr;
474 unsigned nr_allocated;
475 struct AddressSpaceDispatch *dispatch;
476 MemoryRegion *root;
477};
478
479static inline FlatView *address_space_to_flatview(AddressSpace *as)
480{
481 return atomic_rcu_read(&as->current_map);
482}
483
484
485/**
486 * MemoryRegionSection: describes a fragment of a #MemoryRegion
487 *
488 * @mr: the region, or %NULL if empty
489 * @fv: the flat view of the address space the region is mapped in
490 * @offset_within_region: the beginning of the section, relative to @mr's start
491 * @size: the size of the section; will not exceed @mr's boundaries
492 * @offset_within_address_space: the address of the first byte of the section
493 * relative to the region's address space
494 * @readonly: writes to this section are ignored
495 * @nonvolatile: this section is non-volatile
496 */
497struct MemoryRegionSection {
498 MemoryRegion *mr;
499 FlatView *fv;
500 hwaddr offset_within_region;
501 Int128 size;
502 hwaddr offset_within_address_space;
503 bool readonly;
504 bool nonvolatile;
505};
506
507/**
508 * memory_region_init: Initialize a memory region
509 *
510 * The region typically acts as a container for other memory regions. Use
511 * memory_region_add_subregion() to add subregions.
512 *
513 * @mr: the #MemoryRegion to be initialized
514 * @owner: the object that tracks the region's reference count
515 * @name: used for debugging; not visible to the user or ABI
516 * @size: size of the region; any subregions beyond this size will be clipped
517 */
518void memory_region_init(MemoryRegion *mr,
519 struct Object *owner,
520 const char *name,
521 uint64_t size);
522
523/**
524 * memory_region_ref: Add 1 to a memory region's reference count
525 *
526 * Whenever memory regions are accessed outside the BQL, they need to be
527 * preserved against hot-unplug. MemoryRegions actually do not have their
528 * own reference count; they piggyback on a QOM object, their "owner".
529 * This function adds a reference to the owner.
530 *
531 * All MemoryRegions must have an owner if they can disappear, even if the
532 * device they belong to operates exclusively under the BQL. This is because
533 * the region could be returned at any time by memory_region_find, and this
534 * is usually under guest control.
535 *
536 * @mr: the #MemoryRegion
537 */
538void memory_region_ref(MemoryRegion *mr);
539
540/**
541 * memory_region_unref: Remove 1 to a memory region's reference count
542 *
543 * Whenever memory regions are accessed outside the BQL, they need to be
544 * preserved against hot-unplug. MemoryRegions actually do not have their
545 * own reference count; they piggyback on a QOM object, their "owner".
546 * This function removes a reference to the owner and possibly destroys it.
547 *
548 * @mr: the #MemoryRegion
549 */
550void memory_region_unref(MemoryRegion *mr);
551
552/**
553 * memory_region_init_io: Initialize an I/O memory region.
554 *
555 * Accesses into the region will cause the callbacks in @ops to be called.
556 * if @size is nonzero, subregions will be clipped to @size.
557 *
558 * @mr: the #MemoryRegion to be initialized.
559 * @owner: the object that tracks the region's reference count
560 * @ops: a structure containing read and write callbacks to be used when
561 * I/O is performed on the region.
562 * @opaque: passed to the read and write callbacks of the @ops structure.
563 * @name: used for debugging; not visible to the user or ABI
564 * @size: size of the region.
565 */
566void memory_region_init_io(MemoryRegion *mr,
567 struct Object *owner,
568 const MemoryRegionOps *ops,
569 void *opaque,
570 const char *name,
571 uint64_t size);
572
573/**
574 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
575 * into the region will modify memory
576 * directly.
577 *
578 * @mr: the #MemoryRegion to be initialized.
579 * @owner: the object that tracks the region's reference count
580 * @name: Region name, becomes part of RAMBlock name used in migration stream
581 * must be unique within any device
582 * @size: size of the region.
583 * @errp: pointer to Error*, to store an error if it happens.
584 *
585 * Note that this function does not do anything to cause the data in the
586 * RAM memory region to be migrated; that is the responsibility of the caller.
587 */
588void memory_region_init_ram_nomigrate(MemoryRegion *mr,
589 struct Object *owner,
590 const char *name,
591 uint64_t size,
592 Error **errp);
593
594/**
595 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
596 * Accesses into the region will
597 * modify memory directly.
598 *
599 * @mr: the #MemoryRegion to be initialized.
600 * @owner: the object that tracks the region's reference count
601 * @name: Region name, becomes part of RAMBlock name used in migration stream
602 * must be unique within any device
603 * @size: size of the region.
604 * @share: allow remapping RAM to different addresses
605 * @errp: pointer to Error*, to store an error if it happens.
606 *
607 * Note that this function is similar to memory_region_init_ram_nomigrate.
608 * The only difference is part of the RAM region can be remapped.
609 */
610void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
611 struct Object *owner,
612 const char *name,
613 uint64_t size,
614 bool share,
615 Error **errp);
616
617/**
618 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
619 * RAM. Accesses into the region will
620 * modify memory directly. Only an initial
621 * portion of this RAM is actually used.
622 * The used size can change across reboots.
623 *
624 * @mr: the #MemoryRegion to be initialized.
625 * @owner: the object that tracks the region's reference count
626 * @name: Region name, becomes part of RAMBlock name used in migration stream
627 * must be unique within any device
628 * @size: used size of the region.
629 * @max_size: max size of the region.
630 * @resized: callback to notify owner about used size change.
631 * @errp: pointer to Error*, to store an error if it happens.
632 *
633 * Note that this function does not do anything to cause the data in the
634 * RAM memory region to be migrated; that is the responsibility of the caller.
635 */
636void memory_region_init_resizeable_ram(MemoryRegion *mr,
637 struct Object *owner,
638 const char *name,
639 uint64_t size,
640 uint64_t max_size,
641 void (*resized)(const char*,
642 uint64_t length,
643 void *host),
644 Error **errp);
645#ifdef CONFIG_POSIX
646
647/**
648 * memory_region_init_ram_from_file: Initialize RAM memory region with a
649 * mmap-ed backend.
650 *
651 * @mr: the #MemoryRegion to be initialized.
652 * @owner: the object that tracks the region's reference count
653 * @name: Region name, becomes part of RAMBlock name used in migration stream
654 * must be unique within any device
655 * @size: size of the region.
656 * @align: alignment of the region base address; if 0, the default alignment
657 * (getpagesize()) will be used.
658 * @ram_flags: Memory region features:
659 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
660 * - RAM_PMEM: the memory is persistent memory
661 * Other bits are ignored now.
662 * @path: the path in which to allocate the RAM.
663 * @errp: pointer to Error*, to store an error if it happens.
664 *
665 * Note that this function does not do anything to cause the data in the
666 * RAM memory region to be migrated; that is the responsibility of the caller.
667 */
668void memory_region_init_ram_from_file(MemoryRegion *mr,
669 struct Object *owner,
670 const char *name,
671 uint64_t size,
672 uint64_t align,
673 uint32_t ram_flags,
674 const char *path,
675 Error **errp);
676
677/**
678 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
679 * mmap-ed backend.
680 *
681 * @mr: the #MemoryRegion to be initialized.
682 * @owner: the object that tracks the region's reference count
683 * @name: the name of the region.
684 * @size: size of the region.
685 * @share: %true if memory must be mmaped with the MAP_SHARED flag
686 * @fd: the fd to mmap.
687 * @errp: pointer to Error*, to store an error if it happens.
688 *
689 * Note that this function does not do anything to cause the data in the
690 * RAM memory region to be migrated; that is the responsibility of the caller.
691 */
692void memory_region_init_ram_from_fd(MemoryRegion *mr,
693 struct Object *owner,
694 const char *name,
695 uint64_t size,
696 bool share,
697 int fd,
698 Error **errp);
699#endif
700
701/**
702 * memory_region_init_ram_ptr: Initialize RAM memory region from a
703 * user-provided pointer. Accesses into the
704 * region will modify memory directly.
705 *
706 * @mr: the #MemoryRegion to be initialized.
707 * @owner: the object that tracks the region's reference count
708 * @name: Region name, becomes part of RAMBlock name used in migration stream
709 * must be unique within any device
710 * @size: size of the region.
711 * @ptr: memory to be mapped; must contain at least @size bytes.
712 *
713 * Note that this function does not do anything to cause the data in the
714 * RAM memory region to be migrated; that is the responsibility of the caller.
715 */
716void memory_region_init_ram_ptr(MemoryRegion *mr,
717 struct Object *owner,
718 const char *name,
719 uint64_t size,
720 void *ptr);
721
722/**
723 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
724 * a user-provided pointer.
725 *
726 * A RAM device represents a mapping to a physical device, such as to a PCI
727 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
728 * into the VM address space and access to the region will modify memory
729 * directly. However, the memory region should not be included in a memory
730 * dump (device may not be enabled/mapped at the time of the dump), and
731 * operations incompatible with manipulating MMIO should be avoided. Replaces
732 * skip_dump flag.
733 *
734 * @mr: the #MemoryRegion to be initialized.
735 * @owner: the object that tracks the region's reference count
736 * @name: the name of the region.
737 * @size: size of the region.
738 * @ptr: memory to be mapped; must contain at least @size bytes.
739 *
740 * Note that this function does not do anything to cause the data in the
741 * RAM memory region to be migrated; that is the responsibility of the caller.
742 * (For RAM device memory regions, migrating the contents rarely makes sense.)
743 */
744void memory_region_init_ram_device_ptr(MemoryRegion *mr,
745 struct Object *owner,
746 const char *name,
747 uint64_t size,
748 void *ptr);
749
750/**
751 * memory_region_init_alias: Initialize a memory region that aliases all or a
752 * part of another memory region.
753 *
754 * @mr: the #MemoryRegion to be initialized.
755 * @owner: the object that tracks the region's reference count
756 * @name: used for debugging; not visible to the user or ABI
757 * @orig: the region to be referenced; @mr will be equivalent to
758 * @orig between @offset and @offset + @size - 1.
759 * @offset: start of the section in @orig to be referenced.
760 * @size: size of the region.
761 */
762void memory_region_init_alias(MemoryRegion *mr,
763 struct Object *owner,
764 const char *name,
765 MemoryRegion *orig,
766 hwaddr offset,
767 uint64_t size);
768
769/**
770 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
771 *
772 * This has the same effect as calling memory_region_init_ram_nomigrate()
773 * and then marking the resulting region read-only with
774 * memory_region_set_readonly().
775 *
776 * Note that this function does not do anything to cause the data in the
777 * RAM side of the memory region to be migrated; that is the responsibility
778 * of the caller.
779 *
780 * @mr: the #MemoryRegion to be initialized.
781 * @owner: the object that tracks the region's reference count
782 * @name: Region name, becomes part of RAMBlock name used in migration stream
783 * must be unique within any device
784 * @size: size of the region.
785 * @errp: pointer to Error*, to store an error if it happens.
786 */
787void memory_region_init_rom_nomigrate(MemoryRegion *mr,
788 struct Object *owner,
789 const char *name,
790 uint64_t size,
791 Error **errp);
792
793/**
794 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
795 * Writes are handled via callbacks.
796 *
797 * Note that this function does not do anything to cause the data in the
798 * RAM side of the memory region to be migrated; that is the responsibility
799 * of the caller.
800 *
801 * @mr: the #MemoryRegion to be initialized.
802 * @owner: the object that tracks the region's reference count
803 * @ops: callbacks for write access handling (must not be NULL).
804 * @opaque: passed to the read and write callbacks of the @ops structure.
805 * @name: Region name, becomes part of RAMBlock name used in migration stream
806 * must be unique within any device
807 * @size: size of the region.
808 * @errp: pointer to Error*, to store an error if it happens.
809 */
810void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
811 struct Object *owner,
812 const MemoryRegionOps *ops,
813 void *opaque,
814 const char *name,
815 uint64_t size,
816 Error **errp);
817
818/**
819 * memory_region_init_iommu: Initialize a memory region of a custom type
820 * that translates addresses
821 *
822 * An IOMMU region translates addresses and forwards accesses to a target
823 * memory region.
824 *
825 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
826 * @_iommu_mr should be a pointer to enough memory for an instance of
827 * that subclass, @instance_size is the size of that subclass, and
828 * @mrtypename is its name. This function will initialize @_iommu_mr as an
829 * instance of the subclass, and its methods will then be called to handle
830 * accesses to the memory region. See the documentation of
831 * #IOMMUMemoryRegionClass for further details.
832 *
833 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
834 * @instance_size: the IOMMUMemoryRegion subclass instance size
835 * @mrtypename: the type name of the #IOMMUMemoryRegion
836 * @owner: the object that tracks the region's reference count
837 * @name: used for debugging; not visible to the user or ABI
838 * @size: size of the region.
839 */
840void memory_region_init_iommu(void *_iommu_mr,
841 size_t instance_size,
842 const char *mrtypename,
843 Object *owner,
844 const char *name,
845 uint64_t size);
846
847/**
848 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
849 * region will modify memory directly.
850 *
851 * @mr: the #MemoryRegion to be initialized
852 * @owner: the object that tracks the region's reference count (must be
853 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
854 * @name: name of the memory region
855 * @size: size of the region in bytes
856 * @errp: pointer to Error*, to store an error if it happens.
857 *
858 * This function allocates RAM for a board model or device, and
859 * arranges for it to be migrated (by calling vmstate_register_ram()
860 * if @owner is a DeviceState, or vmstate_register_ram_global() if
861 * @owner is NULL).
862 *
863 * TODO: Currently we restrict @owner to being either NULL (for
864 * global RAM regions with no owner) or devices, so that we can
865 * give the RAM block a unique name for migration purposes.
866 * We should lift this restriction and allow arbitrary Objects.
867 * If you pass a non-NULL non-device @owner then we will assert.
868 */
869void memory_region_init_ram(MemoryRegion *mr,
870 struct Object *owner,
871 const char *name,
872 uint64_t size,
873 Error **errp);
874
875/**
876 * memory_region_init_rom: Initialize a ROM memory region.
877 *
878 * This has the same effect as calling memory_region_init_ram()
879 * and then marking the resulting region read-only with
880 * memory_region_set_readonly(). This includes arranging for the
881 * contents to be migrated.
882 *
883 * TODO: Currently we restrict @owner to being either NULL (for
884 * global RAM regions with no owner) or devices, so that we can
885 * give the RAM block a unique name for migration purposes.
886 * We should lift this restriction and allow arbitrary Objects.
887 * If you pass a non-NULL non-device @owner then we will assert.
888 *
889 * @mr: the #MemoryRegion to be initialized.
890 * @owner: the object that tracks the region's reference count
891 * @name: Region name, becomes part of RAMBlock name used in migration stream
892 * must be unique within any device
893 * @size: size of the region.
894 * @errp: pointer to Error*, to store an error if it happens.
895 */
896void memory_region_init_rom(MemoryRegion *mr,
897 struct Object *owner,
898 const char *name,
899 uint64_t size,
900 Error **errp);
901
902/**
903 * memory_region_init_rom_device: Initialize a ROM memory region.
904 * Writes are handled via callbacks.
905 *
906 * This function initializes a memory region backed by RAM for reads
907 * and callbacks for writes, and arranges for the RAM backing to
908 * be migrated (by calling vmstate_register_ram()
909 * if @owner is a DeviceState, or vmstate_register_ram_global() if
910 * @owner is NULL).
911 *
912 * TODO: Currently we restrict @owner to being either NULL (for
913 * global RAM regions with no owner) or devices, so that we can
914 * give the RAM block a unique name for migration purposes.
915 * We should lift this restriction and allow arbitrary Objects.
916 * If you pass a non-NULL non-device @owner then we will assert.
917 *
918 * @mr: the #MemoryRegion to be initialized.
919 * @owner: the object that tracks the region's reference count
920 * @ops: callbacks for write access handling (must not be NULL).
921 * @name: Region name, becomes part of RAMBlock name used in migration stream
922 * must be unique within any device
923 * @size: size of the region.
924 * @errp: pointer to Error*, to store an error if it happens.
925 */
926void memory_region_init_rom_device(MemoryRegion *mr,
927 struct Object *owner,
928 const MemoryRegionOps *ops,
929 void *opaque,
930 const char *name,
931 uint64_t size,
932 Error **errp);
933
934
935/**
936 * memory_region_owner: get a memory region's owner.
937 *
938 * @mr: the memory region being queried.
939 */
940struct Object *memory_region_owner(MemoryRegion *mr);
941
942/**
943 * memory_region_size: get a memory region's size.
944 *
945 * @mr: the memory region being queried.
946 */
947uint64_t memory_region_size(MemoryRegion *mr);
948
949/**
950 * memory_region_is_ram: check whether a memory region is random access
951 *
952 * Returns %true if a memory region is random access.
953 *
954 * @mr: the memory region being queried
955 */
956static inline bool memory_region_is_ram(MemoryRegion *mr)
957{
958 return mr->ram;
959}
960
961/**
962 * memory_region_is_ram_device: check whether a memory region is a ram device
963 *
964 * Returns %true if a memory region is a device backed ram region
965 *
966 * @mr: the memory region being queried
967 */
968bool memory_region_is_ram_device(MemoryRegion *mr);
969
970/**
971 * memory_region_is_romd: check whether a memory region is in ROMD mode
972 *
973 * Returns %true if a memory region is a ROM device and currently set to allow
974 * direct reads.
975 *
976 * @mr: the memory region being queried
977 */
978static inline bool memory_region_is_romd(MemoryRegion *mr)
979{
980 return mr->rom_device && mr->romd_mode;
981}
982
983/**
984 * memory_region_get_iommu: check whether a memory region is an iommu
985 *
986 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
987 * otherwise NULL.
988 *
989 * @mr: the memory region being queried
990 */
991static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
992{
993 if (mr->alias) {
994 return memory_region_get_iommu(mr->alias);
995 }
996 if (mr->is_iommu) {
997 return (IOMMUMemoryRegion *) mr;
998 }
999 return NULL;
1000}
1001
1002/**
1003 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1004 * if an iommu or NULL if not
1005 *
1006 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1007 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1008 *
1009 * @mr: the memory region being queried
1010 */
1011static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1012 IOMMUMemoryRegion *iommu_mr)
1013{
1014 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1015}
1016
1017#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1018
1019/**
1020 * memory_region_iommu_get_min_page_size: get minimum supported page size
1021 * for an iommu
1022 *
1023 * Returns minimum supported page size for an iommu.
1024 *
1025 * @iommu_mr: the memory region being queried
1026 */
1027uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1028
1029/**
1030 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1031 *
1032 * The notification type will be decided by entry.perm bits:
1033 *
1034 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1035 * - For MAP (newly added entry) notifies: set entry.perm to the
1036 * permission of the page (which is definitely !IOMMU_NONE).
1037 *
1038 * Note: for any IOMMU implementation, an in-place mapping change
1039 * should be notified with an UNMAP followed by a MAP.
1040 *
1041 * @iommu_mr: the memory region that was changed
1042 * @iommu_idx: the IOMMU index for the translation table which has changed
1043 * @entry: the new entry in the IOMMU translation table. The entry
1044 * replaces all old entries for the same virtual I/O address range.
1045 * Deleted entries have .@perm == 0.
1046 */
1047void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1048 int iommu_idx,
1049 IOMMUTLBEntry entry);
1050
1051/**
1052 * memory_region_notify_one: notify a change in an IOMMU translation
1053 * entry to a single notifier
1054 *
1055 * This works just like memory_region_notify_iommu(), but it only
1056 * notifies a specific notifier, not all of them.
1057 *
1058 * @notifier: the notifier to be notified
1059 * @entry: the new entry in the IOMMU translation table. The entry
1060 * replaces all old entries for the same virtual I/O address range.
1061 * Deleted entries have .@perm == 0.
1062 */
1063void memory_region_notify_one(IOMMUNotifier *notifier,
1064 IOMMUTLBEntry *entry);
1065
1066/**
1067 * memory_region_register_iommu_notifier: register a notifier for changes to
1068 * IOMMU translation entries.
1069 *
1070 * @mr: the memory region to observe
1071 * @n: the IOMMUNotifier to be added; the notify callback receives a
1072 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1073 * ceases to be valid on exit from the notifier.
1074 */
1075void memory_region_register_iommu_notifier(MemoryRegion *mr,
1076 IOMMUNotifier *n);
1077
1078/**
1079 * memory_region_iommu_replay: replay existing IOMMU translations to
1080 * a notifier with the minimum page granularity returned by
1081 * mr->iommu_ops->get_page_size().
1082 *
1083 * Note: this is not related to record-and-replay functionality.
1084 *
1085 * @iommu_mr: the memory region to observe
1086 * @n: the notifier to which to replay iommu mappings
1087 */
1088void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1089
1090/**
1091 * memory_region_unregister_iommu_notifier: unregister a notifier for
1092 * changes to IOMMU translation entries.
1093 *
1094 * @mr: the memory region which was observed and for which notity_stopped()
1095 * needs to be called
1096 * @n: the notifier to be removed.
1097 */
1098void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1099 IOMMUNotifier *n);
1100
1101/**
1102 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1103 * defined on the IOMMU.
1104 *
1105 * Returns 0 on success, or a negative errno otherwise. In particular,
1106 * -EINVAL indicates that the IOMMU does not support the requested
1107 * attribute.
1108 *
1109 * @iommu_mr: the memory region
1110 * @attr: the requested attribute
1111 * @data: a pointer to the requested attribute data
1112 */
1113int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1114 enum IOMMUMemoryRegionAttr attr,
1115 void *data);
1116
1117/**
1118 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1119 * use for translations with the given memory transaction attributes.
1120 *
1121 * @iommu_mr: the memory region
1122 * @attrs: the memory transaction attributes
1123 */
1124int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1125 MemTxAttrs attrs);
1126
1127/**
1128 * memory_region_iommu_num_indexes: return the total number of IOMMU
1129 * indexes that this IOMMU supports.
1130 *
1131 * @iommu_mr: the memory region
1132 */
1133int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1134
1135/**
1136 * memory_region_name: get a memory region's name
1137 *
1138 * Returns the string that was used to initialize the memory region.
1139 *
1140 * @mr: the memory region being queried
1141 */
1142const char *memory_region_name(const MemoryRegion *mr);
1143
1144/**
1145 * memory_region_is_logging: return whether a memory region is logging writes
1146 *
1147 * Returns %true if the memory region is logging writes for the given client
1148 *
1149 * @mr: the memory region being queried
1150 * @client: the client being queried
1151 */
1152bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1153
1154/**
1155 * memory_region_get_dirty_log_mask: return the clients for which a
1156 * memory region is logging writes.
1157 *
1158 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1159 * are the bit indices.
1160 *
1161 * @mr: the memory region being queried
1162 */
1163uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1164
1165/**
1166 * memory_region_is_rom: check whether a memory region is ROM
1167 *
1168 * Returns %true if a memory region is read-only memory.
1169 *
1170 * @mr: the memory region being queried
1171 */
1172static inline bool memory_region_is_rom(MemoryRegion *mr)
1173{
1174 return mr->ram && mr->readonly;
1175}
1176
1177/**
1178 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1179 *
1180 * Returns %true is a memory region is non-volatile memory.
1181 *
1182 * @mr: the memory region being queried
1183 */
1184static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1185{
1186 return mr->nonvolatile;
1187}
1188
1189/**
1190 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1191 *
1192 * Returns a file descriptor backing a file-based RAM memory region,
1193 * or -1 if the region is not a file-based RAM memory region.
1194 *
1195 * @mr: the RAM or alias memory region being queried.
1196 */
1197int memory_region_get_fd(MemoryRegion *mr);
1198
1199/**
1200 * memory_region_from_host: Convert a pointer into a RAM memory region
1201 * and an offset within it.
1202 *
1203 * Given a host pointer inside a RAM memory region (created with
1204 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1205 * the MemoryRegion and the offset within it.
1206 *
1207 * Use with care; by the time this function returns, the returned pointer is
1208 * not protected by RCU anymore. If the caller is not within an RCU critical
1209 * section and does not hold the iothread lock, it must have other means of
1210 * protecting the pointer, such as a reference to the region that includes
1211 * the incoming ram_addr_t.
1212 *
1213 * @ptr: the host pointer to be converted
1214 * @offset: the offset within memory region
1215 */
1216MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1217
1218/**
1219 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1220 *
1221 * Returns a host pointer to a RAM memory region (created with
1222 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1223 *
1224 * Use with care; by the time this function returns, the returned pointer is
1225 * not protected by RCU anymore. If the caller is not within an RCU critical
1226 * section and does not hold the iothread lock, it must have other means of
1227 * protecting the pointer, such as a reference to the region that includes
1228 * the incoming ram_addr_t.
1229 *
1230 * @mr: the memory region being queried.
1231 */
1232void *memory_region_get_ram_ptr(MemoryRegion *mr);
1233
1234/* memory_region_ram_resize: Resize a RAM region.
1235 *
1236 * Only legal before guest might have detected the memory size: e.g. on
1237 * incoming migration, or right after reset.
1238 *
1239 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1240 * @newsize: the new size the region
1241 * @errp: pointer to Error*, to store an error if it happens.
1242 */
1243void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1244 Error **errp);
1245
1246/**
1247 * memory_region_set_log: Turn dirty logging on or off for a region.
1248 *
1249 * Turns dirty logging on or off for a specified client (display, migration).
1250 * Only meaningful for RAM regions.
1251 *
1252 * @mr: the memory region being updated.
1253 * @log: whether dirty logging is to be enabled or disabled.
1254 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1255 */
1256void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1257
1258/**
1259 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1260 *
1261 * Marks a range of bytes as dirty, after it has been dirtied outside
1262 * guest code.
1263 *
1264 * @mr: the memory region being dirtied.
1265 * @addr: the address (relative to the start of the region) being dirtied.
1266 * @size: size of the range being dirtied.
1267 */
1268void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1269 hwaddr size);
1270
1271/**
1272 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1273 *
1274 * This function is called when the caller wants to clear the remote
1275 * dirty bitmap of a memory range within the memory region. This can
1276 * be used by e.g. KVM to manually clear dirty log when
1277 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1278 * kernel.
1279 *
1280 * @mr: the memory region to clear the dirty log upon
1281 * @start: start address offset within the memory region
1282 * @len: length of the memory region to clear dirty bitmap
1283 */
1284void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1285 hwaddr len);
1286
1287/**
1288 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1289 * bitmap and clear it.
1290 *
1291 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1292 * returns the snapshot. The snapshot can then be used to query dirty
1293 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1294 * querying the same page multiple times, which is especially useful for
1295 * display updates where the scanlines often are not page aligned.
1296 *
1297 * The dirty bitmap region which gets copyed into the snapshot (and
1298 * cleared afterwards) can be larger than requested. The boundaries
1299 * are rounded up/down so complete bitmap longs (covering 64 pages on
1300 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1301 * isn't a problem for display updates as the extra pages are outside
1302 * the visible area, and in case the visible area changes a full
1303 * display redraw is due anyway. Should other use cases for this
1304 * function emerge we might have to revisit this implementation
1305 * detail.
1306 *
1307 * Use g_free to release DirtyBitmapSnapshot.
1308 *
1309 * @mr: the memory region being queried.
1310 * @addr: the address (relative to the start of the region) being queried.
1311 * @size: the size of the range being queried.
1312 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1313 */
1314DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1315 hwaddr addr,
1316 hwaddr size,
1317 unsigned client);
1318
1319/**
1320 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1321 * in the specified dirty bitmap snapshot.
1322 *
1323 * @mr: the memory region being queried.
1324 * @snap: the dirty bitmap snapshot
1325 * @addr: the address (relative to the start of the region) being queried.
1326 * @size: the size of the range being queried.
1327 */
1328bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1329 DirtyBitmapSnapshot *snap,
1330 hwaddr addr, hwaddr size);
1331
1332/**
1333 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1334 * client.
1335 *
1336 * Marks a range of pages as no longer dirty.
1337 *
1338 * @mr: the region being updated.
1339 * @addr: the start of the subrange being cleaned.
1340 * @size: the size of the subrange being cleaned.
1341 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1342 * %DIRTY_MEMORY_VGA.
1343 */
1344void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1345 hwaddr size, unsigned client);
1346
1347/**
1348 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1349 * TBs (for self-modifying code).
1350 *
1351 * The MemoryRegionOps->write() callback of a ROM device must use this function
1352 * to mark byte ranges that have been modified internally, such as by directly
1353 * accessing the memory returned by memory_region_get_ram_ptr().
1354 *
1355 * This function marks the range dirty and invalidates TBs so that TCG can
1356 * detect self-modifying code.
1357 *
1358 * @mr: the region being flushed.
1359 * @addr: the start, relative to the start of the region, of the range being
1360 * flushed.
1361 * @size: the size, in bytes, of the range being flushed.
1362 */
1363void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1364
1365/**
1366 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1367 *
1368 * Allows a memory region to be marked as read-only (turning it into a ROM).
1369 * only useful on RAM regions.
1370 *
1371 * @mr: the region being updated.
1372 * @readonly: whether rhe region is to be ROM or RAM.
1373 */
1374void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1375
1376/**
1377 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1378 *
1379 * Allows a memory region to be marked as non-volatile.
1380 * only useful on RAM regions.
1381 *
1382 * @mr: the region being updated.
1383 * @nonvolatile: whether rhe region is to be non-volatile.
1384 */
1385void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1386
1387/**
1388 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1389 *
1390 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1391 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1392 * device is mapped to guest memory and satisfies read access directly.
1393 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1394 * Writes are always handled by the #MemoryRegion.write function.
1395 *
1396 * @mr: the memory region to be updated
1397 * @romd_mode: %true to put the region into ROMD mode
1398 */
1399void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1400
1401/**
1402 * memory_region_set_coalescing: Enable memory coalescing for the region.
1403 *
1404 * Enabled writes to a region to be queued for later processing. MMIO ->write
1405 * callbacks may be delayed until a non-coalesced MMIO is issued.
1406 * Only useful for IO regions. Roughly similar to write-combining hardware.
1407 *
1408 * @mr: the memory region to be write coalesced
1409 */
1410void memory_region_set_coalescing(MemoryRegion *mr);
1411
1412/**
1413 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1414 * a region.
1415 *
1416 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1417 * Multiple calls can be issued coalesced disjoint ranges.
1418 *
1419 * @mr: the memory region to be updated.
1420 * @offset: the start of the range within the region to be coalesced.
1421 * @size: the size of the subrange to be coalesced.
1422 */
1423void memory_region_add_coalescing(MemoryRegion *mr,
1424 hwaddr offset,
1425 uint64_t size);
1426
1427/**
1428 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1429 *
1430 * Disables any coalescing caused by memory_region_set_coalescing() or
1431 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1432 * hardware.
1433 *
1434 * @mr: the memory region to be updated.
1435 */
1436void memory_region_clear_coalescing(MemoryRegion *mr);
1437
1438/**
1439 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1440 * accesses.
1441 *
1442 * Ensure that pending coalesced MMIO request are flushed before the memory
1443 * region is accessed. This property is automatically enabled for all regions
1444 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1445 *
1446 * @mr: the memory region to be updated.
1447 */
1448void memory_region_set_flush_coalesced(MemoryRegion *mr);
1449
1450/**
1451 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1452 * accesses.
1453 *
1454 * Clear the automatic coalesced MMIO flushing enabled via
1455 * memory_region_set_flush_coalesced. Note that this service has no effect on
1456 * memory regions that have MMIO coalescing enabled for themselves. For them,
1457 * automatic flushing will stop once coalescing is disabled.
1458 *
1459 * @mr: the memory region to be updated.
1460 */
1461void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1462
1463/**
1464 * memory_region_clear_global_locking: Declares that access processing does
1465 * not depend on the QEMU global lock.
1466 *
1467 * By clearing this property, accesses to the memory region will be processed
1468 * outside of QEMU's global lock (unless the lock is held on when issuing the
1469 * access request). In this case, the device model implementing the access
1470 * handlers is responsible for synchronization of concurrency.
1471 *
1472 * @mr: the memory region to be updated.
1473 */
1474void memory_region_clear_global_locking(MemoryRegion *mr);
1475
1476/**
1477 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1478 * is written to a location.
1479 *
1480 * Marks a word in an IO region (initialized with memory_region_init_io())
1481 * as a trigger for an eventfd event. The I/O callback will not be called.
1482 * The caller must be prepared to handle failure (that is, take the required
1483 * action if the callback _is_ called).
1484 *
1485 * @mr: the memory region being updated.
1486 * @addr: the address within @mr that is to be monitored
1487 * @size: the size of the access to trigger the eventfd
1488 * @match_data: whether to match against @data, instead of just @addr
1489 * @data: the data to match against the guest write
1490 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1491 **/
1492void memory_region_add_eventfd(MemoryRegion *mr,
1493 hwaddr addr,
1494 unsigned size,
1495 bool match_data,
1496 uint64_t data,
1497 EventNotifier *e);
1498
1499/**
1500 * memory_region_del_eventfd: Cancel an eventfd.
1501 *
1502 * Cancels an eventfd trigger requested by a previous
1503 * memory_region_add_eventfd() call.
1504 *
1505 * @mr: the memory region being updated.
1506 * @addr: the address within @mr that is to be monitored
1507 * @size: the size of the access to trigger the eventfd
1508 * @match_data: whether to match against @data, instead of just @addr
1509 * @data: the data to match against the guest write
1510 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1511 */
1512void memory_region_del_eventfd(MemoryRegion *mr,
1513 hwaddr addr,
1514 unsigned size,
1515 bool match_data,
1516 uint64_t data,
1517 EventNotifier *e);
1518
1519/**
1520 * memory_region_add_subregion: Add a subregion to a container.
1521 *
1522 * Adds a subregion at @offset. The subregion may not overlap with other
1523 * subregions (except for those explicitly marked as overlapping). A region
1524 * may only be added once as a subregion (unless removed with
1525 * memory_region_del_subregion()); use memory_region_init_alias() if you
1526 * want a region to be a subregion in multiple locations.
1527 *
1528 * @mr: the region to contain the new subregion; must be a container
1529 * initialized with memory_region_init().
1530 * @offset: the offset relative to @mr where @subregion is added.
1531 * @subregion: the subregion to be added.
1532 */
1533void memory_region_add_subregion(MemoryRegion *mr,
1534 hwaddr offset,
1535 MemoryRegion *subregion);
1536/**
1537 * memory_region_add_subregion_overlap: Add a subregion to a container
1538 * with overlap.
1539 *
1540 * Adds a subregion at @offset. The subregion may overlap with other
1541 * subregions. Conflicts are resolved by having a higher @priority hide a
1542 * lower @priority. Subregions without priority are taken as @priority 0.
1543 * A region may only be added once as a subregion (unless removed with
1544 * memory_region_del_subregion()); use memory_region_init_alias() if you
1545 * want a region to be a subregion in multiple locations.
1546 *
1547 * @mr: the region to contain the new subregion; must be a container
1548 * initialized with memory_region_init().
1549 * @offset: the offset relative to @mr where @subregion is added.
1550 * @subregion: the subregion to be added.
1551 * @priority: used for resolving overlaps; highest priority wins.
1552 */
1553void memory_region_add_subregion_overlap(MemoryRegion *mr,
1554 hwaddr offset,
1555 MemoryRegion *subregion,
1556 int priority);
1557
1558/**
1559 * memory_region_get_ram_addr: Get the ram address associated with a memory
1560 * region
1561 */
1562ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1563
1564uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1565/**
1566 * memory_region_del_subregion: Remove a subregion.
1567 *
1568 * Removes a subregion from its container.
1569 *
1570 * @mr: the container to be updated.
1571 * @subregion: the region being removed; must be a current subregion of @mr.
1572 */
1573void memory_region_del_subregion(MemoryRegion *mr,
1574 MemoryRegion *subregion);
1575
1576/*
1577 * memory_region_set_enabled: dynamically enable or disable a region
1578 *
1579 * Enables or disables a memory region. A disabled memory region
1580 * ignores all accesses to itself and its subregions. It does not
1581 * obscure sibling subregions with lower priority - it simply behaves as
1582 * if it was removed from the hierarchy.
1583 *
1584 * Regions default to being enabled.
1585 *
1586 * @mr: the region to be updated
1587 * @enabled: whether to enable or disable the region
1588 */
1589void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1590
1591/*
1592 * memory_region_set_address: dynamically update the address of a region
1593 *
1594 * Dynamically updates the address of a region, relative to its container.
1595 * May be used on regions are currently part of a memory hierarchy.
1596 *
1597 * @mr: the region to be updated
1598 * @addr: new address, relative to container region
1599 */
1600void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1601
1602/*
1603 * memory_region_set_size: dynamically update the size of a region.
1604 *
1605 * Dynamically updates the size of a region.
1606 *
1607 * @mr: the region to be updated
1608 * @size: used size of the region.
1609 */
1610void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1611
1612/*
1613 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1614 *
1615 * Dynamically updates the offset into the target region that an alias points
1616 * to, as if the fourth argument to memory_region_init_alias() has changed.
1617 *
1618 * @mr: the #MemoryRegion to be updated; should be an alias.
1619 * @offset: the new offset into the target memory region
1620 */
1621void memory_region_set_alias_offset(MemoryRegion *mr,
1622 hwaddr offset);
1623
1624/**
1625 * memory_region_present: checks if an address relative to a @container
1626 * translates into #MemoryRegion within @container
1627 *
1628 * Answer whether a #MemoryRegion within @container covers the address
1629 * @addr.
1630 *
1631 * @container: a #MemoryRegion within which @addr is a relative address
1632 * @addr: the area within @container to be searched
1633 */
1634bool memory_region_present(MemoryRegion *container, hwaddr addr);
1635
1636/**
1637 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1638 * into any address space.
1639 *
1640 * @mr: a #MemoryRegion which should be checked if it's mapped
1641 */
1642bool memory_region_is_mapped(MemoryRegion *mr);
1643
1644/**
1645 * memory_region_find: translate an address/size relative to a
1646 * MemoryRegion into a #MemoryRegionSection.
1647 *
1648 * Locates the first #MemoryRegion within @mr that overlaps the range
1649 * given by @addr and @size.
1650 *
1651 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1652 * It will have the following characteristics:
1653 * .@size = 0 iff no overlap was found
1654 * .@mr is non-%NULL iff an overlap was found
1655 *
1656 * Remember that in the return value the @offset_within_region is
1657 * relative to the returned region (in the .@mr field), not to the
1658 * @mr argument.
1659 *
1660 * Similarly, the .@offset_within_address_space is relative to the
1661 * address space that contains both regions, the passed and the
1662 * returned one. However, in the special case where the @mr argument
1663 * has no container (and thus is the root of the address space), the
1664 * following will hold:
1665 * .@offset_within_address_space >= @addr
1666 * .@offset_within_address_space + .@size <= @addr + @size
1667 *
1668 * @mr: a MemoryRegion within which @addr is a relative address
1669 * @addr: start of the area within @as to be searched
1670 * @size: size of the area to be searched
1671 */
1672MemoryRegionSection memory_region_find(MemoryRegion *mr,
1673 hwaddr addr, uint64_t size);
1674
1675/**
1676 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1677 *
1678 * Synchronizes the dirty page log for all address spaces.
1679 */
1680void memory_global_dirty_log_sync(void);
1681
1682/**
1683 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1684 *
1685 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1686 * This function must be called after the dirty log bitmap is cleared, and
1687 * before dirty guest memory pages are read. If you are using
1688 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1689 * care of doing this.
1690 */
1691void memory_global_after_dirty_log_sync(void);
1692
1693/**
1694 * memory_region_transaction_begin: Start a transaction.
1695 *
1696 * During a transaction, changes will be accumulated and made visible
1697 * only when the transaction ends (is committed).
1698 */
1699void memory_region_transaction_begin(void);
1700
1701/**
1702 * memory_region_transaction_commit: Commit a transaction and make changes
1703 * visible to the guest.
1704 */
1705void memory_region_transaction_commit(void);
1706
1707/**
1708 * memory_listener_register: register callbacks to be called when memory
1709 * sections are mapped or unmapped into an address
1710 * space
1711 *
1712 * @listener: an object containing the callbacks to be called
1713 * @filter: if non-%NULL, only regions in this address space will be observed
1714 */
1715void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1716
1717/**
1718 * memory_listener_unregister: undo the effect of memory_listener_register()
1719 *
1720 * @listener: an object containing the callbacks to be removed
1721 */
1722void memory_listener_unregister(MemoryListener *listener);
1723
1724/**
1725 * memory_global_dirty_log_start: begin dirty logging for all regions
1726 */
1727void memory_global_dirty_log_start(void);
1728
1729/**
1730 * memory_global_dirty_log_stop: end dirty logging for all regions
1731 */
1732void memory_global_dirty_log_stop(void);
1733
1734void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1735
1736/**
1737 * memory_region_dispatch_read: perform a read directly to the specified
1738 * MemoryRegion.
1739 *
1740 * @mr: #MemoryRegion to access
1741 * @addr: address within that region
1742 * @pval: pointer to uint64_t which the data is written to
1743 * @op: size, sign, and endianness of the memory operation
1744 * @attrs: memory transaction attributes to use for the access
1745 */
1746MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1747 hwaddr addr,
1748 uint64_t *pval,
1749 MemOp op,
1750 MemTxAttrs attrs);
1751/**
1752 * memory_region_dispatch_write: perform a write directly to the specified
1753 * MemoryRegion.
1754 *
1755 * @mr: #MemoryRegion to access
1756 * @addr: address within that region
1757 * @data: data to write
1758 * @op: size, sign, and endianness of the memory operation
1759 * @attrs: memory transaction attributes to use for the access
1760 */
1761MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1762 hwaddr addr,
1763 uint64_t data,
1764 MemOp op,
1765 MemTxAttrs attrs);
1766
1767/**
1768 * address_space_init: initializes an address space
1769 *
1770 * @as: an uninitialized #AddressSpace
1771 * @root: a #MemoryRegion that routes addresses for the address space
1772 * @name: an address space name. The name is only used for debugging
1773 * output.
1774 */
1775void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1776
1777/**
1778 * address_space_destroy: destroy an address space
1779 *
1780 * Releases all resources associated with an address space. After an address space
1781 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1782 * as well.
1783 *
1784 * @as: address space to be destroyed
1785 */
1786void address_space_destroy(AddressSpace *as);
1787
1788/**
1789 * address_space_remove_listeners: unregister all listeners of an address space
1790 *
1791 * Removes all callbacks previously registered with memory_listener_register()
1792 * for @as.
1793 *
1794 * @as: an initialized #AddressSpace
1795 */
1796void address_space_remove_listeners(AddressSpace *as);
1797
1798/**
1799 * address_space_rw: read from or write to an address space.
1800 *
1801 * Return a MemTxResult indicating whether the operation succeeded
1802 * or failed (eg unassigned memory, device rejected the transaction,
1803 * IOMMU fault).
1804 *
1805 * @as: #AddressSpace to be accessed
1806 * @addr: address within that address space
1807 * @attrs: memory transaction attributes
1808 * @buf: buffer with the data transferred
1809 * @len: the number of bytes to read or write
1810 * @is_write: indicates the transfer direction
1811 */
1812MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1813 MemTxAttrs attrs, uint8_t *buf,
1814 hwaddr len, bool is_write);
1815
1816/**
1817 * address_space_write: write to address space.
1818 *
1819 * Return a MemTxResult indicating whether the operation succeeded
1820 * or failed (eg unassigned memory, device rejected the transaction,
1821 * IOMMU fault).
1822 *
1823 * @as: #AddressSpace to be accessed
1824 * @addr: address within that address space
1825 * @attrs: memory transaction attributes
1826 * @buf: buffer with the data transferred
1827 * @len: the number of bytes to write
1828 */
1829MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1830 MemTxAttrs attrs,
1831 const uint8_t *buf, hwaddr len);
1832
1833/**
1834 * address_space_write_rom: write to address space, including ROM.
1835 *
1836 * This function writes to the specified address space, but will
1837 * write data to both ROM and RAM. This is used for non-guest
1838 * writes like writes from the gdb debug stub or initial loading
1839 * of ROM contents.
1840 *
1841 * Note that portions of the write which attempt to write data to
1842 * a device will be silently ignored -- only real RAM and ROM will
1843 * be written to.
1844 *
1845 * Return a MemTxResult indicating whether the operation succeeded
1846 * or failed (eg unassigned memory, device rejected the transaction,
1847 * IOMMU fault).
1848 *
1849 * @as: #AddressSpace to be accessed
1850 * @addr: address within that address space
1851 * @attrs: memory transaction attributes
1852 * @buf: buffer with the data transferred
1853 * @len: the number of bytes to write
1854 */
1855MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1856 MemTxAttrs attrs,
1857 const uint8_t *buf, hwaddr len);
1858
1859/* address_space_ld*: load from an address space
1860 * address_space_st*: store to an address space
1861 *
1862 * These functions perform a load or store of the byte, word,
1863 * longword or quad to the specified address within the AddressSpace.
1864 * The _le suffixed functions treat the data as little endian;
1865 * _be indicates big endian; no suffix indicates "same endianness
1866 * as guest CPU".
1867 *
1868 * The "guest CPU endianness" accessors are deprecated for use outside
1869 * target-* code; devices should be CPU-agnostic and use either the LE
1870 * or the BE accessors.
1871 *
1872 * @as #AddressSpace to be accessed
1873 * @addr: address within that address space
1874 * @val: data value, for stores
1875 * @attrs: memory transaction attributes
1876 * @result: location to write the success/failure of the transaction;
1877 * if NULL, this information is discarded
1878 */
1879
1880#define SUFFIX
1881#define ARG1 as
1882#define ARG1_DECL AddressSpace *as
1883#include "exec/memory_ldst.inc.h"
1884
1885#define SUFFIX
1886#define ARG1 as
1887#define ARG1_DECL AddressSpace *as
1888#include "exec/memory_ldst_phys.inc.h"
1889
1890struct MemoryRegionCache {
1891 void *ptr;
1892 hwaddr xlat;
1893 hwaddr len;
1894 FlatView *fv;
1895 MemoryRegionSection mrs;
1896 bool is_write;
1897};
1898
1899#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1900
1901
1902/* address_space_ld*_cached: load from a cached #MemoryRegion
1903 * address_space_st*_cached: store into a cached #MemoryRegion
1904 *
1905 * These functions perform a load or store of the byte, word,
1906 * longword or quad to the specified address. The address is
1907 * a physical address in the AddressSpace, but it must lie within
1908 * a #MemoryRegion that was mapped with address_space_cache_init.
1909 *
1910 * The _le suffixed functions treat the data as little endian;
1911 * _be indicates big endian; no suffix indicates "same endianness
1912 * as guest CPU".
1913 *
1914 * The "guest CPU endianness" accessors are deprecated for use outside
1915 * target-* code; devices should be CPU-agnostic and use either the LE
1916 * or the BE accessors.
1917 *
1918 * @cache: previously initialized #MemoryRegionCache to be accessed
1919 * @addr: address within the address space
1920 * @val: data value, for stores
1921 * @attrs: memory transaction attributes
1922 * @result: location to write the success/failure of the transaction;
1923 * if NULL, this information is discarded
1924 */
1925
1926#define SUFFIX _cached_slow
1927#define ARG1 cache
1928#define ARG1_DECL MemoryRegionCache *cache
1929#include "exec/memory_ldst.inc.h"
1930
1931/* Inline fast path for direct RAM access. */
1932static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1933 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1934{
1935 assert(addr < cache->len);
1936 if (likely(cache->ptr)) {
1937 return ldub_p(cache->ptr + addr);
1938 } else {
1939 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1940 }
1941}
1942
1943static inline void address_space_stb_cached(MemoryRegionCache *cache,
1944 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1945{
1946 assert(addr < cache->len);
1947 if (likely(cache->ptr)) {
1948 stb_p(cache->ptr + addr, val);
1949 } else {
1950 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1951 }
1952}
1953
1954#define ENDIANNESS _le
1955#include "exec/memory_ldst_cached.inc.h"
1956
1957#define ENDIANNESS _be
1958#include "exec/memory_ldst_cached.inc.h"
1959
1960#define SUFFIX _cached
1961#define ARG1 cache
1962#define ARG1_DECL MemoryRegionCache *cache
1963#include "exec/memory_ldst_phys.inc.h"
1964
1965/* address_space_cache_init: prepare for repeated access to a physical
1966 * memory region
1967 *
1968 * @cache: #MemoryRegionCache to be filled
1969 * @as: #AddressSpace to be accessed
1970 * @addr: address within that address space
1971 * @len: length of buffer
1972 * @is_write: indicates the transfer direction
1973 *
1974 * Will only work with RAM, and may map a subset of the requested range by
1975 * returning a value that is less than @len. On failure, return a negative
1976 * errno value.
1977 *
1978 * Because it only works with RAM, this function can be used for
1979 * read-modify-write operations. In this case, is_write should be %true.
1980 *
1981 * Note that addresses passed to the address_space_*_cached functions
1982 * are relative to @addr.
1983 */
1984int64_t address_space_cache_init(MemoryRegionCache *cache,
1985 AddressSpace *as,
1986 hwaddr addr,
1987 hwaddr len,
1988 bool is_write);
1989
1990/**
1991 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1992 *
1993 * @cache: The #MemoryRegionCache to operate on.
1994 * @addr: The first physical address that was written, relative to the
1995 * address that was passed to @address_space_cache_init.
1996 * @access_len: The number of bytes that were written starting at @addr.
1997 */
1998void address_space_cache_invalidate(MemoryRegionCache *cache,
1999 hwaddr addr,
2000 hwaddr access_len);
2001
2002/**
2003 * address_space_cache_destroy: free a #MemoryRegionCache
2004 *
2005 * @cache: The #MemoryRegionCache whose memory should be released.
2006 */
2007void address_space_cache_destroy(MemoryRegionCache *cache);
2008
2009/* address_space_get_iotlb_entry: translate an address into an IOTLB
2010 * entry. Should be called from an RCU critical section.
2011 */
2012IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2013 bool is_write, MemTxAttrs attrs);
2014
2015/* address_space_translate: translate an address range into an address space
2016 * into a MemoryRegion and an address range into that section. Should be
2017 * called from an RCU critical section, to avoid that the last reference
2018 * to the returned region disappears after address_space_translate returns.
2019 *
2020 * @fv: #FlatView to be accessed
2021 * @addr: address within that address space
2022 * @xlat: pointer to address within the returned memory region section's
2023 * #MemoryRegion.
2024 * @len: pointer to length
2025 * @is_write: indicates the transfer direction
2026 * @attrs: memory attributes
2027 */
2028MemoryRegion *flatview_translate(FlatView *fv,
2029 hwaddr addr, hwaddr *xlat,
2030 hwaddr *len, bool is_write,
2031 MemTxAttrs attrs);
2032
2033static inline MemoryRegion *address_space_translate(AddressSpace *as,
2034 hwaddr addr, hwaddr *xlat,
2035 hwaddr *len, bool is_write,
2036 MemTxAttrs attrs)
2037{
2038 return flatview_translate(address_space_to_flatview(as),
2039 addr, xlat, len, is_write, attrs);
2040}
2041
2042/* address_space_access_valid: check for validity of accessing an address
2043 * space range
2044 *
2045 * Check whether memory is assigned to the given address space range, and
2046 * access is permitted by any IOMMU regions that are active for the address
2047 * space.
2048 *
2049 * For now, addr and len should be aligned to a page size. This limitation
2050 * will be lifted in the future.
2051 *
2052 * @as: #AddressSpace to be accessed
2053 * @addr: address within that address space
2054 * @len: length of the area to be checked
2055 * @is_write: indicates the transfer direction
2056 * @attrs: memory attributes
2057 */
2058bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2059 bool is_write, MemTxAttrs attrs);
2060
2061/* address_space_map: map a physical memory region into a host virtual address
2062 *
2063 * May map a subset of the requested range, given by and returned in @plen.
2064 * May return %NULL if resources needed to perform the mapping are exhausted.
2065 * Use only for reads OR writes - not for read-modify-write operations.
2066 * Use cpu_register_map_client() to know when retrying the map operation is
2067 * likely to succeed.
2068 *
2069 * @as: #AddressSpace to be accessed
2070 * @addr: address within that address space
2071 * @plen: pointer to length of buffer; updated on return
2072 * @is_write: indicates the transfer direction
2073 * @attrs: memory attributes
2074 */
2075void *address_space_map(AddressSpace *as, hwaddr addr,
2076 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2077
2078/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2079 *
2080 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2081 * the amount of memory that was actually read or written by the caller.
2082 *
2083 * @as: #AddressSpace used
2084 * @buffer: host pointer as returned by address_space_map()
2085 * @len: buffer length as returned by address_space_map()
2086 * @access_len: amount of data actually transferred
2087 * @is_write: indicates the transfer direction
2088 */
2089void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2090 int is_write, hwaddr access_len);
2091
2092
2093/* Internal functions, part of the implementation of address_space_read. */
2094MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2095 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2096MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2097 MemTxAttrs attrs, uint8_t *buf,
2098 hwaddr len, hwaddr addr1, hwaddr l,
2099 MemoryRegion *mr);
2100void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2101
2102/* Internal functions, part of the implementation of address_space_read_cached
2103 * and address_space_write_cached. */
2104void address_space_read_cached_slow(MemoryRegionCache *cache,
2105 hwaddr addr, void *buf, hwaddr len);
2106void address_space_write_cached_slow(MemoryRegionCache *cache,
2107 hwaddr addr, const void *buf, hwaddr len);
2108
2109static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2110{
2111 if (is_write) {
2112 return memory_region_is_ram(mr) &&
2113 !mr->readonly && !memory_region_is_ram_device(mr);
2114 } else {
2115 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2116 memory_region_is_romd(mr);
2117 }
2118}
2119
2120/**
2121 * address_space_read: read from an address space.
2122 *
2123 * Return a MemTxResult indicating whether the operation succeeded
2124 * or failed (eg unassigned memory, device rejected the transaction,
2125 * IOMMU fault). Called within RCU critical section.
2126 *
2127 * @as: #AddressSpace to be accessed
2128 * @addr: address within that address space
2129 * @attrs: memory transaction attributes
2130 * @buf: buffer with the data transferred
2131 */
2132static inline __attribute__((__always_inline__))
2133MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2134 MemTxAttrs attrs, uint8_t *buf,
2135 hwaddr len)
2136{
2137 MemTxResult result = MEMTX_OK;
2138 hwaddr l, addr1;
2139 void *ptr;
2140 MemoryRegion *mr;
2141 FlatView *fv;
2142
2143 if (__builtin_constant_p(len)) {
2144 if (len) {
2145 rcu_read_lock();
2146 fv = address_space_to_flatview(as);
2147 l = len;
2148 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2149 if (len == l && memory_access_is_direct(mr, false)) {
2150 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2151 memcpy(buf, ptr, len);
2152 } else {
2153 result = flatview_read_continue(fv, addr, attrs, buf, len,
2154 addr1, l, mr);
2155 }
2156 rcu_read_unlock();
2157 }
2158 } else {
2159 result = address_space_read_full(as, addr, attrs, buf, len);
2160 }
2161 return result;
2162}
2163
2164/**
2165 * address_space_read_cached: read from a cached RAM region
2166 *
2167 * @cache: Cached region to be addressed
2168 * @addr: address relative to the base of the RAM region
2169 * @buf: buffer with the data transferred
2170 * @len: length of the data transferred
2171 */
2172static inline void
2173address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2174 void *buf, hwaddr len)
2175{
2176 assert(addr < cache->len && len <= cache->len - addr);
2177 if (likely(cache->ptr)) {
2178 memcpy(buf, cache->ptr + addr, len);
2179 } else {
2180 address_space_read_cached_slow(cache, addr, buf, len);
2181 }
2182}
2183
2184/**
2185 * address_space_write_cached: write to a cached RAM region
2186 *
2187 * @cache: Cached region to be addressed
2188 * @addr: address relative to the base of the RAM region
2189 * @buf: buffer with the data transferred
2190 * @len: length of the data transferred
2191 */
2192static inline void
2193address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2194 void *buf, hwaddr len)
2195{
2196 assert(addr < cache->len && len <= cache->len - addr);
2197 if (likely(cache->ptr)) {
2198 memcpy(cache->ptr + addr, buf, len);
2199 } else {
2200 address_space_write_cached_slow(cache, addr, buf, len);
2201 }
2202}
2203
2204/* enum device_endian to MemOp. */
2205MemOp devend_memop(enum device_endian end);
2206
2207#endif
2208
2209#endif
2210