1#ifndef QEMU_H
2#define QEMU_H
3
4#include "hostdep.h"
5#include "cpu.h"
6#include "exec/exec-all.h"
7#include "exec/cpu_ldst.h"
8
9#undef DEBUG_REMAP
10#ifdef DEBUG_REMAP
11#endif /* DEBUG_REMAP */
12
13#include "exec/user/abitypes.h"
14
15#include "exec/user/thunk.h"
16#include "syscall_defs.h"
17#include "target_syscall.h"
18#include "exec/gdbstub.h"
19
20/* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
22 */
23#define SIGSET_T_SIZE (_NSIG / 8)
24
25/* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
28 */
29struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong start_mmap;
39 abi_ulong start_stack;
40 abi_ulong stack_limit;
41 abi_ulong entry;
42 abi_ulong code_offset;
43 abi_ulong data_offset;
44 abi_ulong saved_auxv;
45 abi_ulong auxv_len;
46 abi_ulong arg_start;
47 abi_ulong arg_end;
48 abi_ulong arg_strings;
49 abi_ulong env_strings;
50 abi_ulong file_string;
51 uint32_t elf_flags;
52 int personality;
53 abi_ulong alignment;
54
55 /* The fields below are used in FDPIC mode. */
56 abi_ulong loadmap_addr;
57 uint16_t nsegs;
58 void *loadsegs;
59 abi_ulong pt_dynamic_addr;
60 abi_ulong interpreter_loadmap_addr;
61 abi_ulong interpreter_pt_dynamic_addr;
62 struct image_info *other_info;
63#ifdef TARGET_MIPS
64 int fp_abi;
65 int interp_fp_abi;
66#endif
67};
68
69#ifdef TARGET_I386
70/* Information about the current linux thread */
71struct vm86_saved_state {
72 uint32_t eax; /* return code */
73 uint32_t ebx;
74 uint32_t ecx;
75 uint32_t edx;
76 uint32_t esi;
77 uint32_t edi;
78 uint32_t ebp;
79 uint32_t esp;
80 uint32_t eflags;
81 uint32_t eip;
82 uint16_t cs, ss, ds, es, fs, gs;
83};
84#endif
85
86#if defined(TARGET_ARM) && defined(TARGET_ABI32)
87/* FPU emulator */
88#include "nwfpe/fpa11.h"
89#endif
90
91#define MAX_SIGQUEUE_SIZE 1024
92
93struct emulated_sigtable {
94 int pending; /* true if signal is pending */
95 target_siginfo_t info;
96};
97
98/* NOTE: we force a big alignment so that the stack stored after is
99 aligned too */
100typedef struct TaskState {
101 pid_t ts_tid; /* tid (or pid) of this task */
102#ifdef TARGET_ARM
103# ifdef TARGET_ABI32
104 /* FPA state */
105 FPA11 fpa;
106# endif
107 int swi_errno;
108#endif
109#if defined(TARGET_I386) && !defined(TARGET_X86_64)
110 abi_ulong target_v86;
111 struct vm86_saved_state vm86_saved_regs;
112 struct target_vm86plus_struct vm86plus;
113 uint32_t v86flags;
114 uint32_t v86mask;
115#endif
116 abi_ulong child_tidptr;
117#ifdef TARGET_M68K
118 abi_ulong tp_value;
119#endif
120#if defined(TARGET_ARM) || defined(TARGET_M68K)
121 /* Extra fields for semihosted binaries. */
122 abi_ulong heap_base;
123 abi_ulong heap_limit;
124#endif
125 abi_ulong stack_base;
126 int used; /* non zero if used */
127 struct image_info *info;
128 struct linux_binprm *bprm;
129
130 struct emulated_sigtable sync_signal;
131 struct emulated_sigtable sigtab[TARGET_NSIG];
132 /* This thread's signal mask, as requested by the guest program.
133 * The actual signal mask of this thread may differ:
134 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
135 * + sometimes we block all signals to avoid races
136 */
137 sigset_t signal_mask;
138 /* The signal mask imposed by a guest sigsuspend syscall, if we are
139 * currently in the middle of such a syscall
140 */
141 sigset_t sigsuspend_mask;
142 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
143 int in_sigsuspend;
144
145 /* Nonzero if process_pending_signals() needs to do something (either
146 * handle a pending signal or unblock signals).
147 * This flag is written from a signal handler so should be accessed via
148 * the atomic_read() and atomic_set() functions. (It is not accessed
149 * from multiple threads.)
150 */
151 int signal_pending;
152
153 /* This thread's sigaltstack, if it has one */
154 struct target_sigaltstack sigaltstack_used;
155} __attribute__((aligned(16))) TaskState;
156
157extern char *exec_path;
158void init_task_state(TaskState *ts);
159void task_settid(TaskState *);
160void stop_all_tasks(void);
161extern const char *qemu_uname_release;
162extern unsigned long mmap_min_addr;
163
164/* ??? See if we can avoid exposing so much of the loader internals. */
165
166/* Read a good amount of data initially, to hopefully get all the
167 program headers loaded. */
168#define BPRM_BUF_SIZE 1024
169
170/*
171 * This structure is used to hold the arguments that are
172 * used when loading binaries.
173 */
174struct linux_binprm {
175 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
176 abi_ulong p;
177 int fd;
178 int e_uid, e_gid;
179 int argc, envc;
180 char **argv;
181 char **envp;
182 char * filename; /* Name of binary */
183 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
184};
185
186void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
187abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
188 abi_ulong stringp, int push_ptr);
189int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
190 struct target_pt_regs * regs, struct image_info *infop,
191 struct linux_binprm *);
192
193/* Returns true if the image uses the FDPIC ABI. If this is the case,
194 * we have to provide some information (loadmap, pt_dynamic_info) such
195 * that the program can be relocated adequately. This is also useful
196 * when handling signals.
197 */
198int info_is_fdpic(struct image_info *info);
199
200uint32_t get_elf_eflags(int fd);
201int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
202int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
203
204abi_long memcpy_to_target(abi_ulong dest, const void *src,
205 unsigned long len);
206void target_set_brk(abi_ulong new_brk);
207abi_long do_brk(abi_ulong new_brk);
208void syscall_init(void);
209abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
210 abi_long arg2, abi_long arg3, abi_long arg4,
211 abi_long arg5, abi_long arg6, abi_long arg7,
212 abi_long arg8);
213void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
214extern __thread CPUState *thread_cpu;
215void cpu_loop(CPUArchState *env);
216const char *target_strerror(int err);
217int get_osversion(void);
218void init_qemu_uname_release(void);
219void fork_start(void);
220void fork_end(int child);
221
222/* Creates the initial guest address space in the host memory space using
223 * the given host start address hint and size. The guest_start parameter
224 * specifies the start address of the guest space. guest_base will be the
225 * difference between the host start address computed by this function and
226 * guest_start. If fixed is specified, then the mapped address space must
227 * start at host_start. The real start address of the mapped memory space is
228 * returned or -1 if there was an error.
229 */
230unsigned long init_guest_space(unsigned long host_start,
231 unsigned long host_size,
232 unsigned long guest_start,
233 bool fixed);
234
235#include "qemu/log.h"
236
237/* safe_syscall.S */
238
239/**
240 * safe_syscall:
241 * @int number: number of system call to make
242 * ...: arguments to the system call
243 *
244 * Call a system call if guest signal not pending.
245 * This has the same API as the libc syscall() function, except that it
246 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
247 *
248 * Returns: the system call result, or -1 with an error code in errno
249 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
250 * with any of the host errno values.)
251 */
252
253/* A guide to using safe_syscall() to handle interactions between guest
254 * syscalls and guest signals:
255 *
256 * Guest syscalls come in two flavours:
257 *
258 * (1) Non-interruptible syscalls
259 *
260 * These are guest syscalls that never get interrupted by signals and
261 * so never return EINTR. They can be implemented straightforwardly in
262 * QEMU: just make sure that if the implementation code has to make any
263 * blocking calls that those calls are retried if they return EINTR.
264 * It's also OK to implement these with safe_syscall, though it will be
265 * a little less efficient if a signal is delivered at the 'wrong' moment.
266 *
267 * Some non-interruptible syscalls need to be handled using block_signals()
268 * to block signals for the duration of the syscall. This mainly applies
269 * to code which needs to modify the data structures used by the
270 * host_signal_handler() function and the functions it calls, including
271 * all syscalls which change the thread's signal mask.
272 *
273 * (2) Interruptible syscalls
274 *
275 * These are guest syscalls that can be interrupted by signals and
276 * for which we need to either return EINTR or arrange for the guest
277 * syscall to be restarted. This category includes both syscalls which
278 * always restart (and in the kernel return -ERESTARTNOINTR), ones
279 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
280 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
281 * if the handler was registered with SA_RESTART (kernel returns
282 * -ERESTARTSYS). System calls which are only interruptible in some
283 * situations (like 'open') also need to be handled this way.
284 *
285 * Here it is important that the host syscall is made
286 * via this safe_syscall() function, and *not* via the host libc.
287 * If the host libc is used then the implementation will appear to work
288 * most of the time, but there will be a race condition where a
289 * signal could arrive just before we make the host syscall inside libc,
290 * and then then guest syscall will not correctly be interrupted.
291 * Instead the implementation of the guest syscall can use the safe_syscall
292 * function but otherwise just return the result or errno in the usual
293 * way; the main loop code will take care of restarting the syscall
294 * if appropriate.
295 *
296 * (If the implementation needs to make multiple host syscalls this is
297 * OK; any which might really block must be via safe_syscall(); for those
298 * which are only technically blocking (ie which we know in practice won't
299 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
300 * You must be able to cope with backing out correctly if some safe_syscall
301 * you make in the implementation returns either -TARGET_ERESTARTSYS or
302 * EINTR though.)
303 *
304 * block_signals() cannot be used for interruptible syscalls.
305 *
306 *
307 * How and why the safe_syscall implementation works:
308 *
309 * The basic setup is that we make the host syscall via a known
310 * section of host native assembly. If a signal occurs, our signal
311 * handler checks the interrupted host PC against the addresse of that
312 * known section. If the PC is before or at the address of the syscall
313 * instruction then we change the PC to point at a "return
314 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
315 * (causing the safe_syscall() call to immediately return that value).
316 * Then in the main.c loop if we see this magic return value we adjust
317 * the guest PC to wind it back to before the system call, and invoke
318 * the guest signal handler as usual.
319 *
320 * This winding-back will happen in two cases:
321 * (1) signal came in just before we took the host syscall (a race);
322 * in this case we'll take the guest signal and have another go
323 * at the syscall afterwards, and this is indistinguishable for the
324 * guest from the timing having been different such that the guest
325 * signal really did win the race
326 * (2) signal came in while the host syscall was blocking, and the
327 * host kernel decided the syscall should be restarted;
328 * in this case we want to restart the guest syscall also, and so
329 * rewinding is the right thing. (Note that "restart" semantics mean
330 * "first call the signal handler, then reattempt the syscall".)
331 * The other situation to consider is when a signal came in while the
332 * host syscall was blocking, and the host kernel decided that the syscall
333 * should not be restarted; in this case QEMU's host signal handler will
334 * be invoked with the PC pointing just after the syscall instruction,
335 * with registers indicating an EINTR return; the special code in the
336 * handler will not kick in, and we will return EINTR to the guest as
337 * we should.
338 *
339 * Notice that we can leave the host kernel to make the decision for
340 * us about whether to do a restart of the syscall or not; we do not
341 * need to check SA_RESTART flags in QEMU or distinguish the various
342 * kinds of restartability.
343 */
344#ifdef HAVE_SAFE_SYSCALL
345/* The core part of this function is implemented in assembly */
346extern long safe_syscall_base(int *pending, long number, ...);
347
348#define safe_syscall(...) \
349 ({ \
350 long ret_; \
351 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
352 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
353 if (is_error(ret_)) { \
354 errno = -ret_; \
355 ret_ = -1; \
356 } \
357 ret_; \
358 })
359
360#else
361
362/* Fallback for architectures which don't yet provide a safe-syscall assembly
363 * fragment; note that this is racy!
364 * This should go away when all host architectures have been updated.
365 */
366#define safe_syscall syscall
367
368#endif
369
370/* syscall.c */
371int host_to_target_waitstatus(int status);
372
373/* strace.c */
374void print_syscall(int num,
375 abi_long arg1, abi_long arg2, abi_long arg3,
376 abi_long arg4, abi_long arg5, abi_long arg6);
377void print_syscall_ret(int num, abi_long arg1);
378/**
379 * print_taken_signal:
380 * @target_signum: target signal being taken
381 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
382 *
383 * Print strace output indicating that this signal is being taken by the guest,
384 * in a format similar to:
385 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
386 */
387void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
388extern int do_strace;
389
390/* signal.c */
391void process_pending_signals(CPUArchState *cpu_env);
392void signal_init(void);
393int queue_signal(CPUArchState *env, int sig, int si_type,
394 target_siginfo_t *info);
395void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
396void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
397int target_to_host_signal(int sig);
398int host_to_target_signal(int sig);
399long do_sigreturn(CPUArchState *env);
400long do_rt_sigreturn(CPUArchState *env);
401abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
402int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
403abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
404 abi_ulong unew_ctx, abi_long ctx_size);
405/**
406 * block_signals: block all signals while handling this guest syscall
407 *
408 * Block all signals, and arrange that the signal mask is returned to
409 * its correct value for the guest before we resume execution of guest code.
410 * If this function returns non-zero, then the caller should immediately
411 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
412 * signal and restart execution of the syscall.
413 * If block_signals() returns zero, then the caller can continue with
414 * emulation of the system call knowing that no signals can be taken
415 * (and therefore that no race conditions will result).
416 * This should only be called once, because if it is called a second time
417 * it will always return non-zero. (Think of it like a mutex that can't
418 * be recursively locked.)
419 * Signals will be unblocked again by process_pending_signals().
420 *
421 * Return value: non-zero if there was a pending signal, zero if not.
422 */
423int block_signals(void); /* Returns non zero if signal pending */
424
425#ifdef TARGET_I386
426/* vm86.c */
427void save_v86_state(CPUX86State *env);
428void handle_vm86_trap(CPUX86State *env, int trapno);
429void handle_vm86_fault(CPUX86State *env);
430int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
431#elif defined(TARGET_SPARC64)
432void sparc64_set_context(CPUSPARCState *env);
433void sparc64_get_context(CPUSPARCState *env);
434#endif
435
436/* mmap.c */
437int target_mprotect(abi_ulong start, abi_ulong len, int prot);
438abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
439 int flags, int fd, abi_ulong offset);
440int target_munmap(abi_ulong start, abi_ulong len);
441abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
442 abi_ulong new_size, unsigned long flags,
443 abi_ulong new_addr);
444extern unsigned long last_brk;
445extern abi_ulong mmap_next_start;
446abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
447void mmap_fork_start(void);
448void mmap_fork_end(int child);
449
450/* main.c */
451extern unsigned long guest_stack_size;
452
453/* user access */
454
455#define VERIFY_READ 0
456#define VERIFY_WRITE 1 /* implies read access */
457
458static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
459{
460 return guest_addr_valid(addr) &&
461 (size == 0 || guest_addr_valid(addr + size - 1)) &&
462 page_check_range((target_ulong)addr, size,
463 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
464}
465
466/* NOTE __get_user and __put_user use host pointers and don't check access.
467 These are usually used to access struct data members once the struct has
468 been locked - usually with lock_user_struct. */
469
470/*
471 * Tricky points:
472 * - Use __builtin_choose_expr to avoid type promotion from ?:,
473 * - Invalid sizes result in a compile time error stemming from
474 * the fact that abort has no parameters.
475 * - It's easier to use the endian-specific unaligned load/store
476 * functions than host-endian unaligned load/store plus tswapN.
477 * - The pragmas are necessary only to silence a clang false-positive
478 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
479 * - gcc has bugs in its _Pragma() support in some versions, eg
480 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
481 * include the warning-suppression pragmas for clang
482 */
483#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
484#define PRAGMA_DISABLE_PACKED_WARNING \
485 _Pragma("GCC diagnostic push"); \
486 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
487
488#define PRAGMA_REENABLE_PACKED_WARNING \
489 _Pragma("GCC diagnostic pop")
490
491#else
492#define PRAGMA_DISABLE_PACKED_WARNING
493#define PRAGMA_REENABLE_PACKED_WARNING
494#endif
495
496#define __put_user_e(x, hptr, e) \
497 do { \
498 PRAGMA_DISABLE_PACKED_WARNING; \
499 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
500 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
501 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
502 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
503 ((hptr), (x)), (void)0); \
504 PRAGMA_REENABLE_PACKED_WARNING; \
505 } while (0)
506
507#define __get_user_e(x, hptr, e) \
508 do { \
509 PRAGMA_DISABLE_PACKED_WARNING; \
510 ((x) = (typeof(*hptr))( \
511 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
512 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
513 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
514 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
515 (hptr)), (void)0); \
516 PRAGMA_REENABLE_PACKED_WARNING; \
517 } while (0)
518
519
520#ifdef TARGET_WORDS_BIGENDIAN
521# define __put_user(x, hptr) __put_user_e(x, hptr, be)
522# define __get_user(x, hptr) __get_user_e(x, hptr, be)
523#else
524# define __put_user(x, hptr) __put_user_e(x, hptr, le)
525# define __get_user(x, hptr) __get_user_e(x, hptr, le)
526#endif
527
528/* put_user()/get_user() take a guest address and check access */
529/* These are usually used to access an atomic data type, such as an int,
530 * that has been passed by address. These internally perform locking
531 * and unlocking on the data type.
532 */
533#define put_user(x, gaddr, target_type) \
534({ \
535 abi_ulong __gaddr = (gaddr); \
536 target_type *__hptr; \
537 abi_long __ret = 0; \
538 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
539 __put_user((x), __hptr); \
540 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
541 } else \
542 __ret = -TARGET_EFAULT; \
543 __ret; \
544})
545
546#define get_user(x, gaddr, target_type) \
547({ \
548 abi_ulong __gaddr = (gaddr); \
549 target_type *__hptr; \
550 abi_long __ret = 0; \
551 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
552 __get_user((x), __hptr); \
553 unlock_user(__hptr, __gaddr, 0); \
554 } else { \
555 /* avoid warning */ \
556 (x) = 0; \
557 __ret = -TARGET_EFAULT; \
558 } \
559 __ret; \
560})
561
562#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
563#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
564#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
565#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
566#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
567#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
568#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
569#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
570#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
571#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
572
573#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
574#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
575#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
576#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
577#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
578#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
579#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
580#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
581#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
582#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
583
584/* copy_from_user() and copy_to_user() are usually used to copy data
585 * buffers between the target and host. These internally perform
586 * locking/unlocking of the memory.
587 */
588abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
589abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
590
591/* Functions for accessing guest memory. The tget and tput functions
592 read/write single values, byteswapping as necessary. The lock_user function
593 gets a pointer to a contiguous area of guest memory, but does not perform
594 any byteswapping. lock_user may return either a pointer to the guest
595 memory, or a temporary buffer. */
596
597/* Lock an area of guest memory into the host. If copy is true then the
598 host area will have the same contents as the guest. */
599static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
600{
601 if (!access_ok(type, guest_addr, len))
602 return NULL;
603#ifdef DEBUG_REMAP
604 {
605 void *addr;
606 addr = g_malloc(len);
607 if (copy)
608 memcpy(addr, g2h(guest_addr), len);
609 else
610 memset(addr, 0, len);
611 return addr;
612 }
613#else
614 return g2h(guest_addr);
615#endif
616}
617
618/* Unlock an area of guest memory. The first LEN bytes must be
619 flushed back to guest memory. host_ptr = NULL is explicitly
620 allowed and does nothing. */
621static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
622 long len)
623{
624
625#ifdef DEBUG_REMAP
626 if (!host_ptr)
627 return;
628 if (host_ptr == g2h(guest_addr))
629 return;
630 if (len > 0)
631 memcpy(g2h(guest_addr), host_ptr, len);
632 g_free(host_ptr);
633#endif
634}
635
636/* Return the length of a string in target memory or -TARGET_EFAULT if
637 access error. */
638abi_long target_strlen(abi_ulong gaddr);
639
640/* Like lock_user but for null terminated strings. */
641static inline void *lock_user_string(abi_ulong guest_addr)
642{
643 abi_long len;
644 len = target_strlen(guest_addr);
645 if (len < 0)
646 return NULL;
647 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
648}
649
650/* Helper macros for locking/unlocking a target struct. */
651#define lock_user_struct(type, host_ptr, guest_addr, copy) \
652 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
653#define unlock_user_struct(host_ptr, guest_addr, copy) \
654 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
655
656#include <pthread.h>
657
658static inline int is_error(abi_long ret)
659{
660 return (abi_ulong)ret >= (abi_ulong)(-4096);
661}
662
663/**
664 * preexit_cleanup: housekeeping before the guest exits
665 *
666 * env: the CPU state
667 * code: the exit code
668 */
669void preexit_cleanup(CPUArchState *env, int code);
670
671/* Include target-specific struct and function definitions;
672 * they may need access to the target-independent structures
673 * above, so include them last.
674 */
675#include "target_cpu.h"
676#include "target_structs.h"
677
678#endif /* QEMU_H */
679