| 1 | /* |
| 2 | * ARM generic helpers. |
| 3 | * |
| 4 | * This code is licensed under the GNU GPL v2 or later. |
| 5 | * |
| 6 | * SPDX-License-Identifier: GPL-2.0-or-later |
| 7 | */ |
| 8 | |
| 9 | #include "qemu/osdep.h" |
| 10 | #include "qemu/units.h" |
| 11 | #include "target/arm/idau.h" |
| 12 | #include "trace.h" |
| 13 | #include "cpu.h" |
| 14 | #include "internals.h" |
| 15 | #include "exec/gdbstub.h" |
| 16 | #include "exec/helper-proto.h" |
| 17 | #include "qemu/host-utils.h" |
| 18 | #include "qemu/main-loop.h" |
| 19 | #include "qemu/bitops.h" |
| 20 | #include "qemu/crc32c.h" |
| 21 | #include "qemu/qemu-print.h" |
| 22 | #include "exec/exec-all.h" |
| 23 | #include <zlib.h> /* For crc32 */ |
| 24 | #include "hw/irq.h" |
| 25 | #include "hw/semihosting/semihost.h" |
| 26 | #include "sysemu/cpus.h" |
| 27 | #include "sysemu/kvm.h" |
| 28 | #include "qemu/range.h" |
| 29 | #include "qapi/qapi-commands-machine-target.h" |
| 30 | #include "qapi/error.h" |
| 31 | #include "qemu/guest-random.h" |
| 32 | #ifdef CONFIG_TCG |
| 33 | #include "arm_ldst.h" |
| 34 | #include "exec/cpu_ldst.h" |
| 35 | #endif |
| 36 | |
| 37 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
| 38 | |
| 39 | #ifndef CONFIG_USER_ONLY |
| 40 | |
| 41 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| 42 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 43 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| 44 | target_ulong *page_size_ptr, |
| 45 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
| 46 | #endif |
| 47 | |
| 48 | static void switch_mode(CPUARMState *env, int mode); |
| 49 | |
| 50 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 51 | { |
| 52 | int nregs; |
| 53 | |
| 54 | /* VFP data registers are always little-endian. */ |
| 55 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| 56 | if (reg < nregs) { |
| 57 | stq_le_p(buf, *aa32_vfp_dreg(env, reg)); |
| 58 | return 8; |
| 59 | } |
| 60 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 61 | /* Aliases for Q regs. */ |
| 62 | nregs += 16; |
| 63 | if (reg < nregs) { |
| 64 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| 65 | stq_le_p(buf, q[0]); |
| 66 | stq_le_p(buf + 8, q[1]); |
| 67 | return 16; |
| 68 | } |
| 69 | } |
| 70 | switch (reg - nregs) { |
| 71 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| 72 | case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; |
| 73 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| 74 | } |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 79 | { |
| 80 | int nregs; |
| 81 | |
| 82 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| 83 | if (reg < nregs) { |
| 84 | *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
| 85 | return 8; |
| 86 | } |
| 87 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 88 | nregs += 16; |
| 89 | if (reg < nregs) { |
| 90 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| 91 | q[0] = ldq_le_p(buf); |
| 92 | q[1] = ldq_le_p(buf + 8); |
| 93 | return 16; |
| 94 | } |
| 95 | } |
| 96 | switch (reg - nregs) { |
| 97 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| 98 | case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; |
| 99 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| 100 | } |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 105 | { |
| 106 | switch (reg) { |
| 107 | case 0 ... 31: |
| 108 | /* 128 bit FP register */ |
| 109 | { |
| 110 | uint64_t *q = aa64_vfp_qreg(env, reg); |
| 111 | stq_le_p(buf, q[0]); |
| 112 | stq_le_p(buf + 8, q[1]); |
| 113 | return 16; |
| 114 | } |
| 115 | case 32: |
| 116 | /* FPSR */ |
| 117 | stl_p(buf, vfp_get_fpsr(env)); |
| 118 | return 4; |
| 119 | case 33: |
| 120 | /* FPCR */ |
| 121 | stl_p(buf, vfp_get_fpcr(env)); |
| 122 | return 4; |
| 123 | default: |
| 124 | return 0; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 129 | { |
| 130 | switch (reg) { |
| 131 | case 0 ... 31: |
| 132 | /* 128 bit FP register */ |
| 133 | { |
| 134 | uint64_t *q = aa64_vfp_qreg(env, reg); |
| 135 | q[0] = ldq_le_p(buf); |
| 136 | q[1] = ldq_le_p(buf + 8); |
| 137 | return 16; |
| 138 | } |
| 139 | case 32: |
| 140 | /* FPSR */ |
| 141 | vfp_set_fpsr(env, ldl_p(buf)); |
| 142 | return 4; |
| 143 | case 33: |
| 144 | /* FPCR */ |
| 145 | vfp_set_fpcr(env, ldl_p(buf)); |
| 146 | return 4; |
| 147 | default: |
| 148 | return 0; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 153 | { |
| 154 | assert(ri->fieldoffset); |
| 155 | if (cpreg_field_is_64bit(ri)) { |
| 156 | return CPREG_FIELD64(env, ri); |
| 157 | } else { |
| 158 | return CPREG_FIELD32(env, ri); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 163 | uint64_t value) |
| 164 | { |
| 165 | assert(ri->fieldoffset); |
| 166 | if (cpreg_field_is_64bit(ri)) { |
| 167 | CPREG_FIELD64(env, ri) = value; |
| 168 | } else { |
| 169 | CPREG_FIELD32(env, ri) = value; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
| 174 | { |
| 175 | return (char *)env + ri->fieldoffset; |
| 176 | } |
| 177 | |
| 178 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
| 179 | { |
| 180 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
| 181 | if (ri->type & ARM_CP_CONST) { |
| 182 | return ri->resetvalue; |
| 183 | } else if (ri->raw_readfn) { |
| 184 | return ri->raw_readfn(env, ri); |
| 185 | } else if (ri->readfn) { |
| 186 | return ri->readfn(env, ri); |
| 187 | } else { |
| 188 | return raw_read(env, ri); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| 193 | uint64_t v) |
| 194 | { |
| 195 | /* Raw write of a coprocessor register (as needed for migration, etc). |
| 196 | * Note that constant registers are treated as write-ignored; the |
| 197 | * caller should check for success by whether a readback gives the |
| 198 | * value written. |
| 199 | */ |
| 200 | if (ri->type & ARM_CP_CONST) { |
| 201 | return; |
| 202 | } else if (ri->raw_writefn) { |
| 203 | ri->raw_writefn(env, ri, v); |
| 204 | } else if (ri->writefn) { |
| 205 | ri->writefn(env, ri, v); |
| 206 | } else { |
| 207 | raw_write(env, ri, v); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| 212 | { |
| 213 | ARMCPU *cpu = env_archcpu(env); |
| 214 | const ARMCPRegInfo *ri; |
| 215 | uint32_t key; |
| 216 | |
| 217 | key = cpu->dyn_xml.cpregs_keys[reg]; |
| 218 | ri = get_arm_cp_reginfo(cpu->cp_regs, key); |
| 219 | if (ri) { |
| 220 | if (cpreg_field_is_64bit(ri)) { |
| 221 | return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); |
| 222 | } else { |
| 223 | return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); |
| 224 | } |
| 225 | } |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| 230 | { |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
| 235 | { |
| 236 | /* Return true if the regdef would cause an assertion if you called |
| 237 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a |
| 238 | * program bug for it not to have the NO_RAW flag). |
| 239 | * NB that returning false here doesn't necessarily mean that calling |
| 240 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has |
| 241 | * read/write access functions which are safe for raw use" from "has |
| 242 | * read/write access functions which have side effects but has forgotten |
| 243 | * to provide raw access functions". |
| 244 | * The tests here line up with the conditions in read/write_raw_cp_reg() |
| 245 | * and assertions in raw_read()/raw_write(). |
| 246 | */ |
| 247 | if ((ri->type & ARM_CP_CONST) || |
| 248 | ri->fieldoffset || |
| 249 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { |
| 250 | return false; |
| 251 | } |
| 252 | return true; |
| 253 | } |
| 254 | |
| 255 | bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) |
| 256 | { |
| 257 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
| 258 | int i; |
| 259 | bool ok = true; |
| 260 | |
| 261 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
| 262 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| 263 | const ARMCPRegInfo *ri; |
| 264 | uint64_t newval; |
| 265 | |
| 266 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 267 | if (!ri) { |
| 268 | ok = false; |
| 269 | continue; |
| 270 | } |
| 271 | if (ri->type & ARM_CP_NO_RAW) { |
| 272 | continue; |
| 273 | } |
| 274 | |
| 275 | newval = read_raw_cp_reg(&cpu->env, ri); |
| 276 | if (kvm_sync) { |
| 277 | /* |
| 278 | * Only sync if the previous list->cpustate sync succeeded. |
| 279 | * Rather than tracking the success/failure state for every |
| 280 | * item in the list, we just recheck "does the raw write we must |
| 281 | * have made in write_list_to_cpustate() read back OK" here. |
| 282 | */ |
| 283 | uint64_t oldval = cpu->cpreg_values[i]; |
| 284 | |
| 285 | if (oldval == newval) { |
| 286 | continue; |
| 287 | } |
| 288 | |
| 289 | write_raw_cp_reg(&cpu->env, ri, oldval); |
| 290 | if (read_raw_cp_reg(&cpu->env, ri) != oldval) { |
| 291 | continue; |
| 292 | } |
| 293 | |
| 294 | write_raw_cp_reg(&cpu->env, ri, newval); |
| 295 | } |
| 296 | cpu->cpreg_values[i] = newval; |
| 297 | } |
| 298 | return ok; |
| 299 | } |
| 300 | |
| 301 | bool write_list_to_cpustate(ARMCPU *cpu) |
| 302 | { |
| 303 | int i; |
| 304 | bool ok = true; |
| 305 | |
| 306 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
| 307 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| 308 | uint64_t v = cpu->cpreg_values[i]; |
| 309 | const ARMCPRegInfo *ri; |
| 310 | |
| 311 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 312 | if (!ri) { |
| 313 | ok = false; |
| 314 | continue; |
| 315 | } |
| 316 | if (ri->type & ARM_CP_NO_RAW) { |
| 317 | continue; |
| 318 | } |
| 319 | /* Write value and confirm it reads back as written |
| 320 | * (to catch read-only registers and partially read-only |
| 321 | * registers where the incoming migration value doesn't match) |
| 322 | */ |
| 323 | write_raw_cp_reg(&cpu->env, ri, v); |
| 324 | if (read_raw_cp_reg(&cpu->env, ri) != v) { |
| 325 | ok = false; |
| 326 | } |
| 327 | } |
| 328 | return ok; |
| 329 | } |
| 330 | |
| 331 | static void add_cpreg_to_list(gpointer key, gpointer opaque) |
| 332 | { |
| 333 | ARMCPU *cpu = opaque; |
| 334 | uint64_t regidx; |
| 335 | const ARMCPRegInfo *ri; |
| 336 | |
| 337 | regidx = *(uint32_t *)key; |
| 338 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 339 | |
| 340 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| 341 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
| 342 | /* The value array need not be initialized at this point */ |
| 343 | cpu->cpreg_array_len++; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | static void count_cpreg(gpointer key, gpointer opaque) |
| 348 | { |
| 349 | ARMCPU *cpu = opaque; |
| 350 | uint64_t regidx; |
| 351 | const ARMCPRegInfo *ri; |
| 352 | |
| 353 | regidx = *(uint32_t *)key; |
| 354 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 355 | |
| 356 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| 357 | cpu->cpreg_array_len++; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
| 362 | { |
| 363 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
| 364 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
| 365 | |
| 366 | if (aidx > bidx) { |
| 367 | return 1; |
| 368 | } |
| 369 | if (aidx < bidx) { |
| 370 | return -1; |
| 371 | } |
| 372 | return 0; |
| 373 | } |
| 374 | |
| 375 | void init_cpreg_list(ARMCPU *cpu) |
| 376 | { |
| 377 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
| 378 | * Note that we require cpreg_tuples[] to be sorted by key ID. |
| 379 | */ |
| 380 | GList *keys; |
| 381 | int arraylen; |
| 382 | |
| 383 | keys = g_hash_table_get_keys(cpu->cp_regs); |
| 384 | keys = g_list_sort(keys, cpreg_key_compare); |
| 385 | |
| 386 | cpu->cpreg_array_len = 0; |
| 387 | |
| 388 | g_list_foreach(keys, count_cpreg, cpu); |
| 389 | |
| 390 | arraylen = cpu->cpreg_array_len; |
| 391 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); |
| 392 | cpu->cpreg_values = g_new(uint64_t, arraylen); |
| 393 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); |
| 394 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); |
| 395 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
| 396 | cpu->cpreg_array_len = 0; |
| 397 | |
| 398 | g_list_foreach(keys, add_cpreg_to_list, cpu); |
| 399 | |
| 400 | assert(cpu->cpreg_array_len == arraylen); |
| 401 | |
| 402 | g_list_free(keys); |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but |
| 407 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. |
| 408 | * |
| 409 | * access_el3_aa32ns: Used to check AArch32 register views. |
| 410 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. |
| 411 | */ |
| 412 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, |
| 413 | const ARMCPRegInfo *ri, |
| 414 | bool isread) |
| 415 | { |
| 416 | bool secure = arm_is_secure_below_el3(env); |
| 417 | |
| 418 | assert(!arm_el_is_aa64(env, 3)); |
| 419 | if (secure) { |
| 420 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 421 | } |
| 422 | return CP_ACCESS_OK; |
| 423 | } |
| 424 | |
| 425 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, |
| 426 | const ARMCPRegInfo *ri, |
| 427 | bool isread) |
| 428 | { |
| 429 | if (!arm_el_is_aa64(env, 3)) { |
| 430 | return access_el3_aa32ns(env, ri, isread); |
| 431 | } |
| 432 | return CP_ACCESS_OK; |
| 433 | } |
| 434 | |
| 435 | /* Some secure-only AArch32 registers trap to EL3 if used from |
| 436 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). |
| 437 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. |
| 438 | * We assume that the .access field is set to PL1_RW. |
| 439 | */ |
| 440 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, |
| 441 | const ARMCPRegInfo *ri, |
| 442 | bool isread) |
| 443 | { |
| 444 | if (arm_current_el(env) == 3) { |
| 445 | return CP_ACCESS_OK; |
| 446 | } |
| 447 | if (arm_is_secure_below_el3(env)) { |
| 448 | return CP_ACCESS_TRAP_EL3; |
| 449 | } |
| 450 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ |
| 451 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 452 | } |
| 453 | |
| 454 | /* Check for traps to "powerdown debug" registers, which are controlled |
| 455 | * by MDCR.TDOSA |
| 456 | */ |
| 457 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, |
| 458 | bool isread) |
| 459 | { |
| 460 | int el = arm_current_el(env); |
| 461 | bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || |
| 462 | (env->cp15.mdcr_el2 & MDCR_TDE) || |
| 463 | (arm_hcr_el2_eff(env) & HCR_TGE); |
| 464 | |
| 465 | if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { |
| 466 | return CP_ACCESS_TRAP_EL2; |
| 467 | } |
| 468 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { |
| 469 | return CP_ACCESS_TRAP_EL3; |
| 470 | } |
| 471 | return CP_ACCESS_OK; |
| 472 | } |
| 473 | |
| 474 | /* Check for traps to "debug ROM" registers, which are controlled |
| 475 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. |
| 476 | */ |
| 477 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, |
| 478 | bool isread) |
| 479 | { |
| 480 | int el = arm_current_el(env); |
| 481 | bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || |
| 482 | (env->cp15.mdcr_el2 & MDCR_TDE) || |
| 483 | (arm_hcr_el2_eff(env) & HCR_TGE); |
| 484 | |
| 485 | if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { |
| 486 | return CP_ACCESS_TRAP_EL2; |
| 487 | } |
| 488 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| 489 | return CP_ACCESS_TRAP_EL3; |
| 490 | } |
| 491 | return CP_ACCESS_OK; |
| 492 | } |
| 493 | |
| 494 | /* Check for traps to general debug registers, which are controlled |
| 495 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. |
| 496 | */ |
| 497 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, |
| 498 | bool isread) |
| 499 | { |
| 500 | int el = arm_current_el(env); |
| 501 | bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || |
| 502 | (env->cp15.mdcr_el2 & MDCR_TDE) || |
| 503 | (arm_hcr_el2_eff(env) & HCR_TGE); |
| 504 | |
| 505 | if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { |
| 506 | return CP_ACCESS_TRAP_EL2; |
| 507 | } |
| 508 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| 509 | return CP_ACCESS_TRAP_EL3; |
| 510 | } |
| 511 | return CP_ACCESS_OK; |
| 512 | } |
| 513 | |
| 514 | /* Check for traps to performance monitor registers, which are controlled |
| 515 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. |
| 516 | */ |
| 517 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, |
| 518 | bool isread) |
| 519 | { |
| 520 | int el = arm_current_el(env); |
| 521 | |
| 522 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| 523 | && !arm_is_secure_below_el3(env)) { |
| 524 | return CP_ACCESS_TRAP_EL2; |
| 525 | } |
| 526 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| 527 | return CP_ACCESS_TRAP_EL3; |
| 528 | } |
| 529 | return CP_ACCESS_OK; |
| 530 | } |
| 531 | |
| 532 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 533 | { |
| 534 | ARMCPU *cpu = env_archcpu(env); |
| 535 | |
| 536 | raw_write(env, ri, value); |
| 537 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
| 538 | } |
| 539 | |
| 540 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 541 | { |
| 542 | ARMCPU *cpu = env_archcpu(env); |
| 543 | |
| 544 | if (raw_read(env, ri) != value) { |
| 545 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
| 546 | * not modified virtual addresses, so this causes a TLB flush. |
| 547 | */ |
| 548 | tlb_flush(CPU(cpu)); |
| 549 | raw_write(env, ri, value); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 554 | uint64_t value) |
| 555 | { |
| 556 | ARMCPU *cpu = env_archcpu(env); |
| 557 | |
| 558 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
| 559 | && !extended_addresses_enabled(env)) { |
| 560 | /* For VMSA (when not using the LPAE long descriptor page table |
| 561 | * format) this register includes the ASID, so do a TLB flush. |
| 562 | * For PMSA it is purely a process ID and no action is needed. |
| 563 | */ |
| 564 | tlb_flush(CPU(cpu)); |
| 565 | } |
| 566 | raw_write(env, ri, value); |
| 567 | } |
| 568 | |
| 569 | /* IS variants of TLB operations must affect all cores */ |
| 570 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 571 | uint64_t value) |
| 572 | { |
| 573 | CPUState *cs = env_cpu(env); |
| 574 | |
| 575 | tlb_flush_all_cpus_synced(cs); |
| 576 | } |
| 577 | |
| 578 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 579 | uint64_t value) |
| 580 | { |
| 581 | CPUState *cs = env_cpu(env); |
| 582 | |
| 583 | tlb_flush_all_cpus_synced(cs); |
| 584 | } |
| 585 | |
| 586 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 587 | uint64_t value) |
| 588 | { |
| 589 | CPUState *cs = env_cpu(env); |
| 590 | |
| 591 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
| 592 | } |
| 593 | |
| 594 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 595 | uint64_t value) |
| 596 | { |
| 597 | CPUState *cs = env_cpu(env); |
| 598 | |
| 599 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Non-IS variants of TLB operations are upgraded to |
| 604 | * IS versions if we are at NS EL1 and HCR_EL2.FB is set to |
| 605 | * force broadcast of these operations. |
| 606 | */ |
| 607 | static bool tlb_force_broadcast(CPUARMState *env) |
| 608 | { |
| 609 | return (env->cp15.hcr_el2 & HCR_FB) && |
| 610 | arm_current_el(env) == 1 && arm_is_secure_below_el3(env); |
| 611 | } |
| 612 | |
| 613 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 614 | uint64_t value) |
| 615 | { |
| 616 | /* Invalidate all (TLBIALL) */ |
| 617 | ARMCPU *cpu = env_archcpu(env); |
| 618 | |
| 619 | if (tlb_force_broadcast(env)) { |
| 620 | tlbiall_is_write(env, NULL, value); |
| 621 | return; |
| 622 | } |
| 623 | |
| 624 | tlb_flush(CPU(cpu)); |
| 625 | } |
| 626 | |
| 627 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 628 | uint64_t value) |
| 629 | { |
| 630 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| 631 | ARMCPU *cpu = env_archcpu(env); |
| 632 | |
| 633 | if (tlb_force_broadcast(env)) { |
| 634 | tlbimva_is_write(env, NULL, value); |
| 635 | return; |
| 636 | } |
| 637 | |
| 638 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| 639 | } |
| 640 | |
| 641 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 642 | uint64_t value) |
| 643 | { |
| 644 | /* Invalidate by ASID (TLBIASID) */ |
| 645 | ARMCPU *cpu = env_archcpu(env); |
| 646 | |
| 647 | if (tlb_force_broadcast(env)) { |
| 648 | tlbiasid_is_write(env, NULL, value); |
| 649 | return; |
| 650 | } |
| 651 | |
| 652 | tlb_flush(CPU(cpu)); |
| 653 | } |
| 654 | |
| 655 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 656 | uint64_t value) |
| 657 | { |
| 658 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| 659 | ARMCPU *cpu = env_archcpu(env); |
| 660 | |
| 661 | if (tlb_force_broadcast(env)) { |
| 662 | tlbimvaa_is_write(env, NULL, value); |
| 663 | return; |
| 664 | } |
| 665 | |
| 666 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| 667 | } |
| 668 | |
| 669 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 670 | uint64_t value) |
| 671 | { |
| 672 | CPUState *cs = env_cpu(env); |
| 673 | |
| 674 | tlb_flush_by_mmuidx(cs, |
| 675 | ARMMMUIdxBit_S12NSE1 | |
| 676 | ARMMMUIdxBit_S12NSE0 | |
| 677 | ARMMMUIdxBit_S2NS); |
| 678 | } |
| 679 | |
| 680 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 681 | uint64_t value) |
| 682 | { |
| 683 | CPUState *cs = env_cpu(env); |
| 684 | |
| 685 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 686 | ARMMMUIdxBit_S12NSE1 | |
| 687 | ARMMMUIdxBit_S12NSE0 | |
| 688 | ARMMMUIdxBit_S2NS); |
| 689 | } |
| 690 | |
| 691 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 692 | uint64_t value) |
| 693 | { |
| 694 | /* Invalidate by IPA. This has to invalidate any structures that |
| 695 | * contain only stage 2 translation information, but does not need |
| 696 | * to apply to structures that contain combined stage 1 and stage 2 |
| 697 | * translation information. |
| 698 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| 699 | */ |
| 700 | CPUState *cs = env_cpu(env); |
| 701 | uint64_t pageaddr; |
| 702 | |
| 703 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| 704 | return; |
| 705 | } |
| 706 | |
| 707 | pageaddr = sextract64(value << 12, 0, 40); |
| 708 | |
| 709 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
| 710 | } |
| 711 | |
| 712 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 713 | uint64_t value) |
| 714 | { |
| 715 | CPUState *cs = env_cpu(env); |
| 716 | uint64_t pageaddr; |
| 717 | |
| 718 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| 719 | return; |
| 720 | } |
| 721 | |
| 722 | pageaddr = sextract64(value << 12, 0, 40); |
| 723 | |
| 724 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 725 | ARMMMUIdxBit_S2NS); |
| 726 | } |
| 727 | |
| 728 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 729 | uint64_t value) |
| 730 | { |
| 731 | CPUState *cs = env_cpu(env); |
| 732 | |
| 733 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
| 734 | } |
| 735 | |
| 736 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 737 | uint64_t value) |
| 738 | { |
| 739 | CPUState *cs = env_cpu(env); |
| 740 | |
| 741 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
| 742 | } |
| 743 | |
| 744 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 745 | uint64_t value) |
| 746 | { |
| 747 | CPUState *cs = env_cpu(env); |
| 748 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| 749 | |
| 750 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
| 751 | } |
| 752 | |
| 753 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 754 | uint64_t value) |
| 755 | { |
| 756 | CPUState *cs = env_cpu(env); |
| 757 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| 758 | |
| 759 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 760 | ARMMMUIdxBit_S1E2); |
| 761 | } |
| 762 | |
| 763 | static const ARMCPRegInfo cp_reginfo[] = { |
| 764 | /* Define the secure and non-secure FCSE identifier CP registers |
| 765 | * separately because there is no secure bank in V8 (no _EL3). This allows |
| 766 | * the secure register to be properly reset and migrated. There is also no |
| 767 | * v8 EL1 version of the register so the non-secure instance stands alone. |
| 768 | */ |
| 769 | { .name = "FCSEIDR" , |
| 770 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| 771 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| 772 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), |
| 773 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| 774 | { .name = "FCSEIDR_S" , |
| 775 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| 776 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| 777 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), |
| 778 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| 779 | /* Define the secure and non-secure context identifier CP registers |
| 780 | * separately because there is no secure bank in V8 (no _EL3). This allows |
| 781 | * the secure register to be properly reset and migrated. In the |
| 782 | * non-secure case, the 32-bit register will have reset and migration |
| 783 | * disabled during registration as it is handled by the 64-bit instance. |
| 784 | */ |
| 785 | { .name = "CONTEXTIDR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 786 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| 787 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| 788 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
| 789 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| 790 | { .name = "CONTEXTIDR_S" , .state = ARM_CP_STATE_AA32, |
| 791 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| 792 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| 793 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
| 794 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| 795 | REGINFO_SENTINEL |
| 796 | }; |
| 797 | |
| 798 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { |
| 799 | /* NB: Some of these registers exist in v8 but with more precise |
| 800 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). |
| 801 | */ |
| 802 | /* MMU Domain access control / MPU write buffer control */ |
| 803 | { .name = "DACR" , |
| 804 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, |
| 805 | .access = PL1_RW, .resetvalue = 0, |
| 806 | .writefn = dacr_write, .raw_writefn = raw_write, |
| 807 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| 808 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| 809 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
| 810 | * For v6 and v5, these mappings are overly broad. |
| 811 | */ |
| 812 | { .name = "TLB_LOCKDOWN" , .cp = 15, .crn = 10, .crm = 0, |
| 813 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 814 | { .name = "TLB_LOCKDOWN" , .cp = 15, .crn = 10, .crm = 1, |
| 815 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 816 | { .name = "TLB_LOCKDOWN" , .cp = 15, .crn = 10, .crm = 4, |
| 817 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 818 | { .name = "TLB_LOCKDOWN" , .cp = 15, .crn = 10, .crm = 8, |
| 819 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 820 | /* Cache maintenance ops; some of this space may be overridden later. */ |
| 821 | { .name = "CACHEMAINT" , .cp = 15, .crn = 7, .crm = CP_ANY, |
| 822 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| 823 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, |
| 824 | REGINFO_SENTINEL |
| 825 | }; |
| 826 | |
| 827 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| 828 | /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| 829 | * over-broad. |
| 830 | */ |
| 831 | { .name = "WFI_v5" , .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| 832 | .access = PL1_W, .type = ARM_CP_WFI }, |
| 833 | REGINFO_SENTINEL |
| 834 | }; |
| 835 | |
| 836 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| 837 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| 838 | * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| 839 | */ |
| 840 | { .name = "WFI_v6" , .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 841 | .access = PL1_W, .type = ARM_CP_WFI }, |
| 842 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| 843 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| 844 | * OMAPCP will override this space. |
| 845 | */ |
| 846 | { .name = "DLOCKDOWN" , .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 847 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), |
| 848 | .resetvalue = 0 }, |
| 849 | { .name = "ILOCKDOWN" , .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 850 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), |
| 851 | .resetvalue = 0 }, |
| 852 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| 853 | { .name = "DUMMY" , .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, |
| 854 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| 855 | .resetvalue = 0 }, |
| 856 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
| 857 | * implementing it as RAZ means the "debug architecture version" bits |
| 858 | * will read as a reserved value, which should cause Linux to not try |
| 859 | * to use the debug hardware. |
| 860 | */ |
| 861 | { .name = "DBGDIDR" , .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 862 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 863 | /* MMU TLB control. Note that the wildcarding means we cover not just |
| 864 | * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| 865 | */ |
| 866 | { .name = "TLBIALL" , .cp = 15, .crn = 8, .crm = CP_ANY, |
| 867 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
| 868 | .type = ARM_CP_NO_RAW }, |
| 869 | { .name = "TLBIMVA" , .cp = 15, .crn = 8, .crm = CP_ANY, |
| 870 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
| 871 | .type = ARM_CP_NO_RAW }, |
| 872 | { .name = "TLBIASID" , .cp = 15, .crn = 8, .crm = CP_ANY, |
| 873 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
| 874 | .type = ARM_CP_NO_RAW }, |
| 875 | { .name = "TLBIMVAA" , .cp = 15, .crn = 8, .crm = CP_ANY, |
| 876 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
| 877 | .type = ARM_CP_NO_RAW }, |
| 878 | { .name = "PRRR" , .cp = 15, .crn = 10, .crm = 2, |
| 879 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 880 | { .name = "NMRR" , .cp = 15, .crn = 10, .crm = 2, |
| 881 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, |
| 882 | REGINFO_SENTINEL |
| 883 | }; |
| 884 | |
| 885 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 886 | uint64_t value) |
| 887 | { |
| 888 | uint32_t mask = 0; |
| 889 | |
| 890 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ |
| 891 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
| 892 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. |
| 893 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. |
| 894 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. |
| 895 | */ |
| 896 | if (arm_feature(env, ARM_FEATURE_VFP)) { |
| 897 | /* VFP coprocessor: cp10 & cp11 [23:20] */ |
| 898 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); |
| 899 | |
| 900 | if (!arm_feature(env, ARM_FEATURE_NEON)) { |
| 901 | /* ASEDIS [31] bit is RAO/WI */ |
| 902 | value |= (1 << 31); |
| 903 | } |
| 904 | |
| 905 | /* VFPv3 and upwards with NEON implement 32 double precision |
| 906 | * registers (D0-D31). |
| 907 | */ |
| 908 | if (!arm_feature(env, ARM_FEATURE_NEON) || |
| 909 | !arm_feature(env, ARM_FEATURE_VFP3)) { |
| 910 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
| 911 | value |= (1 << 30); |
| 912 | } |
| 913 | } |
| 914 | value &= mask; |
| 915 | } |
| 916 | |
| 917 | /* |
| 918 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 |
| 919 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. |
| 920 | */ |
| 921 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && |
| 922 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { |
| 923 | value &= ~(0xf << 20); |
| 924 | value |= env->cp15.cpacr_el1 & (0xf << 20); |
| 925 | } |
| 926 | |
| 927 | env->cp15.cpacr_el1 = value; |
| 928 | } |
| 929 | |
| 930 | static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 931 | { |
| 932 | /* |
| 933 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 |
| 934 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. |
| 935 | */ |
| 936 | uint64_t value = env->cp15.cpacr_el1; |
| 937 | |
| 938 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && |
| 939 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { |
| 940 | value &= ~(0xf << 20); |
| 941 | } |
| 942 | return value; |
| 943 | } |
| 944 | |
| 945 | |
| 946 | static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 947 | { |
| 948 | /* Call cpacr_write() so that we reset with the correct RAO bits set |
| 949 | * for our CPU features. |
| 950 | */ |
| 951 | cpacr_write(env, ri, 0); |
| 952 | } |
| 953 | |
| 954 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 955 | bool isread) |
| 956 | { |
| 957 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 958 | /* Check if CPACR accesses are to be trapped to EL2 */ |
| 959 | if (arm_current_el(env) == 1 && |
| 960 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { |
| 961 | return CP_ACCESS_TRAP_EL2; |
| 962 | /* Check if CPACR accesses are to be trapped to EL3 */ |
| 963 | } else if (arm_current_el(env) < 3 && |
| 964 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| 965 | return CP_ACCESS_TRAP_EL3; |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | return CP_ACCESS_OK; |
| 970 | } |
| 971 | |
| 972 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 973 | bool isread) |
| 974 | { |
| 975 | /* Check if CPTR accesses are set to trap to EL3 */ |
| 976 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| 977 | return CP_ACCESS_TRAP_EL3; |
| 978 | } |
| 979 | |
| 980 | return CP_ACCESS_OK; |
| 981 | } |
| 982 | |
| 983 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
| 984 | /* prefetch by MVA in v6, NOP in v7 */ |
| 985 | { .name = "MVA_prefetch" , |
| 986 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| 987 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 988 | /* We need to break the TB after ISB to execute self-modifying code |
| 989 | * correctly and also to take any pending interrupts immediately. |
| 990 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. |
| 991 | */ |
| 992 | { .name = "ISB" , .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| 993 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
| 994 | { .name = "DSB" , .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| 995 | .access = PL0_W, .type = ARM_CP_NOP }, |
| 996 | { .name = "DMB" , .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| 997 | .access = PL0_W, .type = ARM_CP_NOP }, |
| 998 | { .name = "IFAR" , .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 999 | .access = PL1_RW, |
| 1000 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
| 1001 | offsetof(CPUARMState, cp15.ifar_ns) }, |
| 1002 | .resetvalue = 0, }, |
| 1003 | /* Watchpoint Fault Address Register : should actually only be present |
| 1004 | * for 1136, 1176, 11MPCore. |
| 1005 | */ |
| 1006 | { .name = "WFAR" , .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1007 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, |
| 1008 | { .name = "CPACR" , .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
| 1009 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
| 1010 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
| 1011 | .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, |
| 1012 | REGINFO_SENTINEL |
| 1013 | }; |
| 1014 | |
| 1015 | /* Definitions for the PMU registers */ |
| 1016 | #define PMCRN_MASK 0xf800 |
| 1017 | #define PMCRN_SHIFT 11 |
| 1018 | #define PMCRLC 0x40 |
| 1019 | #define PMCRDP 0x10 |
| 1020 | #define PMCRD 0x8 |
| 1021 | #define PMCRC 0x4 |
| 1022 | #define PMCRP 0x2 |
| 1023 | #define PMCRE 0x1 |
| 1024 | |
| 1025 | #define PMXEVTYPER_P 0x80000000 |
| 1026 | #define PMXEVTYPER_U 0x40000000 |
| 1027 | #define PMXEVTYPER_NSK 0x20000000 |
| 1028 | #define PMXEVTYPER_NSU 0x10000000 |
| 1029 | #define PMXEVTYPER_NSH 0x08000000 |
| 1030 | #define PMXEVTYPER_M 0x04000000 |
| 1031 | #define PMXEVTYPER_MT 0x02000000 |
| 1032 | #define PMXEVTYPER_EVTCOUNT 0x0000ffff |
| 1033 | #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ |
| 1034 | PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ |
| 1035 | PMXEVTYPER_M | PMXEVTYPER_MT | \ |
| 1036 | PMXEVTYPER_EVTCOUNT) |
| 1037 | |
| 1038 | #define PMCCFILTR 0xf8000000 |
| 1039 | #define PMCCFILTR_M PMXEVTYPER_M |
| 1040 | #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) |
| 1041 | |
| 1042 | static inline uint32_t pmu_num_counters(CPUARMState *env) |
| 1043 | { |
| 1044 | return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; |
| 1045 | } |
| 1046 | |
| 1047 | /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ |
| 1048 | static inline uint64_t pmu_counter_mask(CPUARMState *env) |
| 1049 | { |
| 1050 | return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); |
| 1051 | } |
| 1052 | |
| 1053 | typedef struct pm_event { |
| 1054 | uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ |
| 1055 | /* If the event is supported on this CPU (used to generate PMCEID[01]) */ |
| 1056 | bool (*supported)(CPUARMState *); |
| 1057 | /* |
| 1058 | * Retrieve the current count of the underlying event. The programmed |
| 1059 | * counters hold a difference from the return value from this function |
| 1060 | */ |
| 1061 | uint64_t (*get_count)(CPUARMState *); |
| 1062 | /* |
| 1063 | * Return how many nanoseconds it will take (at a minimum) for count events |
| 1064 | * to occur. A negative value indicates the counter will never overflow, or |
| 1065 | * that the counter has otherwise arranged for the overflow bit to be set |
| 1066 | * and the PMU interrupt to be raised on overflow. |
| 1067 | */ |
| 1068 | int64_t (*ns_per_count)(uint64_t); |
| 1069 | } pm_event; |
| 1070 | |
| 1071 | static bool event_always_supported(CPUARMState *env) |
| 1072 | { |
| 1073 | return true; |
| 1074 | } |
| 1075 | |
| 1076 | static uint64_t swinc_get_count(CPUARMState *env) |
| 1077 | { |
| 1078 | /* |
| 1079 | * SW_INCR events are written directly to the pmevcntr's by writes to |
| 1080 | * PMSWINC, so there is no underlying count maintained by the PMU itself |
| 1081 | */ |
| 1082 | return 0; |
| 1083 | } |
| 1084 | |
| 1085 | static int64_t swinc_ns_per(uint64_t ignored) |
| 1086 | { |
| 1087 | return -1; |
| 1088 | } |
| 1089 | |
| 1090 | /* |
| 1091 | * Return the underlying cycle count for the PMU cycle counters. If we're in |
| 1092 | * usermode, simply return 0. |
| 1093 | */ |
| 1094 | static uint64_t cycles_get_count(CPUARMState *env) |
| 1095 | { |
| 1096 | #ifndef CONFIG_USER_ONLY |
| 1097 | return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| 1098 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); |
| 1099 | #else |
| 1100 | return cpu_get_host_ticks(); |
| 1101 | #endif |
| 1102 | } |
| 1103 | |
| 1104 | #ifndef CONFIG_USER_ONLY |
| 1105 | static int64_t cycles_ns_per(uint64_t cycles) |
| 1106 | { |
| 1107 | return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; |
| 1108 | } |
| 1109 | |
| 1110 | static bool instructions_supported(CPUARMState *env) |
| 1111 | { |
| 1112 | return use_icount == 1 /* Precise instruction counting */; |
| 1113 | } |
| 1114 | |
| 1115 | static uint64_t instructions_get_count(CPUARMState *env) |
| 1116 | { |
| 1117 | return (uint64_t)cpu_get_icount_raw(); |
| 1118 | } |
| 1119 | |
| 1120 | static int64_t instructions_ns_per(uint64_t icount) |
| 1121 | { |
| 1122 | return cpu_icount_to_ns((int64_t)icount); |
| 1123 | } |
| 1124 | #endif |
| 1125 | |
| 1126 | static const pm_event pm_events[] = { |
| 1127 | { .number = 0x000, /* SW_INCR */ |
| 1128 | .supported = event_always_supported, |
| 1129 | .get_count = swinc_get_count, |
| 1130 | .ns_per_count = swinc_ns_per, |
| 1131 | }, |
| 1132 | #ifndef CONFIG_USER_ONLY |
| 1133 | { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ |
| 1134 | .supported = instructions_supported, |
| 1135 | .get_count = instructions_get_count, |
| 1136 | .ns_per_count = instructions_ns_per, |
| 1137 | }, |
| 1138 | { .number = 0x011, /* CPU_CYCLES, Cycle */ |
| 1139 | .supported = event_always_supported, |
| 1140 | .get_count = cycles_get_count, |
| 1141 | .ns_per_count = cycles_ns_per, |
| 1142 | } |
| 1143 | #endif |
| 1144 | }; |
| 1145 | |
| 1146 | /* |
| 1147 | * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of |
| 1148 | * events (i.e. the statistical profiling extension), this implementation |
| 1149 | * should first be updated to something sparse instead of the current |
| 1150 | * supported_event_map[] array. |
| 1151 | */ |
| 1152 | #define MAX_EVENT_ID 0x11 |
| 1153 | #define UNSUPPORTED_EVENT UINT16_MAX |
| 1154 | static uint16_t supported_event_map[MAX_EVENT_ID + 1]; |
| 1155 | |
| 1156 | /* |
| 1157 | * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map |
| 1158 | * of ARM event numbers to indices in our pm_events array. |
| 1159 | * |
| 1160 | * Note: Events in the 0x40XX range are not currently supported. |
| 1161 | */ |
| 1162 | void pmu_init(ARMCPU *cpu) |
| 1163 | { |
| 1164 | unsigned int i; |
| 1165 | |
| 1166 | /* |
| 1167 | * Empty supported_event_map and cpu->pmceid[01] before adding supported |
| 1168 | * events to them |
| 1169 | */ |
| 1170 | for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { |
| 1171 | supported_event_map[i] = UNSUPPORTED_EVENT; |
| 1172 | } |
| 1173 | cpu->pmceid0 = 0; |
| 1174 | cpu->pmceid1 = 0; |
| 1175 | |
| 1176 | for (i = 0; i < ARRAY_SIZE(pm_events); i++) { |
| 1177 | const pm_event *cnt = &pm_events[i]; |
| 1178 | assert(cnt->number <= MAX_EVENT_ID); |
| 1179 | /* We do not currently support events in the 0x40xx range */ |
| 1180 | assert(cnt->number <= 0x3f); |
| 1181 | |
| 1182 | if (cnt->supported(&cpu->env)) { |
| 1183 | supported_event_map[cnt->number] = i; |
| 1184 | uint64_t event_mask = 1ULL << (cnt->number & 0x1f); |
| 1185 | if (cnt->number & 0x20) { |
| 1186 | cpu->pmceid1 |= event_mask; |
| 1187 | } else { |
| 1188 | cpu->pmceid0 |= event_mask; |
| 1189 | } |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Check at runtime whether a PMU event is supported for the current machine |
| 1196 | */ |
| 1197 | static bool event_supported(uint16_t number) |
| 1198 | { |
| 1199 | if (number > MAX_EVENT_ID) { |
| 1200 | return false; |
| 1201 | } |
| 1202 | return supported_event_map[number] != UNSUPPORTED_EVENT; |
| 1203 | } |
| 1204 | |
| 1205 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1206 | bool isread) |
| 1207 | { |
| 1208 | /* Performance monitor registers user accessibility is controlled |
| 1209 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
| 1210 | * trapping to EL2 or EL3 for other accesses. |
| 1211 | */ |
| 1212 | int el = arm_current_el(env); |
| 1213 | |
| 1214 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
| 1215 | return CP_ACCESS_TRAP; |
| 1216 | } |
| 1217 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| 1218 | && !arm_is_secure_below_el3(env)) { |
| 1219 | return CP_ACCESS_TRAP_EL2; |
| 1220 | } |
| 1221 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| 1222 | return CP_ACCESS_TRAP_EL3; |
| 1223 | } |
| 1224 | |
| 1225 | return CP_ACCESS_OK; |
| 1226 | } |
| 1227 | |
| 1228 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
| 1229 | const ARMCPRegInfo *ri, |
| 1230 | bool isread) |
| 1231 | { |
| 1232 | /* ER: event counter read trap control */ |
| 1233 | if (arm_feature(env, ARM_FEATURE_V8) |
| 1234 | && arm_current_el(env) == 0 |
| 1235 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 |
| 1236 | && isread) { |
| 1237 | return CP_ACCESS_OK; |
| 1238 | } |
| 1239 | |
| 1240 | return pmreg_access(env, ri, isread); |
| 1241 | } |
| 1242 | |
| 1243 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, |
| 1244 | const ARMCPRegInfo *ri, |
| 1245 | bool isread) |
| 1246 | { |
| 1247 | /* SW: software increment write trap control */ |
| 1248 | if (arm_feature(env, ARM_FEATURE_V8) |
| 1249 | && arm_current_el(env) == 0 |
| 1250 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 |
| 1251 | && !isread) { |
| 1252 | return CP_ACCESS_OK; |
| 1253 | } |
| 1254 | |
| 1255 | return pmreg_access(env, ri, isread); |
| 1256 | } |
| 1257 | |
| 1258 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
| 1259 | const ARMCPRegInfo *ri, |
| 1260 | bool isread) |
| 1261 | { |
| 1262 | /* ER: event counter read trap control */ |
| 1263 | if (arm_feature(env, ARM_FEATURE_V8) |
| 1264 | && arm_current_el(env) == 0 |
| 1265 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { |
| 1266 | return CP_ACCESS_OK; |
| 1267 | } |
| 1268 | |
| 1269 | return pmreg_access(env, ri, isread); |
| 1270 | } |
| 1271 | |
| 1272 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, |
| 1273 | const ARMCPRegInfo *ri, |
| 1274 | bool isread) |
| 1275 | { |
| 1276 | /* CR: cycle counter read trap control */ |
| 1277 | if (arm_feature(env, ARM_FEATURE_V8) |
| 1278 | && arm_current_el(env) == 0 |
| 1279 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 |
| 1280 | && isread) { |
| 1281 | return CP_ACCESS_OK; |
| 1282 | } |
| 1283 | |
| 1284 | return pmreg_access(env, ri, isread); |
| 1285 | } |
| 1286 | |
| 1287 | /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
| 1288 | * the current EL, security state, and register configuration. |
| 1289 | */ |
| 1290 | static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) |
| 1291 | { |
| 1292 | uint64_t filter; |
| 1293 | bool e, p, u, nsk, nsu, nsh, m; |
| 1294 | bool enabled, prohibited, filtered; |
| 1295 | bool secure = arm_is_secure(env); |
| 1296 | int el = arm_current_el(env); |
| 1297 | uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; |
| 1298 | |
| 1299 | if (!arm_feature(env, ARM_FEATURE_PMU)) { |
| 1300 | return false; |
| 1301 | } |
| 1302 | |
| 1303 | if (!arm_feature(env, ARM_FEATURE_EL2) || |
| 1304 | (counter < hpmn || counter == 31)) { |
| 1305 | e = env->cp15.c9_pmcr & PMCRE; |
| 1306 | } else { |
| 1307 | e = env->cp15.mdcr_el2 & MDCR_HPME; |
| 1308 | } |
| 1309 | enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); |
| 1310 | |
| 1311 | if (!secure) { |
| 1312 | if (el == 2 && (counter < hpmn || counter == 31)) { |
| 1313 | prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; |
| 1314 | } else { |
| 1315 | prohibited = false; |
| 1316 | } |
| 1317 | } else { |
| 1318 | prohibited = arm_feature(env, ARM_FEATURE_EL3) && |
| 1319 | (env->cp15.mdcr_el3 & MDCR_SPME); |
| 1320 | } |
| 1321 | |
| 1322 | if (prohibited && counter == 31) { |
| 1323 | prohibited = env->cp15.c9_pmcr & PMCRDP; |
| 1324 | } |
| 1325 | |
| 1326 | if (counter == 31) { |
| 1327 | filter = env->cp15.pmccfiltr_el0; |
| 1328 | } else { |
| 1329 | filter = env->cp15.c14_pmevtyper[counter]; |
| 1330 | } |
| 1331 | |
| 1332 | p = filter & PMXEVTYPER_P; |
| 1333 | u = filter & PMXEVTYPER_U; |
| 1334 | nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); |
| 1335 | nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); |
| 1336 | nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); |
| 1337 | m = arm_el_is_aa64(env, 1) && |
| 1338 | arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); |
| 1339 | |
| 1340 | if (el == 0) { |
| 1341 | filtered = secure ? u : u != nsu; |
| 1342 | } else if (el == 1) { |
| 1343 | filtered = secure ? p : p != nsk; |
| 1344 | } else if (el == 2) { |
| 1345 | filtered = !nsh; |
| 1346 | } else { /* EL3 */ |
| 1347 | filtered = m != p; |
| 1348 | } |
| 1349 | |
| 1350 | if (counter != 31) { |
| 1351 | /* |
| 1352 | * If not checking PMCCNTR, ensure the counter is setup to an event we |
| 1353 | * support |
| 1354 | */ |
| 1355 | uint16_t event = filter & PMXEVTYPER_EVTCOUNT; |
| 1356 | if (!event_supported(event)) { |
| 1357 | return false; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | return enabled && !prohibited && !filtered; |
| 1362 | } |
| 1363 | |
| 1364 | static void pmu_update_irq(CPUARMState *env) |
| 1365 | { |
| 1366 | ARMCPU *cpu = env_archcpu(env); |
| 1367 | qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
| 1368 | (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * Ensure c15_ccnt is the guest-visible count so that operations such as |
| 1373 | * enabling/disabling the counter or filtering, modifying the count itself, |
| 1374 | * etc. can be done logically. This is essentially a no-op if the counter is |
| 1375 | * not enabled at the time of the call. |
| 1376 | */ |
| 1377 | static void pmccntr_op_start(CPUARMState *env) |
| 1378 | { |
| 1379 | uint64_t cycles = cycles_get_count(env); |
| 1380 | |
| 1381 | if (pmu_counter_enabled(env, 31)) { |
| 1382 | uint64_t eff_cycles = cycles; |
| 1383 | if (env->cp15.c9_pmcr & PMCRD) { |
| 1384 | /* Increment once every 64 processor clock cycles */ |
| 1385 | eff_cycles /= 64; |
| 1386 | } |
| 1387 | |
| 1388 | uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; |
| 1389 | |
| 1390 | uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ |
| 1391 | 1ull << 63 : 1ull << 31; |
| 1392 | if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { |
| 1393 | env->cp15.c9_pmovsr |= (1 << 31); |
| 1394 | pmu_update_irq(env); |
| 1395 | } |
| 1396 | |
| 1397 | env->cp15.c15_ccnt = new_pmccntr; |
| 1398 | } |
| 1399 | env->cp15.c15_ccnt_delta = cycles; |
| 1400 | } |
| 1401 | |
| 1402 | /* |
| 1403 | * If PMCCNTR is enabled, recalculate the delta between the clock and the |
| 1404 | * guest-visible count. A call to pmccntr_op_finish should follow every call to |
| 1405 | * pmccntr_op_start. |
| 1406 | */ |
| 1407 | static void pmccntr_op_finish(CPUARMState *env) |
| 1408 | { |
| 1409 | if (pmu_counter_enabled(env, 31)) { |
| 1410 | #ifndef CONFIG_USER_ONLY |
| 1411 | /* Calculate when the counter will next overflow */ |
| 1412 | uint64_t remaining_cycles = -env->cp15.c15_ccnt; |
| 1413 | if (!(env->cp15.c9_pmcr & PMCRLC)) { |
| 1414 | remaining_cycles = (uint32_t)remaining_cycles; |
| 1415 | } |
| 1416 | int64_t overflow_in = cycles_ns_per(remaining_cycles); |
| 1417 | |
| 1418 | if (overflow_in > 0) { |
| 1419 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| 1420 | overflow_in; |
| 1421 | ARMCPU *cpu = env_archcpu(env); |
| 1422 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
| 1423 | } |
| 1424 | #endif |
| 1425 | |
| 1426 | uint64_t prev_cycles = env->cp15.c15_ccnt_delta; |
| 1427 | if (env->cp15.c9_pmcr & PMCRD) { |
| 1428 | /* Increment once every 64 processor clock cycles */ |
| 1429 | prev_cycles /= 64; |
| 1430 | } |
| 1431 | env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) |
| 1436 | { |
| 1437 | |
| 1438 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; |
| 1439 | uint64_t count = 0; |
| 1440 | if (event_supported(event)) { |
| 1441 | uint16_t event_idx = supported_event_map[event]; |
| 1442 | count = pm_events[event_idx].get_count(env); |
| 1443 | } |
| 1444 | |
| 1445 | if (pmu_counter_enabled(env, counter)) { |
| 1446 | uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; |
| 1447 | |
| 1448 | if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { |
| 1449 | env->cp15.c9_pmovsr |= (1 << counter); |
| 1450 | pmu_update_irq(env); |
| 1451 | } |
| 1452 | env->cp15.c14_pmevcntr[counter] = new_pmevcntr; |
| 1453 | } |
| 1454 | env->cp15.c14_pmevcntr_delta[counter] = count; |
| 1455 | } |
| 1456 | |
| 1457 | static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) |
| 1458 | { |
| 1459 | if (pmu_counter_enabled(env, counter)) { |
| 1460 | #ifndef CONFIG_USER_ONLY |
| 1461 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; |
| 1462 | uint16_t event_idx = supported_event_map[event]; |
| 1463 | uint64_t delta = UINT32_MAX - |
| 1464 | (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; |
| 1465 | int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); |
| 1466 | |
| 1467 | if (overflow_in > 0) { |
| 1468 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| 1469 | overflow_in; |
| 1470 | ARMCPU *cpu = env_archcpu(env); |
| 1471 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
| 1472 | } |
| 1473 | #endif |
| 1474 | |
| 1475 | env->cp15.c14_pmevcntr_delta[counter] -= |
| 1476 | env->cp15.c14_pmevcntr[counter]; |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | void pmu_op_start(CPUARMState *env) |
| 1481 | { |
| 1482 | unsigned int i; |
| 1483 | pmccntr_op_start(env); |
| 1484 | for (i = 0; i < pmu_num_counters(env); i++) { |
| 1485 | pmevcntr_op_start(env, i); |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | void pmu_op_finish(CPUARMState *env) |
| 1490 | { |
| 1491 | unsigned int i; |
| 1492 | pmccntr_op_finish(env); |
| 1493 | for (i = 0; i < pmu_num_counters(env); i++) { |
| 1494 | pmevcntr_op_finish(env, i); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored) |
| 1499 | { |
| 1500 | pmu_op_start(&cpu->env); |
| 1501 | } |
| 1502 | |
| 1503 | void pmu_post_el_change(ARMCPU *cpu, void *ignored) |
| 1504 | { |
| 1505 | pmu_op_finish(&cpu->env); |
| 1506 | } |
| 1507 | |
| 1508 | void arm_pmu_timer_cb(void *opaque) |
| 1509 | { |
| 1510 | ARMCPU *cpu = opaque; |
| 1511 | |
| 1512 | /* |
| 1513 | * Update all the counter values based on the current underlying counts, |
| 1514 | * triggering interrupts to be raised, if necessary. pmu_op_finish() also |
| 1515 | * has the effect of setting the cpu->pmu_timer to the next earliest time a |
| 1516 | * counter may expire. |
| 1517 | */ |
| 1518 | pmu_op_start(&cpu->env); |
| 1519 | pmu_op_finish(&cpu->env); |
| 1520 | } |
| 1521 | |
| 1522 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1523 | uint64_t value) |
| 1524 | { |
| 1525 | pmu_op_start(env); |
| 1526 | |
| 1527 | if (value & PMCRC) { |
| 1528 | /* The counter has been reset */ |
| 1529 | env->cp15.c15_ccnt = 0; |
| 1530 | } |
| 1531 | |
| 1532 | if (value & PMCRP) { |
| 1533 | unsigned int i; |
| 1534 | for (i = 0; i < pmu_num_counters(env); i++) { |
| 1535 | env->cp15.c14_pmevcntr[i] = 0; |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | /* only the DP, X, D and E bits are writable */ |
| 1540 | env->cp15.c9_pmcr &= ~0x39; |
| 1541 | env->cp15.c9_pmcr |= (value & 0x39); |
| 1542 | |
| 1543 | pmu_op_finish(env); |
| 1544 | } |
| 1545 | |
| 1546 | static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1547 | uint64_t value) |
| 1548 | { |
| 1549 | unsigned int i; |
| 1550 | for (i = 0; i < pmu_num_counters(env); i++) { |
| 1551 | /* Increment a counter's count iff: */ |
| 1552 | if ((value & (1 << i)) && /* counter's bit is set */ |
| 1553 | /* counter is enabled and not filtered */ |
| 1554 | pmu_counter_enabled(env, i) && |
| 1555 | /* counter is SW_INCR */ |
| 1556 | (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { |
| 1557 | pmevcntr_op_start(env, i); |
| 1558 | |
| 1559 | /* |
| 1560 | * Detect if this write causes an overflow since we can't predict |
| 1561 | * PMSWINC overflows like we can for other events |
| 1562 | */ |
| 1563 | uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; |
| 1564 | |
| 1565 | if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { |
| 1566 | env->cp15.c9_pmovsr |= (1 << i); |
| 1567 | pmu_update_irq(env); |
| 1568 | } |
| 1569 | |
| 1570 | env->cp15.c14_pmevcntr[i] = new_pmswinc; |
| 1571 | |
| 1572 | pmevcntr_op_finish(env, i); |
| 1573 | } |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1578 | { |
| 1579 | uint64_t ret; |
| 1580 | pmccntr_op_start(env); |
| 1581 | ret = env->cp15.c15_ccnt; |
| 1582 | pmccntr_op_finish(env); |
| 1583 | return ret; |
| 1584 | } |
| 1585 | |
| 1586 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1587 | uint64_t value) |
| 1588 | { |
| 1589 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and |
| 1590 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the |
| 1591 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are |
| 1592 | * accessed. |
| 1593 | */ |
| 1594 | env->cp15.c9_pmselr = value & 0x1f; |
| 1595 | } |
| 1596 | |
| 1597 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1598 | uint64_t value) |
| 1599 | { |
| 1600 | pmccntr_op_start(env); |
| 1601 | env->cp15.c15_ccnt = value; |
| 1602 | pmccntr_op_finish(env); |
| 1603 | } |
| 1604 | |
| 1605 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1606 | uint64_t value) |
| 1607 | { |
| 1608 | uint64_t cur_val = pmccntr_read(env, NULL); |
| 1609 | |
| 1610 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); |
| 1611 | } |
| 1612 | |
| 1613 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1614 | uint64_t value) |
| 1615 | { |
| 1616 | pmccntr_op_start(env); |
| 1617 | env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; |
| 1618 | pmccntr_op_finish(env); |
| 1619 | } |
| 1620 | |
| 1621 | static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1622 | uint64_t value) |
| 1623 | { |
| 1624 | pmccntr_op_start(env); |
| 1625 | /* M is not accessible from AArch32 */ |
| 1626 | env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | |
| 1627 | (value & PMCCFILTR); |
| 1628 | pmccntr_op_finish(env); |
| 1629 | } |
| 1630 | |
| 1631 | static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1632 | { |
| 1633 | /* M is not visible in AArch32 */ |
| 1634 | return env->cp15.pmccfiltr_el0 & PMCCFILTR; |
| 1635 | } |
| 1636 | |
| 1637 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1638 | uint64_t value) |
| 1639 | { |
| 1640 | value &= pmu_counter_mask(env); |
| 1641 | env->cp15.c9_pmcnten |= value; |
| 1642 | } |
| 1643 | |
| 1644 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1645 | uint64_t value) |
| 1646 | { |
| 1647 | value &= pmu_counter_mask(env); |
| 1648 | env->cp15.c9_pmcnten &= ~value; |
| 1649 | } |
| 1650 | |
| 1651 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1652 | uint64_t value) |
| 1653 | { |
| 1654 | value &= pmu_counter_mask(env); |
| 1655 | env->cp15.c9_pmovsr &= ~value; |
| 1656 | pmu_update_irq(env); |
| 1657 | } |
| 1658 | |
| 1659 | static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1660 | uint64_t value) |
| 1661 | { |
| 1662 | value &= pmu_counter_mask(env); |
| 1663 | env->cp15.c9_pmovsr |= value; |
| 1664 | pmu_update_irq(env); |
| 1665 | } |
| 1666 | |
| 1667 | static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1668 | uint64_t value, const uint8_t counter) |
| 1669 | { |
| 1670 | if (counter == 31) { |
| 1671 | pmccfiltr_write(env, ri, value); |
| 1672 | } else if (counter < pmu_num_counters(env)) { |
| 1673 | pmevcntr_op_start(env, counter); |
| 1674 | |
| 1675 | /* |
| 1676 | * If this counter's event type is changing, store the current |
| 1677 | * underlying count for the new type in c14_pmevcntr_delta[counter] so |
| 1678 | * pmevcntr_op_finish has the correct baseline when it converts back to |
| 1679 | * a delta. |
| 1680 | */ |
| 1681 | uint16_t old_event = env->cp15.c14_pmevtyper[counter] & |
| 1682 | PMXEVTYPER_EVTCOUNT; |
| 1683 | uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; |
| 1684 | if (old_event != new_event) { |
| 1685 | uint64_t count = 0; |
| 1686 | if (event_supported(new_event)) { |
| 1687 | uint16_t event_idx = supported_event_map[new_event]; |
| 1688 | count = pm_events[event_idx].get_count(env); |
| 1689 | } |
| 1690 | env->cp15.c14_pmevcntr_delta[counter] = count; |
| 1691 | } |
| 1692 | |
| 1693 | env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; |
| 1694 | pmevcntr_op_finish(env, counter); |
| 1695 | } |
| 1696 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
| 1697 | * PMSELR value is equal to or greater than the number of implemented |
| 1698 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. |
| 1699 | */ |
| 1700 | } |
| 1701 | |
| 1702 | static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1703 | const uint8_t counter) |
| 1704 | { |
| 1705 | if (counter == 31) { |
| 1706 | return env->cp15.pmccfiltr_el0; |
| 1707 | } else if (counter < pmu_num_counters(env)) { |
| 1708 | return env->cp15.c14_pmevtyper[counter]; |
| 1709 | } else { |
| 1710 | /* |
| 1711 | * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER |
| 1712 | * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). |
| 1713 | */ |
| 1714 | return 0; |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1719 | uint64_t value) |
| 1720 | { |
| 1721 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1722 | pmevtyper_write(env, ri, value, counter); |
| 1723 | } |
| 1724 | |
| 1725 | static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1726 | uint64_t value) |
| 1727 | { |
| 1728 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1729 | env->cp15.c14_pmevtyper[counter] = value; |
| 1730 | |
| 1731 | /* |
| 1732 | * pmevtyper_rawwrite is called between a pair of pmu_op_start and |
| 1733 | * pmu_op_finish calls when loading saved state for a migration. Because |
| 1734 | * we're potentially updating the type of event here, the value written to |
| 1735 | * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a |
| 1736 | * different counter type. Therefore, we need to set this value to the |
| 1737 | * current count for the counter type we're writing so that pmu_op_finish |
| 1738 | * has the correct count for its calculation. |
| 1739 | */ |
| 1740 | uint16_t event = value & PMXEVTYPER_EVTCOUNT; |
| 1741 | if (event_supported(event)) { |
| 1742 | uint16_t event_idx = supported_event_map[event]; |
| 1743 | env->cp15.c14_pmevcntr_delta[counter] = |
| 1744 | pm_events[event_idx].get_count(env); |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1749 | { |
| 1750 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1751 | return pmevtyper_read(env, ri, counter); |
| 1752 | } |
| 1753 | |
| 1754 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1755 | uint64_t value) |
| 1756 | { |
| 1757 | pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); |
| 1758 | } |
| 1759 | |
| 1760 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1761 | { |
| 1762 | return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); |
| 1763 | } |
| 1764 | |
| 1765 | static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1766 | uint64_t value, uint8_t counter) |
| 1767 | { |
| 1768 | if (counter < pmu_num_counters(env)) { |
| 1769 | pmevcntr_op_start(env, counter); |
| 1770 | env->cp15.c14_pmevcntr[counter] = value; |
| 1771 | pmevcntr_op_finish(env, counter); |
| 1772 | } |
| 1773 | /* |
| 1774 | * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
| 1775 | * are CONSTRAINED UNPREDICTABLE. |
| 1776 | */ |
| 1777 | } |
| 1778 | |
| 1779 | static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1780 | uint8_t counter) |
| 1781 | { |
| 1782 | if (counter < pmu_num_counters(env)) { |
| 1783 | uint64_t ret; |
| 1784 | pmevcntr_op_start(env, counter); |
| 1785 | ret = env->cp15.c14_pmevcntr[counter]; |
| 1786 | pmevcntr_op_finish(env, counter); |
| 1787 | return ret; |
| 1788 | } else { |
| 1789 | /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
| 1790 | * are CONSTRAINED UNPREDICTABLE. */ |
| 1791 | return 0; |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1796 | uint64_t value) |
| 1797 | { |
| 1798 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1799 | pmevcntr_write(env, ri, value, counter); |
| 1800 | } |
| 1801 | |
| 1802 | static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1803 | { |
| 1804 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1805 | return pmevcntr_read(env, ri, counter); |
| 1806 | } |
| 1807 | |
| 1808 | static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1809 | uint64_t value) |
| 1810 | { |
| 1811 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1812 | assert(counter < pmu_num_counters(env)); |
| 1813 | env->cp15.c14_pmevcntr[counter] = value; |
| 1814 | pmevcntr_write(env, ri, value, counter); |
| 1815 | } |
| 1816 | |
| 1817 | static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1818 | { |
| 1819 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| 1820 | assert(counter < pmu_num_counters(env)); |
| 1821 | return env->cp15.c14_pmevcntr[counter]; |
| 1822 | } |
| 1823 | |
| 1824 | static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1825 | uint64_t value) |
| 1826 | { |
| 1827 | pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); |
| 1828 | } |
| 1829 | |
| 1830 | static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1831 | { |
| 1832 | return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); |
| 1833 | } |
| 1834 | |
| 1835 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1836 | uint64_t value) |
| 1837 | { |
| 1838 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 1839 | env->cp15.c9_pmuserenr = value & 0xf; |
| 1840 | } else { |
| 1841 | env->cp15.c9_pmuserenr = value & 1; |
| 1842 | } |
| 1843 | } |
| 1844 | |
| 1845 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1846 | uint64_t value) |
| 1847 | { |
| 1848 | /* We have no event counters so only the C bit can be changed */ |
| 1849 | value &= pmu_counter_mask(env); |
| 1850 | env->cp15.c9_pminten |= value; |
| 1851 | pmu_update_irq(env); |
| 1852 | } |
| 1853 | |
| 1854 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1855 | uint64_t value) |
| 1856 | { |
| 1857 | value &= pmu_counter_mask(env); |
| 1858 | env->cp15.c9_pminten &= ~value; |
| 1859 | pmu_update_irq(env); |
| 1860 | } |
| 1861 | |
| 1862 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1863 | uint64_t value) |
| 1864 | { |
| 1865 | /* Note that even though the AArch64 view of this register has bits |
| 1866 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the |
| 1867 | * architectural requirements for bits which are RES0 only in some |
| 1868 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 |
| 1869 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) |
| 1870 | */ |
| 1871 | raw_write(env, ri, value & ~0x1FULL); |
| 1872 | } |
| 1873 | |
| 1874 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 1875 | { |
| 1876 | /* Begin with base v8.0 state. */ |
| 1877 | uint32_t valid_mask = 0x3fff; |
| 1878 | ARMCPU *cpu = env_archcpu(env); |
| 1879 | |
| 1880 | if (arm_el_is_aa64(env, 3)) { |
| 1881 | value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ |
| 1882 | valid_mask &= ~SCR_NET; |
| 1883 | } else { |
| 1884 | valid_mask &= ~(SCR_RW | SCR_ST); |
| 1885 | } |
| 1886 | |
| 1887 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
| 1888 | valid_mask &= ~SCR_HCE; |
| 1889 | |
| 1890 | /* On ARMv7, SMD (or SCD as it is called in v7) is only |
| 1891 | * supported if EL2 exists. The bit is UNK/SBZP when |
| 1892 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero |
| 1893 | * when EL2 is unavailable. |
| 1894 | * On ARMv8, this bit is always available. |
| 1895 | */ |
| 1896 | if (arm_feature(env, ARM_FEATURE_V7) && |
| 1897 | !arm_feature(env, ARM_FEATURE_V8)) { |
| 1898 | valid_mask &= ~SCR_SMD; |
| 1899 | } |
| 1900 | } |
| 1901 | if (cpu_isar_feature(aa64_lor, cpu)) { |
| 1902 | valid_mask |= SCR_TLOR; |
| 1903 | } |
| 1904 | if (cpu_isar_feature(aa64_pauth, cpu)) { |
| 1905 | valid_mask |= SCR_API | SCR_APK; |
| 1906 | } |
| 1907 | |
| 1908 | /* Clear all-context RES0 bits. */ |
| 1909 | value &= valid_mask; |
| 1910 | raw_write(env, ri, value); |
| 1911 | } |
| 1912 | |
| 1913 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1914 | { |
| 1915 | ARMCPU *cpu = env_archcpu(env); |
| 1916 | |
| 1917 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR |
| 1918 | * bank |
| 1919 | */ |
| 1920 | uint32_t index = A32_BANKED_REG_GET(env, csselr, |
| 1921 | ri->secure & ARM_CP_SECSTATE_S); |
| 1922 | |
| 1923 | return cpu->ccsidr[index]; |
| 1924 | } |
| 1925 | |
| 1926 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1927 | uint64_t value) |
| 1928 | { |
| 1929 | raw_write(env, ri, value & 0xf); |
| 1930 | } |
| 1931 | |
| 1932 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1933 | { |
| 1934 | CPUState *cs = env_cpu(env); |
| 1935 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
| 1936 | uint64_t ret = 0; |
| 1937 | |
| 1938 | if (hcr_el2 & HCR_IMO) { |
| 1939 | if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
| 1940 | ret |= CPSR_I; |
| 1941 | } |
| 1942 | } else { |
| 1943 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { |
| 1944 | ret |= CPSR_I; |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | if (hcr_el2 & HCR_FMO) { |
| 1949 | if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { |
| 1950 | ret |= CPSR_F; |
| 1951 | } |
| 1952 | } else { |
| 1953 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { |
| 1954 | ret |= CPSR_F; |
| 1955 | } |
| 1956 | } |
| 1957 | |
| 1958 | /* External aborts are not possible in QEMU so A bit is always clear */ |
| 1959 | return ret; |
| 1960 | } |
| 1961 | |
| 1962 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
| 1963 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| 1964 | { .name = "NOP" , .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 1965 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 1966 | /* Performance monitors are implementation defined in v7, |
| 1967 | * but with an ARM recommended set of registers, which we |
| 1968 | * follow. |
| 1969 | * |
| 1970 | * Performance registers fall into three categories: |
| 1971 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| 1972 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| 1973 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| 1974 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| 1975 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| 1976 | */ |
| 1977 | { .name = "PMCNTENSET" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| 1978 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
| 1979 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| 1980 | .writefn = pmcntenset_write, |
| 1981 | .accessfn = pmreg_access, |
| 1982 | .raw_writefn = raw_write }, |
| 1983 | { .name = "PMCNTENSET_EL0" , .state = ARM_CP_STATE_AA64, |
| 1984 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, |
| 1985 | .access = PL0_RW, .accessfn = pmreg_access, |
| 1986 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, |
| 1987 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, |
| 1988 | { .name = "PMCNTENCLR" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| 1989 | .access = PL0_RW, |
| 1990 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| 1991 | .accessfn = pmreg_access, |
| 1992 | .writefn = pmcntenclr_write, |
| 1993 | .type = ARM_CP_ALIAS }, |
| 1994 | { .name = "PMCNTENCLR_EL0" , .state = ARM_CP_STATE_AA64, |
| 1995 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, |
| 1996 | .access = PL0_RW, .accessfn = pmreg_access, |
| 1997 | .type = ARM_CP_ALIAS, |
| 1998 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| 1999 | .writefn = pmcntenclr_write }, |
| 2000 | { .name = "PMOVSR" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| 2001 | .access = PL0_RW, .type = ARM_CP_IO, |
| 2002 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
| 2003 | .accessfn = pmreg_access, |
| 2004 | .writefn = pmovsr_write, |
| 2005 | .raw_writefn = raw_write }, |
| 2006 | { .name = "PMOVSCLR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2007 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, |
| 2008 | .access = PL0_RW, .accessfn = pmreg_access, |
| 2009 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2010 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| 2011 | .writefn = pmovsr_write, |
| 2012 | .raw_writefn = raw_write }, |
| 2013 | { .name = "PMSWINC" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| 2014 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
| 2015 | .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2016 | .writefn = pmswinc_write }, |
| 2017 | { .name = "PMSWINC_EL0" , .state = ARM_CP_STATE_AA64, |
| 2018 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, |
| 2019 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
| 2020 | .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2021 | .writefn = pmswinc_write }, |
| 2022 | { .name = "PMSELR" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| 2023 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
| 2024 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), |
| 2025 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
| 2026 | .raw_writefn = raw_write}, |
| 2027 | { .name = "PMSELR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2028 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, |
| 2029 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
| 2030 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
| 2031 | .writefn = pmselr_write, .raw_writefn = raw_write, }, |
| 2032 | { .name = "PMCCNTR" , .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| 2033 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2034 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
| 2035 | .accessfn = pmreg_access_ccntr }, |
| 2036 | { .name = "PMCCNTR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2037 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, |
| 2038 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
| 2039 | .type = ARM_CP_IO, |
| 2040 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), |
| 2041 | .readfn = pmccntr_read, .writefn = pmccntr_write, |
| 2042 | .raw_readfn = raw_read, .raw_writefn = raw_write, }, |
| 2043 | { .name = "PMCCFILTR" , .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, |
| 2044 | .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, |
| 2045 | .access = PL0_RW, .accessfn = pmreg_access, |
| 2046 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2047 | .resetvalue = 0, }, |
| 2048 | { .name = "PMCCFILTR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2049 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, |
| 2050 | .writefn = pmccfiltr_write, .raw_writefn = raw_write, |
| 2051 | .access = PL0_RW, .accessfn = pmreg_access, |
| 2052 | .type = ARM_CP_IO, |
| 2053 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), |
| 2054 | .resetvalue = 0, }, |
| 2055 | { .name = "PMXEVTYPER" , .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| 2056 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2057 | .accessfn = pmreg_access, |
| 2058 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
| 2059 | { .name = "PMXEVTYPER_EL0" , .state = ARM_CP_STATE_AA64, |
| 2060 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, |
| 2061 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2062 | .accessfn = pmreg_access, |
| 2063 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
| 2064 | { .name = "PMXEVCNTR" , .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| 2065 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2066 | .accessfn = pmreg_access_xevcntr, |
| 2067 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, |
| 2068 | { .name = "PMXEVCNTR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2069 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, |
| 2070 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2071 | .accessfn = pmreg_access_xevcntr, |
| 2072 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, |
| 2073 | { .name = "PMUSERENR" , .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| 2074 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
| 2075 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), |
| 2076 | .resetvalue = 0, |
| 2077 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| 2078 | { .name = "PMUSERENR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2079 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, |
| 2080 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
| 2081 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| 2082 | .resetvalue = 0, |
| 2083 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| 2084 | { .name = "PMINTENSET" , .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| 2085 | .access = PL1_RW, .accessfn = access_tpm, |
| 2086 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2087 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), |
| 2088 | .resetvalue = 0, |
| 2089 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
| 2090 | { .name = "PMINTENSET_EL1" , .state = ARM_CP_STATE_AA64, |
| 2091 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, |
| 2092 | .access = PL1_RW, .accessfn = access_tpm, |
| 2093 | .type = ARM_CP_IO, |
| 2094 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| 2095 | .writefn = pmintenset_write, .raw_writefn = raw_write, |
| 2096 | .resetvalue = 0x0 }, |
| 2097 | { .name = "PMINTENCLR" , .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| 2098 | .access = PL1_RW, .accessfn = access_tpm, |
| 2099 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2100 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| 2101 | .writefn = pmintenclr_write, }, |
| 2102 | { .name = "PMINTENCLR_EL1" , .state = ARM_CP_STATE_AA64, |
| 2103 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, |
| 2104 | .access = PL1_RW, .accessfn = access_tpm, |
| 2105 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2106 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| 2107 | .writefn = pmintenclr_write }, |
| 2108 | { .name = "CCSIDR" , .state = ARM_CP_STATE_BOTH, |
| 2109 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| 2110 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
| 2111 | { .name = "CSSELR" , .state = ARM_CP_STATE_BOTH, |
| 2112 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| 2113 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
| 2114 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
| 2115 | offsetof(CPUARMState, cp15.csselr_ns) } }, |
| 2116 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| 2117 | * just RAZ for all cores: |
| 2118 | */ |
| 2119 | { .name = "AIDR" , .state = ARM_CP_STATE_BOTH, |
| 2120 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, |
| 2121 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 2122 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
| 2123 | * choose to RAZ/WI for all cores. |
| 2124 | */ |
| 2125 | { .name = "AFSR0_EL1" , .state = ARM_CP_STATE_BOTH, |
| 2126 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, |
| 2127 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 2128 | { .name = "AFSR1_EL1" , .state = ARM_CP_STATE_BOTH, |
| 2129 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, |
| 2130 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 2131 | /* MAIR can just read-as-written because we don't implement caches |
| 2132 | * and so don't need to care about memory attributes. |
| 2133 | */ |
| 2134 | { .name = "MAIR_EL1" , .state = ARM_CP_STATE_AA64, |
| 2135 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
| 2136 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
| 2137 | .resetvalue = 0 }, |
| 2138 | { .name = "MAIR_EL3" , .state = ARM_CP_STATE_AA64, |
| 2139 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, |
| 2140 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), |
| 2141 | .resetvalue = 0 }, |
| 2142 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
| 2143 | * regardless they still act as reads-as-written for QEMU. |
| 2144 | */ |
| 2145 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
| 2146 | * allows them to assign the correct fieldoffset based on the endianness |
| 2147 | * handled in the field definitions. |
| 2148 | */ |
| 2149 | { .name = "MAIR0" , .state = ARM_CP_STATE_AA32, |
| 2150 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
| 2151 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
| 2152 | offsetof(CPUARMState, cp15.mair0_ns) }, |
| 2153 | .resetfn = arm_cp_reset_ignore }, |
| 2154 | { .name = "MAIR1" , .state = ARM_CP_STATE_AA32, |
| 2155 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
| 2156 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
| 2157 | offsetof(CPUARMState, cp15.mair1_ns) }, |
| 2158 | .resetfn = arm_cp_reset_ignore }, |
| 2159 | { .name = "ISR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 2160 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, |
| 2161 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
| 2162 | /* 32 bit ITLB invalidates */ |
| 2163 | { .name = "ITLBIALL" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, |
| 2164 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| 2165 | { .name = "ITLBIMVA" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
| 2166 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| 2167 | { .name = "ITLBIASID" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
| 2168 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| 2169 | /* 32 bit DTLB invalidates */ |
| 2170 | { .name = "DTLBIALL" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, |
| 2171 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| 2172 | { .name = "DTLBIMVA" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
| 2173 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| 2174 | { .name = "DTLBIASID" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
| 2175 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| 2176 | /* 32 bit TLB invalidates */ |
| 2177 | { .name = "TLBIALL" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| 2178 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| 2179 | { .name = "TLBIMVA" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| 2180 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| 2181 | { .name = "TLBIASID" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| 2182 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| 2183 | { .name = "TLBIMVAA" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| 2184 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| 2185 | REGINFO_SENTINEL |
| 2186 | }; |
| 2187 | |
| 2188 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { |
| 2189 | /* 32 bit TLB invalidates, Inner Shareable */ |
| 2190 | { .name = "TLBIALLIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| 2191 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
| 2192 | { .name = "TLBIMVAIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| 2193 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| 2194 | { .name = "TLBIASIDIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| 2195 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
| 2196 | .writefn = tlbiasid_is_write }, |
| 2197 | { .name = "TLBIMVAAIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| 2198 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
| 2199 | .writefn = tlbimvaa_is_write }, |
| 2200 | REGINFO_SENTINEL |
| 2201 | }; |
| 2202 | |
| 2203 | static const ARMCPRegInfo pmovsset_cp_reginfo[] = { |
| 2204 | /* PMOVSSET is not implemented in v7 before v7ve */ |
| 2205 | { .name = "PMOVSSET" , .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, |
| 2206 | .access = PL0_RW, .accessfn = pmreg_access, |
| 2207 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2208 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
| 2209 | .writefn = pmovsset_write, |
| 2210 | .raw_writefn = raw_write }, |
| 2211 | { .name = "PMOVSSET_EL0" , .state = ARM_CP_STATE_AA64, |
| 2212 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, |
| 2213 | .access = PL0_RW, .accessfn = pmreg_access, |
| 2214 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 2215 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| 2216 | .writefn = pmovsset_write, |
| 2217 | .raw_writefn = raw_write }, |
| 2218 | REGINFO_SENTINEL |
| 2219 | }; |
| 2220 | |
| 2221 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2222 | uint64_t value) |
| 2223 | { |
| 2224 | value &= 1; |
| 2225 | env->teecr = value; |
| 2226 | } |
| 2227 | |
| 2228 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2229 | bool isread) |
| 2230 | { |
| 2231 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
| 2232 | return CP_ACCESS_TRAP; |
| 2233 | } |
| 2234 | return CP_ACCESS_OK; |
| 2235 | } |
| 2236 | |
| 2237 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| 2238 | { .name = "TEECR" , .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| 2239 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), |
| 2240 | .resetvalue = 0, |
| 2241 | .writefn = teecr_write }, |
| 2242 | { .name = "TEEHBR" , .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| 2243 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), |
| 2244 | .accessfn = teehbr_access, .resetvalue = 0 }, |
| 2245 | REGINFO_SENTINEL |
| 2246 | }; |
| 2247 | |
| 2248 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| 2249 | { .name = "TPIDR_EL0" , .state = ARM_CP_STATE_AA64, |
| 2250 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
| 2251 | .access = PL0_RW, |
| 2252 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
| 2253 | { .name = "TPIDRURW" , .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 2254 | .access = PL0_RW, |
| 2255 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
| 2256 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, |
| 2257 | .resetfn = arm_cp_reset_ignore }, |
| 2258 | { .name = "TPIDRRO_EL0" , .state = ARM_CP_STATE_AA64, |
| 2259 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
| 2260 | .access = PL0_R|PL1_W, |
| 2261 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
| 2262 | .resetvalue = 0}, |
| 2263 | { .name = "TPIDRURO" , .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 2264 | .access = PL0_R|PL1_W, |
| 2265 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
| 2266 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, |
| 2267 | .resetfn = arm_cp_reset_ignore }, |
| 2268 | { .name = "TPIDR_EL1" , .state = ARM_CP_STATE_AA64, |
| 2269 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
| 2270 | .access = PL1_RW, |
| 2271 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
| 2272 | { .name = "TPIDRPRW" , .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, |
| 2273 | .access = PL1_RW, |
| 2274 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), |
| 2275 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, |
| 2276 | .resetvalue = 0 }, |
| 2277 | REGINFO_SENTINEL |
| 2278 | }; |
| 2279 | |
| 2280 | #ifndef CONFIG_USER_ONLY |
| 2281 | |
| 2282 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2283 | bool isread) |
| 2284 | { |
| 2285 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
| 2286 | * Writable only at the highest implemented exception level. |
| 2287 | */ |
| 2288 | int el = arm_current_el(env); |
| 2289 | |
| 2290 | switch (el) { |
| 2291 | case 0: |
| 2292 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { |
| 2293 | return CP_ACCESS_TRAP; |
| 2294 | } |
| 2295 | break; |
| 2296 | case 1: |
| 2297 | if (!isread && ri->state == ARM_CP_STATE_AA32 && |
| 2298 | arm_is_secure_below_el3(env)) { |
| 2299 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ |
| 2300 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 2301 | } |
| 2302 | break; |
| 2303 | case 2: |
| 2304 | case 3: |
| 2305 | break; |
| 2306 | } |
| 2307 | |
| 2308 | if (!isread && el < arm_highest_el(env)) { |
| 2309 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 2310 | } |
| 2311 | |
| 2312 | return CP_ACCESS_OK; |
| 2313 | } |
| 2314 | |
| 2315 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
| 2316 | bool isread) |
| 2317 | { |
| 2318 | unsigned int cur_el = arm_current_el(env); |
| 2319 | bool secure = arm_is_secure(env); |
| 2320 | |
| 2321 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
| 2322 | if (cur_el == 0 && |
| 2323 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
| 2324 | return CP_ACCESS_TRAP; |
| 2325 | } |
| 2326 | |
| 2327 | if (arm_feature(env, ARM_FEATURE_EL2) && |
| 2328 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| 2329 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { |
| 2330 | return CP_ACCESS_TRAP_EL2; |
| 2331 | } |
| 2332 | return CP_ACCESS_OK; |
| 2333 | } |
| 2334 | |
| 2335 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
| 2336 | bool isread) |
| 2337 | { |
| 2338 | unsigned int cur_el = arm_current_el(env); |
| 2339 | bool secure = arm_is_secure(env); |
| 2340 | |
| 2341 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
| 2342 | * EL0[PV]TEN is zero. |
| 2343 | */ |
| 2344 | if (cur_el == 0 && |
| 2345 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| 2346 | return CP_ACCESS_TRAP; |
| 2347 | } |
| 2348 | |
| 2349 | if (arm_feature(env, ARM_FEATURE_EL2) && |
| 2350 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| 2351 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { |
| 2352 | return CP_ACCESS_TRAP_EL2; |
| 2353 | } |
| 2354 | return CP_ACCESS_OK; |
| 2355 | } |
| 2356 | |
| 2357 | static CPAccessResult gt_pct_access(CPUARMState *env, |
| 2358 | const ARMCPRegInfo *ri, |
| 2359 | bool isread) |
| 2360 | { |
| 2361 | return gt_counter_access(env, GTIMER_PHYS, isread); |
| 2362 | } |
| 2363 | |
| 2364 | static CPAccessResult gt_vct_access(CPUARMState *env, |
| 2365 | const ARMCPRegInfo *ri, |
| 2366 | bool isread) |
| 2367 | { |
| 2368 | return gt_counter_access(env, GTIMER_VIRT, isread); |
| 2369 | } |
| 2370 | |
| 2371 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2372 | bool isread) |
| 2373 | { |
| 2374 | return gt_timer_access(env, GTIMER_PHYS, isread); |
| 2375 | } |
| 2376 | |
| 2377 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2378 | bool isread) |
| 2379 | { |
| 2380 | return gt_timer_access(env, GTIMER_VIRT, isread); |
| 2381 | } |
| 2382 | |
| 2383 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
| 2384 | const ARMCPRegInfo *ri, |
| 2385 | bool isread) |
| 2386 | { |
| 2387 | /* The AArch64 register view of the secure physical timer is |
| 2388 | * always accessible from EL3, and configurably accessible from |
| 2389 | * Secure EL1. |
| 2390 | */ |
| 2391 | switch (arm_current_el(env)) { |
| 2392 | case 1: |
| 2393 | if (!arm_is_secure(env)) { |
| 2394 | return CP_ACCESS_TRAP; |
| 2395 | } |
| 2396 | if (!(env->cp15.scr_el3 & SCR_ST)) { |
| 2397 | return CP_ACCESS_TRAP_EL3; |
| 2398 | } |
| 2399 | return CP_ACCESS_OK; |
| 2400 | case 0: |
| 2401 | case 2: |
| 2402 | return CP_ACCESS_TRAP; |
| 2403 | case 3: |
| 2404 | return CP_ACCESS_OK; |
| 2405 | default: |
| 2406 | g_assert_not_reached(); |
| 2407 | } |
| 2408 | } |
| 2409 | |
| 2410 | static uint64_t gt_get_countervalue(CPUARMState *env) |
| 2411 | { |
| 2412 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
| 2413 | } |
| 2414 | |
| 2415 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
| 2416 | { |
| 2417 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
| 2418 | |
| 2419 | if (gt->ctl & 1) { |
| 2420 | /* Timer enabled: calculate and set current ISTATUS, irq, and |
| 2421 | * reset timer to when ISTATUS next has to change |
| 2422 | */ |
| 2423 | uint64_t offset = timeridx == GTIMER_VIRT ? |
| 2424 | cpu->env.cp15.cntvoff_el2 : 0; |
| 2425 | uint64_t count = gt_get_countervalue(&cpu->env); |
| 2426 | /* Note that this must be unsigned 64 bit arithmetic: */ |
| 2427 | int istatus = count - offset >= gt->cval; |
| 2428 | uint64_t nexttick; |
| 2429 | int irqstate; |
| 2430 | |
| 2431 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
| 2432 | |
| 2433 | irqstate = (istatus && !(gt->ctl & 2)); |
| 2434 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); |
| 2435 | |
| 2436 | if (istatus) { |
| 2437 | /* Next transition is when count rolls back over to zero */ |
| 2438 | nexttick = UINT64_MAX; |
| 2439 | } else { |
| 2440 | /* Next transition is when we hit cval */ |
| 2441 | nexttick = gt->cval + offset; |
| 2442 | } |
| 2443 | /* Note that the desired next expiry time might be beyond the |
| 2444 | * signed-64-bit range of a QEMUTimer -- in this case we just |
| 2445 | * set the timer for as far in the future as possible. When the |
| 2446 | * timer expires we will reset the timer for any remaining period. |
| 2447 | */ |
| 2448 | if (nexttick > INT64_MAX / GTIMER_SCALE) { |
| 2449 | nexttick = INT64_MAX / GTIMER_SCALE; |
| 2450 | } |
| 2451 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
| 2452 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
| 2453 | } else { |
| 2454 | /* Timer disabled: ISTATUS and timer output always clear */ |
| 2455 | gt->ctl &= ~4; |
| 2456 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
| 2457 | timer_del(cpu->gt_timer[timeridx]); |
| 2458 | trace_arm_gt_recalc_disabled(timeridx); |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2463 | int timeridx) |
| 2464 | { |
| 2465 | ARMCPU *cpu = env_archcpu(env); |
| 2466 | |
| 2467 | timer_del(cpu->gt_timer[timeridx]); |
| 2468 | } |
| 2469 | |
| 2470 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2471 | { |
| 2472 | return gt_get_countervalue(env); |
| 2473 | } |
| 2474 | |
| 2475 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2476 | { |
| 2477 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; |
| 2478 | } |
| 2479 | |
| 2480 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2481 | int timeridx, |
| 2482 | uint64_t value) |
| 2483 | { |
| 2484 | trace_arm_gt_cval_write(timeridx, value); |
| 2485 | env->cp15.c14_timer[timeridx].cval = value; |
| 2486 | gt_recalc_timer(env_archcpu(env), timeridx); |
| 2487 | } |
| 2488 | |
| 2489 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2490 | int timeridx) |
| 2491 | { |
| 2492 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| 2493 | |
| 2494 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
| 2495 | (gt_get_countervalue(env) - offset)); |
| 2496 | } |
| 2497 | |
| 2498 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2499 | int timeridx, |
| 2500 | uint64_t value) |
| 2501 | { |
| 2502 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| 2503 | |
| 2504 | trace_arm_gt_tval_write(timeridx, value); |
| 2505 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
| 2506 | sextract64(value, 0, 32); |
| 2507 | gt_recalc_timer(env_archcpu(env), timeridx); |
| 2508 | } |
| 2509 | |
| 2510 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2511 | int timeridx, |
| 2512 | uint64_t value) |
| 2513 | { |
| 2514 | ARMCPU *cpu = env_archcpu(env); |
| 2515 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
| 2516 | |
| 2517 | trace_arm_gt_ctl_write(timeridx, value); |
| 2518 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
| 2519 | if ((oldval ^ value) & 1) { |
| 2520 | /* Enable toggled */ |
| 2521 | gt_recalc_timer(cpu, timeridx); |
| 2522 | } else if ((oldval ^ value) & 2) { |
| 2523 | /* IMASK toggled: don't need to recalculate, |
| 2524 | * just set the interrupt line based on ISTATUS |
| 2525 | */ |
| 2526 | int irqstate = (oldval & 4) && !(value & 2); |
| 2527 | |
| 2528 | trace_arm_gt_imask_toggle(timeridx, irqstate); |
| 2529 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); |
| 2530 | } |
| 2531 | } |
| 2532 | |
| 2533 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2534 | { |
| 2535 | gt_timer_reset(env, ri, GTIMER_PHYS); |
| 2536 | } |
| 2537 | |
| 2538 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2539 | uint64_t value) |
| 2540 | { |
| 2541 | gt_cval_write(env, ri, GTIMER_PHYS, value); |
| 2542 | } |
| 2543 | |
| 2544 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2545 | { |
| 2546 | return gt_tval_read(env, ri, GTIMER_PHYS); |
| 2547 | } |
| 2548 | |
| 2549 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2550 | uint64_t value) |
| 2551 | { |
| 2552 | gt_tval_write(env, ri, GTIMER_PHYS, value); |
| 2553 | } |
| 2554 | |
| 2555 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2556 | uint64_t value) |
| 2557 | { |
| 2558 | gt_ctl_write(env, ri, GTIMER_PHYS, value); |
| 2559 | } |
| 2560 | |
| 2561 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2562 | { |
| 2563 | gt_timer_reset(env, ri, GTIMER_VIRT); |
| 2564 | } |
| 2565 | |
| 2566 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2567 | uint64_t value) |
| 2568 | { |
| 2569 | gt_cval_write(env, ri, GTIMER_VIRT, value); |
| 2570 | } |
| 2571 | |
| 2572 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2573 | { |
| 2574 | return gt_tval_read(env, ri, GTIMER_VIRT); |
| 2575 | } |
| 2576 | |
| 2577 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2578 | uint64_t value) |
| 2579 | { |
| 2580 | gt_tval_write(env, ri, GTIMER_VIRT, value); |
| 2581 | } |
| 2582 | |
| 2583 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2584 | uint64_t value) |
| 2585 | { |
| 2586 | gt_ctl_write(env, ri, GTIMER_VIRT, value); |
| 2587 | } |
| 2588 | |
| 2589 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2590 | uint64_t value) |
| 2591 | { |
| 2592 | ARMCPU *cpu = env_archcpu(env); |
| 2593 | |
| 2594 | trace_arm_gt_cntvoff_write(value); |
| 2595 | raw_write(env, ri, value); |
| 2596 | gt_recalc_timer(cpu, GTIMER_VIRT); |
| 2597 | } |
| 2598 | |
| 2599 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2600 | { |
| 2601 | gt_timer_reset(env, ri, GTIMER_HYP); |
| 2602 | } |
| 2603 | |
| 2604 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2605 | uint64_t value) |
| 2606 | { |
| 2607 | gt_cval_write(env, ri, GTIMER_HYP, value); |
| 2608 | } |
| 2609 | |
| 2610 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2611 | { |
| 2612 | return gt_tval_read(env, ri, GTIMER_HYP); |
| 2613 | } |
| 2614 | |
| 2615 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2616 | uint64_t value) |
| 2617 | { |
| 2618 | gt_tval_write(env, ri, GTIMER_HYP, value); |
| 2619 | } |
| 2620 | |
| 2621 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2622 | uint64_t value) |
| 2623 | { |
| 2624 | gt_ctl_write(env, ri, GTIMER_HYP, value); |
| 2625 | } |
| 2626 | |
| 2627 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2628 | { |
| 2629 | gt_timer_reset(env, ri, GTIMER_SEC); |
| 2630 | } |
| 2631 | |
| 2632 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2633 | uint64_t value) |
| 2634 | { |
| 2635 | gt_cval_write(env, ri, GTIMER_SEC, value); |
| 2636 | } |
| 2637 | |
| 2638 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2639 | { |
| 2640 | return gt_tval_read(env, ri, GTIMER_SEC); |
| 2641 | } |
| 2642 | |
| 2643 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2644 | uint64_t value) |
| 2645 | { |
| 2646 | gt_tval_write(env, ri, GTIMER_SEC, value); |
| 2647 | } |
| 2648 | |
| 2649 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2650 | uint64_t value) |
| 2651 | { |
| 2652 | gt_ctl_write(env, ri, GTIMER_SEC, value); |
| 2653 | } |
| 2654 | |
| 2655 | void arm_gt_ptimer_cb(void *opaque) |
| 2656 | { |
| 2657 | ARMCPU *cpu = opaque; |
| 2658 | |
| 2659 | gt_recalc_timer(cpu, GTIMER_PHYS); |
| 2660 | } |
| 2661 | |
| 2662 | void arm_gt_vtimer_cb(void *opaque) |
| 2663 | { |
| 2664 | ARMCPU *cpu = opaque; |
| 2665 | |
| 2666 | gt_recalc_timer(cpu, GTIMER_VIRT); |
| 2667 | } |
| 2668 | |
| 2669 | void arm_gt_htimer_cb(void *opaque) |
| 2670 | { |
| 2671 | ARMCPU *cpu = opaque; |
| 2672 | |
| 2673 | gt_recalc_timer(cpu, GTIMER_HYP); |
| 2674 | } |
| 2675 | |
| 2676 | void arm_gt_stimer_cb(void *opaque) |
| 2677 | { |
| 2678 | ARMCPU *cpu = opaque; |
| 2679 | |
| 2680 | gt_recalc_timer(cpu, GTIMER_SEC); |
| 2681 | } |
| 2682 | |
| 2683 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| 2684 | /* Note that CNTFRQ is purely reads-as-written for the benefit |
| 2685 | * of software; writing it doesn't actually change the timer frequency. |
| 2686 | * Our reset value matches the fixed frequency we implement the timer at. |
| 2687 | */ |
| 2688 | { .name = "CNTFRQ" , .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 2689 | .type = ARM_CP_ALIAS, |
| 2690 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| 2691 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), |
| 2692 | }, |
| 2693 | { .name = "CNTFRQ_EL0" , .state = ARM_CP_STATE_AA64, |
| 2694 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, |
| 2695 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| 2696 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| 2697 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, |
| 2698 | }, |
| 2699 | /* overall control: mostly access permissions */ |
| 2700 | { .name = "CNTKCTL" , .state = ARM_CP_STATE_BOTH, |
| 2701 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, |
| 2702 | .access = PL1_RW, |
| 2703 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), |
| 2704 | .resetvalue = 0, |
| 2705 | }, |
| 2706 | /* per-timer control */ |
| 2707 | { .name = "CNTP_CTL" , .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| 2708 | .secure = ARM_CP_SECSTATE_NS, |
| 2709 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| 2710 | .accessfn = gt_ptimer_access, |
| 2711 | .fieldoffset = offsetoflow32(CPUARMState, |
| 2712 | cp15.c14_timer[GTIMER_PHYS].ctl), |
| 2713 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| 2714 | }, |
| 2715 | { .name = "CNTP_CTL_S" , |
| 2716 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| 2717 | .secure = ARM_CP_SECSTATE_S, |
| 2718 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| 2719 | .accessfn = gt_ptimer_access, |
| 2720 | .fieldoffset = offsetoflow32(CPUARMState, |
| 2721 | cp15.c14_timer[GTIMER_SEC].ctl), |
| 2722 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| 2723 | }, |
| 2724 | { .name = "CNTP_CTL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2725 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, |
| 2726 | .type = ARM_CP_IO, .access = PL0_RW, |
| 2727 | .accessfn = gt_ptimer_access, |
| 2728 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
| 2729 | .resetvalue = 0, |
| 2730 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| 2731 | }, |
| 2732 | { .name = "CNTV_CTL" , .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
| 2733 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| 2734 | .accessfn = gt_vtimer_access, |
| 2735 | .fieldoffset = offsetoflow32(CPUARMState, |
| 2736 | cp15.c14_timer[GTIMER_VIRT].ctl), |
| 2737 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| 2738 | }, |
| 2739 | { .name = "CNTV_CTL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2740 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, |
| 2741 | .type = ARM_CP_IO, .access = PL0_RW, |
| 2742 | .accessfn = gt_vtimer_access, |
| 2743 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
| 2744 | .resetvalue = 0, |
| 2745 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| 2746 | }, |
| 2747 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
| 2748 | { .name = "CNTP_TVAL" , .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 2749 | .secure = ARM_CP_SECSTATE_NS, |
| 2750 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| 2751 | .accessfn = gt_ptimer_access, |
| 2752 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| 2753 | }, |
| 2754 | { .name = "CNTP_TVAL_S" , |
| 2755 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 2756 | .secure = ARM_CP_SECSTATE_S, |
| 2757 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| 2758 | .accessfn = gt_ptimer_access, |
| 2759 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, |
| 2760 | }, |
| 2761 | { .name = "CNTP_TVAL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2762 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, |
| 2763 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| 2764 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
| 2765 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| 2766 | }, |
| 2767 | { .name = "CNTV_TVAL" , .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 2768 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| 2769 | .accessfn = gt_vtimer_access, |
| 2770 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| 2771 | }, |
| 2772 | { .name = "CNTV_TVAL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2773 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, |
| 2774 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| 2775 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
| 2776 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| 2777 | }, |
| 2778 | /* The counter itself */ |
| 2779 | { .name = "CNTPCT" , .cp = 15, .crm = 14, .opc1 = 0, |
| 2780 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| 2781 | .accessfn = gt_pct_access, |
| 2782 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| 2783 | }, |
| 2784 | { .name = "CNTPCT_EL0" , .state = ARM_CP_STATE_AA64, |
| 2785 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, |
| 2786 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2787 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
| 2788 | }, |
| 2789 | { .name = "CNTVCT" , .cp = 15, .crm = 14, .opc1 = 1, |
| 2790 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| 2791 | .accessfn = gt_vct_access, |
| 2792 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| 2793 | }, |
| 2794 | { .name = "CNTVCT_EL0" , .state = ARM_CP_STATE_AA64, |
| 2795 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, |
| 2796 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2797 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
| 2798 | }, |
| 2799 | /* Comparison value, indicating when the timer goes off */ |
| 2800 | { .name = "CNTP_CVAL" , .cp = 15, .crm = 14, .opc1 = 2, |
| 2801 | .secure = ARM_CP_SECSTATE_NS, |
| 2802 | .access = PL0_RW, |
| 2803 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| 2804 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| 2805 | .accessfn = gt_ptimer_access, |
| 2806 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| 2807 | }, |
| 2808 | { .name = "CNTP_CVAL_S" , .cp = 15, .crm = 14, .opc1 = 2, |
| 2809 | .secure = ARM_CP_SECSTATE_S, |
| 2810 | .access = PL0_RW, |
| 2811 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| 2812 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| 2813 | .accessfn = gt_ptimer_access, |
| 2814 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| 2815 | }, |
| 2816 | { .name = "CNTP_CVAL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2817 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, |
| 2818 | .access = PL0_RW, |
| 2819 | .type = ARM_CP_IO, |
| 2820 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| 2821 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
| 2822 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| 2823 | }, |
| 2824 | { .name = "CNTV_CVAL" , .cp = 15, .crm = 14, .opc1 = 3, |
| 2825 | .access = PL0_RW, |
| 2826 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| 2827 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| 2828 | .accessfn = gt_vtimer_access, |
| 2829 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| 2830 | }, |
| 2831 | { .name = "CNTV_CVAL_EL0" , .state = ARM_CP_STATE_AA64, |
| 2832 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, |
| 2833 | .access = PL0_RW, |
| 2834 | .type = ARM_CP_IO, |
| 2835 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| 2836 | .resetvalue = 0, .accessfn = gt_vtimer_access, |
| 2837 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| 2838 | }, |
| 2839 | /* Secure timer -- this is actually restricted to only EL3 |
| 2840 | * and configurably Secure-EL1 via the accessfn. |
| 2841 | */ |
| 2842 | { .name = "CNTPS_TVAL_EL1" , .state = ARM_CP_STATE_AA64, |
| 2843 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, |
| 2844 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, |
| 2845 | .accessfn = gt_stimer_access, |
| 2846 | .readfn = gt_sec_tval_read, |
| 2847 | .writefn = gt_sec_tval_write, |
| 2848 | .resetfn = gt_sec_timer_reset, |
| 2849 | }, |
| 2850 | { .name = "CNTPS_CTL_EL1" , .state = ARM_CP_STATE_AA64, |
| 2851 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, |
| 2852 | .type = ARM_CP_IO, .access = PL1_RW, |
| 2853 | .accessfn = gt_stimer_access, |
| 2854 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), |
| 2855 | .resetvalue = 0, |
| 2856 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| 2857 | }, |
| 2858 | { .name = "CNTPS_CVAL_EL1" , .state = ARM_CP_STATE_AA64, |
| 2859 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, |
| 2860 | .type = ARM_CP_IO, .access = PL1_RW, |
| 2861 | .accessfn = gt_stimer_access, |
| 2862 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| 2863 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| 2864 | }, |
| 2865 | REGINFO_SENTINEL |
| 2866 | }; |
| 2867 | |
| 2868 | #else |
| 2869 | |
| 2870 | /* In user-mode most of the generic timer registers are inaccessible |
| 2871 | * however modern kernels (4.12+) allow access to cntvct_el0 |
| 2872 | */ |
| 2873 | |
| 2874 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 2875 | { |
| 2876 | /* Currently we have no support for QEMUTimer in linux-user so we |
| 2877 | * can't call gt_get_countervalue(env), instead we directly |
| 2878 | * call the lower level functions. |
| 2879 | */ |
| 2880 | return cpu_get_clock() / GTIMER_SCALE; |
| 2881 | } |
| 2882 | |
| 2883 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| 2884 | { .name = "CNTFRQ_EL0" , .state = ARM_CP_STATE_AA64, |
| 2885 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, |
| 2886 | .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, |
| 2887 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| 2888 | .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, |
| 2889 | }, |
| 2890 | { .name = "CNTVCT_EL0" , .state = ARM_CP_STATE_AA64, |
| 2891 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, |
| 2892 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| 2893 | .readfn = gt_virt_cnt_read, |
| 2894 | }, |
| 2895 | REGINFO_SENTINEL |
| 2896 | }; |
| 2897 | |
| 2898 | #endif |
| 2899 | |
| 2900 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 2901 | { |
| 2902 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 2903 | raw_write(env, ri, value); |
| 2904 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 2905 | raw_write(env, ri, value & 0xfffff6ff); |
| 2906 | } else { |
| 2907 | raw_write(env, ri, value & 0xfffff1ff); |
| 2908 | } |
| 2909 | } |
| 2910 | |
| 2911 | #ifndef CONFIG_USER_ONLY |
| 2912 | /* get_phys_addr() isn't present for user-mode-only targets */ |
| 2913 | |
| 2914 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2915 | bool isread) |
| 2916 | { |
| 2917 | if (ri->opc2 & 4) { |
| 2918 | /* The ATS12NSO* operations must trap to EL3 if executed in |
| 2919 | * Secure EL1 (which can only happen if EL3 is AArch64). |
| 2920 | * They are simply UNDEF if executed from NS EL1. |
| 2921 | * They function normally from EL2 or EL3. |
| 2922 | */ |
| 2923 | if (arm_current_el(env) == 1) { |
| 2924 | if (arm_is_secure_below_el3(env)) { |
| 2925 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; |
| 2926 | } |
| 2927 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 2928 | } |
| 2929 | } |
| 2930 | return CP_ACCESS_OK; |
| 2931 | } |
| 2932 | |
| 2933 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
| 2934 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
| 2935 | { |
| 2936 | hwaddr phys_addr; |
| 2937 | target_ulong page_size; |
| 2938 | int prot; |
| 2939 | bool ret; |
| 2940 | uint64_t par64; |
| 2941 | bool format64 = false; |
| 2942 | MemTxAttrs attrs = {}; |
| 2943 | ARMMMUFaultInfo fi = {}; |
| 2944 | ARMCacheAttrs cacheattrs = {}; |
| 2945 | |
| 2946 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
| 2947 | &prot, &page_size, &fi, &cacheattrs); |
| 2948 | |
| 2949 | if (ret) { |
| 2950 | /* |
| 2951 | * Some kinds of translation fault must cause exceptions rather |
| 2952 | * than being reported in the PAR. |
| 2953 | */ |
| 2954 | int current_el = arm_current_el(env); |
| 2955 | int target_el; |
| 2956 | uint32_t syn, fsr, fsc; |
| 2957 | bool take_exc = false; |
| 2958 | |
| 2959 | if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) |
| 2960 | && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { |
| 2961 | /* |
| 2962 | * Synchronous stage 2 fault on an access made as part of the |
| 2963 | * translation table walk for AT S1E0* or AT S1E1* insn |
| 2964 | * executed from NS EL1. If this is a synchronous external abort |
| 2965 | * and SCR_EL3.EA == 1, then we take a synchronous external abort |
| 2966 | * to EL3. Otherwise the fault is taken as an exception to EL2, |
| 2967 | * and HPFAR_EL2 holds the faulting IPA. |
| 2968 | */ |
| 2969 | if (fi.type == ARMFault_SyncExternalOnWalk && |
| 2970 | (env->cp15.scr_el3 & SCR_EA)) { |
| 2971 | target_el = 3; |
| 2972 | } else { |
| 2973 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; |
| 2974 | target_el = 2; |
| 2975 | } |
| 2976 | take_exc = true; |
| 2977 | } else if (fi.type == ARMFault_SyncExternalOnWalk) { |
| 2978 | /* |
| 2979 | * Synchronous external aborts during a translation table walk |
| 2980 | * are taken as Data Abort exceptions. |
| 2981 | */ |
| 2982 | if (fi.stage2) { |
| 2983 | if (current_el == 3) { |
| 2984 | target_el = 3; |
| 2985 | } else { |
| 2986 | target_el = 2; |
| 2987 | } |
| 2988 | } else { |
| 2989 | target_el = exception_target_el(env); |
| 2990 | } |
| 2991 | take_exc = true; |
| 2992 | } |
| 2993 | |
| 2994 | if (take_exc) { |
| 2995 | /* Construct FSR and FSC using same logic as arm_deliver_fault() */ |
| 2996 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || |
| 2997 | arm_s1_regime_using_lpae_format(env, mmu_idx)) { |
| 2998 | fsr = arm_fi_to_lfsc(&fi); |
| 2999 | fsc = extract32(fsr, 0, 6); |
| 3000 | } else { |
| 3001 | fsr = arm_fi_to_sfsc(&fi); |
| 3002 | fsc = 0x3f; |
| 3003 | } |
| 3004 | /* |
| 3005 | * Report exception with ESR indicating a fault due to a |
| 3006 | * translation table walk for a cache maintenance instruction. |
| 3007 | */ |
| 3008 | syn = syn_data_abort_no_iss(current_el == target_el, |
| 3009 | fi.ea, 1, fi.s1ptw, 1, fsc); |
| 3010 | env->exception.vaddress = value; |
| 3011 | env->exception.fsr = fsr; |
| 3012 | raise_exception(env, EXCP_DATA_ABORT, syn, target_el); |
| 3013 | } |
| 3014 | } |
| 3015 | |
| 3016 | if (is_a64(env)) { |
| 3017 | format64 = true; |
| 3018 | } else if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 3019 | /* |
| 3020 | * ATS1Cxx: |
| 3021 | * * TTBCR.EAE determines whether the result is returned using the |
| 3022 | * 32-bit or the 64-bit PAR format |
| 3023 | * * Instructions executed in Hyp mode always use the 64bit format |
| 3024 | * |
| 3025 | * ATS1S2NSOxx uses the 64bit format if any of the following is true: |
| 3026 | * * The Non-secure TTBCR.EAE bit is set to 1 |
| 3027 | * * The implementation includes EL2, and the value of HCR.VM is 1 |
| 3028 | * |
| 3029 | * (Note that HCR.DC makes HCR.VM behave as if it is 1.) |
| 3030 | * |
| 3031 | * ATS1Hx always uses the 64bit format. |
| 3032 | */ |
| 3033 | format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); |
| 3034 | |
| 3035 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
| 3036 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| 3037 | format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); |
| 3038 | } else { |
| 3039 | format64 |= arm_current_el(env) == 2; |
| 3040 | } |
| 3041 | } |
| 3042 | } |
| 3043 | |
| 3044 | if (format64) { |
| 3045 | /* Create a 64-bit PAR */ |
| 3046 | par64 = (1 << 11); /* LPAE bit always set */ |
| 3047 | if (!ret) { |
| 3048 | par64 |= phys_addr & ~0xfffULL; |
| 3049 | if (!attrs.secure) { |
| 3050 | par64 |= (1 << 9); /* NS */ |
| 3051 | } |
| 3052 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
| 3053 | par64 |= cacheattrs.shareability << 7; /* SH */ |
| 3054 | } else { |
| 3055 | uint32_t fsr = arm_fi_to_lfsc(&fi); |
| 3056 | |
| 3057 | par64 |= 1; /* F */ |
| 3058 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
| 3059 | if (fi.stage2) { |
| 3060 | par64 |= (1 << 9); /* S */ |
| 3061 | } |
| 3062 | if (fi.s1ptw) { |
| 3063 | par64 |= (1 << 8); /* PTW */ |
| 3064 | } |
| 3065 | } |
| 3066 | } else { |
| 3067 | /* fsr is a DFSR/IFSR value for the short descriptor |
| 3068 | * translation table format (with WnR always clear). |
| 3069 | * Convert it to a 32-bit PAR. |
| 3070 | */ |
| 3071 | if (!ret) { |
| 3072 | /* We do not set any attribute bits in the PAR */ |
| 3073 | if (page_size == (1 << 24) |
| 3074 | && arm_feature(env, ARM_FEATURE_V7)) { |
| 3075 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
| 3076 | } else { |
| 3077 | par64 = phys_addr & 0xfffff000; |
| 3078 | } |
| 3079 | if (!attrs.secure) { |
| 3080 | par64 |= (1 << 9); /* NS */ |
| 3081 | } |
| 3082 | } else { |
| 3083 | uint32_t fsr = arm_fi_to_sfsc(&fi); |
| 3084 | |
| 3085 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
| 3086 | ((fsr & 0xf) << 1) | 1; |
| 3087 | } |
| 3088 | } |
| 3089 | return par64; |
| 3090 | } |
| 3091 | |
| 3092 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 3093 | { |
| 3094 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| 3095 | uint64_t par64; |
| 3096 | ARMMMUIdx mmu_idx; |
| 3097 | int el = arm_current_el(env); |
| 3098 | bool secure = arm_is_secure_below_el3(env); |
| 3099 | |
| 3100 | switch (ri->opc2 & 6) { |
| 3101 | case 0: |
| 3102 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ |
| 3103 | switch (el) { |
| 3104 | case 3: |
| 3105 | mmu_idx = ARMMMUIdx_S1E3; |
| 3106 | break; |
| 3107 | case 2: |
| 3108 | mmu_idx = ARMMMUIdx_S1NSE1; |
| 3109 | break; |
| 3110 | case 1: |
| 3111 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| 3112 | break; |
| 3113 | default: |
| 3114 | g_assert_not_reached(); |
| 3115 | } |
| 3116 | break; |
| 3117 | case 2: |
| 3118 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ |
| 3119 | switch (el) { |
| 3120 | case 3: |
| 3121 | mmu_idx = ARMMMUIdx_S1SE0; |
| 3122 | break; |
| 3123 | case 2: |
| 3124 | mmu_idx = ARMMMUIdx_S1NSE0; |
| 3125 | break; |
| 3126 | case 1: |
| 3127 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| 3128 | break; |
| 3129 | default: |
| 3130 | g_assert_not_reached(); |
| 3131 | } |
| 3132 | break; |
| 3133 | case 4: |
| 3134 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ |
| 3135 | mmu_idx = ARMMMUIdx_S12NSE1; |
| 3136 | break; |
| 3137 | case 6: |
| 3138 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ |
| 3139 | mmu_idx = ARMMMUIdx_S12NSE0; |
| 3140 | break; |
| 3141 | default: |
| 3142 | g_assert_not_reached(); |
| 3143 | } |
| 3144 | |
| 3145 | par64 = do_ats_write(env, value, access_type, mmu_idx); |
| 3146 | |
| 3147 | A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| 3148 | } |
| 3149 | |
| 3150 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3151 | uint64_t value) |
| 3152 | { |
| 3153 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| 3154 | uint64_t par64; |
| 3155 | |
| 3156 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); |
| 3157 | |
| 3158 | A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| 3159 | } |
| 3160 | |
| 3161 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3162 | bool isread) |
| 3163 | { |
| 3164 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { |
| 3165 | return CP_ACCESS_TRAP; |
| 3166 | } |
| 3167 | return CP_ACCESS_OK; |
| 3168 | } |
| 3169 | |
| 3170 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3171 | uint64_t value) |
| 3172 | { |
| 3173 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| 3174 | ARMMMUIdx mmu_idx; |
| 3175 | int secure = arm_is_secure_below_el3(env); |
| 3176 | |
| 3177 | switch (ri->opc2 & 6) { |
| 3178 | case 0: |
| 3179 | switch (ri->opc1) { |
| 3180 | case 0: /* AT S1E1R, AT S1E1W */ |
| 3181 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| 3182 | break; |
| 3183 | case 4: /* AT S1E2R, AT S1E2W */ |
| 3184 | mmu_idx = ARMMMUIdx_S1E2; |
| 3185 | break; |
| 3186 | case 6: /* AT S1E3R, AT S1E3W */ |
| 3187 | mmu_idx = ARMMMUIdx_S1E3; |
| 3188 | break; |
| 3189 | default: |
| 3190 | g_assert_not_reached(); |
| 3191 | } |
| 3192 | break; |
| 3193 | case 2: /* AT S1E0R, AT S1E0W */ |
| 3194 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| 3195 | break; |
| 3196 | case 4: /* AT S12E1R, AT S12E1W */ |
| 3197 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
| 3198 | break; |
| 3199 | case 6: /* AT S12E0R, AT S12E0W */ |
| 3200 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
| 3201 | break; |
| 3202 | default: |
| 3203 | g_assert_not_reached(); |
| 3204 | } |
| 3205 | |
| 3206 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
| 3207 | } |
| 3208 | #endif |
| 3209 | |
| 3210 | static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| 3211 | { .name = "PAR" , .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| 3212 | .access = PL1_RW, .resetvalue = 0, |
| 3213 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
| 3214 | offsetoflow32(CPUARMState, cp15.par_ns) }, |
| 3215 | .writefn = par_write }, |
| 3216 | #ifndef CONFIG_USER_ONLY |
| 3217 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
| 3218 | { .name = "ATS" , .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
| 3219 | .access = PL1_W, .accessfn = ats_access, |
| 3220 | .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
| 3221 | #endif |
| 3222 | REGINFO_SENTINEL |
| 3223 | }; |
| 3224 | |
| 3225 | /* Return basic MPU access permission bits. */ |
| 3226 | static uint32_t simple_mpu_ap_bits(uint32_t val) |
| 3227 | { |
| 3228 | uint32_t ret; |
| 3229 | uint32_t mask; |
| 3230 | int i; |
| 3231 | ret = 0; |
| 3232 | mask = 3; |
| 3233 | for (i = 0; i < 16; i += 2) { |
| 3234 | ret |= (val >> i) & mask; |
| 3235 | mask <<= 2; |
| 3236 | } |
| 3237 | return ret; |
| 3238 | } |
| 3239 | |
| 3240 | /* Pad basic MPU access permission bits to extended format. */ |
| 3241 | static uint32_t extended_mpu_ap_bits(uint32_t val) |
| 3242 | { |
| 3243 | uint32_t ret; |
| 3244 | uint32_t mask; |
| 3245 | int i; |
| 3246 | ret = 0; |
| 3247 | mask = 3; |
| 3248 | for (i = 0; i < 16; i += 2) { |
| 3249 | ret |= (val & mask) << i; |
| 3250 | mask <<= 2; |
| 3251 | } |
| 3252 | return ret; |
| 3253 | } |
| 3254 | |
| 3255 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3256 | uint64_t value) |
| 3257 | { |
| 3258 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
| 3259 | } |
| 3260 | |
| 3261 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3262 | { |
| 3263 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
| 3264 | } |
| 3265 | |
| 3266 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3267 | uint64_t value) |
| 3268 | { |
| 3269 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
| 3270 | } |
| 3271 | |
| 3272 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3273 | { |
| 3274 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
| 3275 | } |
| 3276 | |
| 3277 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3278 | { |
| 3279 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| 3280 | |
| 3281 | if (!u32p) { |
| 3282 | return 0; |
| 3283 | } |
| 3284 | |
| 3285 | u32p += env->pmsav7.rnr[M_REG_NS]; |
| 3286 | return *u32p; |
| 3287 | } |
| 3288 | |
| 3289 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3290 | uint64_t value) |
| 3291 | { |
| 3292 | ARMCPU *cpu = env_archcpu(env); |
| 3293 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| 3294 | |
| 3295 | if (!u32p) { |
| 3296 | return; |
| 3297 | } |
| 3298 | |
| 3299 | u32p += env->pmsav7.rnr[M_REG_NS]; |
| 3300 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
| 3301 | *u32p = value; |
| 3302 | } |
| 3303 | |
| 3304 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3305 | uint64_t value) |
| 3306 | { |
| 3307 | ARMCPU *cpu = env_archcpu(env); |
| 3308 | uint32_t nrgs = cpu->pmsav7_dregion; |
| 3309 | |
| 3310 | if (value >= nrgs) { |
| 3311 | qemu_log_mask(LOG_GUEST_ERROR, |
| 3312 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 |
| 3313 | " > %" PRIu32 "\n" , (uint32_t)value, nrgs); |
| 3314 | return; |
| 3315 | } |
| 3316 | |
| 3317 | raw_write(env, ri, value); |
| 3318 | } |
| 3319 | |
| 3320 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { |
| 3321 | /* Reset for all these registers is handled in arm_cpu_reset(), |
| 3322 | * because the PMSAv7 is also used by M-profile CPUs, which do |
| 3323 | * not register cpregs but still need the state to be reset. |
| 3324 | */ |
| 3325 | { .name = "DRBAR" , .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
| 3326 | .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| 3327 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), |
| 3328 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
| 3329 | .resetfn = arm_cp_reset_ignore }, |
| 3330 | { .name = "DRSR" , .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
| 3331 | .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| 3332 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), |
| 3333 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
| 3334 | .resetfn = arm_cp_reset_ignore }, |
| 3335 | { .name = "DRACR" , .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
| 3336 | .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| 3337 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), |
| 3338 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
| 3339 | .resetfn = arm_cp_reset_ignore }, |
| 3340 | { .name = "RGNR" , .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
| 3341 | .access = PL1_RW, |
| 3342 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
| 3343 | .writefn = pmsav7_rgnr_write, |
| 3344 | .resetfn = arm_cp_reset_ignore }, |
| 3345 | REGINFO_SENTINEL |
| 3346 | }; |
| 3347 | |
| 3348 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| 3349 | { .name = "DATA_AP" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 3350 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
| 3351 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| 3352 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| 3353 | { .name = "INSN_AP" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 3354 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
| 3355 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| 3356 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| 3357 | { .name = "DATA_EXT_AP" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 3358 | .access = PL1_RW, |
| 3359 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| 3360 | .resetvalue = 0, }, |
| 3361 | { .name = "INSN_EXT_AP" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 3362 | .access = PL1_RW, |
| 3363 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| 3364 | .resetvalue = 0, }, |
| 3365 | { .name = "DCACHE_CFG" , .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 3366 | .access = PL1_RW, |
| 3367 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| 3368 | { .name = "ICACHE_CFG" , .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 3369 | .access = PL1_RW, |
| 3370 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| 3371 | /* Protection region base and size registers */ |
| 3372 | { .name = "946_PRBS0" , .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
| 3373 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3374 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, |
| 3375 | { .name = "946_PRBS1" , .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, |
| 3376 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3377 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, |
| 3378 | { .name = "946_PRBS2" , .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, |
| 3379 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3380 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, |
| 3381 | { .name = "946_PRBS3" , .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, |
| 3382 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3383 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, |
| 3384 | { .name = "946_PRBS4" , .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, |
| 3385 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3386 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, |
| 3387 | { .name = "946_PRBS5" , .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, |
| 3388 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3389 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, |
| 3390 | { .name = "946_PRBS6" , .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, |
| 3391 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3392 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, |
| 3393 | { .name = "946_PRBS7" , .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, |
| 3394 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| 3395 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, |
| 3396 | REGINFO_SENTINEL |
| 3397 | }; |
| 3398 | |
| 3399 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3400 | uint64_t value) |
| 3401 | { |
| 3402 | TCR *tcr = raw_ptr(env, ri); |
| 3403 | int maskshift = extract32(value, 0, 3); |
| 3404 | |
| 3405 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
| 3406 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { |
| 3407 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when |
| 3408 | * using Long-desciptor translation table format */ |
| 3409 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
| 3410 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 3411 | /* In an implementation that includes the Security Extensions |
| 3412 | * TTBCR has additional fields PD0 [4] and PD1 [5] for |
| 3413 | * Short-descriptor translation table format. |
| 3414 | */ |
| 3415 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; |
| 3416 | } else { |
| 3417 | value &= TTBCR_N; |
| 3418 | } |
| 3419 | } |
| 3420 | |
| 3421 | /* Update the masks corresponding to the TCR bank being written |
| 3422 | * Note that we always calculate mask and base_mask, but |
| 3423 | * they are only used for short-descriptor tables (ie if EAE is 0); |
| 3424 | * for long-descriptor tables the TCR fields are used differently |
| 3425 | * and the mask and base_mask values are meaningless. |
| 3426 | */ |
| 3427 | tcr->raw_tcr = value; |
| 3428 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| 3429 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| 3430 | } |
| 3431 | |
| 3432 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3433 | uint64_t value) |
| 3434 | { |
| 3435 | ARMCPU *cpu = env_archcpu(env); |
| 3436 | TCR *tcr = raw_ptr(env, ri); |
| 3437 | |
| 3438 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 3439 | /* With LPAE the TTBCR could result in a change of ASID |
| 3440 | * via the TTBCR.A1 bit, so do a TLB flush. |
| 3441 | */ |
| 3442 | tlb_flush(CPU(cpu)); |
| 3443 | } |
| 3444 | /* Preserve the high half of TCR_EL1, set via TTBCR2. */ |
| 3445 | value = deposit64(tcr->raw_tcr, 0, 32, value); |
| 3446 | vmsa_ttbcr_raw_write(env, ri, value); |
| 3447 | } |
| 3448 | |
| 3449 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3450 | { |
| 3451 | TCR *tcr = raw_ptr(env, ri); |
| 3452 | |
| 3453 | /* Reset both the TCR as well as the masks corresponding to the bank of |
| 3454 | * the TCR being reset. |
| 3455 | */ |
| 3456 | tcr->raw_tcr = 0; |
| 3457 | tcr->mask = 0; |
| 3458 | tcr->base_mask = 0xffffc000u; |
| 3459 | } |
| 3460 | |
| 3461 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3462 | uint64_t value) |
| 3463 | { |
| 3464 | ARMCPU *cpu = env_archcpu(env); |
| 3465 | TCR *tcr = raw_ptr(env, ri); |
| 3466 | |
| 3467 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
| 3468 | tlb_flush(CPU(cpu)); |
| 3469 | tcr->raw_tcr = value; |
| 3470 | } |
| 3471 | |
| 3472 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3473 | uint64_t value) |
| 3474 | { |
| 3475 | /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ |
| 3476 | if (cpreg_field_is_64bit(ri) && |
| 3477 | extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { |
| 3478 | ARMCPU *cpu = env_archcpu(env); |
| 3479 | tlb_flush(CPU(cpu)); |
| 3480 | } |
| 3481 | raw_write(env, ri, value); |
| 3482 | } |
| 3483 | |
| 3484 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3485 | uint64_t value) |
| 3486 | { |
| 3487 | ARMCPU *cpu = env_archcpu(env); |
| 3488 | CPUState *cs = CPU(cpu); |
| 3489 | |
| 3490 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ |
| 3491 | if (raw_read(env, ri) != value) { |
| 3492 | tlb_flush_by_mmuidx(cs, |
| 3493 | ARMMMUIdxBit_S12NSE1 | |
| 3494 | ARMMMUIdxBit_S12NSE0 | |
| 3495 | ARMMMUIdxBit_S2NS); |
| 3496 | raw_write(env, ri, value); |
| 3497 | } |
| 3498 | } |
| 3499 | |
| 3500 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
| 3501 | { .name = "DFSR" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 3502 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
| 3503 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
| 3504 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
| 3505 | { .name = "IFSR" , .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 3506 | .access = PL1_RW, .resetvalue = 0, |
| 3507 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
| 3508 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, |
| 3509 | { .name = "DFAR" , .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
| 3510 | .access = PL1_RW, .resetvalue = 0, |
| 3511 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
| 3512 | offsetof(CPUARMState, cp15.dfar_ns) } }, |
| 3513 | { .name = "FAR_EL1" , .state = ARM_CP_STATE_AA64, |
| 3514 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 3515 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
| 3516 | .resetvalue = 0, }, |
| 3517 | REGINFO_SENTINEL |
| 3518 | }; |
| 3519 | |
| 3520 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| 3521 | { .name = "ESR_EL1" , .state = ARM_CP_STATE_AA64, |
| 3522 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 3523 | .access = PL1_RW, |
| 3524 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
| 3525 | { .name = "TTBR0_EL1" , .state = ARM_CP_STATE_BOTH, |
| 3526 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
| 3527 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| 3528 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| 3529 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, |
| 3530 | { .name = "TTBR1_EL1" , .state = ARM_CP_STATE_BOTH, |
| 3531 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
| 3532 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| 3533 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| 3534 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, |
| 3535 | { .name = "TCR_EL1" , .state = ARM_CP_STATE_AA64, |
| 3536 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 3537 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, |
| 3538 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
| 3539 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
| 3540 | { .name = "TTBCR" , .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 3541 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
| 3542 | .raw_writefn = vmsa_ttbcr_raw_write, |
| 3543 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
| 3544 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, |
| 3545 | REGINFO_SENTINEL |
| 3546 | }; |
| 3547 | |
| 3548 | /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing |
| 3549 | * qemu tlbs nor adjusting cached masks. |
| 3550 | */ |
| 3551 | static const ARMCPRegInfo ttbcr2_reginfo = { |
| 3552 | .name = "TTBCR2" , .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, |
| 3553 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
| 3554 | .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), |
| 3555 | offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, |
| 3556 | }; |
| 3557 | |
| 3558 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3559 | uint64_t value) |
| 3560 | { |
| 3561 | env->cp15.c15_ticonfig = value & 0xe7; |
| 3562 | /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| 3563 | env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| 3564 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| 3565 | } |
| 3566 | |
| 3567 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3568 | uint64_t value) |
| 3569 | { |
| 3570 | env->cp15.c15_threadid = value & 0xffff; |
| 3571 | } |
| 3572 | |
| 3573 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3574 | uint64_t value) |
| 3575 | { |
| 3576 | /* Wait-for-interrupt (deprecated) */ |
| 3577 | cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); |
| 3578 | } |
| 3579 | |
| 3580 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3581 | uint64_t value) |
| 3582 | { |
| 3583 | /* On OMAP there are registers indicating the max/min index of dcache lines |
| 3584 | * containing a dirty line; cache flush operations have to reset these. |
| 3585 | */ |
| 3586 | env->cp15.c15_i_max = 0x000; |
| 3587 | env->cp15.c15_i_min = 0xff0; |
| 3588 | } |
| 3589 | |
| 3590 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
| 3591 | { .name = "DFSR" , .cp = 15, .crn = 5, .crm = CP_ANY, |
| 3592 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, |
| 3593 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
| 3594 | .resetvalue = 0, }, |
| 3595 | { .name = "" , .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 3596 | .access = PL1_RW, .type = ARM_CP_NOP }, |
| 3597 | { .name = "TICONFIG" , .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| 3598 | .access = PL1_RW, |
| 3599 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| 3600 | .writefn = omap_ticonfig_write }, |
| 3601 | { .name = "IMAX" , .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 3602 | .access = PL1_RW, |
| 3603 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| 3604 | { .name = "IMIN" , .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 3605 | .access = PL1_RW, .resetvalue = 0xff0, |
| 3606 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, |
| 3607 | { .name = "THREADID" , .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| 3608 | .access = PL1_RW, |
| 3609 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| 3610 | .writefn = omap_threadid_write }, |
| 3611 | { .name = "TI925T_STATUS" , .cp = 15, .crn = 15, |
| 3612 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| 3613 | .type = ARM_CP_NO_RAW, |
| 3614 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| 3615 | /* TODO: Peripheral port remap register: |
| 3616 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| 3617 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| 3618 | * when MMU is off. |
| 3619 | */ |
| 3620 | { .name = "OMAP_CACHEMAINT" , .cp = 15, .crn = 7, .crm = CP_ANY, |
| 3621 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| 3622 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
| 3623 | .writefn = omap_cachemaint_write }, |
| 3624 | { .name = "C9" , .cp = 15, .crn = 9, |
| 3625 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, |
| 3626 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, |
| 3627 | REGINFO_SENTINEL |
| 3628 | }; |
| 3629 | |
| 3630 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3631 | uint64_t value) |
| 3632 | { |
| 3633 | env->cp15.c15_cpar = value & 0x3fff; |
| 3634 | } |
| 3635 | |
| 3636 | static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| 3637 | { .name = "XSCALE_CPAR" , |
| 3638 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| 3639 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| 3640 | .writefn = xscale_cpar_write, }, |
| 3641 | { .name = "XSCALE_AUXCR" , |
| 3642 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, |
| 3643 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| 3644 | .resetvalue = 0, }, |
| 3645 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
| 3646 | * and hope the guest does not really rely on cache behaviour. |
| 3647 | */ |
| 3648 | { .name = "XSCALE_LOCK_ICACHE_LINE" , |
| 3649 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, |
| 3650 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 3651 | { .name = "XSCALE_UNLOCK_ICACHE" , |
| 3652 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, |
| 3653 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 3654 | { .name = "XSCALE_DCACHE_LOCK" , |
| 3655 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, |
| 3656 | .access = PL1_RW, .type = ARM_CP_NOP }, |
| 3657 | { .name = "XSCALE_UNLOCK_DCACHE" , |
| 3658 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, |
| 3659 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 3660 | REGINFO_SENTINEL |
| 3661 | }; |
| 3662 | |
| 3663 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| 3664 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| 3665 | * implementation of this implementation-defined space. |
| 3666 | * Ideally this should eventually disappear in favour of actually |
| 3667 | * implementing the correct behaviour for all cores. |
| 3668 | */ |
| 3669 | { .name = "C15_IMPDEF" , .cp = 15, .crn = 15, |
| 3670 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| 3671 | .access = PL1_RW, |
| 3672 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
| 3673 | .resetvalue = 0 }, |
| 3674 | REGINFO_SENTINEL |
| 3675 | }; |
| 3676 | |
| 3677 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| 3678 | /* Cache status: RAZ because we have no cache so it's always clean */ |
| 3679 | { .name = "CDSR" , .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| 3680 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| 3681 | .resetvalue = 0 }, |
| 3682 | REGINFO_SENTINEL |
| 3683 | }; |
| 3684 | |
| 3685 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| 3686 | /* We never have a a block transfer operation in progress */ |
| 3687 | { .name = "BXSR" , .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| 3688 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| 3689 | .resetvalue = 0 }, |
| 3690 | /* The cache ops themselves: these all NOP for QEMU */ |
| 3691 | { .name = "IICR" , .cp = 15, .crm = 5, .opc1 = 0, |
| 3692 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3693 | { .name = "IDCR" , .cp = 15, .crm = 6, .opc1 = 0, |
| 3694 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3695 | { .name = "CDCR" , .cp = 15, .crm = 12, .opc1 = 0, |
| 3696 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3697 | { .name = "PIR" , .cp = 15, .crm = 12, .opc1 = 1, |
| 3698 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3699 | { .name = "PDR" , .cp = 15, .crm = 12, .opc1 = 2, |
| 3700 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3701 | { .name = "CIDCR" , .cp = 15, .crm = 14, .opc1 = 0, |
| 3702 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| 3703 | REGINFO_SENTINEL |
| 3704 | }; |
| 3705 | |
| 3706 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| 3707 | /* The cache test-and-clean instructions always return (1 << 30) |
| 3708 | * to indicate that there are no dirty cache lines. |
| 3709 | */ |
| 3710 | { .name = "TC_DCACHE" , .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| 3711 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| 3712 | .resetvalue = (1 << 30) }, |
| 3713 | { .name = "TCI_DCACHE" , .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| 3714 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| 3715 | .resetvalue = (1 << 30) }, |
| 3716 | REGINFO_SENTINEL |
| 3717 | }; |
| 3718 | |
| 3719 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| 3720 | /* Ignore ReadBuffer accesses */ |
| 3721 | { .name = "C9_READBUFFER" , .cp = 15, .crn = 9, |
| 3722 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| 3723 | .access = PL1_RW, .resetvalue = 0, |
| 3724 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
| 3725 | REGINFO_SENTINEL |
| 3726 | }; |
| 3727 | |
| 3728 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3729 | { |
| 3730 | ARMCPU *cpu = env_archcpu(env); |
| 3731 | unsigned int cur_el = arm_current_el(env); |
| 3732 | bool secure = arm_is_secure(env); |
| 3733 | |
| 3734 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| 3735 | return env->cp15.vpidr_el2; |
| 3736 | } |
| 3737 | return raw_read(env, ri); |
| 3738 | } |
| 3739 | |
| 3740 | static uint64_t mpidr_read_val(CPUARMState *env) |
| 3741 | { |
| 3742 | ARMCPU *cpu = env_archcpu(env); |
| 3743 | uint64_t mpidr = cpu->mp_affinity; |
| 3744 | |
| 3745 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| 3746 | mpidr |= (1U << 31); |
| 3747 | /* Cores which are uniprocessor (non-coherent) |
| 3748 | * but still implement the MP extensions set |
| 3749 | * bit 30. (For instance, Cortex-R5). |
| 3750 | */ |
| 3751 | if (cpu->mp_is_up) { |
| 3752 | mpidr |= (1u << 30); |
| 3753 | } |
| 3754 | } |
| 3755 | return mpidr; |
| 3756 | } |
| 3757 | |
| 3758 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3759 | { |
| 3760 | unsigned int cur_el = arm_current_el(env); |
| 3761 | bool secure = arm_is_secure(env); |
| 3762 | |
| 3763 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| 3764 | return env->cp15.vmpidr_el2; |
| 3765 | } |
| 3766 | return mpidr_read_val(env); |
| 3767 | } |
| 3768 | |
| 3769 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
| 3770 | /* NOP AMAIR0/1 */ |
| 3771 | { .name = "AMAIR0" , .state = ARM_CP_STATE_BOTH, |
| 3772 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 3773 | .access = PL1_RW, .type = ARM_CP_CONST, |
| 3774 | .resetvalue = 0 }, |
| 3775 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
| 3776 | { .name = "AMAIR1" , .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
| 3777 | .access = PL1_RW, .type = ARM_CP_CONST, |
| 3778 | .resetvalue = 0 }, |
| 3779 | { .name = "PAR" , .cp = 15, .crm = 7, .opc1 = 0, |
| 3780 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
| 3781 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), |
| 3782 | offsetof(CPUARMState, cp15.par_ns)} }, |
| 3783 | { .name = "TTBR0" , .cp = 15, .crm = 2, .opc1 = 0, |
| 3784 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| 3785 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| 3786 | offsetof(CPUARMState, cp15.ttbr0_ns) }, |
| 3787 | .writefn = vmsa_ttbr_write, }, |
| 3788 | { .name = "TTBR1" , .cp = 15, .crm = 2, .opc1 = 1, |
| 3789 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| 3790 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| 3791 | offsetof(CPUARMState, cp15.ttbr1_ns) }, |
| 3792 | .writefn = vmsa_ttbr_write, }, |
| 3793 | REGINFO_SENTINEL |
| 3794 | }; |
| 3795 | |
| 3796 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3797 | { |
| 3798 | return vfp_get_fpcr(env); |
| 3799 | } |
| 3800 | |
| 3801 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3802 | uint64_t value) |
| 3803 | { |
| 3804 | vfp_set_fpcr(env, value); |
| 3805 | } |
| 3806 | |
| 3807 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 3808 | { |
| 3809 | return vfp_get_fpsr(env); |
| 3810 | } |
| 3811 | |
| 3812 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3813 | uint64_t value) |
| 3814 | { |
| 3815 | vfp_set_fpsr(env, value); |
| 3816 | } |
| 3817 | |
| 3818 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3819 | bool isread) |
| 3820 | { |
| 3821 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
| 3822 | return CP_ACCESS_TRAP; |
| 3823 | } |
| 3824 | return CP_ACCESS_OK; |
| 3825 | } |
| 3826 | |
| 3827 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3828 | uint64_t value) |
| 3829 | { |
| 3830 | env->daif = value & PSTATE_DAIF; |
| 3831 | } |
| 3832 | |
| 3833 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
| 3834 | const ARMCPRegInfo *ri, |
| 3835 | bool isread) |
| 3836 | { |
| 3837 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless |
| 3838 | * SCTLR_EL1.UCI is set. |
| 3839 | */ |
| 3840 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
| 3841 | return CP_ACCESS_TRAP; |
| 3842 | } |
| 3843 | return CP_ACCESS_OK; |
| 3844 | } |
| 3845 | |
| 3846 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
| 3847 | * Page D4-1736 (DDI0487A.b) |
| 3848 | */ |
| 3849 | |
| 3850 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3851 | uint64_t value) |
| 3852 | { |
| 3853 | CPUState *cs = env_cpu(env); |
| 3854 | bool sec = arm_is_secure_below_el3(env); |
| 3855 | |
| 3856 | if (sec) { |
| 3857 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 3858 | ARMMMUIdxBit_S1SE1 | |
| 3859 | ARMMMUIdxBit_S1SE0); |
| 3860 | } else { |
| 3861 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 3862 | ARMMMUIdxBit_S12NSE1 | |
| 3863 | ARMMMUIdxBit_S12NSE0); |
| 3864 | } |
| 3865 | } |
| 3866 | |
| 3867 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3868 | uint64_t value) |
| 3869 | { |
| 3870 | CPUState *cs = env_cpu(env); |
| 3871 | |
| 3872 | if (tlb_force_broadcast(env)) { |
| 3873 | tlbi_aa64_vmalle1is_write(env, NULL, value); |
| 3874 | return; |
| 3875 | } |
| 3876 | |
| 3877 | if (arm_is_secure_below_el3(env)) { |
| 3878 | tlb_flush_by_mmuidx(cs, |
| 3879 | ARMMMUIdxBit_S1SE1 | |
| 3880 | ARMMMUIdxBit_S1SE0); |
| 3881 | } else { |
| 3882 | tlb_flush_by_mmuidx(cs, |
| 3883 | ARMMMUIdxBit_S12NSE1 | |
| 3884 | ARMMMUIdxBit_S12NSE0); |
| 3885 | } |
| 3886 | } |
| 3887 | |
| 3888 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3889 | uint64_t value) |
| 3890 | { |
| 3891 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
| 3892 | * stage 2 translations, whereas most other scopes only invalidate |
| 3893 | * stage 1 translations. |
| 3894 | */ |
| 3895 | ARMCPU *cpu = env_archcpu(env); |
| 3896 | CPUState *cs = CPU(cpu); |
| 3897 | |
| 3898 | if (arm_is_secure_below_el3(env)) { |
| 3899 | tlb_flush_by_mmuidx(cs, |
| 3900 | ARMMMUIdxBit_S1SE1 | |
| 3901 | ARMMMUIdxBit_S1SE0); |
| 3902 | } else { |
| 3903 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
| 3904 | tlb_flush_by_mmuidx(cs, |
| 3905 | ARMMMUIdxBit_S12NSE1 | |
| 3906 | ARMMMUIdxBit_S12NSE0 | |
| 3907 | ARMMMUIdxBit_S2NS); |
| 3908 | } else { |
| 3909 | tlb_flush_by_mmuidx(cs, |
| 3910 | ARMMMUIdxBit_S12NSE1 | |
| 3911 | ARMMMUIdxBit_S12NSE0); |
| 3912 | } |
| 3913 | } |
| 3914 | } |
| 3915 | |
| 3916 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3917 | uint64_t value) |
| 3918 | { |
| 3919 | ARMCPU *cpu = env_archcpu(env); |
| 3920 | CPUState *cs = CPU(cpu); |
| 3921 | |
| 3922 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
| 3923 | } |
| 3924 | |
| 3925 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3926 | uint64_t value) |
| 3927 | { |
| 3928 | ARMCPU *cpu = env_archcpu(env); |
| 3929 | CPUState *cs = CPU(cpu); |
| 3930 | |
| 3931 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); |
| 3932 | } |
| 3933 | |
| 3934 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3935 | uint64_t value) |
| 3936 | { |
| 3937 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
| 3938 | * stage 2 translations, whereas most other scopes only invalidate |
| 3939 | * stage 1 translations. |
| 3940 | */ |
| 3941 | CPUState *cs = env_cpu(env); |
| 3942 | bool sec = arm_is_secure_below_el3(env); |
| 3943 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); |
| 3944 | |
| 3945 | if (sec) { |
| 3946 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 3947 | ARMMMUIdxBit_S1SE1 | |
| 3948 | ARMMMUIdxBit_S1SE0); |
| 3949 | } else if (has_el2) { |
| 3950 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 3951 | ARMMMUIdxBit_S12NSE1 | |
| 3952 | ARMMMUIdxBit_S12NSE0 | |
| 3953 | ARMMMUIdxBit_S2NS); |
| 3954 | } else { |
| 3955 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| 3956 | ARMMMUIdxBit_S12NSE1 | |
| 3957 | ARMMMUIdxBit_S12NSE0); |
| 3958 | } |
| 3959 | } |
| 3960 | |
| 3961 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3962 | uint64_t value) |
| 3963 | { |
| 3964 | CPUState *cs = env_cpu(env); |
| 3965 | |
| 3966 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
| 3967 | } |
| 3968 | |
| 3969 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3970 | uint64_t value) |
| 3971 | { |
| 3972 | CPUState *cs = env_cpu(env); |
| 3973 | |
| 3974 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); |
| 3975 | } |
| 3976 | |
| 3977 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3978 | uint64_t value) |
| 3979 | { |
| 3980 | /* Invalidate by VA, EL2 |
| 3981 | * Currently handles both VAE2 and VALE2, since we don't support |
| 3982 | * flush-last-level-only. |
| 3983 | */ |
| 3984 | ARMCPU *cpu = env_archcpu(env); |
| 3985 | CPUState *cs = CPU(cpu); |
| 3986 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 3987 | |
| 3988 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
| 3989 | } |
| 3990 | |
| 3991 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 3992 | uint64_t value) |
| 3993 | { |
| 3994 | /* Invalidate by VA, EL3 |
| 3995 | * Currently handles both VAE3 and VALE3, since we don't support |
| 3996 | * flush-last-level-only. |
| 3997 | */ |
| 3998 | ARMCPU *cpu = env_archcpu(env); |
| 3999 | CPUState *cs = CPU(cpu); |
| 4000 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 4001 | |
| 4002 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); |
| 4003 | } |
| 4004 | |
| 4005 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4006 | uint64_t value) |
| 4007 | { |
| 4008 | ARMCPU *cpu = env_archcpu(env); |
| 4009 | CPUState *cs = CPU(cpu); |
| 4010 | bool sec = arm_is_secure_below_el3(env); |
| 4011 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 4012 | |
| 4013 | if (sec) { |
| 4014 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 4015 | ARMMMUIdxBit_S1SE1 | |
| 4016 | ARMMMUIdxBit_S1SE0); |
| 4017 | } else { |
| 4018 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 4019 | ARMMMUIdxBit_S12NSE1 | |
| 4020 | ARMMMUIdxBit_S12NSE0); |
| 4021 | } |
| 4022 | } |
| 4023 | |
| 4024 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4025 | uint64_t value) |
| 4026 | { |
| 4027 | /* Invalidate by VA, EL1&0 (AArch64 version). |
| 4028 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, |
| 4029 | * since we don't support flush-for-specific-ASID-only or |
| 4030 | * flush-last-level-only. |
| 4031 | */ |
| 4032 | ARMCPU *cpu = env_archcpu(env); |
| 4033 | CPUState *cs = CPU(cpu); |
| 4034 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 4035 | |
| 4036 | if (tlb_force_broadcast(env)) { |
| 4037 | tlbi_aa64_vae1is_write(env, NULL, value); |
| 4038 | return; |
| 4039 | } |
| 4040 | |
| 4041 | if (arm_is_secure_below_el3(env)) { |
| 4042 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
| 4043 | ARMMMUIdxBit_S1SE1 | |
| 4044 | ARMMMUIdxBit_S1SE0); |
| 4045 | } else { |
| 4046 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
| 4047 | ARMMMUIdxBit_S12NSE1 | |
| 4048 | ARMMMUIdxBit_S12NSE0); |
| 4049 | } |
| 4050 | } |
| 4051 | |
| 4052 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4053 | uint64_t value) |
| 4054 | { |
| 4055 | CPUState *cs = env_cpu(env); |
| 4056 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 4057 | |
| 4058 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 4059 | ARMMMUIdxBit_S1E2); |
| 4060 | } |
| 4061 | |
| 4062 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4063 | uint64_t value) |
| 4064 | { |
| 4065 | CPUState *cs = env_cpu(env); |
| 4066 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| 4067 | |
| 4068 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 4069 | ARMMMUIdxBit_S1E3); |
| 4070 | } |
| 4071 | |
| 4072 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4073 | uint64_t value) |
| 4074 | { |
| 4075 | /* Invalidate by IPA. This has to invalidate any structures that |
| 4076 | * contain only stage 2 translation information, but does not need |
| 4077 | * to apply to structures that contain combined stage 1 and stage 2 |
| 4078 | * translation information. |
| 4079 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| 4080 | */ |
| 4081 | ARMCPU *cpu = env_archcpu(env); |
| 4082 | CPUState *cs = CPU(cpu); |
| 4083 | uint64_t pageaddr; |
| 4084 | |
| 4085 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| 4086 | return; |
| 4087 | } |
| 4088 | |
| 4089 | pageaddr = sextract64(value << 12, 0, 48); |
| 4090 | |
| 4091 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
| 4092 | } |
| 4093 | |
| 4094 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4095 | uint64_t value) |
| 4096 | { |
| 4097 | CPUState *cs = env_cpu(env); |
| 4098 | uint64_t pageaddr; |
| 4099 | |
| 4100 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| 4101 | return; |
| 4102 | } |
| 4103 | |
| 4104 | pageaddr = sextract64(value << 12, 0, 48); |
| 4105 | |
| 4106 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| 4107 | ARMMMUIdxBit_S2NS); |
| 4108 | } |
| 4109 | |
| 4110 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4111 | bool isread) |
| 4112 | { |
| 4113 | /* We don't implement EL2, so the only control on DC ZVA is the |
| 4114 | * bit in the SCTLR which can prohibit access for EL0. |
| 4115 | */ |
| 4116 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
| 4117 | return CP_ACCESS_TRAP; |
| 4118 | } |
| 4119 | return CP_ACCESS_OK; |
| 4120 | } |
| 4121 | |
| 4122 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 4123 | { |
| 4124 | ARMCPU *cpu = env_archcpu(env); |
| 4125 | int dzp_bit = 1 << 4; |
| 4126 | |
| 4127 | /* DZP indicates whether DC ZVA access is allowed */ |
| 4128 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
| 4129 | dzp_bit = 0; |
| 4130 | } |
| 4131 | return cpu->dcz_blocksize | dzp_bit; |
| 4132 | } |
| 4133 | |
| 4134 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4135 | bool isread) |
| 4136 | { |
| 4137 | if (!(env->pstate & PSTATE_SP)) { |
| 4138 | /* Access to SP_EL0 is undefined if it's being used as |
| 4139 | * the stack pointer. |
| 4140 | */ |
| 4141 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 4142 | } |
| 4143 | return CP_ACCESS_OK; |
| 4144 | } |
| 4145 | |
| 4146 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 4147 | { |
| 4148 | return env->pstate & PSTATE_SP; |
| 4149 | } |
| 4150 | |
| 4151 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) |
| 4152 | { |
| 4153 | update_spsel(env, val); |
| 4154 | } |
| 4155 | |
| 4156 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4157 | uint64_t value) |
| 4158 | { |
| 4159 | ARMCPU *cpu = env_archcpu(env); |
| 4160 | |
| 4161 | if (raw_read(env, ri) == value) { |
| 4162 | /* Skip the TLB flush if nothing actually changed; Linux likes |
| 4163 | * to do a lot of pointless SCTLR writes. |
| 4164 | */ |
| 4165 | return; |
| 4166 | } |
| 4167 | |
| 4168 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
| 4169 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ |
| 4170 | value &= ~SCTLR_M; |
| 4171 | } |
| 4172 | |
| 4173 | raw_write(env, ri, value); |
| 4174 | /* ??? Lots of these bits are not implemented. */ |
| 4175 | /* This may enable/disable the MMU, so do a TLB flush. */ |
| 4176 | tlb_flush(CPU(cpu)); |
| 4177 | } |
| 4178 | |
| 4179 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4180 | bool isread) |
| 4181 | { |
| 4182 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { |
| 4183 | return CP_ACCESS_TRAP_FP_EL2; |
| 4184 | } |
| 4185 | if (env->cp15.cptr_el[3] & CPTR_TFP) { |
| 4186 | return CP_ACCESS_TRAP_FP_EL3; |
| 4187 | } |
| 4188 | return CP_ACCESS_OK; |
| 4189 | } |
| 4190 | |
| 4191 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4192 | uint64_t value) |
| 4193 | { |
| 4194 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; |
| 4195 | } |
| 4196 | |
| 4197 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
| 4198 | /* Minimal set of EL0-visible registers. This will need to be expanded |
| 4199 | * significantly for system emulation of AArch64 CPUs. |
| 4200 | */ |
| 4201 | { .name = "NZCV" , .state = ARM_CP_STATE_AA64, |
| 4202 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
| 4203 | .access = PL0_RW, .type = ARM_CP_NZCV }, |
| 4204 | { .name = "DAIF" , .state = ARM_CP_STATE_AA64, |
| 4205 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, |
| 4206 | .type = ARM_CP_NO_RAW, |
| 4207 | .access = PL0_RW, .accessfn = aa64_daif_access, |
| 4208 | .fieldoffset = offsetof(CPUARMState, daif), |
| 4209 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, |
| 4210 | { .name = "FPCR" , .state = ARM_CP_STATE_AA64, |
| 4211 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
| 4212 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
| 4213 | .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
| 4214 | { .name = "FPSR" , .state = ARM_CP_STATE_AA64, |
| 4215 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
| 4216 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
| 4217 | .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
| 4218 | { .name = "DCZID_EL0" , .state = ARM_CP_STATE_AA64, |
| 4219 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
| 4220 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
| 4221 | .readfn = aa64_dczid_read }, |
| 4222 | { .name = "DC_ZVA" , .state = ARM_CP_STATE_AA64, |
| 4223 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, |
| 4224 | .access = PL0_W, .type = ARM_CP_DC_ZVA, |
| 4225 | #ifndef CONFIG_USER_ONLY |
| 4226 | /* Avoid overhead of an access check that always passes in user-mode */ |
| 4227 | .accessfn = aa64_zva_access, |
| 4228 | #endif |
| 4229 | }, |
| 4230 | { .name = "CURRENTEL" , .state = ARM_CP_STATE_AA64, |
| 4231 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, |
| 4232 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, |
| 4233 | /* Cache ops: all NOPs since we don't emulate caches */ |
| 4234 | { .name = "IC_IALLUIS" , .state = ARM_CP_STATE_AA64, |
| 4235 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| 4236 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4237 | { .name = "IC_IALLU" , .state = ARM_CP_STATE_AA64, |
| 4238 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| 4239 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4240 | { .name = "IC_IVAU" , .state = ARM_CP_STATE_AA64, |
| 4241 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, |
| 4242 | .access = PL0_W, .type = ARM_CP_NOP, |
| 4243 | .accessfn = aa64_cacheop_access }, |
| 4244 | { .name = "DC_IVAC" , .state = ARM_CP_STATE_AA64, |
| 4245 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| 4246 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4247 | { .name = "DC_ISW" , .state = ARM_CP_STATE_AA64, |
| 4248 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| 4249 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4250 | { .name = "DC_CVAC" , .state = ARM_CP_STATE_AA64, |
| 4251 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, |
| 4252 | .access = PL0_W, .type = ARM_CP_NOP, |
| 4253 | .accessfn = aa64_cacheop_access }, |
| 4254 | { .name = "DC_CSW" , .state = ARM_CP_STATE_AA64, |
| 4255 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| 4256 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4257 | { .name = "DC_CVAU" , .state = ARM_CP_STATE_AA64, |
| 4258 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, |
| 4259 | .access = PL0_W, .type = ARM_CP_NOP, |
| 4260 | .accessfn = aa64_cacheop_access }, |
| 4261 | { .name = "DC_CIVAC" , .state = ARM_CP_STATE_AA64, |
| 4262 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, |
| 4263 | .access = PL0_W, .type = ARM_CP_NOP, |
| 4264 | .accessfn = aa64_cacheop_access }, |
| 4265 | { .name = "DC_CISW" , .state = ARM_CP_STATE_AA64, |
| 4266 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| 4267 | .access = PL1_W, .type = ARM_CP_NOP }, |
| 4268 | /* TLBI operations */ |
| 4269 | { .name = "TLBI_VMALLE1IS" , .state = ARM_CP_STATE_AA64, |
| 4270 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| 4271 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4272 | .writefn = tlbi_aa64_vmalle1is_write }, |
| 4273 | { .name = "TLBI_VAE1IS" , .state = ARM_CP_STATE_AA64, |
| 4274 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| 4275 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4276 | .writefn = tlbi_aa64_vae1is_write }, |
| 4277 | { .name = "TLBI_ASIDE1IS" , .state = ARM_CP_STATE_AA64, |
| 4278 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| 4279 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4280 | .writefn = tlbi_aa64_vmalle1is_write }, |
| 4281 | { .name = "TLBI_VAAE1IS" , .state = ARM_CP_STATE_AA64, |
| 4282 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| 4283 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4284 | .writefn = tlbi_aa64_vae1is_write }, |
| 4285 | { .name = "TLBI_VALE1IS" , .state = ARM_CP_STATE_AA64, |
| 4286 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| 4287 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4288 | .writefn = tlbi_aa64_vae1is_write }, |
| 4289 | { .name = "TLBI_VAALE1IS" , .state = ARM_CP_STATE_AA64, |
| 4290 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| 4291 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4292 | .writefn = tlbi_aa64_vae1is_write }, |
| 4293 | { .name = "TLBI_VMALLE1" , .state = ARM_CP_STATE_AA64, |
| 4294 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| 4295 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4296 | .writefn = tlbi_aa64_vmalle1_write }, |
| 4297 | { .name = "TLBI_VAE1" , .state = ARM_CP_STATE_AA64, |
| 4298 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| 4299 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4300 | .writefn = tlbi_aa64_vae1_write }, |
| 4301 | { .name = "TLBI_ASIDE1" , .state = ARM_CP_STATE_AA64, |
| 4302 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| 4303 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4304 | .writefn = tlbi_aa64_vmalle1_write }, |
| 4305 | { .name = "TLBI_VAAE1" , .state = ARM_CP_STATE_AA64, |
| 4306 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| 4307 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4308 | .writefn = tlbi_aa64_vae1_write }, |
| 4309 | { .name = "TLBI_VALE1" , .state = ARM_CP_STATE_AA64, |
| 4310 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| 4311 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4312 | .writefn = tlbi_aa64_vae1_write }, |
| 4313 | { .name = "TLBI_VAALE1" , .state = ARM_CP_STATE_AA64, |
| 4314 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| 4315 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 4316 | .writefn = tlbi_aa64_vae1_write }, |
| 4317 | { .name = "TLBI_IPAS2E1IS" , .state = ARM_CP_STATE_AA64, |
| 4318 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| 4319 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4320 | .writefn = tlbi_aa64_ipas2e1is_write }, |
| 4321 | { .name = "TLBI_IPAS2LE1IS" , .state = ARM_CP_STATE_AA64, |
| 4322 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| 4323 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4324 | .writefn = tlbi_aa64_ipas2e1is_write }, |
| 4325 | { .name = "TLBI_ALLE1IS" , .state = ARM_CP_STATE_AA64, |
| 4326 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| 4327 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4328 | .writefn = tlbi_aa64_alle1is_write }, |
| 4329 | { .name = "TLBI_VMALLS12E1IS" , .state = ARM_CP_STATE_AA64, |
| 4330 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, |
| 4331 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4332 | .writefn = tlbi_aa64_alle1is_write }, |
| 4333 | { .name = "TLBI_IPAS2E1" , .state = ARM_CP_STATE_AA64, |
| 4334 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| 4335 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4336 | .writefn = tlbi_aa64_ipas2e1_write }, |
| 4337 | { .name = "TLBI_IPAS2LE1" , .state = ARM_CP_STATE_AA64, |
| 4338 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| 4339 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4340 | .writefn = tlbi_aa64_ipas2e1_write }, |
| 4341 | { .name = "TLBI_ALLE1" , .state = ARM_CP_STATE_AA64, |
| 4342 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| 4343 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4344 | .writefn = tlbi_aa64_alle1_write }, |
| 4345 | { .name = "TLBI_VMALLS12E1" , .state = ARM_CP_STATE_AA64, |
| 4346 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, |
| 4347 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4348 | .writefn = tlbi_aa64_alle1is_write }, |
| 4349 | #ifndef CONFIG_USER_ONLY |
| 4350 | /* 64 bit address translation operations */ |
| 4351 | { .name = "AT_S1E1R" , .state = ARM_CP_STATE_AA64, |
| 4352 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, |
| 4353 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4354 | .writefn = ats_write64 }, |
| 4355 | { .name = "AT_S1E1W" , .state = ARM_CP_STATE_AA64, |
| 4356 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, |
| 4357 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4358 | .writefn = ats_write64 }, |
| 4359 | { .name = "AT_S1E0R" , .state = ARM_CP_STATE_AA64, |
| 4360 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, |
| 4361 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4362 | .writefn = ats_write64 }, |
| 4363 | { .name = "AT_S1E0W" , .state = ARM_CP_STATE_AA64, |
| 4364 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, |
| 4365 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4366 | .writefn = ats_write64 }, |
| 4367 | { .name = "AT_S12E1R" , .state = ARM_CP_STATE_AA64, |
| 4368 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
| 4369 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4370 | .writefn = ats_write64 }, |
| 4371 | { .name = "AT_S12E1W" , .state = ARM_CP_STATE_AA64, |
| 4372 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
| 4373 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4374 | .writefn = ats_write64 }, |
| 4375 | { .name = "AT_S12E0R" , .state = ARM_CP_STATE_AA64, |
| 4376 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
| 4377 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4378 | .writefn = ats_write64 }, |
| 4379 | { .name = "AT_S12E0W" , .state = ARM_CP_STATE_AA64, |
| 4380 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
| 4381 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4382 | .writefn = ats_write64 }, |
| 4383 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
| 4384 | { .name = "AT_S1E3R" , .state = ARM_CP_STATE_AA64, |
| 4385 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, |
| 4386 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4387 | .writefn = ats_write64 }, |
| 4388 | { .name = "AT_S1E3W" , .state = ARM_CP_STATE_AA64, |
| 4389 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, |
| 4390 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
| 4391 | .writefn = ats_write64 }, |
| 4392 | { .name = "PAR_EL1" , .state = ARM_CP_STATE_AA64, |
| 4393 | .type = ARM_CP_ALIAS, |
| 4394 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, |
| 4395 | .access = PL1_RW, .resetvalue = 0, |
| 4396 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), |
| 4397 | .writefn = par_write }, |
| 4398 | #endif |
| 4399 | /* TLB invalidate last level of translation table walk */ |
| 4400 | { .name = "TLBIMVALIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| 4401 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| 4402 | { .name = "TLBIMVAALIS" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| 4403 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
| 4404 | .writefn = tlbimvaa_is_write }, |
| 4405 | { .name = "TLBIMVAL" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| 4406 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| 4407 | { .name = "TLBIMVAAL" , .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| 4408 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| 4409 | { .name = "TLBIMVALH" , .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| 4410 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4411 | .writefn = tlbimva_hyp_write }, |
| 4412 | { .name = "TLBIMVALHIS" , |
| 4413 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| 4414 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4415 | .writefn = tlbimva_hyp_is_write }, |
| 4416 | { .name = "TLBIIPAS2" , |
| 4417 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| 4418 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4419 | .writefn = tlbiipas2_write }, |
| 4420 | { .name = "TLBIIPAS2IS" , |
| 4421 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| 4422 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4423 | .writefn = tlbiipas2_is_write }, |
| 4424 | { .name = "TLBIIPAS2L" , |
| 4425 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| 4426 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4427 | .writefn = tlbiipas2_write }, |
| 4428 | { .name = "TLBIIPAS2LIS" , |
| 4429 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| 4430 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4431 | .writefn = tlbiipas2_is_write }, |
| 4432 | /* 32 bit cache operations */ |
| 4433 | { .name = "ICIALLUIS" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| 4434 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4435 | { .name = "BPIALLUIS" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
| 4436 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4437 | { .name = "ICIALLU" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| 4438 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4439 | { .name = "ICIMVAU" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
| 4440 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4441 | { .name = "BPIALL" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
| 4442 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4443 | { .name = "BPIMVA" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, |
| 4444 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4445 | { .name = "DCIMVAC" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| 4446 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4447 | { .name = "DCISW" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| 4448 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4449 | { .name = "DCCMVAC" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
| 4450 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4451 | { .name = "DCCSW" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| 4452 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4453 | { .name = "DCCMVAU" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
| 4454 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4455 | { .name = "DCCIMVAC" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
| 4456 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4457 | { .name = "DCCISW" , .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| 4458 | .type = ARM_CP_NOP, .access = PL1_W }, |
| 4459 | /* MMU Domain access control / MPU write buffer control */ |
| 4460 | { .name = "DACR" , .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
| 4461 | .access = PL1_RW, .resetvalue = 0, |
| 4462 | .writefn = dacr_write, .raw_writefn = raw_write, |
| 4463 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| 4464 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| 4465 | { .name = "ELR_EL1" , .state = ARM_CP_STATE_AA64, |
| 4466 | .type = ARM_CP_ALIAS, |
| 4467 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
| 4468 | .access = PL1_RW, |
| 4469 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, |
| 4470 | { .name = "SPSR_EL1" , .state = ARM_CP_STATE_AA64, |
| 4471 | .type = ARM_CP_ALIAS, |
| 4472 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
| 4473 | .access = PL1_RW, |
| 4474 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, |
| 4475 | /* We rely on the access checks not allowing the guest to write to the |
| 4476 | * state field when SPSel indicates that it's being used as the stack |
| 4477 | * pointer. |
| 4478 | */ |
| 4479 | { .name = "SP_EL0" , .state = ARM_CP_STATE_AA64, |
| 4480 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, |
| 4481 | .access = PL1_RW, .accessfn = sp_el0_access, |
| 4482 | .type = ARM_CP_ALIAS, |
| 4483 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
| 4484 | { .name = "SP_EL1" , .state = ARM_CP_STATE_AA64, |
| 4485 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, |
| 4486 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
| 4487 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
| 4488 | { .name = "SPSel" , .state = ARM_CP_STATE_AA64, |
| 4489 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, |
| 4490 | .type = ARM_CP_NO_RAW, |
| 4491 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
| 4492 | { .name = "FPEXC32_EL2" , .state = ARM_CP_STATE_AA64, |
| 4493 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, |
| 4494 | .type = ARM_CP_ALIAS, |
| 4495 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), |
| 4496 | .access = PL2_RW, .accessfn = fpexc32_access }, |
| 4497 | { .name = "DACR32_EL2" , .state = ARM_CP_STATE_AA64, |
| 4498 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, |
| 4499 | .access = PL2_RW, .resetvalue = 0, |
| 4500 | .writefn = dacr_write, .raw_writefn = raw_write, |
| 4501 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, |
| 4502 | { .name = "IFSR32_EL2" , .state = ARM_CP_STATE_AA64, |
| 4503 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, |
| 4504 | .access = PL2_RW, .resetvalue = 0, |
| 4505 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, |
| 4506 | { .name = "SPSR_IRQ" , .state = ARM_CP_STATE_AA64, |
| 4507 | .type = ARM_CP_ALIAS, |
| 4508 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, |
| 4509 | .access = PL2_RW, |
| 4510 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, |
| 4511 | { .name = "SPSR_ABT" , .state = ARM_CP_STATE_AA64, |
| 4512 | .type = ARM_CP_ALIAS, |
| 4513 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, |
| 4514 | .access = PL2_RW, |
| 4515 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, |
| 4516 | { .name = "SPSR_UND" , .state = ARM_CP_STATE_AA64, |
| 4517 | .type = ARM_CP_ALIAS, |
| 4518 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, |
| 4519 | .access = PL2_RW, |
| 4520 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, |
| 4521 | { .name = "SPSR_FIQ" , .state = ARM_CP_STATE_AA64, |
| 4522 | .type = ARM_CP_ALIAS, |
| 4523 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, |
| 4524 | .access = PL2_RW, |
| 4525 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, |
| 4526 | { .name = "MDCR_EL3" , .state = ARM_CP_STATE_AA64, |
| 4527 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, |
| 4528 | .resetvalue = 0, |
| 4529 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, |
| 4530 | { .name = "SDCR" , .type = ARM_CP_ALIAS, |
| 4531 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, |
| 4532 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| 4533 | .writefn = sdcr_write, |
| 4534 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, |
| 4535 | REGINFO_SENTINEL |
| 4536 | }; |
| 4537 | |
| 4538 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
| 4539 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
| 4540 | { .name = "VBAR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4541 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| 4542 | .access = PL2_RW, |
| 4543 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, |
| 4544 | { .name = "HCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4545 | .type = ARM_CP_NO_RAW, |
| 4546 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| 4547 | .access = PL2_RW, |
| 4548 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4549 | { .name = "HACR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4550 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, |
| 4551 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4552 | { .name = "ESR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4553 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
| 4554 | .access = PL2_RW, |
| 4555 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4556 | { .name = "CPTR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4557 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| 4558 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4559 | { .name = "MAIR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4560 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| 4561 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4562 | .resetvalue = 0 }, |
| 4563 | { .name = "HMAIR1" , .state = ARM_CP_STATE_AA32, |
| 4564 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| 4565 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4566 | { .name = "AMAIR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4567 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| 4568 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4569 | .resetvalue = 0 }, |
| 4570 | { .name = "HAMAIR1" , .state = ARM_CP_STATE_AA32, |
| 4571 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| 4572 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4573 | .resetvalue = 0 }, |
| 4574 | { .name = "AFSR0_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4575 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| 4576 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4577 | .resetvalue = 0 }, |
| 4578 | { .name = "AFSR1_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4579 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| 4580 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4581 | .resetvalue = 0 }, |
| 4582 | { .name = "TCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4583 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| 4584 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4585 | { .name = "VTCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4586 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| 4587 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| 4588 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4589 | { .name = "VTTBR" , .state = ARM_CP_STATE_AA32, |
| 4590 | .cp = 15, .opc1 = 6, .crm = 2, |
| 4591 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 4592 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| 4593 | { .name = "VTTBR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4594 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| 4595 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4596 | { .name = "SCTLR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4597 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| 4598 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4599 | { .name = "TPIDR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4600 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| 4601 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4602 | { .name = "TTBR0_EL2" , .state = ARM_CP_STATE_AA64, |
| 4603 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| 4604 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4605 | { .name = "HTTBR" , .cp = 15, .opc1 = 4, .crm = 2, |
| 4606 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| 4607 | .resetvalue = 0 }, |
| 4608 | { .name = "CNTHCTL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4609 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| 4610 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4611 | { .name = "CNTVOFF_EL2" , .state = ARM_CP_STATE_AA64, |
| 4612 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| 4613 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4614 | { .name = "CNTVOFF" , .cp = 15, .opc1 = 4, .crm = 14, |
| 4615 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| 4616 | .resetvalue = 0 }, |
| 4617 | { .name = "CNTHP_CVAL_EL2" , .state = ARM_CP_STATE_AA64, |
| 4618 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| 4619 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4620 | { .name = "CNTHP_CVAL" , .cp = 15, .opc1 = 6, .crm = 14, |
| 4621 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| 4622 | .resetvalue = 0 }, |
| 4623 | { .name = "CNTHP_TVAL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4624 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| 4625 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4626 | { .name = "CNTHP_CTL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4627 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| 4628 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4629 | { .name = "MDCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4630 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| 4631 | .access = PL2_RW, .accessfn = access_tda, |
| 4632 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4633 | { .name = "HPFAR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4634 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| 4635 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| 4636 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4637 | { .name = "HSTR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4638 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| 4639 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4640 | { .name = "FAR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4641 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
| 4642 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4643 | { .name = "HIFAR" , .state = ARM_CP_STATE_AA32, |
| 4644 | .type = ARM_CP_CONST, |
| 4645 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, |
| 4646 | .access = PL2_RW, .resetvalue = 0 }, |
| 4647 | REGINFO_SENTINEL |
| 4648 | }; |
| 4649 | |
| 4650 | /* Ditto, but for registers which exist in ARMv8 but not v7 */ |
| 4651 | static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { |
| 4652 | { .name = "HCR2" , .state = ARM_CP_STATE_AA32, |
| 4653 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
| 4654 | .access = PL2_RW, |
| 4655 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4656 | REGINFO_SENTINEL |
| 4657 | }; |
| 4658 | |
| 4659 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 4660 | { |
| 4661 | ARMCPU *cpu = env_archcpu(env); |
| 4662 | uint64_t valid_mask = HCR_MASK; |
| 4663 | |
| 4664 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 4665 | valid_mask &= ~HCR_HCD; |
| 4666 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
| 4667 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. |
| 4668 | * However, if we're using the SMC PSCI conduit then QEMU is |
| 4669 | * effectively acting like EL3 firmware and so the guest at |
| 4670 | * EL2 should retain the ability to prevent EL1 from being |
| 4671 | * able to make SMC calls into the ersatz firmware, so in |
| 4672 | * that case HCR.TSC should be read/write. |
| 4673 | */ |
| 4674 | valid_mask &= ~HCR_TSC; |
| 4675 | } |
| 4676 | if (cpu_isar_feature(aa64_lor, cpu)) { |
| 4677 | valid_mask |= HCR_TLOR; |
| 4678 | } |
| 4679 | if (cpu_isar_feature(aa64_pauth, cpu)) { |
| 4680 | valid_mask |= HCR_API | HCR_APK; |
| 4681 | } |
| 4682 | |
| 4683 | /* Clear RES0 bits. */ |
| 4684 | value &= valid_mask; |
| 4685 | |
| 4686 | /* These bits change the MMU setup: |
| 4687 | * HCR_VM enables stage 2 translation |
| 4688 | * HCR_PTW forbids certain page-table setups |
| 4689 | * HCR_DC Disables stage1 and enables stage2 translation |
| 4690 | */ |
| 4691 | if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { |
| 4692 | tlb_flush(CPU(cpu)); |
| 4693 | } |
| 4694 | env->cp15.hcr_el2 = value; |
| 4695 | |
| 4696 | /* |
| 4697 | * Updates to VI and VF require us to update the status of |
| 4698 | * virtual interrupts, which are the logical OR of these bits |
| 4699 | * and the state of the input lines from the GIC. (This requires |
| 4700 | * that we have the iothread lock, which is done by marking the |
| 4701 | * reginfo structs as ARM_CP_IO.) |
| 4702 | * Note that if a write to HCR pends a VIRQ or VFIQ it is never |
| 4703 | * possible for it to be taken immediately, because VIRQ and |
| 4704 | * VFIQ are masked unless running at EL0 or EL1, and HCR |
| 4705 | * can only be written at EL2. |
| 4706 | */ |
| 4707 | g_assert(qemu_mutex_iothread_locked()); |
| 4708 | arm_cpu_update_virq(cpu); |
| 4709 | arm_cpu_update_vfiq(cpu); |
| 4710 | } |
| 4711 | |
| 4712 | static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4713 | uint64_t value) |
| 4714 | { |
| 4715 | /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ |
| 4716 | value = deposit64(env->cp15.hcr_el2, 32, 32, value); |
| 4717 | hcr_write(env, NULL, value); |
| 4718 | } |
| 4719 | |
| 4720 | static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4721 | uint64_t value) |
| 4722 | { |
| 4723 | /* Handle HCR write, i.e. write to low half of HCR_EL2 */ |
| 4724 | value = deposit64(env->cp15.hcr_el2, 0, 32, value); |
| 4725 | hcr_write(env, NULL, value); |
| 4726 | } |
| 4727 | |
| 4728 | /* |
| 4729 | * Return the effective value of HCR_EL2. |
| 4730 | * Bits that are not included here: |
| 4731 | * RW (read from SCR_EL3.RW as needed) |
| 4732 | */ |
| 4733 | uint64_t arm_hcr_el2_eff(CPUARMState *env) |
| 4734 | { |
| 4735 | uint64_t ret = env->cp15.hcr_el2; |
| 4736 | |
| 4737 | if (arm_is_secure_below_el3(env)) { |
| 4738 | /* |
| 4739 | * "This register has no effect if EL2 is not enabled in the |
| 4740 | * current Security state". This is ARMv8.4-SecEL2 speak for |
| 4741 | * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). |
| 4742 | * |
| 4743 | * Prior to that, the language was "In an implementation that |
| 4744 | * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves |
| 4745 | * as if this field is 0 for all purposes other than a direct |
| 4746 | * read or write access of HCR_EL2". With lots of enumeration |
| 4747 | * on a per-field basis. In current QEMU, this is condition |
| 4748 | * is arm_is_secure_below_el3. |
| 4749 | * |
| 4750 | * Since the v8.4 language applies to the entire register, and |
| 4751 | * appears to be backward compatible, use that. |
| 4752 | */ |
| 4753 | ret = 0; |
| 4754 | } else if (ret & HCR_TGE) { |
| 4755 | /* These bits are up-to-date as of ARMv8.4. */ |
| 4756 | if (ret & HCR_E2H) { |
| 4757 | ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | |
| 4758 | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | |
| 4759 | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | |
| 4760 | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); |
| 4761 | } else { |
| 4762 | ret |= HCR_FMO | HCR_IMO | HCR_AMO; |
| 4763 | } |
| 4764 | ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | |
| 4765 | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | |
| 4766 | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | |
| 4767 | HCR_TLOR); |
| 4768 | } |
| 4769 | |
| 4770 | return ret; |
| 4771 | } |
| 4772 | |
| 4773 | static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 4774 | uint64_t value) |
| 4775 | { |
| 4776 | /* |
| 4777 | * For A-profile AArch32 EL3, if NSACR.CP10 |
| 4778 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. |
| 4779 | */ |
| 4780 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && |
| 4781 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { |
| 4782 | value &= ~(0x3 << 10); |
| 4783 | value |= env->cp15.cptr_el[2] & (0x3 << 10); |
| 4784 | } |
| 4785 | env->cp15.cptr_el[2] = value; |
| 4786 | } |
| 4787 | |
| 4788 | static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 4789 | { |
| 4790 | /* |
| 4791 | * For A-profile AArch32 EL3, if NSACR.CP10 |
| 4792 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. |
| 4793 | */ |
| 4794 | uint64_t value = env->cp15.cptr_el[2]; |
| 4795 | |
| 4796 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && |
| 4797 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { |
| 4798 | value |= 0x3 << 10; |
| 4799 | } |
| 4800 | return value; |
| 4801 | } |
| 4802 | |
| 4803 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
| 4804 | { .name = "HCR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4805 | .type = ARM_CP_IO, |
| 4806 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| 4807 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), |
| 4808 | .writefn = hcr_write }, |
| 4809 | { .name = "HCR" , .state = ARM_CP_STATE_AA32, |
| 4810 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 4811 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| 4812 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), |
| 4813 | .writefn = hcr_writelow }, |
| 4814 | { .name = "HACR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4815 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, |
| 4816 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 4817 | { .name = "ELR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4818 | .type = ARM_CP_ALIAS, |
| 4819 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
| 4820 | .access = PL2_RW, |
| 4821 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, |
| 4822 | { .name = "ESR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4823 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
| 4824 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, |
| 4825 | { .name = "FAR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4826 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
| 4827 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, |
| 4828 | { .name = "HIFAR" , .state = ARM_CP_STATE_AA32, |
| 4829 | .type = ARM_CP_ALIAS, |
| 4830 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, |
| 4831 | .access = PL2_RW, |
| 4832 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, |
| 4833 | { .name = "SPSR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4834 | .type = ARM_CP_ALIAS, |
| 4835 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
| 4836 | .access = PL2_RW, |
| 4837 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, |
| 4838 | { .name = "VBAR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4839 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| 4840 | .access = PL2_RW, .writefn = vbar_write, |
| 4841 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), |
| 4842 | .resetvalue = 0 }, |
| 4843 | { .name = "SP_EL2" , .state = ARM_CP_STATE_AA64, |
| 4844 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, |
| 4845 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
| 4846 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
| 4847 | { .name = "CPTR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4848 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| 4849 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, |
| 4850 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), |
| 4851 | .readfn = cptr_el2_read, .writefn = cptr_el2_write }, |
| 4852 | { .name = "MAIR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4853 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| 4854 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), |
| 4855 | .resetvalue = 0 }, |
| 4856 | { .name = "HMAIR1" , .state = ARM_CP_STATE_AA32, |
| 4857 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| 4858 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
| 4859 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, |
| 4860 | { .name = "AMAIR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4861 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| 4862 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4863 | .resetvalue = 0 }, |
| 4864 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ |
| 4865 | { .name = "HAMAIR1" , .state = ARM_CP_STATE_AA32, |
| 4866 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| 4867 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4868 | .resetvalue = 0 }, |
| 4869 | { .name = "AFSR0_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4870 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| 4871 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4872 | .resetvalue = 0 }, |
| 4873 | { .name = "AFSR1_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4874 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| 4875 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 4876 | .resetvalue = 0 }, |
| 4877 | { .name = "TCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4878 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| 4879 | .access = PL2_RW, |
| 4880 | /* no .writefn needed as this can't cause an ASID change; |
| 4881 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| 4882 | */ |
| 4883 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
| 4884 | { .name = "VTCR" , .state = ARM_CP_STATE_AA32, |
| 4885 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| 4886 | .type = ARM_CP_ALIAS, |
| 4887 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 4888 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| 4889 | { .name = "VTCR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4890 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| 4891 | .access = PL2_RW, |
| 4892 | /* no .writefn needed as this can't cause an ASID change; |
| 4893 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| 4894 | */ |
| 4895 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| 4896 | { .name = "VTTBR" , .state = ARM_CP_STATE_AA32, |
| 4897 | .cp = 15, .opc1 = 6, .crm = 2, |
| 4898 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| 4899 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 4900 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), |
| 4901 | .writefn = vttbr_write }, |
| 4902 | { .name = "VTTBR_EL2" , .state = ARM_CP_STATE_AA64, |
| 4903 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| 4904 | .access = PL2_RW, .writefn = vttbr_write, |
| 4905 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, |
| 4906 | { .name = "SCTLR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4907 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| 4908 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, |
| 4909 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, |
| 4910 | { .name = "TPIDR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4911 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| 4912 | .access = PL2_RW, .resetvalue = 0, |
| 4913 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, |
| 4914 | { .name = "TTBR0_EL2" , .state = ARM_CP_STATE_AA64, |
| 4915 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| 4916 | .access = PL2_RW, .resetvalue = 0, |
| 4917 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| 4918 | { .name = "HTTBR" , .cp = 15, .opc1 = 4, .crm = 2, |
| 4919 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| 4920 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| 4921 | { .name = "TLBIALLNSNH" , |
| 4922 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| 4923 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4924 | .writefn = tlbiall_nsnh_write }, |
| 4925 | { .name = "TLBIALLNSNHIS" , |
| 4926 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| 4927 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4928 | .writefn = tlbiall_nsnh_is_write }, |
| 4929 | { .name = "TLBIALLH" , .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| 4930 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4931 | .writefn = tlbiall_hyp_write }, |
| 4932 | { .name = "TLBIALLHIS" , .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| 4933 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4934 | .writefn = tlbiall_hyp_is_write }, |
| 4935 | { .name = "TLBIMVAH" , .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| 4936 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4937 | .writefn = tlbimva_hyp_write }, |
| 4938 | { .name = "TLBIMVAHIS" , .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| 4939 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4940 | .writefn = tlbimva_hyp_is_write }, |
| 4941 | { .name = "TLBI_ALLE2" , .state = ARM_CP_STATE_AA64, |
| 4942 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| 4943 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4944 | .writefn = tlbi_aa64_alle2_write }, |
| 4945 | { .name = "TLBI_VAE2" , .state = ARM_CP_STATE_AA64, |
| 4946 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| 4947 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4948 | .writefn = tlbi_aa64_vae2_write }, |
| 4949 | { .name = "TLBI_VALE2" , .state = ARM_CP_STATE_AA64, |
| 4950 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| 4951 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4952 | .writefn = tlbi_aa64_vae2_write }, |
| 4953 | { .name = "TLBI_ALLE2IS" , .state = ARM_CP_STATE_AA64, |
| 4954 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| 4955 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4956 | .writefn = tlbi_aa64_alle2is_write }, |
| 4957 | { .name = "TLBI_VAE2IS" , .state = ARM_CP_STATE_AA64, |
| 4958 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| 4959 | .type = ARM_CP_NO_RAW, .access = PL2_W, |
| 4960 | .writefn = tlbi_aa64_vae2is_write }, |
| 4961 | { .name = "TLBI_VALE2IS" , .state = ARM_CP_STATE_AA64, |
| 4962 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| 4963 | .access = PL2_W, .type = ARM_CP_NO_RAW, |
| 4964 | .writefn = tlbi_aa64_vae2is_write }, |
| 4965 | #ifndef CONFIG_USER_ONLY |
| 4966 | /* Unlike the other EL2-related AT operations, these must |
| 4967 | * UNDEF from EL3 if EL2 is not implemented, which is why we |
| 4968 | * define them here rather than with the rest of the AT ops. |
| 4969 | */ |
| 4970 | { .name = "AT_S1E2R" , .state = ARM_CP_STATE_AA64, |
| 4971 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| 4972 | .access = PL2_W, .accessfn = at_s1e2_access, |
| 4973 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
| 4974 | { .name = "AT_S1E2W" , .state = ARM_CP_STATE_AA64, |
| 4975 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| 4976 | .access = PL2_W, .accessfn = at_s1e2_access, |
| 4977 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
| 4978 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
| 4979 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 |
| 4980 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose |
| 4981 | * to behave as if SCR.NS was 1. |
| 4982 | */ |
| 4983 | { .name = "ATS1HR" , .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| 4984 | .access = PL2_W, |
| 4985 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
| 4986 | { .name = "ATS1HW" , .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| 4987 | .access = PL2_W, |
| 4988 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
| 4989 | { .name = "CNTHCTL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 4990 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| 4991 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the |
| 4992 | * reset values as IMPDEF. We choose to reset to 3 to comply with |
| 4993 | * both ARMv7 and ARMv8. |
| 4994 | */ |
| 4995 | .access = PL2_RW, .resetvalue = 3, |
| 4996 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, |
| 4997 | { .name = "CNTVOFF_EL2" , .state = ARM_CP_STATE_AA64, |
| 4998 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| 4999 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, |
| 5000 | .writefn = gt_cntvoff_write, |
| 5001 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| 5002 | { .name = "CNTVOFF" , .cp = 15, .opc1 = 4, .crm = 14, |
| 5003 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, |
| 5004 | .writefn = gt_cntvoff_write, |
| 5005 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| 5006 | { .name = "CNTHP_CVAL_EL2" , .state = ARM_CP_STATE_AA64, |
| 5007 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| 5008 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| 5009 | .type = ARM_CP_IO, .access = PL2_RW, |
| 5010 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| 5011 | { .name = "CNTHP_CVAL" , .cp = 15, .opc1 = 6, .crm = 14, |
| 5012 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| 5013 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, |
| 5014 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| 5015 | { .name = "CNTHP_TVAL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 5016 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| 5017 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
| 5018 | .resetfn = gt_hyp_timer_reset, |
| 5019 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, |
| 5020 | { .name = "CNTHP_CTL_EL2" , .state = ARM_CP_STATE_BOTH, |
| 5021 | .type = ARM_CP_IO, |
| 5022 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| 5023 | .access = PL2_RW, |
| 5024 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), |
| 5025 | .resetvalue = 0, |
| 5026 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, |
| 5027 | #endif |
| 5028 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
| 5029 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we |
| 5030 | * don't implement any PMU event counters, so using zero as a reset |
| 5031 | * value for MDCR_EL2 is okay |
| 5032 | */ |
| 5033 | { .name = "MDCR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 5034 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| 5035 | .access = PL2_RW, .resetvalue = 0, |
| 5036 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, |
| 5037 | { .name = "HPFAR" , .state = ARM_CP_STATE_AA32, |
| 5038 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| 5039 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 5040 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| 5041 | { .name = "HPFAR_EL2" , .state = ARM_CP_STATE_AA64, |
| 5042 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| 5043 | .access = PL2_RW, |
| 5044 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| 5045 | { .name = "HSTR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 5046 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| 5047 | .access = PL2_RW, |
| 5048 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, |
| 5049 | REGINFO_SENTINEL |
| 5050 | }; |
| 5051 | |
| 5052 | static const ARMCPRegInfo el2_v8_cp_reginfo[] = { |
| 5053 | { .name = "HCR2" , .state = ARM_CP_STATE_AA32, |
| 5054 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
| 5055 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
| 5056 | .access = PL2_RW, |
| 5057 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), |
| 5058 | .writefn = hcr_writehigh }, |
| 5059 | REGINFO_SENTINEL |
| 5060 | }; |
| 5061 | |
| 5062 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5063 | bool isread) |
| 5064 | { |
| 5065 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. |
| 5066 | * At Secure EL1 it traps to EL3. |
| 5067 | */ |
| 5068 | if (arm_current_el(env) == 3) { |
| 5069 | return CP_ACCESS_OK; |
| 5070 | } |
| 5071 | if (arm_is_secure_below_el3(env)) { |
| 5072 | return CP_ACCESS_TRAP_EL3; |
| 5073 | } |
| 5074 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ |
| 5075 | if (isread) { |
| 5076 | return CP_ACCESS_OK; |
| 5077 | } |
| 5078 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
| 5079 | } |
| 5080 | |
| 5081 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
| 5082 | { .name = "SCR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5083 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, |
| 5084 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), |
| 5085 | .resetvalue = 0, .writefn = scr_write }, |
| 5086 | { .name = "SCR" , .type = ARM_CP_ALIAS, |
| 5087 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
| 5088 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| 5089 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), |
| 5090 | .writefn = scr_write }, |
| 5091 | { .name = "SDER32_EL3" , .state = ARM_CP_STATE_AA64, |
| 5092 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, |
| 5093 | .access = PL3_RW, .resetvalue = 0, |
| 5094 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, |
| 5095 | { .name = "SDER" , |
| 5096 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, |
| 5097 | .access = PL3_RW, .resetvalue = 0, |
| 5098 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, |
| 5099 | { .name = "MVBAR" , .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| 5100 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| 5101 | .writefn = vbar_write, .resetvalue = 0, |
| 5102 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
| 5103 | { .name = "TTBR0_EL3" , .state = ARM_CP_STATE_AA64, |
| 5104 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, |
| 5105 | .access = PL3_RW, .resetvalue = 0, |
| 5106 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
| 5107 | { .name = "TCR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5108 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, |
| 5109 | .access = PL3_RW, |
| 5110 | /* no .writefn needed as this can't cause an ASID change; |
| 5111 | * we must provide a .raw_writefn and .resetfn because we handle |
| 5112 | * reset and migration for the AArch32 TTBCR(S), which might be |
| 5113 | * using mask and base_mask. |
| 5114 | */ |
| 5115 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
| 5116 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
| 5117 | { .name = "ELR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5118 | .type = ARM_CP_ALIAS, |
| 5119 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
| 5120 | .access = PL3_RW, |
| 5121 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, |
| 5122 | { .name = "ESR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5123 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
| 5124 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, |
| 5125 | { .name = "FAR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5126 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, |
| 5127 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, |
| 5128 | { .name = "SPSR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5129 | .type = ARM_CP_ALIAS, |
| 5130 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
| 5131 | .access = PL3_RW, |
| 5132 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, |
| 5133 | { .name = "VBAR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5134 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, |
| 5135 | .access = PL3_RW, .writefn = vbar_write, |
| 5136 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), |
| 5137 | .resetvalue = 0 }, |
| 5138 | { .name = "CPTR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5139 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, |
| 5140 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, |
| 5141 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, |
| 5142 | { .name = "TPIDR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5143 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, |
| 5144 | .access = PL3_RW, .resetvalue = 0, |
| 5145 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, |
| 5146 | { .name = "AMAIR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5147 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, |
| 5148 | .access = PL3_RW, .type = ARM_CP_CONST, |
| 5149 | .resetvalue = 0 }, |
| 5150 | { .name = "AFSR0_EL3" , .state = ARM_CP_STATE_BOTH, |
| 5151 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, |
| 5152 | .access = PL3_RW, .type = ARM_CP_CONST, |
| 5153 | .resetvalue = 0 }, |
| 5154 | { .name = "AFSR1_EL3" , .state = ARM_CP_STATE_BOTH, |
| 5155 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, |
| 5156 | .access = PL3_RW, .type = ARM_CP_CONST, |
| 5157 | .resetvalue = 0 }, |
| 5158 | { .name = "TLBI_ALLE3IS" , .state = ARM_CP_STATE_AA64, |
| 5159 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, |
| 5160 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5161 | .writefn = tlbi_aa64_alle3is_write }, |
| 5162 | { .name = "TLBI_VAE3IS" , .state = ARM_CP_STATE_AA64, |
| 5163 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, |
| 5164 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5165 | .writefn = tlbi_aa64_vae3is_write }, |
| 5166 | { .name = "TLBI_VALE3IS" , .state = ARM_CP_STATE_AA64, |
| 5167 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, |
| 5168 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5169 | .writefn = tlbi_aa64_vae3is_write }, |
| 5170 | { .name = "TLBI_ALLE3" , .state = ARM_CP_STATE_AA64, |
| 5171 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, |
| 5172 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5173 | .writefn = tlbi_aa64_alle3_write }, |
| 5174 | { .name = "TLBI_VAE3" , .state = ARM_CP_STATE_AA64, |
| 5175 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, |
| 5176 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5177 | .writefn = tlbi_aa64_vae3_write }, |
| 5178 | { .name = "TLBI_VALE3" , .state = ARM_CP_STATE_AA64, |
| 5179 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, |
| 5180 | .access = PL3_W, .type = ARM_CP_NO_RAW, |
| 5181 | .writefn = tlbi_aa64_vae3_write }, |
| 5182 | REGINFO_SENTINEL |
| 5183 | }; |
| 5184 | |
| 5185 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5186 | bool isread) |
| 5187 | { |
| 5188 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, |
| 5189 | * but the AArch32 CTR has its own reginfo struct) |
| 5190 | */ |
| 5191 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
| 5192 | return CP_ACCESS_TRAP; |
| 5193 | } |
| 5194 | return CP_ACCESS_OK; |
| 5195 | } |
| 5196 | |
| 5197 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5198 | uint64_t value) |
| 5199 | { |
| 5200 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be |
| 5201 | * read via a bit in OSLSR_EL1. |
| 5202 | */ |
| 5203 | int oslock; |
| 5204 | |
| 5205 | if (ri->state == ARM_CP_STATE_AA32) { |
| 5206 | oslock = (value == 0xC5ACCE55); |
| 5207 | } else { |
| 5208 | oslock = value & 1; |
| 5209 | } |
| 5210 | |
| 5211 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); |
| 5212 | } |
| 5213 | |
| 5214 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
| 5215 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| 5216 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
| 5217 | * unlike DBGDRAR it is never accessible from EL0. |
| 5218 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 |
| 5219 | * accessor. |
| 5220 | */ |
| 5221 | { .name = "DBGDRAR" , .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 5222 | .access = PL0_R, .accessfn = access_tdra, |
| 5223 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 5224 | { .name = "MDRAR_EL1" , .state = ARM_CP_STATE_AA64, |
| 5225 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| 5226 | .access = PL1_R, .accessfn = access_tdra, |
| 5227 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 5228 | { .name = "DBGDSAR" , .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 5229 | .access = PL0_R, .accessfn = access_tdra, |
| 5230 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 5231 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
| 5232 | { .name = "MDSCR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 5233 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| 5234 | .access = PL1_RW, .accessfn = access_tda, |
| 5235 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
| 5236 | .resetvalue = 0 }, |
| 5237 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
| 5238 | * We don't implement the configurable EL0 access. |
| 5239 | */ |
| 5240 | { .name = "MDCCSR_EL0" , .state = ARM_CP_STATE_BOTH, |
| 5241 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| 5242 | .type = ARM_CP_ALIAS, |
| 5243 | .access = PL1_R, .accessfn = access_tda, |
| 5244 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
| 5245 | { .name = "OSLAR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 5246 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, |
| 5247 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
| 5248 | .accessfn = access_tdosa, |
| 5249 | .writefn = oslar_write }, |
| 5250 | { .name = "OSLSR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 5251 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, |
| 5252 | .access = PL1_R, .resetvalue = 10, |
| 5253 | .accessfn = access_tdosa, |
| 5254 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
| 5255 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
| 5256 | { .name = "OSDLR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 5257 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, |
| 5258 | .access = PL1_RW, .accessfn = access_tdosa, |
| 5259 | .type = ARM_CP_NOP }, |
| 5260 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
| 5261 | * implement vector catch debug events yet. |
| 5262 | */ |
| 5263 | { .name = "DBGVCR" , |
| 5264 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| 5265 | .access = PL1_RW, .accessfn = access_tda, |
| 5266 | .type = ARM_CP_NOP }, |
| 5267 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
| 5268 | * to save and restore a 32-bit guest's DBGVCR) |
| 5269 | */ |
| 5270 | { .name = "DBGVCR32_EL2" , .state = ARM_CP_STATE_AA64, |
| 5271 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, |
| 5272 | .access = PL2_RW, .accessfn = access_tda, |
| 5273 | .type = ARM_CP_NOP }, |
| 5274 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
| 5275 | * Channel but Linux may try to access this register. The 32-bit |
| 5276 | * alias is DBGDCCINT. |
| 5277 | */ |
| 5278 | { .name = "MDCCINT_EL1" , .state = ARM_CP_STATE_BOTH, |
| 5279 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, |
| 5280 | .access = PL1_RW, .accessfn = access_tda, |
| 5281 | .type = ARM_CP_NOP }, |
| 5282 | REGINFO_SENTINEL |
| 5283 | }; |
| 5284 | |
| 5285 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { |
| 5286 | /* 64 bit access versions of the (dummy) debug registers */ |
| 5287 | { .name = "DBGDRAR" , .cp = 14, .crm = 1, .opc1 = 0, |
| 5288 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| 5289 | { .name = "DBGDSAR" , .cp = 14, .crm = 2, .opc1 = 0, |
| 5290 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| 5291 | REGINFO_SENTINEL |
| 5292 | }; |
| 5293 | |
| 5294 | /* Return the exception level to which exceptions should be taken |
| 5295 | * via SVEAccessTrap. If an exception should be routed through |
| 5296 | * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should |
| 5297 | * take care of raising that exception. |
| 5298 | * C.f. the ARM pseudocode function CheckSVEEnabled. |
| 5299 | */ |
| 5300 | int sve_exception_el(CPUARMState *env, int el) |
| 5301 | { |
| 5302 | #ifndef CONFIG_USER_ONLY |
| 5303 | if (el <= 1) { |
| 5304 | bool disabled = false; |
| 5305 | |
| 5306 | /* The CPACR.ZEN controls traps to EL1: |
| 5307 | * 0, 2 : trap EL0 and EL1 accesses |
| 5308 | * 1 : trap only EL0 accesses |
| 5309 | * 3 : trap no accesses |
| 5310 | */ |
| 5311 | if (!extract32(env->cp15.cpacr_el1, 16, 1)) { |
| 5312 | disabled = true; |
| 5313 | } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { |
| 5314 | disabled = el == 0; |
| 5315 | } |
| 5316 | if (disabled) { |
| 5317 | /* route_to_el2 */ |
| 5318 | return (arm_feature(env, ARM_FEATURE_EL2) |
| 5319 | && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); |
| 5320 | } |
| 5321 | |
| 5322 | /* Check CPACR.FPEN. */ |
| 5323 | if (!extract32(env->cp15.cpacr_el1, 20, 1)) { |
| 5324 | disabled = true; |
| 5325 | } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { |
| 5326 | disabled = el == 0; |
| 5327 | } |
| 5328 | if (disabled) { |
| 5329 | return 0; |
| 5330 | } |
| 5331 | } |
| 5332 | |
| 5333 | /* CPTR_EL2. Since TZ and TFP are positive, |
| 5334 | * they will be zero when EL2 is not present. |
| 5335 | */ |
| 5336 | if (el <= 2 && !arm_is_secure_below_el3(env)) { |
| 5337 | if (env->cp15.cptr_el[2] & CPTR_TZ) { |
| 5338 | return 2; |
| 5339 | } |
| 5340 | if (env->cp15.cptr_el[2] & CPTR_TFP) { |
| 5341 | return 0; |
| 5342 | } |
| 5343 | } |
| 5344 | |
| 5345 | /* CPTR_EL3. Since EZ is negative we must check for EL3. */ |
| 5346 | if (arm_feature(env, ARM_FEATURE_EL3) |
| 5347 | && !(env->cp15.cptr_el[3] & CPTR_EZ)) { |
| 5348 | return 3; |
| 5349 | } |
| 5350 | #endif |
| 5351 | return 0; |
| 5352 | } |
| 5353 | |
| 5354 | /* |
| 5355 | * Given that SVE is enabled, return the vector length for EL. |
| 5356 | */ |
| 5357 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) |
| 5358 | { |
| 5359 | ARMCPU *cpu = env_archcpu(env); |
| 5360 | uint32_t zcr_len = cpu->sve_max_vq - 1; |
| 5361 | |
| 5362 | if (el <= 1) { |
| 5363 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); |
| 5364 | } |
| 5365 | if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
| 5366 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); |
| 5367 | } |
| 5368 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 5369 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); |
| 5370 | } |
| 5371 | return zcr_len; |
| 5372 | } |
| 5373 | |
| 5374 | static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5375 | uint64_t value) |
| 5376 | { |
| 5377 | int cur_el = arm_current_el(env); |
| 5378 | int old_len = sve_zcr_len_for_el(env, cur_el); |
| 5379 | int new_len; |
| 5380 | |
| 5381 | /* Bits other than [3:0] are RAZ/WI. */ |
| 5382 | QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); |
| 5383 | raw_write(env, ri, value & 0xf); |
| 5384 | |
| 5385 | /* |
| 5386 | * Because we arrived here, we know both FP and SVE are enabled; |
| 5387 | * otherwise we would have trapped access to the ZCR_ELn register. |
| 5388 | */ |
| 5389 | new_len = sve_zcr_len_for_el(env, cur_el); |
| 5390 | if (new_len < old_len) { |
| 5391 | aarch64_sve_narrow_vq(env, new_len + 1); |
| 5392 | } |
| 5393 | } |
| 5394 | |
| 5395 | static const ARMCPRegInfo zcr_el1_reginfo = { |
| 5396 | .name = "ZCR_EL1" , .state = ARM_CP_STATE_AA64, |
| 5397 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, |
| 5398 | .access = PL1_RW, .type = ARM_CP_SVE, |
| 5399 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), |
| 5400 | .writefn = zcr_write, .raw_writefn = raw_write |
| 5401 | }; |
| 5402 | |
| 5403 | static const ARMCPRegInfo zcr_el2_reginfo = { |
| 5404 | .name = "ZCR_EL2" , .state = ARM_CP_STATE_AA64, |
| 5405 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, |
| 5406 | .access = PL2_RW, .type = ARM_CP_SVE, |
| 5407 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), |
| 5408 | .writefn = zcr_write, .raw_writefn = raw_write |
| 5409 | }; |
| 5410 | |
| 5411 | static const ARMCPRegInfo zcr_no_el2_reginfo = { |
| 5412 | .name = "ZCR_EL2" , .state = ARM_CP_STATE_AA64, |
| 5413 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, |
| 5414 | .access = PL2_RW, .type = ARM_CP_SVE, |
| 5415 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore |
| 5416 | }; |
| 5417 | |
| 5418 | static const ARMCPRegInfo zcr_el3_reginfo = { |
| 5419 | .name = "ZCR_EL3" , .state = ARM_CP_STATE_AA64, |
| 5420 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, |
| 5421 | .access = PL3_RW, .type = ARM_CP_SVE, |
| 5422 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), |
| 5423 | .writefn = zcr_write, .raw_writefn = raw_write |
| 5424 | }; |
| 5425 | |
| 5426 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
| 5427 | { |
| 5428 | CPUARMState *env = &cpu->env; |
| 5429 | vaddr len = 0; |
| 5430 | vaddr wvr = env->cp15.dbgwvr[n]; |
| 5431 | uint64_t wcr = env->cp15.dbgwcr[n]; |
| 5432 | int mask; |
| 5433 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; |
| 5434 | |
| 5435 | if (env->cpu_watchpoint[n]) { |
| 5436 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); |
| 5437 | env->cpu_watchpoint[n] = NULL; |
| 5438 | } |
| 5439 | |
| 5440 | if (!extract64(wcr, 0, 1)) { |
| 5441 | /* E bit clear : watchpoint disabled */ |
| 5442 | return; |
| 5443 | } |
| 5444 | |
| 5445 | switch (extract64(wcr, 3, 2)) { |
| 5446 | case 0: |
| 5447 | /* LSC 00 is reserved and must behave as if the wp is disabled */ |
| 5448 | return; |
| 5449 | case 1: |
| 5450 | flags |= BP_MEM_READ; |
| 5451 | break; |
| 5452 | case 2: |
| 5453 | flags |= BP_MEM_WRITE; |
| 5454 | break; |
| 5455 | case 3: |
| 5456 | flags |= BP_MEM_ACCESS; |
| 5457 | break; |
| 5458 | } |
| 5459 | |
| 5460 | /* Attempts to use both MASK and BAS fields simultaneously are |
| 5461 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, |
| 5462 | * thus generating a watchpoint for every byte in the masked region. |
| 5463 | */ |
| 5464 | mask = extract64(wcr, 24, 4); |
| 5465 | if (mask == 1 || mask == 2) { |
| 5466 | /* Reserved values of MASK; we must act as if the mask value was |
| 5467 | * some non-reserved value, or as if the watchpoint were disabled. |
| 5468 | * We choose the latter. |
| 5469 | */ |
| 5470 | return; |
| 5471 | } else if (mask) { |
| 5472 | /* Watchpoint covers an aligned area up to 2GB in size */ |
| 5473 | len = 1ULL << mask; |
| 5474 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE |
| 5475 | * whether the watchpoint fires when the unmasked bits match; we opt |
| 5476 | * to generate the exceptions. |
| 5477 | */ |
| 5478 | wvr &= ~(len - 1); |
| 5479 | } else { |
| 5480 | /* Watchpoint covers bytes defined by the byte address select bits */ |
| 5481 | int bas = extract64(wcr, 5, 8); |
| 5482 | int basstart; |
| 5483 | |
| 5484 | if (bas == 0) { |
| 5485 | /* This must act as if the watchpoint is disabled */ |
| 5486 | return; |
| 5487 | } |
| 5488 | |
| 5489 | if (extract64(wvr, 2, 1)) { |
| 5490 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are |
| 5491 | * ignored, and BAS[3:0] define which bytes to watch. |
| 5492 | */ |
| 5493 | bas &= 0xf; |
| 5494 | } |
| 5495 | /* The BAS bits are supposed to be programmed to indicate a contiguous |
| 5496 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether |
| 5497 | * we fire for each byte in the word/doubleword addressed by the WVR. |
| 5498 | * We choose to ignore any non-zero bits after the first range of 1s. |
| 5499 | */ |
| 5500 | basstart = ctz32(bas); |
| 5501 | len = cto32(bas >> basstart); |
| 5502 | wvr += basstart; |
| 5503 | } |
| 5504 | |
| 5505 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, |
| 5506 | &env->cpu_watchpoint[n]); |
| 5507 | } |
| 5508 | |
| 5509 | void hw_watchpoint_update_all(ARMCPU *cpu) |
| 5510 | { |
| 5511 | int i; |
| 5512 | CPUARMState *env = &cpu->env; |
| 5513 | |
| 5514 | /* Completely clear out existing QEMU watchpoints and our array, to |
| 5515 | * avoid possible stale entries following migration load. |
| 5516 | */ |
| 5517 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); |
| 5518 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); |
| 5519 | |
| 5520 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { |
| 5521 | hw_watchpoint_update(cpu, i); |
| 5522 | } |
| 5523 | } |
| 5524 | |
| 5525 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5526 | uint64_t value) |
| 5527 | { |
| 5528 | ARMCPU *cpu = env_archcpu(env); |
| 5529 | int i = ri->crm; |
| 5530 | |
| 5531 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the |
| 5532 | * register reads and behaves as if values written are sign extended. |
| 5533 | * Bits [1:0] are RES0. |
| 5534 | */ |
| 5535 | value = sextract64(value, 0, 49) & ~3ULL; |
| 5536 | |
| 5537 | raw_write(env, ri, value); |
| 5538 | hw_watchpoint_update(cpu, i); |
| 5539 | } |
| 5540 | |
| 5541 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5542 | uint64_t value) |
| 5543 | { |
| 5544 | ARMCPU *cpu = env_archcpu(env); |
| 5545 | int i = ri->crm; |
| 5546 | |
| 5547 | raw_write(env, ri, value); |
| 5548 | hw_watchpoint_update(cpu, i); |
| 5549 | } |
| 5550 | |
| 5551 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
| 5552 | { |
| 5553 | CPUARMState *env = &cpu->env; |
| 5554 | uint64_t bvr = env->cp15.dbgbvr[n]; |
| 5555 | uint64_t bcr = env->cp15.dbgbcr[n]; |
| 5556 | vaddr addr; |
| 5557 | int bt; |
| 5558 | int flags = BP_CPU; |
| 5559 | |
| 5560 | if (env->cpu_breakpoint[n]) { |
| 5561 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); |
| 5562 | env->cpu_breakpoint[n] = NULL; |
| 5563 | } |
| 5564 | |
| 5565 | if (!extract64(bcr, 0, 1)) { |
| 5566 | /* E bit clear : watchpoint disabled */ |
| 5567 | return; |
| 5568 | } |
| 5569 | |
| 5570 | bt = extract64(bcr, 20, 4); |
| 5571 | |
| 5572 | switch (bt) { |
| 5573 | case 4: /* unlinked address mismatch (reserved if AArch64) */ |
| 5574 | case 5: /* linked address mismatch (reserved if AArch64) */ |
| 5575 | qemu_log_mask(LOG_UNIMP, |
| 5576 | "arm: address mismatch breakpoint types not implemented\n" ); |
| 5577 | return; |
| 5578 | case 0: /* unlinked address match */ |
| 5579 | case 1: /* linked address match */ |
| 5580 | { |
| 5581 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, |
| 5582 | * we behave as if the register was sign extended. Bits [1:0] are |
| 5583 | * RES0. The BAS field is used to allow setting breakpoints on 16 |
| 5584 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether |
| 5585 | * a bp will fire if the addresses covered by the bp and the addresses |
| 5586 | * covered by the insn overlap but the insn doesn't start at the |
| 5587 | * start of the bp address range. We choose to require the insn and |
| 5588 | * the bp to have the same address. The constraints on writing to |
| 5589 | * BAS enforced in dbgbcr_write mean we have only four cases: |
| 5590 | * 0b0000 => no breakpoint |
| 5591 | * 0b0011 => breakpoint on addr |
| 5592 | * 0b1100 => breakpoint on addr + 2 |
| 5593 | * 0b1111 => breakpoint on addr |
| 5594 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). |
| 5595 | */ |
| 5596 | int bas = extract64(bcr, 5, 4); |
| 5597 | addr = sextract64(bvr, 0, 49) & ~3ULL; |
| 5598 | if (bas == 0) { |
| 5599 | return; |
| 5600 | } |
| 5601 | if (bas == 0xc) { |
| 5602 | addr += 2; |
| 5603 | } |
| 5604 | break; |
| 5605 | } |
| 5606 | case 2: /* unlinked context ID match */ |
| 5607 | case 8: /* unlinked VMID match (reserved if no EL2) */ |
| 5608 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ |
| 5609 | qemu_log_mask(LOG_UNIMP, |
| 5610 | "arm: unlinked context breakpoint types not implemented\n" ); |
| 5611 | return; |
| 5612 | case 9: /* linked VMID match (reserved if no EL2) */ |
| 5613 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ |
| 5614 | case 3: /* linked context ID match */ |
| 5615 | default: |
| 5616 | /* We must generate no events for Linked context matches (unless |
| 5617 | * they are linked to by some other bp/wp, which is handled in |
| 5618 | * updates for the linking bp/wp). We choose to also generate no events |
| 5619 | * for reserved values. |
| 5620 | */ |
| 5621 | return; |
| 5622 | } |
| 5623 | |
| 5624 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); |
| 5625 | } |
| 5626 | |
| 5627 | void hw_breakpoint_update_all(ARMCPU *cpu) |
| 5628 | { |
| 5629 | int i; |
| 5630 | CPUARMState *env = &cpu->env; |
| 5631 | |
| 5632 | /* Completely clear out existing QEMU breakpoints and our array, to |
| 5633 | * avoid possible stale entries following migration load. |
| 5634 | */ |
| 5635 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); |
| 5636 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); |
| 5637 | |
| 5638 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { |
| 5639 | hw_breakpoint_update(cpu, i); |
| 5640 | } |
| 5641 | } |
| 5642 | |
| 5643 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5644 | uint64_t value) |
| 5645 | { |
| 5646 | ARMCPU *cpu = env_archcpu(env); |
| 5647 | int i = ri->crm; |
| 5648 | |
| 5649 | raw_write(env, ri, value); |
| 5650 | hw_breakpoint_update(cpu, i); |
| 5651 | } |
| 5652 | |
| 5653 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5654 | uint64_t value) |
| 5655 | { |
| 5656 | ARMCPU *cpu = env_archcpu(env); |
| 5657 | int i = ri->crm; |
| 5658 | |
| 5659 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only |
| 5660 | * copy of BAS[0]. |
| 5661 | */ |
| 5662 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); |
| 5663 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); |
| 5664 | |
| 5665 | raw_write(env, ri, value); |
| 5666 | hw_breakpoint_update(cpu, i); |
| 5667 | } |
| 5668 | |
| 5669 | static void define_debug_regs(ARMCPU *cpu) |
| 5670 | { |
| 5671 | /* Define v7 and v8 architectural debug registers. |
| 5672 | * These are just dummy implementations for now. |
| 5673 | */ |
| 5674 | int i; |
| 5675 | int wrps, brps, ctx_cmps; |
| 5676 | ARMCPRegInfo dbgdidr = { |
| 5677 | .name = "DBGDIDR" , .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 5678 | .access = PL0_R, .accessfn = access_tda, |
| 5679 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, |
| 5680 | }; |
| 5681 | |
| 5682 | /* Note that all these register fields hold "number of Xs minus 1". */ |
| 5683 | brps = extract32(cpu->dbgdidr, 24, 4); |
| 5684 | wrps = extract32(cpu->dbgdidr, 28, 4); |
| 5685 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
| 5686 | |
| 5687 | assert(ctx_cmps <= brps); |
| 5688 | |
| 5689 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties |
| 5690 | * of the debug registers such as number of breakpoints; |
| 5691 | * check that if they both exist then they agree. |
| 5692 | */ |
| 5693 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| 5694 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); |
| 5695 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); |
| 5696 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
| 5697 | } |
| 5698 | |
| 5699 | define_one_arm_cp_reg(cpu, &dbgdidr); |
| 5700 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
| 5701 | |
| 5702 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { |
| 5703 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); |
| 5704 | } |
| 5705 | |
| 5706 | for (i = 0; i < brps + 1; i++) { |
| 5707 | ARMCPRegInfo dbgregs[] = { |
| 5708 | { .name = "DBGBVR" , .state = ARM_CP_STATE_BOTH, |
| 5709 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, |
| 5710 | .access = PL1_RW, .accessfn = access_tda, |
| 5711 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
| 5712 | .writefn = dbgbvr_write, .raw_writefn = raw_write |
| 5713 | }, |
| 5714 | { .name = "DBGBCR" , .state = ARM_CP_STATE_BOTH, |
| 5715 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, |
| 5716 | .access = PL1_RW, .accessfn = access_tda, |
| 5717 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
| 5718 | .writefn = dbgbcr_write, .raw_writefn = raw_write |
| 5719 | }, |
| 5720 | REGINFO_SENTINEL |
| 5721 | }; |
| 5722 | define_arm_cp_regs(cpu, dbgregs); |
| 5723 | } |
| 5724 | |
| 5725 | for (i = 0; i < wrps + 1; i++) { |
| 5726 | ARMCPRegInfo dbgregs[] = { |
| 5727 | { .name = "DBGWVR" , .state = ARM_CP_STATE_BOTH, |
| 5728 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, |
| 5729 | .access = PL1_RW, .accessfn = access_tda, |
| 5730 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
| 5731 | .writefn = dbgwvr_write, .raw_writefn = raw_write |
| 5732 | }, |
| 5733 | { .name = "DBGWCR" , .state = ARM_CP_STATE_BOTH, |
| 5734 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, |
| 5735 | .access = PL1_RW, .accessfn = access_tda, |
| 5736 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
| 5737 | .writefn = dbgwcr_write, .raw_writefn = raw_write |
| 5738 | }, |
| 5739 | REGINFO_SENTINEL |
| 5740 | }; |
| 5741 | define_arm_cp_regs(cpu, dbgregs); |
| 5742 | } |
| 5743 | } |
| 5744 | |
| 5745 | /* We don't know until after realize whether there's a GICv3 |
| 5746 | * attached, and that is what registers the gicv3 sysregs. |
| 5747 | * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 |
| 5748 | * at runtime. |
| 5749 | */ |
| 5750 | static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 5751 | { |
| 5752 | ARMCPU *cpu = env_archcpu(env); |
| 5753 | uint64_t pfr1 = cpu->id_pfr1; |
| 5754 | |
| 5755 | if (env->gicv3state) { |
| 5756 | pfr1 |= 1 << 28; |
| 5757 | } |
| 5758 | return pfr1; |
| 5759 | } |
| 5760 | |
| 5761 | static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| 5762 | { |
| 5763 | ARMCPU *cpu = env_archcpu(env); |
| 5764 | uint64_t pfr0 = cpu->isar.id_aa64pfr0; |
| 5765 | |
| 5766 | if (env->gicv3state) { |
| 5767 | pfr0 |= 1 << 24; |
| 5768 | } |
| 5769 | return pfr0; |
| 5770 | } |
| 5771 | |
| 5772 | /* Shared logic between LORID and the rest of the LOR* registers. |
| 5773 | * Secure state has already been delt with. |
| 5774 | */ |
| 5775 | static CPAccessResult access_lor_ns(CPUARMState *env) |
| 5776 | { |
| 5777 | int el = arm_current_el(env); |
| 5778 | |
| 5779 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { |
| 5780 | return CP_ACCESS_TRAP_EL2; |
| 5781 | } |
| 5782 | if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { |
| 5783 | return CP_ACCESS_TRAP_EL3; |
| 5784 | } |
| 5785 | return CP_ACCESS_OK; |
| 5786 | } |
| 5787 | |
| 5788 | static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5789 | bool isread) |
| 5790 | { |
| 5791 | if (arm_is_secure_below_el3(env)) { |
| 5792 | /* Access ok in secure mode. */ |
| 5793 | return CP_ACCESS_OK; |
| 5794 | } |
| 5795 | return access_lor_ns(env); |
| 5796 | } |
| 5797 | |
| 5798 | static CPAccessResult access_lor_other(CPUARMState *env, |
| 5799 | const ARMCPRegInfo *ri, bool isread) |
| 5800 | { |
| 5801 | if (arm_is_secure_below_el3(env)) { |
| 5802 | /* Access denied in secure mode. */ |
| 5803 | return CP_ACCESS_TRAP; |
| 5804 | } |
| 5805 | return access_lor_ns(env); |
| 5806 | } |
| 5807 | |
| 5808 | #ifdef TARGET_AARCH64 |
| 5809 | static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5810 | bool isread) |
| 5811 | { |
| 5812 | int el = arm_current_el(env); |
| 5813 | |
| 5814 | if (el < 2 && |
| 5815 | arm_feature(env, ARM_FEATURE_EL2) && |
| 5816 | !(arm_hcr_el2_eff(env) & HCR_APK)) { |
| 5817 | return CP_ACCESS_TRAP_EL2; |
| 5818 | } |
| 5819 | if (el < 3 && |
| 5820 | arm_feature(env, ARM_FEATURE_EL3) && |
| 5821 | !(env->cp15.scr_el3 & SCR_APK)) { |
| 5822 | return CP_ACCESS_TRAP_EL3; |
| 5823 | } |
| 5824 | return CP_ACCESS_OK; |
| 5825 | } |
| 5826 | |
| 5827 | static const ARMCPRegInfo pauth_reginfo[] = { |
| 5828 | { .name = "APDAKEYLO_EL1" , .state = ARM_CP_STATE_AA64, |
| 5829 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, |
| 5830 | .access = PL1_RW, .accessfn = access_pauth, |
| 5831 | .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, |
| 5832 | { .name = "APDAKEYHI_EL1" , .state = ARM_CP_STATE_AA64, |
| 5833 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, |
| 5834 | .access = PL1_RW, .accessfn = access_pauth, |
| 5835 | .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, |
| 5836 | { .name = "APDBKEYLO_EL1" , .state = ARM_CP_STATE_AA64, |
| 5837 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, |
| 5838 | .access = PL1_RW, .accessfn = access_pauth, |
| 5839 | .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, |
| 5840 | { .name = "APDBKEYHI_EL1" , .state = ARM_CP_STATE_AA64, |
| 5841 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, |
| 5842 | .access = PL1_RW, .accessfn = access_pauth, |
| 5843 | .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, |
| 5844 | { .name = "APGAKEYLO_EL1" , .state = ARM_CP_STATE_AA64, |
| 5845 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, |
| 5846 | .access = PL1_RW, .accessfn = access_pauth, |
| 5847 | .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, |
| 5848 | { .name = "APGAKEYHI_EL1" , .state = ARM_CP_STATE_AA64, |
| 5849 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, |
| 5850 | .access = PL1_RW, .accessfn = access_pauth, |
| 5851 | .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, |
| 5852 | { .name = "APIAKEYLO_EL1" , .state = ARM_CP_STATE_AA64, |
| 5853 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, |
| 5854 | .access = PL1_RW, .accessfn = access_pauth, |
| 5855 | .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, |
| 5856 | { .name = "APIAKEYHI_EL1" , .state = ARM_CP_STATE_AA64, |
| 5857 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, |
| 5858 | .access = PL1_RW, .accessfn = access_pauth, |
| 5859 | .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, |
| 5860 | { .name = "APIBKEYLO_EL1" , .state = ARM_CP_STATE_AA64, |
| 5861 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, |
| 5862 | .access = PL1_RW, .accessfn = access_pauth, |
| 5863 | .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, |
| 5864 | { .name = "APIBKEYHI_EL1" , .state = ARM_CP_STATE_AA64, |
| 5865 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, |
| 5866 | .access = PL1_RW, .accessfn = access_pauth, |
| 5867 | .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, |
| 5868 | REGINFO_SENTINEL |
| 5869 | }; |
| 5870 | |
| 5871 | static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
| 5872 | { |
| 5873 | Error *err = NULL; |
| 5874 | uint64_t ret; |
| 5875 | |
| 5876 | /* Success sets NZCV = 0000. */ |
| 5877 | env->NF = env->CF = env->VF = 0, env->ZF = 1; |
| 5878 | |
| 5879 | if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { |
| 5880 | /* |
| 5881 | * ??? Failed, for unknown reasons in the crypto subsystem. |
| 5882 | * The best we can do is log the reason and return the |
| 5883 | * timed-out indication to the guest. There is no reason |
| 5884 | * we know to expect this failure to be transitory, so the |
| 5885 | * guest may well hang retrying the operation. |
| 5886 | */ |
| 5887 | qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s" , |
| 5888 | ri->name, error_get_pretty(err)); |
| 5889 | error_free(err); |
| 5890 | |
| 5891 | env->ZF = 0; /* NZCF = 0100 */ |
| 5892 | return 0; |
| 5893 | } |
| 5894 | return ret; |
| 5895 | } |
| 5896 | |
| 5897 | /* We do not support re-seeding, so the two registers operate the same. */ |
| 5898 | static const ARMCPRegInfo rndr_reginfo[] = { |
| 5899 | { .name = "RNDR" , .state = ARM_CP_STATE_AA64, |
| 5900 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, |
| 5901 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, |
| 5902 | .access = PL0_R, .readfn = rndr_readfn }, |
| 5903 | { .name = "RNDRRS" , .state = ARM_CP_STATE_AA64, |
| 5904 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, |
| 5905 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, |
| 5906 | .access = PL0_R, .readfn = rndr_readfn }, |
| 5907 | REGINFO_SENTINEL |
| 5908 | }; |
| 5909 | #endif |
| 5910 | |
| 5911 | static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, |
| 5912 | bool isread) |
| 5913 | { |
| 5914 | int el = arm_current_el(env); |
| 5915 | |
| 5916 | if (el == 0) { |
| 5917 | uint64_t sctlr = arm_sctlr(env, el); |
| 5918 | if (!(sctlr & SCTLR_EnRCTX)) { |
| 5919 | return CP_ACCESS_TRAP; |
| 5920 | } |
| 5921 | } else if (el == 1) { |
| 5922 | uint64_t hcr = arm_hcr_el2_eff(env); |
| 5923 | if (hcr & HCR_NV) { |
| 5924 | return CP_ACCESS_TRAP_EL2; |
| 5925 | } |
| 5926 | } |
| 5927 | return CP_ACCESS_OK; |
| 5928 | } |
| 5929 | |
| 5930 | static const ARMCPRegInfo predinv_reginfo[] = { |
| 5931 | { .name = "CFP_RCTX" , .state = ARM_CP_STATE_AA64, |
| 5932 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, |
| 5933 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5934 | { .name = "DVP_RCTX" , .state = ARM_CP_STATE_AA64, |
| 5935 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, |
| 5936 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5937 | { .name = "CPP_RCTX" , .state = ARM_CP_STATE_AA64, |
| 5938 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, |
| 5939 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5940 | /* |
| 5941 | * Note the AArch32 opcodes have a different OPC1. |
| 5942 | */ |
| 5943 | { .name = "CFPRCTX" , .state = ARM_CP_STATE_AA32, |
| 5944 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, |
| 5945 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5946 | { .name = "DVPRCTX" , .state = ARM_CP_STATE_AA32, |
| 5947 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, |
| 5948 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5949 | { .name = "CPPRCTX" , .state = ARM_CP_STATE_AA32, |
| 5950 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, |
| 5951 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| 5952 | REGINFO_SENTINEL |
| 5953 | }; |
| 5954 | |
| 5955 | void register_cp_regs_for_features(ARMCPU *cpu) |
| 5956 | { |
| 5957 | /* Register all the coprocessor registers based on feature bits */ |
| 5958 | CPUARMState *env = &cpu->env; |
| 5959 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 5960 | /* M profile has no coprocessor registers */ |
| 5961 | return; |
| 5962 | } |
| 5963 | |
| 5964 | define_arm_cp_regs(cpu, cp_reginfo); |
| 5965 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
| 5966 | /* Must go early as it is full of wildcards that may be |
| 5967 | * overridden by later definitions. |
| 5968 | */ |
| 5969 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); |
| 5970 | } |
| 5971 | |
| 5972 | if (arm_feature(env, ARM_FEATURE_V6)) { |
| 5973 | /* The ID registers all have impdef reset values */ |
| 5974 | ARMCPRegInfo v6_idregs[] = { |
| 5975 | { .name = "ID_PFR0" , .state = ARM_CP_STATE_BOTH, |
| 5976 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| 5977 | .access = PL1_R, .type = ARM_CP_CONST, |
| 5978 | .resetvalue = cpu->id_pfr0 }, |
| 5979 | /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
| 5980 | * the value of the GIC field until after we define these regs. |
| 5981 | */ |
| 5982 | { .name = "ID_PFR1" , .state = ARM_CP_STATE_BOTH, |
| 5983 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, |
| 5984 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
| 5985 | .readfn = id_pfr1_read, |
| 5986 | .writefn = arm_cp_write_ignore }, |
| 5987 | { .name = "ID_DFR0" , .state = ARM_CP_STATE_BOTH, |
| 5988 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, |
| 5989 | .access = PL1_R, .type = ARM_CP_CONST, |
| 5990 | .resetvalue = cpu->id_dfr0 }, |
| 5991 | { .name = "ID_AFR0" , .state = ARM_CP_STATE_BOTH, |
| 5992 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, |
| 5993 | .access = PL1_R, .type = ARM_CP_CONST, |
| 5994 | .resetvalue = cpu->id_afr0 }, |
| 5995 | { .name = "ID_MMFR0" , .state = ARM_CP_STATE_BOTH, |
| 5996 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, |
| 5997 | .access = PL1_R, .type = ARM_CP_CONST, |
| 5998 | .resetvalue = cpu->id_mmfr0 }, |
| 5999 | { .name = "ID_MMFR1" , .state = ARM_CP_STATE_BOTH, |
| 6000 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, |
| 6001 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6002 | .resetvalue = cpu->id_mmfr1 }, |
| 6003 | { .name = "ID_MMFR2" , .state = ARM_CP_STATE_BOTH, |
| 6004 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, |
| 6005 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6006 | .resetvalue = cpu->id_mmfr2 }, |
| 6007 | { .name = "ID_MMFR3" , .state = ARM_CP_STATE_BOTH, |
| 6008 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, |
| 6009 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6010 | .resetvalue = cpu->id_mmfr3 }, |
| 6011 | { .name = "ID_ISAR0" , .state = ARM_CP_STATE_BOTH, |
| 6012 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, |
| 6013 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6014 | .resetvalue = cpu->isar.id_isar0 }, |
| 6015 | { .name = "ID_ISAR1" , .state = ARM_CP_STATE_BOTH, |
| 6016 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, |
| 6017 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6018 | .resetvalue = cpu->isar.id_isar1 }, |
| 6019 | { .name = "ID_ISAR2" , .state = ARM_CP_STATE_BOTH, |
| 6020 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| 6021 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6022 | .resetvalue = cpu->isar.id_isar2 }, |
| 6023 | { .name = "ID_ISAR3" , .state = ARM_CP_STATE_BOTH, |
| 6024 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, |
| 6025 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6026 | .resetvalue = cpu->isar.id_isar3 }, |
| 6027 | { .name = "ID_ISAR4" , .state = ARM_CP_STATE_BOTH, |
| 6028 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, |
| 6029 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6030 | .resetvalue = cpu->isar.id_isar4 }, |
| 6031 | { .name = "ID_ISAR5" , .state = ARM_CP_STATE_BOTH, |
| 6032 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, |
| 6033 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6034 | .resetvalue = cpu->isar.id_isar5 }, |
| 6035 | { .name = "ID_MMFR4" , .state = ARM_CP_STATE_BOTH, |
| 6036 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, |
| 6037 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6038 | .resetvalue = cpu->id_mmfr4 }, |
| 6039 | { .name = "ID_ISAR6" , .state = ARM_CP_STATE_BOTH, |
| 6040 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
| 6041 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6042 | .resetvalue = cpu->isar.id_isar6 }, |
| 6043 | REGINFO_SENTINEL |
| 6044 | }; |
| 6045 | define_arm_cp_regs(cpu, v6_idregs); |
| 6046 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
| 6047 | } else { |
| 6048 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| 6049 | } |
| 6050 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
| 6051 | define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| 6052 | } |
| 6053 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
| 6054 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
| 6055 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
| 6056 | } |
| 6057 | if (arm_feature(env, ARM_FEATURE_V7VE)) { |
| 6058 | define_arm_cp_regs(cpu, pmovsset_cp_reginfo); |
| 6059 | } |
| 6060 | if (arm_feature(env, ARM_FEATURE_V7)) { |
| 6061 | /* v7 performance monitor control register: same implementor |
| 6062 | * field as main ID register, and we implement four counters in |
| 6063 | * addition to the cycle count register. |
| 6064 | */ |
| 6065 | unsigned int i, pmcrn = 4; |
| 6066 | ARMCPRegInfo pmcr = { |
| 6067 | .name = "PMCR" , .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| 6068 | .access = PL0_RW, |
| 6069 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
| 6070 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
| 6071 | .accessfn = pmreg_access, .writefn = pmcr_write, |
| 6072 | .raw_writefn = raw_write, |
| 6073 | }; |
| 6074 | ARMCPRegInfo pmcr64 = { |
| 6075 | .name = "PMCR_EL0" , .state = ARM_CP_STATE_AA64, |
| 6076 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, |
| 6077 | .access = PL0_RW, .accessfn = pmreg_access, |
| 6078 | .type = ARM_CP_IO, |
| 6079 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
| 6080 | .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), |
| 6081 | .writefn = pmcr_write, .raw_writefn = raw_write, |
| 6082 | }; |
| 6083 | define_one_arm_cp_reg(cpu, &pmcr); |
| 6084 | define_one_arm_cp_reg(cpu, &pmcr64); |
| 6085 | for (i = 0; i < pmcrn; i++) { |
| 6086 | char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d" , i); |
| 6087 | char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0" , i); |
| 6088 | char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d" , i); |
| 6089 | char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0" , i); |
| 6090 | ARMCPRegInfo pmev_regs[] = { |
| 6091 | { .name = pmevcntr_name, .cp = 15, .crn = 14, |
| 6092 | .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, |
| 6093 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, |
| 6094 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, |
| 6095 | .accessfn = pmreg_access }, |
| 6096 | { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, |
| 6097 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), |
| 6098 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, |
| 6099 | .type = ARM_CP_IO, |
| 6100 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, |
| 6101 | .raw_readfn = pmevcntr_rawread, |
| 6102 | .raw_writefn = pmevcntr_rawwrite }, |
| 6103 | { .name = pmevtyper_name, .cp = 15, .crn = 14, |
| 6104 | .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, |
| 6105 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, |
| 6106 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, |
| 6107 | .accessfn = pmreg_access }, |
| 6108 | { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, |
| 6109 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), |
| 6110 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, |
| 6111 | .type = ARM_CP_IO, |
| 6112 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, |
| 6113 | .raw_writefn = pmevtyper_rawwrite }, |
| 6114 | REGINFO_SENTINEL |
| 6115 | }; |
| 6116 | define_arm_cp_regs(cpu, pmev_regs); |
| 6117 | g_free(pmevcntr_name); |
| 6118 | g_free(pmevcntr_el0_name); |
| 6119 | g_free(pmevtyper_name); |
| 6120 | g_free(pmevtyper_el0_name); |
| 6121 | } |
| 6122 | ARMCPRegInfo clidr = { |
| 6123 | .name = "CLIDR" , .state = ARM_CP_STATE_BOTH, |
| 6124 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| 6125 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
| 6126 | }; |
| 6127 | define_one_arm_cp_reg(cpu, &clidr); |
| 6128 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
| 6129 | define_debug_regs(cpu); |
| 6130 | } else { |
| 6131 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| 6132 | } |
| 6133 | if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && |
| 6134 | FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { |
| 6135 | ARMCPRegInfo v81_pmu_regs[] = { |
| 6136 | { .name = "PMCEID2" , .state = ARM_CP_STATE_AA32, |
| 6137 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, |
| 6138 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6139 | .resetvalue = extract64(cpu->pmceid0, 32, 32) }, |
| 6140 | { .name = "PMCEID3" , .state = ARM_CP_STATE_AA32, |
| 6141 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, |
| 6142 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6143 | .resetvalue = extract64(cpu->pmceid1, 32, 32) }, |
| 6144 | REGINFO_SENTINEL |
| 6145 | }; |
| 6146 | define_arm_cp_regs(cpu, v81_pmu_regs); |
| 6147 | } |
| 6148 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6149 | /* AArch64 ID registers, which all have impdef reset values. |
| 6150 | * Note that within the ID register ranges the unused slots |
| 6151 | * must all RAZ, not UNDEF; future architecture versions may |
| 6152 | * define new registers here. |
| 6153 | */ |
| 6154 | ARMCPRegInfo v8_idregs[] = { |
| 6155 | /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't |
| 6156 | * know the right value for the GIC field until after we |
| 6157 | * define these regs. |
| 6158 | */ |
| 6159 | { .name = "ID_AA64PFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6160 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, |
| 6161 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
| 6162 | .readfn = id_aa64pfr0_read, |
| 6163 | .writefn = arm_cp_write_ignore }, |
| 6164 | { .name = "ID_AA64PFR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6165 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, |
| 6166 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6167 | .resetvalue = cpu->isar.id_aa64pfr1}, |
| 6168 | { .name = "ID_AA64PFR2_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6169 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, |
| 6170 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6171 | .resetvalue = 0 }, |
| 6172 | { .name = "ID_AA64PFR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6173 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, |
| 6174 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6175 | .resetvalue = 0 }, |
| 6176 | { .name = "ID_AA64ZFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6177 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
| 6178 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6179 | /* At present, only SVEver == 0 is defined anyway. */ |
| 6180 | .resetvalue = 0 }, |
| 6181 | { .name = "ID_AA64PFR5_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6182 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, |
| 6183 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6184 | .resetvalue = 0 }, |
| 6185 | { .name = "ID_AA64PFR6_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6186 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, |
| 6187 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6188 | .resetvalue = 0 }, |
| 6189 | { .name = "ID_AA64PFR7_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6190 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, |
| 6191 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6192 | .resetvalue = 0 }, |
| 6193 | { .name = "ID_AA64DFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6194 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, |
| 6195 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6196 | .resetvalue = cpu->id_aa64dfr0 }, |
| 6197 | { .name = "ID_AA64DFR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6198 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, |
| 6199 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6200 | .resetvalue = cpu->id_aa64dfr1 }, |
| 6201 | { .name = "ID_AA64DFR2_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6202 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, |
| 6203 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6204 | .resetvalue = 0 }, |
| 6205 | { .name = "ID_AA64DFR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6206 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, |
| 6207 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6208 | .resetvalue = 0 }, |
| 6209 | { .name = "ID_AA64AFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6210 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, |
| 6211 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6212 | .resetvalue = cpu->id_aa64afr0 }, |
| 6213 | { .name = "ID_AA64AFR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6214 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, |
| 6215 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6216 | .resetvalue = cpu->id_aa64afr1 }, |
| 6217 | { .name = "ID_AA64AFR2_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6218 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, |
| 6219 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6220 | .resetvalue = 0 }, |
| 6221 | { .name = "ID_AA64AFR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6222 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, |
| 6223 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6224 | .resetvalue = 0 }, |
| 6225 | { .name = "ID_AA64ISAR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6226 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, |
| 6227 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6228 | .resetvalue = cpu->isar.id_aa64isar0 }, |
| 6229 | { .name = "ID_AA64ISAR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6230 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, |
| 6231 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6232 | .resetvalue = cpu->isar.id_aa64isar1 }, |
| 6233 | { .name = "ID_AA64ISAR2_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6234 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, |
| 6235 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6236 | .resetvalue = 0 }, |
| 6237 | { .name = "ID_AA64ISAR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6238 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, |
| 6239 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6240 | .resetvalue = 0 }, |
| 6241 | { .name = "ID_AA64ISAR4_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6242 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, |
| 6243 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6244 | .resetvalue = 0 }, |
| 6245 | { .name = "ID_AA64ISAR5_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6246 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, |
| 6247 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6248 | .resetvalue = 0 }, |
| 6249 | { .name = "ID_AA64ISAR6_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6250 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, |
| 6251 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6252 | .resetvalue = 0 }, |
| 6253 | { .name = "ID_AA64ISAR7_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6254 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, |
| 6255 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6256 | .resetvalue = 0 }, |
| 6257 | { .name = "ID_AA64MMFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6258 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| 6259 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6260 | .resetvalue = cpu->isar.id_aa64mmfr0 }, |
| 6261 | { .name = "ID_AA64MMFR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6262 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, |
| 6263 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6264 | .resetvalue = cpu->isar.id_aa64mmfr1 }, |
| 6265 | { .name = "ID_AA64MMFR2_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6266 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
| 6267 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6268 | .resetvalue = 0 }, |
| 6269 | { .name = "ID_AA64MMFR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6270 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, |
| 6271 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6272 | .resetvalue = 0 }, |
| 6273 | { .name = "ID_AA64MMFR4_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6274 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, |
| 6275 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6276 | .resetvalue = 0 }, |
| 6277 | { .name = "ID_AA64MMFR5_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6278 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, |
| 6279 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6280 | .resetvalue = 0 }, |
| 6281 | { .name = "ID_AA64MMFR6_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6282 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, |
| 6283 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6284 | .resetvalue = 0 }, |
| 6285 | { .name = "ID_AA64MMFR7_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6286 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, |
| 6287 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6288 | .resetvalue = 0 }, |
| 6289 | { .name = "MVFR0_EL1" , .state = ARM_CP_STATE_AA64, |
| 6290 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, |
| 6291 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6292 | .resetvalue = cpu->isar.mvfr0 }, |
| 6293 | { .name = "MVFR1_EL1" , .state = ARM_CP_STATE_AA64, |
| 6294 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, |
| 6295 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6296 | .resetvalue = cpu->isar.mvfr1 }, |
| 6297 | { .name = "MVFR2_EL1" , .state = ARM_CP_STATE_AA64, |
| 6298 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, |
| 6299 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6300 | .resetvalue = cpu->isar.mvfr2 }, |
| 6301 | { .name = "MVFR3_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6302 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, |
| 6303 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6304 | .resetvalue = 0 }, |
| 6305 | { .name = "MVFR4_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6306 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, |
| 6307 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6308 | .resetvalue = 0 }, |
| 6309 | { .name = "MVFR5_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6310 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, |
| 6311 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6312 | .resetvalue = 0 }, |
| 6313 | { .name = "MVFR6_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6314 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, |
| 6315 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6316 | .resetvalue = 0 }, |
| 6317 | { .name = "MVFR7_EL1_RESERVED" , .state = ARM_CP_STATE_AA64, |
| 6318 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, |
| 6319 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6320 | .resetvalue = 0 }, |
| 6321 | { .name = "PMCEID0" , .state = ARM_CP_STATE_AA32, |
| 6322 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, |
| 6323 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6324 | .resetvalue = extract64(cpu->pmceid0, 0, 32) }, |
| 6325 | { .name = "PMCEID0_EL0" , .state = ARM_CP_STATE_AA64, |
| 6326 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, |
| 6327 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6328 | .resetvalue = cpu->pmceid0 }, |
| 6329 | { .name = "PMCEID1" , .state = ARM_CP_STATE_AA32, |
| 6330 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, |
| 6331 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6332 | .resetvalue = extract64(cpu->pmceid1, 0, 32) }, |
| 6333 | { .name = "PMCEID1_EL0" , .state = ARM_CP_STATE_AA64, |
| 6334 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, |
| 6335 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| 6336 | .resetvalue = cpu->pmceid1 }, |
| 6337 | REGINFO_SENTINEL |
| 6338 | }; |
| 6339 | #ifdef CONFIG_USER_ONLY |
| 6340 | ARMCPRegUserSpaceInfo v8_user_idregs[] = { |
| 6341 | { .name = "ID_AA64PFR0_EL1" , |
| 6342 | .exported_bits = 0x000f000f00ff0000, |
| 6343 | .fixed_bits = 0x0000000000000011 }, |
| 6344 | { .name = "ID_AA64PFR1_EL1" , |
| 6345 | .exported_bits = 0x00000000000000f0 }, |
| 6346 | { .name = "ID_AA64PFR*_EL1_RESERVED" , |
| 6347 | .is_glob = true }, |
| 6348 | { .name = "ID_AA64ZFR0_EL1" }, |
| 6349 | { .name = "ID_AA64MMFR0_EL1" , |
| 6350 | .fixed_bits = 0x00000000ff000000 }, |
| 6351 | { .name = "ID_AA64MMFR1_EL1" }, |
| 6352 | { .name = "ID_AA64MMFR*_EL1_RESERVED" , |
| 6353 | .is_glob = true }, |
| 6354 | { .name = "ID_AA64DFR0_EL1" , |
| 6355 | .fixed_bits = 0x0000000000000006 }, |
| 6356 | { .name = "ID_AA64DFR1_EL1" }, |
| 6357 | { .name = "ID_AA64DFR*_EL1_RESERVED" , |
| 6358 | .is_glob = true }, |
| 6359 | { .name = "ID_AA64AFR*" , |
| 6360 | .is_glob = true }, |
| 6361 | { .name = "ID_AA64ISAR0_EL1" , |
| 6362 | .exported_bits = 0x00fffffff0fffff0 }, |
| 6363 | { .name = "ID_AA64ISAR1_EL1" , |
| 6364 | .exported_bits = 0x000000f0ffffffff }, |
| 6365 | { .name = "ID_AA64ISAR*_EL1_RESERVED" , |
| 6366 | .is_glob = true }, |
| 6367 | REGUSERINFO_SENTINEL |
| 6368 | }; |
| 6369 | modify_arm_cp_regs(v8_idregs, v8_user_idregs); |
| 6370 | #endif |
| 6371 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
| 6372 | if (!arm_feature(env, ARM_FEATURE_EL3) && |
| 6373 | !arm_feature(env, ARM_FEATURE_EL2)) { |
| 6374 | ARMCPRegInfo rvbar = { |
| 6375 | .name = "RVBAR_EL1" , .state = ARM_CP_STATE_AA64, |
| 6376 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| 6377 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar |
| 6378 | }; |
| 6379 | define_one_arm_cp_reg(cpu, &rvbar); |
| 6380 | } |
| 6381 | define_arm_cp_regs(cpu, v8_idregs); |
| 6382 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
| 6383 | } |
| 6384 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
| 6385 | uint64_t vmpidr_def = mpidr_read_val(env); |
| 6386 | ARMCPRegInfo vpidr_regs[] = { |
| 6387 | { .name = "VPIDR" , .state = ARM_CP_STATE_AA32, |
| 6388 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| 6389 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 6390 | .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, |
| 6391 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, |
| 6392 | { .name = "VPIDR_EL2" , .state = ARM_CP_STATE_AA64, |
| 6393 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| 6394 | .access = PL2_RW, .resetvalue = cpu->midr, |
| 6395 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| 6396 | { .name = "VMPIDR" , .state = ARM_CP_STATE_AA32, |
| 6397 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| 6398 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| 6399 | .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, |
| 6400 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, |
| 6401 | { .name = "VMPIDR_EL2" , .state = ARM_CP_STATE_AA64, |
| 6402 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| 6403 | .access = PL2_RW, |
| 6404 | .resetvalue = vmpidr_def, |
| 6405 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, |
| 6406 | REGINFO_SENTINEL |
| 6407 | }; |
| 6408 | define_arm_cp_regs(cpu, vpidr_regs); |
| 6409 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
| 6410 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6411 | define_arm_cp_regs(cpu, el2_v8_cp_reginfo); |
| 6412 | } |
| 6413 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
| 6414 | if (!arm_feature(env, ARM_FEATURE_EL3)) { |
| 6415 | ARMCPRegInfo rvbar = { |
| 6416 | .name = "RVBAR_EL2" , .state = ARM_CP_STATE_AA64, |
| 6417 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, |
| 6418 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar |
| 6419 | }; |
| 6420 | define_one_arm_cp_reg(cpu, &rvbar); |
| 6421 | } |
| 6422 | } else { |
| 6423 | /* If EL2 is missing but higher ELs are enabled, we need to |
| 6424 | * register the no_el2 reginfos. |
| 6425 | */ |
| 6426 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 6427 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
| 6428 | * of MIDR_EL1 and MPIDR_EL1. |
| 6429 | */ |
| 6430 | ARMCPRegInfo vpidr_regs[] = { |
| 6431 | { .name = "VPIDR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 6432 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| 6433 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| 6434 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, |
| 6435 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| 6436 | { .name = "VMPIDR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 6437 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| 6438 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| 6439 | .type = ARM_CP_NO_RAW, |
| 6440 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, |
| 6441 | REGINFO_SENTINEL |
| 6442 | }; |
| 6443 | define_arm_cp_regs(cpu, vpidr_regs); |
| 6444 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
| 6445 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6446 | define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); |
| 6447 | } |
| 6448 | } |
| 6449 | } |
| 6450 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 6451 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
| 6452 | ARMCPRegInfo el3_regs[] = { |
| 6453 | { .name = "RVBAR_EL3" , .state = ARM_CP_STATE_AA64, |
| 6454 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, |
| 6455 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, |
| 6456 | { .name = "SCTLR_EL3" , .state = ARM_CP_STATE_AA64, |
| 6457 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
| 6458 | .access = PL3_RW, |
| 6459 | .raw_writefn = raw_write, .writefn = sctlr_write, |
| 6460 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), |
| 6461 | .resetvalue = cpu->reset_sctlr }, |
| 6462 | REGINFO_SENTINEL |
| 6463 | }; |
| 6464 | |
| 6465 | define_arm_cp_regs(cpu, el3_regs); |
| 6466 | } |
| 6467 | /* The behaviour of NSACR is sufficiently various that we don't |
| 6468 | * try to describe it in a single reginfo: |
| 6469 | * if EL3 is 64 bit, then trap to EL3 from S EL1, |
| 6470 | * reads as constant 0xc00 from NS EL1 and NS EL2 |
| 6471 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 |
| 6472 | * if v7 without EL3, register doesn't exist |
| 6473 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 |
| 6474 | */ |
| 6475 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 6476 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| 6477 | ARMCPRegInfo nsacr = { |
| 6478 | .name = "NSACR" , .type = ARM_CP_CONST, |
| 6479 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| 6480 | .access = PL1_RW, .accessfn = nsacr_access, |
| 6481 | .resetvalue = 0xc00 |
| 6482 | }; |
| 6483 | define_one_arm_cp_reg(cpu, &nsacr); |
| 6484 | } else { |
| 6485 | ARMCPRegInfo nsacr = { |
| 6486 | .name = "NSACR" , |
| 6487 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| 6488 | .access = PL3_RW | PL1_R, |
| 6489 | .resetvalue = 0, |
| 6490 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) |
| 6491 | }; |
| 6492 | define_one_arm_cp_reg(cpu, &nsacr); |
| 6493 | } |
| 6494 | } else { |
| 6495 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6496 | ARMCPRegInfo nsacr = { |
| 6497 | .name = "NSACR" , .type = ARM_CP_CONST, |
| 6498 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| 6499 | .access = PL1_R, |
| 6500 | .resetvalue = 0xc00 |
| 6501 | }; |
| 6502 | define_one_arm_cp_reg(cpu, &nsacr); |
| 6503 | } |
| 6504 | } |
| 6505 | |
| 6506 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| 6507 | if (arm_feature(env, ARM_FEATURE_V6)) { |
| 6508 | /* PMSAv6 not implemented */ |
| 6509 | assert(arm_feature(env, ARM_FEATURE_V7)); |
| 6510 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| 6511 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); |
| 6512 | } else { |
| 6513 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| 6514 | } |
| 6515 | } else { |
| 6516 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| 6517 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| 6518 | /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ |
| 6519 | if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { |
| 6520 | define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); |
| 6521 | } |
| 6522 | } |
| 6523 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| 6524 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| 6525 | } |
| 6526 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| 6527 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| 6528 | } |
| 6529 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| 6530 | define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| 6531 | } |
| 6532 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| 6533 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| 6534 | } |
| 6535 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| 6536 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| 6537 | } |
| 6538 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| 6539 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| 6540 | } |
| 6541 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| 6542 | define_arm_cp_regs(cpu, omap_cp_reginfo); |
| 6543 | } |
| 6544 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| 6545 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| 6546 | } |
| 6547 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 6548 | define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| 6549 | } |
| 6550 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| 6551 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| 6552 | } |
| 6553 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 6554 | define_arm_cp_regs(cpu, lpae_cp_reginfo); |
| 6555 | } |
| 6556 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| 6557 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| 6558 | * be read-only (ie write causes UNDEF exception). |
| 6559 | */ |
| 6560 | { |
| 6561 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
| 6562 | /* Pre-v8 MIDR space. |
| 6563 | * Note that the MIDR isn't a simple constant register because |
| 6564 | * of the TI925 behaviour where writes to another register can |
| 6565 | * cause the MIDR value to change. |
| 6566 | * |
| 6567 | * Unimplemented registers in the c15 0 0 0 space default to |
| 6568 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
| 6569 | * and friends override accordingly. |
| 6570 | */ |
| 6571 | { .name = "MIDR" , |
| 6572 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
| 6573 | .access = PL1_R, .resetvalue = cpu->midr, |
| 6574 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
| 6575 | .readfn = midr_read, |
| 6576 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| 6577 | .type = ARM_CP_OVERRIDE }, |
| 6578 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| 6579 | { .name = "DUMMY" , |
| 6580 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, |
| 6581 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6582 | { .name = "DUMMY" , |
| 6583 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, |
| 6584 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6585 | { .name = "DUMMY" , |
| 6586 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, |
| 6587 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6588 | { .name = "DUMMY" , |
| 6589 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, |
| 6590 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6591 | { .name = "DUMMY" , |
| 6592 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, |
| 6593 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6594 | REGINFO_SENTINEL |
| 6595 | }; |
| 6596 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
| 6597 | { .name = "MIDR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 6598 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, |
| 6599 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
| 6600 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| 6601 | .readfn = midr_read }, |
| 6602 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
| 6603 | { .name = "MIDR" , .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| 6604 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 6605 | .access = PL1_R, .resetvalue = cpu->midr }, |
| 6606 | { .name = "MIDR" , .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| 6607 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, |
| 6608 | .access = PL1_R, .resetvalue = cpu->midr }, |
| 6609 | { .name = "REVIDR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 6610 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, |
| 6611 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
| 6612 | REGINFO_SENTINEL |
| 6613 | }; |
| 6614 | ARMCPRegInfo id_cp_reginfo[] = { |
| 6615 | /* These are common to v8 and pre-v8 */ |
| 6616 | { .name = "CTR" , |
| 6617 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 6618 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| 6619 | { .name = "CTR_EL0" , .state = ARM_CP_STATE_AA64, |
| 6620 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
| 6621 | .access = PL0_R, .accessfn = ctr_el0_access, |
| 6622 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| 6623 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ |
| 6624 | { .name = "TCMTR" , |
| 6625 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 6626 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6627 | REGINFO_SENTINEL |
| 6628 | }; |
| 6629 | /* TLBTR is specific to VMSA */ |
| 6630 | ARMCPRegInfo id_tlbtr_reginfo = { |
| 6631 | .name = "TLBTR" , |
| 6632 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 6633 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, |
| 6634 | }; |
| 6635 | /* MPUIR is specific to PMSA V6+ */ |
| 6636 | ARMCPRegInfo id_mpuir_reginfo = { |
| 6637 | .name = "MPUIR" , |
| 6638 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 6639 | .access = PL1_R, .type = ARM_CP_CONST, |
| 6640 | .resetvalue = cpu->pmsav7_dregion << 8 |
| 6641 | }; |
| 6642 | ARMCPRegInfo crn0_wi_reginfo = { |
| 6643 | .name = "CRN0_WI" , .cp = 15, .crn = 0, .crm = CP_ANY, |
| 6644 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, |
| 6645 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE |
| 6646 | }; |
| 6647 | #ifdef CONFIG_USER_ONLY |
| 6648 | ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { |
| 6649 | { .name = "MIDR_EL1" , |
| 6650 | .exported_bits = 0x00000000ffffffff }, |
| 6651 | { .name = "REVIDR_EL1" }, |
| 6652 | REGUSERINFO_SENTINEL |
| 6653 | }; |
| 6654 | modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); |
| 6655 | #endif |
| 6656 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| 6657 | arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| 6658 | ARMCPRegInfo *r; |
| 6659 | /* Register the blanket "writes ignored" value first to cover the |
| 6660 | * whole space. Then update the specific ID registers to allow write |
| 6661 | * access, so that they ignore writes rather than causing them to |
| 6662 | * UNDEF. |
| 6663 | */ |
| 6664 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| 6665 | for (r = id_pre_v8_midr_cp_reginfo; |
| 6666 | r->type != ARM_CP_SENTINEL; r++) { |
| 6667 | r->access = PL1_RW; |
| 6668 | } |
| 6669 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
| 6670 | r->access = PL1_RW; |
| 6671 | } |
| 6672 | id_mpuir_reginfo.access = PL1_RW; |
| 6673 | id_tlbtr_reginfo.access = PL1_RW; |
| 6674 | } |
| 6675 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6676 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); |
| 6677 | } else { |
| 6678 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); |
| 6679 | } |
| 6680 | define_arm_cp_regs(cpu, id_cp_reginfo); |
| 6681 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
| 6682 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
| 6683 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 6684 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); |
| 6685 | } |
| 6686 | } |
| 6687 | |
| 6688 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| 6689 | ARMCPRegInfo mpidr_cp_reginfo[] = { |
| 6690 | { .name = "MPIDR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 6691 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| 6692 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
| 6693 | REGINFO_SENTINEL |
| 6694 | }; |
| 6695 | #ifdef CONFIG_USER_ONLY |
| 6696 | ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { |
| 6697 | { .name = "MPIDR_EL1" , |
| 6698 | .fixed_bits = 0x0000000080000000 }, |
| 6699 | REGUSERINFO_SENTINEL |
| 6700 | }; |
| 6701 | modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); |
| 6702 | #endif |
| 6703 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| 6704 | } |
| 6705 | |
| 6706 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| 6707 | ARMCPRegInfo auxcr_reginfo[] = { |
| 6708 | { .name = "ACTLR_EL1" , .state = ARM_CP_STATE_BOTH, |
| 6709 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, |
| 6710 | .access = PL1_RW, .type = ARM_CP_CONST, |
| 6711 | .resetvalue = cpu->reset_auxcr }, |
| 6712 | { .name = "ACTLR_EL2" , .state = ARM_CP_STATE_BOTH, |
| 6713 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, |
| 6714 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 6715 | .resetvalue = 0 }, |
| 6716 | { .name = "ACTLR_EL3" , .state = ARM_CP_STATE_AA64, |
| 6717 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, |
| 6718 | .access = PL3_RW, .type = ARM_CP_CONST, |
| 6719 | .resetvalue = 0 }, |
| 6720 | REGINFO_SENTINEL |
| 6721 | }; |
| 6722 | define_arm_cp_regs(cpu, auxcr_reginfo); |
| 6723 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 6724 | /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ |
| 6725 | ARMCPRegInfo hactlr2_reginfo = { |
| 6726 | .name = "HACTLR2" , .state = ARM_CP_STATE_AA32, |
| 6727 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, |
| 6728 | .access = PL2_RW, .type = ARM_CP_CONST, |
| 6729 | .resetvalue = 0 |
| 6730 | }; |
| 6731 | define_one_arm_cp_reg(cpu, &hactlr2_reginfo); |
| 6732 | } |
| 6733 | } |
| 6734 | |
| 6735 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
| 6736 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| 6737 | /* 32 bit view is [31:18] 0...0 [43:32]. */ |
| 6738 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) |
| 6739 | | extract64(cpu->reset_cbar, 32, 12); |
| 6740 | ARMCPRegInfo cbar_reginfo[] = { |
| 6741 | { .name = "CBAR" , |
| 6742 | .type = ARM_CP_CONST, |
| 6743 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| 6744 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
| 6745 | { .name = "CBAR_EL1" , .state = ARM_CP_STATE_AA64, |
| 6746 | .type = ARM_CP_CONST, |
| 6747 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, |
| 6748 | .access = PL1_R, .resetvalue = cbar32 }, |
| 6749 | REGINFO_SENTINEL |
| 6750 | }; |
| 6751 | /* We don't implement a r/w 64 bit CBAR currently */ |
| 6752 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); |
| 6753 | define_arm_cp_regs(cpu, cbar_reginfo); |
| 6754 | } else { |
| 6755 | ARMCPRegInfo cbar = { |
| 6756 | .name = "CBAR" , |
| 6757 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| 6758 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, |
| 6759 | .fieldoffset = offsetof(CPUARMState, |
| 6760 | cp15.c15_config_base_address) |
| 6761 | }; |
| 6762 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { |
| 6763 | cbar.access = PL1_R; |
| 6764 | cbar.fieldoffset = 0; |
| 6765 | cbar.type = ARM_CP_CONST; |
| 6766 | } |
| 6767 | define_one_arm_cp_reg(cpu, &cbar); |
| 6768 | } |
| 6769 | } |
| 6770 | |
| 6771 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
| 6772 | ARMCPRegInfo vbar_cp_reginfo[] = { |
| 6773 | { .name = "VBAR" , .state = ARM_CP_STATE_BOTH, |
| 6774 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 6775 | .access = PL1_RW, .writefn = vbar_write, |
| 6776 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
| 6777 | offsetof(CPUARMState, cp15.vbar_ns) }, |
| 6778 | .resetvalue = 0 }, |
| 6779 | REGINFO_SENTINEL |
| 6780 | }; |
| 6781 | define_arm_cp_regs(cpu, vbar_cp_reginfo); |
| 6782 | } |
| 6783 | |
| 6784 | /* Generic registers whose values depend on the implementation */ |
| 6785 | { |
| 6786 | ARMCPRegInfo sctlr = { |
| 6787 | .name = "SCTLR" , .state = ARM_CP_STATE_BOTH, |
| 6788 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| 6789 | .access = PL1_RW, |
| 6790 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
| 6791 | offsetof(CPUARMState, cp15.sctlr_ns) }, |
| 6792 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
| 6793 | .raw_writefn = raw_write, |
| 6794 | }; |
| 6795 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 6796 | /* Normally we would always end the TB on an SCTLR write, but Linux |
| 6797 | * arch/arm/mach-pxa/sleep.S expects two instructions following |
| 6798 | * an MMU enable to execute from cache. Imitate this behaviour. |
| 6799 | */ |
| 6800 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; |
| 6801 | } |
| 6802 | define_one_arm_cp_reg(cpu, &sctlr); |
| 6803 | } |
| 6804 | |
| 6805 | if (cpu_isar_feature(aa64_lor, cpu)) { |
| 6806 | /* |
| 6807 | * A trivial implementation of ARMv8.1-LOR leaves all of these |
| 6808 | * registers fixed at 0, which indicates that there are zero |
| 6809 | * supported Limited Ordering regions. |
| 6810 | */ |
| 6811 | static const ARMCPRegInfo lor_reginfo[] = { |
| 6812 | { .name = "LORSA_EL1" , .state = ARM_CP_STATE_AA64, |
| 6813 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, |
| 6814 | .access = PL1_RW, .accessfn = access_lor_other, |
| 6815 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6816 | { .name = "LOREA_EL1" , .state = ARM_CP_STATE_AA64, |
| 6817 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, |
| 6818 | .access = PL1_RW, .accessfn = access_lor_other, |
| 6819 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6820 | { .name = "LORN_EL1" , .state = ARM_CP_STATE_AA64, |
| 6821 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, |
| 6822 | .access = PL1_RW, .accessfn = access_lor_other, |
| 6823 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6824 | { .name = "LORC_EL1" , .state = ARM_CP_STATE_AA64, |
| 6825 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, |
| 6826 | .access = PL1_RW, .accessfn = access_lor_other, |
| 6827 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6828 | { .name = "LORID_EL1" , .state = ARM_CP_STATE_AA64, |
| 6829 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, |
| 6830 | .access = PL1_R, .accessfn = access_lorid, |
| 6831 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
| 6832 | REGINFO_SENTINEL |
| 6833 | }; |
| 6834 | define_arm_cp_regs(cpu, lor_reginfo); |
| 6835 | } |
| 6836 | |
| 6837 | if (cpu_isar_feature(aa64_sve, cpu)) { |
| 6838 | define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); |
| 6839 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
| 6840 | define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); |
| 6841 | } else { |
| 6842 | define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); |
| 6843 | } |
| 6844 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 6845 | define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); |
| 6846 | } |
| 6847 | } |
| 6848 | |
| 6849 | #ifdef TARGET_AARCH64 |
| 6850 | if (cpu_isar_feature(aa64_pauth, cpu)) { |
| 6851 | define_arm_cp_regs(cpu, pauth_reginfo); |
| 6852 | } |
| 6853 | if (cpu_isar_feature(aa64_rndr, cpu)) { |
| 6854 | define_arm_cp_regs(cpu, rndr_reginfo); |
| 6855 | } |
| 6856 | #endif |
| 6857 | |
| 6858 | /* |
| 6859 | * While all v8.0 cpus support aarch64, QEMU does have configurations |
| 6860 | * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, |
| 6861 | * which will set ID_ISAR6. |
| 6862 | */ |
| 6863 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) |
| 6864 | ? cpu_isar_feature(aa64_predinv, cpu) |
| 6865 | : cpu_isar_feature(aa32_predinv, cpu)) { |
| 6866 | define_arm_cp_regs(cpu, predinv_reginfo); |
| 6867 | } |
| 6868 | } |
| 6869 | |
| 6870 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| 6871 | { |
| 6872 | CPUState *cs = CPU(cpu); |
| 6873 | CPUARMState *env = &cpu->env; |
| 6874 | |
| 6875 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| 6876 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| 6877 | aarch64_fpu_gdb_set_reg, |
| 6878 | 34, "aarch64-fpu.xml" , 0); |
| 6879 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 6880 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 6881 | 51, "arm-neon.xml" , 0); |
| 6882 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| 6883 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 6884 | 35, "arm-vfp3.xml" , 0); |
| 6885 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| 6886 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 6887 | 19, "arm-vfp.xml" , 0); |
| 6888 | } |
| 6889 | gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, |
| 6890 | arm_gen_dynamic_xml(cs), |
| 6891 | "system-registers.xml" , 0); |
| 6892 | } |
| 6893 | |
| 6894 | /* Sort alphabetically by type name, except for "any". */ |
| 6895 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| 6896 | { |
| 6897 | ObjectClass *class_a = (ObjectClass *)a; |
| 6898 | ObjectClass *class_b = (ObjectClass *)b; |
| 6899 | const char *name_a, *name_b; |
| 6900 | |
| 6901 | name_a = object_class_get_name(class_a); |
| 6902 | name_b = object_class_get_name(class_b); |
| 6903 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
| 6904 | return 1; |
| 6905 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
| 6906 | return -1; |
| 6907 | } else { |
| 6908 | return strcmp(name_a, name_b); |
| 6909 | } |
| 6910 | } |
| 6911 | |
| 6912 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| 6913 | { |
| 6914 | ObjectClass *oc = data; |
| 6915 | const char *typename; |
| 6916 | char *name; |
| 6917 | |
| 6918 | typename = object_class_get_name(oc); |
| 6919 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| 6920 | qemu_printf(" %s\n" , name); |
| 6921 | g_free(name); |
| 6922 | } |
| 6923 | |
| 6924 | void arm_cpu_list(void) |
| 6925 | { |
| 6926 | GSList *list; |
| 6927 | |
| 6928 | list = object_class_get_list(TYPE_ARM_CPU, false); |
| 6929 | list = g_slist_sort(list, arm_cpu_list_compare); |
| 6930 | qemu_printf("Available CPUs:\n" ); |
| 6931 | g_slist_foreach(list, arm_cpu_list_entry, NULL); |
| 6932 | g_slist_free(list); |
| 6933 | } |
| 6934 | |
| 6935 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
| 6936 | { |
| 6937 | ObjectClass *oc = data; |
| 6938 | CpuDefinitionInfoList **cpu_list = user_data; |
| 6939 | CpuDefinitionInfoList *entry; |
| 6940 | CpuDefinitionInfo *info; |
| 6941 | const char *typename; |
| 6942 | |
| 6943 | typename = object_class_get_name(oc); |
| 6944 | info = g_malloc0(sizeof(*info)); |
| 6945 | info->name = g_strndup(typename, |
| 6946 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| 6947 | info->q_typename = g_strdup(typename); |
| 6948 | |
| 6949 | entry = g_malloc0(sizeof(*entry)); |
| 6950 | entry->value = info; |
| 6951 | entry->next = *cpu_list; |
| 6952 | *cpu_list = entry; |
| 6953 | } |
| 6954 | |
| 6955 | CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
| 6956 | { |
| 6957 | CpuDefinitionInfoList *cpu_list = NULL; |
| 6958 | GSList *list; |
| 6959 | |
| 6960 | list = object_class_get_list(TYPE_ARM_CPU, false); |
| 6961 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); |
| 6962 | g_slist_free(list); |
| 6963 | |
| 6964 | return cpu_list; |
| 6965 | } |
| 6966 | |
| 6967 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
| 6968 | void *opaque, int state, int secstate, |
| 6969 | int crm, int opc1, int opc2, |
| 6970 | const char *name) |
| 6971 | { |
| 6972 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
| 6973 | * add a single reginfo struct to the hash table. |
| 6974 | */ |
| 6975 | uint32_t *key = g_new(uint32_t, 1); |
| 6976 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| 6977 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; |
| 6978 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
| 6979 | |
| 6980 | r2->name = g_strdup(name); |
| 6981 | /* Reset the secure state to the specific incoming state. This is |
| 6982 | * necessary as the register may have been defined with both states. |
| 6983 | */ |
| 6984 | r2->secure = secstate; |
| 6985 | |
| 6986 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| 6987 | /* Register is banked (using both entries in array). |
| 6988 | * Overwriting fieldoffset as the array is only used to define |
| 6989 | * banked registers but later only fieldoffset is used. |
| 6990 | */ |
| 6991 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
| 6992 | } |
| 6993 | |
| 6994 | if (state == ARM_CP_STATE_AA32) { |
| 6995 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| 6996 | /* If the register is banked then we don't need to migrate or |
| 6997 | * reset the 32-bit instance in certain cases: |
| 6998 | * |
| 6999 | * 1) If the register has both 32-bit and 64-bit instances then we |
| 7000 | * can count on the 64-bit instance taking care of the |
| 7001 | * non-secure bank. |
| 7002 | * 2) If ARMv8 is enabled then we can count on a 64-bit version |
| 7003 | * taking care of the secure bank. This requires that separate |
| 7004 | * 32 and 64-bit definitions are provided. |
| 7005 | */ |
| 7006 | if ((r->state == ARM_CP_STATE_BOTH && ns) || |
| 7007 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { |
| 7008 | r2->type |= ARM_CP_ALIAS; |
| 7009 | } |
| 7010 | } else if ((secstate != r->secure) && !ns) { |
| 7011 | /* The register is not banked so we only want to allow migration of |
| 7012 | * the non-secure instance. |
| 7013 | */ |
| 7014 | r2->type |= ARM_CP_ALIAS; |
| 7015 | } |
| 7016 | |
| 7017 | if (r->state == ARM_CP_STATE_BOTH) { |
| 7018 | /* We assume it is a cp15 register if the .cp field is left unset. |
| 7019 | */ |
| 7020 | if (r2->cp == 0) { |
| 7021 | r2->cp = 15; |
| 7022 | } |
| 7023 | |
| 7024 | #ifdef HOST_WORDS_BIGENDIAN |
| 7025 | if (r2->fieldoffset) { |
| 7026 | r2->fieldoffset += sizeof(uint32_t); |
| 7027 | } |
| 7028 | #endif |
| 7029 | } |
| 7030 | } |
| 7031 | if (state == ARM_CP_STATE_AA64) { |
| 7032 | /* To allow abbreviation of ARMCPRegInfo |
| 7033 | * definitions, we treat cp == 0 as equivalent to |
| 7034 | * the value for "standard guest-visible sysreg". |
| 7035 | * STATE_BOTH definitions are also always "standard |
| 7036 | * sysreg" in their AArch64 view (the .cp value may |
| 7037 | * be non-zero for the benefit of the AArch32 view). |
| 7038 | */ |
| 7039 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
| 7040 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
| 7041 | } |
| 7042 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, |
| 7043 | r2->opc0, opc1, opc2); |
| 7044 | } else { |
| 7045 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
| 7046 | } |
| 7047 | if (opaque) { |
| 7048 | r2->opaque = opaque; |
| 7049 | } |
| 7050 | /* reginfo passed to helpers is correct for the actual access, |
| 7051 | * and is never ARM_CP_STATE_BOTH: |
| 7052 | */ |
| 7053 | r2->state = state; |
| 7054 | /* Make sure reginfo passed to helpers for wildcarded regs |
| 7055 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| 7056 | */ |
| 7057 | r2->crm = crm; |
| 7058 | r2->opc1 = opc1; |
| 7059 | r2->opc2 = opc2; |
| 7060 | /* By convention, for wildcarded registers only the first |
| 7061 | * entry is used for migration; the others are marked as |
| 7062 | * ALIAS so we don't try to transfer the register |
| 7063 | * multiple times. Special registers (ie NOP/WFI) are |
| 7064 | * never migratable and not even raw-accessible. |
| 7065 | */ |
| 7066 | if ((r->type & ARM_CP_SPECIAL)) { |
| 7067 | r2->type |= ARM_CP_NO_RAW; |
| 7068 | } |
| 7069 | if (((r->crm == CP_ANY) && crm != 0) || |
| 7070 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
| 7071 | ((r->opc2 == CP_ANY) && opc2 != 0)) { |
| 7072 | r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; |
| 7073 | } |
| 7074 | |
| 7075 | /* Check that raw accesses are either forbidden or handled. Note that |
| 7076 | * we can't assert this earlier because the setup of fieldoffset for |
| 7077 | * banked registers has to be done first. |
| 7078 | */ |
| 7079 | if (!(r2->type & ARM_CP_NO_RAW)) { |
| 7080 | assert(!raw_accessors_invalid(r2)); |
| 7081 | } |
| 7082 | |
| 7083 | /* Overriding of an existing definition must be explicitly |
| 7084 | * requested. |
| 7085 | */ |
| 7086 | if (!(r->type & ARM_CP_OVERRIDE)) { |
| 7087 | ARMCPRegInfo *oldreg; |
| 7088 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| 7089 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { |
| 7090 | fprintf(stderr, "Register redefined: cp=%d %d bit " |
| 7091 | "crn=%d crm=%d opc1=%d opc2=%d, " |
| 7092 | "was %s, now %s\n" , r2->cp, 32 + 32 * is64, |
| 7093 | r2->crn, r2->crm, r2->opc1, r2->opc2, |
| 7094 | oldreg->name, r2->name); |
| 7095 | g_assert_not_reached(); |
| 7096 | } |
| 7097 | } |
| 7098 | g_hash_table_insert(cpu->cp_regs, key, r2); |
| 7099 | } |
| 7100 | |
| 7101 | |
| 7102 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| 7103 | const ARMCPRegInfo *r, void *opaque) |
| 7104 | { |
| 7105 | /* Define implementations of coprocessor registers. |
| 7106 | * We store these in a hashtable because typically |
| 7107 | * there are less than 150 registers in a space which |
| 7108 | * is 16*16*16*8*8 = 262144 in size. |
| 7109 | * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| 7110 | * If a register is defined twice then the second definition is |
| 7111 | * used, so this can be used to define some generic registers and |
| 7112 | * then override them with implementation specific variations. |
| 7113 | * At least one of the original and the second definition should |
| 7114 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| 7115 | * against accidental use. |
| 7116 | * |
| 7117 | * The state field defines whether the register is to be |
| 7118 | * visible in the AArch32 or AArch64 execution state. If the |
| 7119 | * state is set to ARM_CP_STATE_BOTH then we synthesise a |
| 7120 | * reginfo structure for the AArch32 view, which sees the lower |
| 7121 | * 32 bits of the 64 bit register. |
| 7122 | * |
| 7123 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
| 7124 | * be wildcarded. AArch64 registers are always considered to be 64 |
| 7125 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
| 7126 | * the register, if any. |
| 7127 | */ |
| 7128 | int crm, opc1, opc2, state; |
| 7129 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
| 7130 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; |
| 7131 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; |
| 7132 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; |
| 7133 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; |
| 7134 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; |
| 7135 | /* 64 bit registers have only CRm and Opc1 fields */ |
| 7136 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); |
| 7137 | /* op0 only exists in the AArch64 encodings */ |
| 7138 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); |
| 7139 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
| 7140 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); |
| 7141 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
| 7142 | * encodes a minimum access level for the register. We roll this |
| 7143 | * runtime check into our general permission check code, so check |
| 7144 | * here that the reginfo's specified permissions are strict enough |
| 7145 | * to encompass the generic architectural permission check. |
| 7146 | */ |
| 7147 | if (r->state != ARM_CP_STATE_AA32) { |
| 7148 | int mask = 0; |
| 7149 | switch (r->opc1) { |
| 7150 | case 0: |
| 7151 | /* min_EL EL1, but some accessible to EL0 via kernel ABI */ |
| 7152 | mask = PL0U_R | PL1_RW; |
| 7153 | break; |
| 7154 | case 1: case 2: |
| 7155 | /* min_EL EL1 */ |
| 7156 | mask = PL1_RW; |
| 7157 | break; |
| 7158 | case 3: |
| 7159 | /* min_EL EL0 */ |
| 7160 | mask = PL0_RW; |
| 7161 | break; |
| 7162 | case 4: |
| 7163 | /* min_EL EL2 */ |
| 7164 | mask = PL2_RW; |
| 7165 | break; |
| 7166 | case 5: |
| 7167 | /* unallocated encoding, so not possible */ |
| 7168 | assert(false); |
| 7169 | break; |
| 7170 | case 6: |
| 7171 | /* min_EL EL3 */ |
| 7172 | mask = PL3_RW; |
| 7173 | break; |
| 7174 | case 7: |
| 7175 | /* min_EL EL1, secure mode only (we don't check the latter) */ |
| 7176 | mask = PL1_RW; |
| 7177 | break; |
| 7178 | default: |
| 7179 | /* broken reginfo with out-of-range opc1 */ |
| 7180 | assert(false); |
| 7181 | break; |
| 7182 | } |
| 7183 | /* assert our permissions are not too lax (stricter is fine) */ |
| 7184 | assert((r->access & ~mask) == 0); |
| 7185 | } |
| 7186 | |
| 7187 | /* Check that the register definition has enough info to handle |
| 7188 | * reads and writes if they are permitted. |
| 7189 | */ |
| 7190 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { |
| 7191 | if (r->access & PL3_R) { |
| 7192 | assert((r->fieldoffset || |
| 7193 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| 7194 | r->readfn); |
| 7195 | } |
| 7196 | if (r->access & PL3_W) { |
| 7197 | assert((r->fieldoffset || |
| 7198 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| 7199 | r->writefn); |
| 7200 | } |
| 7201 | } |
| 7202 | /* Bad type field probably means missing sentinel at end of reg list */ |
| 7203 | assert(cptype_valid(r->type)); |
| 7204 | for (crm = crmmin; crm <= crmmax; crm++) { |
| 7205 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| 7206 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| 7207 | for (state = ARM_CP_STATE_AA32; |
| 7208 | state <= ARM_CP_STATE_AA64; state++) { |
| 7209 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
| 7210 | continue; |
| 7211 | } |
| 7212 | if (state == ARM_CP_STATE_AA32) { |
| 7213 | /* Under AArch32 CP registers can be common |
| 7214 | * (same for secure and non-secure world) or banked. |
| 7215 | */ |
| 7216 | char *name; |
| 7217 | |
| 7218 | switch (r->secure) { |
| 7219 | case ARM_CP_SECSTATE_S: |
| 7220 | case ARM_CP_SECSTATE_NS: |
| 7221 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
| 7222 | r->secure, crm, opc1, opc2, |
| 7223 | r->name); |
| 7224 | break; |
| 7225 | default: |
| 7226 | name = g_strdup_printf("%s_S" , r->name); |
| 7227 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
| 7228 | ARM_CP_SECSTATE_S, |
| 7229 | crm, opc1, opc2, name); |
| 7230 | g_free(name); |
| 7231 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
| 7232 | ARM_CP_SECSTATE_NS, |
| 7233 | crm, opc1, opc2, r->name); |
| 7234 | break; |
| 7235 | } |
| 7236 | } else { |
| 7237 | /* AArch64 registers get mapped to non-secure instance |
| 7238 | * of AArch32 */ |
| 7239 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
| 7240 | ARM_CP_SECSTATE_NS, |
| 7241 | crm, opc1, opc2, r->name); |
| 7242 | } |
| 7243 | } |
| 7244 | } |
| 7245 | } |
| 7246 | } |
| 7247 | } |
| 7248 | |
| 7249 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| 7250 | const ARMCPRegInfo *regs, void *opaque) |
| 7251 | { |
| 7252 | /* Define a whole list of registers */ |
| 7253 | const ARMCPRegInfo *r; |
| 7254 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| 7255 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| 7256 | } |
| 7257 | } |
| 7258 | |
| 7259 | /* |
| 7260 | * Modify ARMCPRegInfo for access from userspace. |
| 7261 | * |
| 7262 | * This is a data driven modification directed by |
| 7263 | * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as |
| 7264 | * user-space cannot alter any values and dynamic values pertaining to |
| 7265 | * execution state are hidden from user space view anyway. |
| 7266 | */ |
| 7267 | void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) |
| 7268 | { |
| 7269 | const ARMCPRegUserSpaceInfo *m; |
| 7270 | ARMCPRegInfo *r; |
| 7271 | |
| 7272 | for (m = mods; m->name; m++) { |
| 7273 | GPatternSpec *pat = NULL; |
| 7274 | if (m->is_glob) { |
| 7275 | pat = g_pattern_spec_new(m->name); |
| 7276 | } |
| 7277 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| 7278 | if (pat && g_pattern_match_string(pat, r->name)) { |
| 7279 | r->type = ARM_CP_CONST; |
| 7280 | r->access = PL0U_R; |
| 7281 | r->resetvalue = 0; |
| 7282 | /* continue */ |
| 7283 | } else if (strcmp(r->name, m->name) == 0) { |
| 7284 | r->type = ARM_CP_CONST; |
| 7285 | r->access = PL0U_R; |
| 7286 | r->resetvalue &= m->exported_bits; |
| 7287 | r->resetvalue |= m->fixed_bits; |
| 7288 | break; |
| 7289 | } |
| 7290 | } |
| 7291 | if (pat) { |
| 7292 | g_pattern_spec_free(pat); |
| 7293 | } |
| 7294 | } |
| 7295 | } |
| 7296 | |
| 7297 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
| 7298 | { |
| 7299 | return g_hash_table_lookup(cpregs, &encoded_cp); |
| 7300 | } |
| 7301 | |
| 7302 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| 7303 | uint64_t value) |
| 7304 | { |
| 7305 | /* Helper coprocessor write function for write-ignore registers */ |
| 7306 | } |
| 7307 | |
| 7308 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
| 7309 | { |
| 7310 | /* Helper coprocessor write function for read-as-zero registers */ |
| 7311 | return 0; |
| 7312 | } |
| 7313 | |
| 7314 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
| 7315 | { |
| 7316 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
| 7317 | } |
| 7318 | |
| 7319 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
| 7320 | { |
| 7321 | /* Return true if it is not valid for us to switch to |
| 7322 | * this CPU mode (ie all the UNPREDICTABLE cases in |
| 7323 | * the ARM ARM CPSRWriteByInstr pseudocode). |
| 7324 | */ |
| 7325 | |
| 7326 | /* Changes to or from Hyp via MSR and CPS are illegal. */ |
| 7327 | if (write_type == CPSRWriteByInstr && |
| 7328 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || |
| 7329 | mode == ARM_CPU_MODE_HYP)) { |
| 7330 | return 1; |
| 7331 | } |
| 7332 | |
| 7333 | switch (mode) { |
| 7334 | case ARM_CPU_MODE_USR: |
| 7335 | return 0; |
| 7336 | case ARM_CPU_MODE_SYS: |
| 7337 | case ARM_CPU_MODE_SVC: |
| 7338 | case ARM_CPU_MODE_ABT: |
| 7339 | case ARM_CPU_MODE_UND: |
| 7340 | case ARM_CPU_MODE_IRQ: |
| 7341 | case ARM_CPU_MODE_FIQ: |
| 7342 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
| 7343 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) |
| 7344 | */ |
| 7345 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
| 7346 | * and CPS are treated as illegal mode changes. |
| 7347 | */ |
| 7348 | if (write_type == CPSRWriteByInstr && |
| 7349 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
| 7350 | (arm_hcr_el2_eff(env) & HCR_TGE)) { |
| 7351 | return 1; |
| 7352 | } |
| 7353 | return 0; |
| 7354 | case ARM_CPU_MODE_HYP: |
| 7355 | return !arm_feature(env, ARM_FEATURE_EL2) |
| 7356 | || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); |
| 7357 | case ARM_CPU_MODE_MON: |
| 7358 | return arm_current_el(env) < 3; |
| 7359 | default: |
| 7360 | return 1; |
| 7361 | } |
| 7362 | } |
| 7363 | |
| 7364 | uint32_t cpsr_read(CPUARMState *env) |
| 7365 | { |
| 7366 | int ZF; |
| 7367 | ZF = (env->ZF == 0); |
| 7368 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| 7369 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| 7370 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| 7371 | | ((env->condexec_bits & 0xfc) << 8) |
| 7372 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
| 7373 | } |
| 7374 | |
| 7375 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
| 7376 | CPSRWriteType write_type) |
| 7377 | { |
| 7378 | uint32_t changed_daif; |
| 7379 | |
| 7380 | if (mask & CPSR_NZCV) { |
| 7381 | env->ZF = (~val) & CPSR_Z; |
| 7382 | env->NF = val; |
| 7383 | env->CF = (val >> 29) & 1; |
| 7384 | env->VF = (val << 3) & 0x80000000; |
| 7385 | } |
| 7386 | if (mask & CPSR_Q) |
| 7387 | env->QF = ((val & CPSR_Q) != 0); |
| 7388 | if (mask & CPSR_T) |
| 7389 | env->thumb = ((val & CPSR_T) != 0); |
| 7390 | if (mask & CPSR_IT_0_1) { |
| 7391 | env->condexec_bits &= ~3; |
| 7392 | env->condexec_bits |= (val >> 25) & 3; |
| 7393 | } |
| 7394 | if (mask & CPSR_IT_2_7) { |
| 7395 | env->condexec_bits &= 3; |
| 7396 | env->condexec_bits |= (val >> 8) & 0xfc; |
| 7397 | } |
| 7398 | if (mask & CPSR_GE) { |
| 7399 | env->GE = (val >> 16) & 0xf; |
| 7400 | } |
| 7401 | |
| 7402 | /* In a V7 implementation that includes the security extensions but does |
| 7403 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control |
| 7404 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A |
| 7405 | * bits respectively. |
| 7406 | * |
| 7407 | * In a V8 implementation, it is permitted for privileged software to |
| 7408 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. |
| 7409 | */ |
| 7410 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
| 7411 | arm_feature(env, ARM_FEATURE_EL3) && |
| 7412 | !arm_feature(env, ARM_FEATURE_EL2) && |
| 7413 | !arm_is_secure(env)) { |
| 7414 | |
| 7415 | changed_daif = (env->daif ^ val) & mask; |
| 7416 | |
| 7417 | if (changed_daif & CPSR_A) { |
| 7418 | /* Check to see if we are allowed to change the masking of async |
| 7419 | * abort exceptions from a non-secure state. |
| 7420 | */ |
| 7421 | if (!(env->cp15.scr_el3 & SCR_AW)) { |
| 7422 | qemu_log_mask(LOG_GUEST_ERROR, |
| 7423 | "Ignoring attempt to switch CPSR_A flag from " |
| 7424 | "non-secure world with SCR.AW bit clear\n" ); |
| 7425 | mask &= ~CPSR_A; |
| 7426 | } |
| 7427 | } |
| 7428 | |
| 7429 | if (changed_daif & CPSR_F) { |
| 7430 | /* Check to see if we are allowed to change the masking of FIQ |
| 7431 | * exceptions from a non-secure state. |
| 7432 | */ |
| 7433 | if (!(env->cp15.scr_el3 & SCR_FW)) { |
| 7434 | qemu_log_mask(LOG_GUEST_ERROR, |
| 7435 | "Ignoring attempt to switch CPSR_F flag from " |
| 7436 | "non-secure world with SCR.FW bit clear\n" ); |
| 7437 | mask &= ~CPSR_F; |
| 7438 | } |
| 7439 | |
| 7440 | /* Check whether non-maskable FIQ (NMFI) support is enabled. |
| 7441 | * If this bit is set software is not allowed to mask |
| 7442 | * FIQs, but is allowed to set CPSR_F to 0. |
| 7443 | */ |
| 7444 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && |
| 7445 | (val & CPSR_F)) { |
| 7446 | qemu_log_mask(LOG_GUEST_ERROR, |
| 7447 | "Ignoring attempt to enable CPSR_F flag " |
| 7448 | "(non-maskable FIQ [NMFI] support enabled)\n" ); |
| 7449 | mask &= ~CPSR_F; |
| 7450 | } |
| 7451 | } |
| 7452 | } |
| 7453 | |
| 7454 | env->daif &= ~(CPSR_AIF & mask); |
| 7455 | env->daif |= val & CPSR_AIF & mask; |
| 7456 | |
| 7457 | if (write_type != CPSRWriteRaw && |
| 7458 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { |
| 7459 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
| 7460 | /* Note that we can only get here in USR mode if this is a |
| 7461 | * gdb stub write; for this case we follow the architectural |
| 7462 | * behaviour for guest writes in USR mode of ignoring an attempt |
| 7463 | * to switch mode. (Those are caught by translate.c for writes |
| 7464 | * triggered by guest instructions.) |
| 7465 | */ |
| 7466 | mask &= ~CPSR_M; |
| 7467 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { |
| 7468 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
| 7469 | * v7, and has defined behaviour in v8: |
| 7470 | * + leave CPSR.M untouched |
| 7471 | * + allow changes to the other CPSR fields |
| 7472 | * + set PSTATE.IL |
| 7473 | * For user changes via the GDB stub, we don't set PSTATE.IL, |
| 7474 | * as this would be unnecessarily harsh for a user error. |
| 7475 | */ |
| 7476 | mask &= ~CPSR_M; |
| 7477 | if (write_type != CPSRWriteByGDBStub && |
| 7478 | arm_feature(env, ARM_FEATURE_V8)) { |
| 7479 | mask |= CPSR_IL; |
| 7480 | val |= CPSR_IL; |
| 7481 | } |
| 7482 | qemu_log_mask(LOG_GUEST_ERROR, |
| 7483 | "Illegal AArch32 mode switch attempt from %s to %s\n" , |
| 7484 | aarch32_mode_name(env->uncached_cpsr), |
| 7485 | aarch32_mode_name(val)); |
| 7486 | } else { |
| 7487 | qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n" , |
| 7488 | write_type == CPSRWriteExceptionReturn ? |
| 7489 | "Exception return from AArch32" : |
| 7490 | "AArch32 mode switch from" , |
| 7491 | aarch32_mode_name(env->uncached_cpsr), |
| 7492 | aarch32_mode_name(val), env->regs[15]); |
| 7493 | switch_mode(env, val & CPSR_M); |
| 7494 | } |
| 7495 | } |
| 7496 | mask &= ~CACHED_CPSR_BITS; |
| 7497 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| 7498 | } |
| 7499 | |
| 7500 | /* Sign/zero extend */ |
| 7501 | uint32_t HELPER(sxtb16)(uint32_t x) |
| 7502 | { |
| 7503 | uint32_t res; |
| 7504 | res = (uint16_t)(int8_t)x; |
| 7505 | res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| 7506 | return res; |
| 7507 | } |
| 7508 | |
| 7509 | uint32_t HELPER(uxtb16)(uint32_t x) |
| 7510 | { |
| 7511 | uint32_t res; |
| 7512 | res = (uint16_t)(uint8_t)x; |
| 7513 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| 7514 | return res; |
| 7515 | } |
| 7516 | |
| 7517 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| 7518 | { |
| 7519 | if (den == 0) |
| 7520 | return 0; |
| 7521 | if (num == INT_MIN && den == -1) |
| 7522 | return INT_MIN; |
| 7523 | return num / den; |
| 7524 | } |
| 7525 | |
| 7526 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| 7527 | { |
| 7528 | if (den == 0) |
| 7529 | return 0; |
| 7530 | return num / den; |
| 7531 | } |
| 7532 | |
| 7533 | uint32_t HELPER(rbit)(uint32_t x) |
| 7534 | { |
| 7535 | return revbit32(x); |
| 7536 | } |
| 7537 | |
| 7538 | #ifdef CONFIG_USER_ONLY |
| 7539 | |
| 7540 | static void switch_mode(CPUARMState *env, int mode) |
| 7541 | { |
| 7542 | ARMCPU *cpu = env_archcpu(env); |
| 7543 | |
| 7544 | if (mode != ARM_CPU_MODE_USR) { |
| 7545 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n" ); |
| 7546 | } |
| 7547 | } |
| 7548 | |
| 7549 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| 7550 | uint32_t cur_el, bool secure) |
| 7551 | { |
| 7552 | return 1; |
| 7553 | } |
| 7554 | |
| 7555 | void aarch64_sync_64_to_32(CPUARMState *env) |
| 7556 | { |
| 7557 | g_assert_not_reached(); |
| 7558 | } |
| 7559 | |
| 7560 | #else |
| 7561 | |
| 7562 | static void switch_mode(CPUARMState *env, int mode) |
| 7563 | { |
| 7564 | int old_mode; |
| 7565 | int i; |
| 7566 | |
| 7567 | old_mode = env->uncached_cpsr & CPSR_M; |
| 7568 | if (mode == old_mode) |
| 7569 | return; |
| 7570 | |
| 7571 | if (old_mode == ARM_CPU_MODE_FIQ) { |
| 7572 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| 7573 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| 7574 | } else if (mode == ARM_CPU_MODE_FIQ) { |
| 7575 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| 7576 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| 7577 | } |
| 7578 | |
| 7579 | i = bank_number(old_mode); |
| 7580 | env->banked_r13[i] = env->regs[13]; |
| 7581 | env->banked_spsr[i] = env->spsr; |
| 7582 | |
| 7583 | i = bank_number(mode); |
| 7584 | env->regs[13] = env->banked_r13[i]; |
| 7585 | env->spsr = env->banked_spsr[i]; |
| 7586 | |
| 7587 | env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; |
| 7588 | env->regs[14] = env->banked_r14[r14_bank_number(mode)]; |
| 7589 | } |
| 7590 | |
| 7591 | /* Physical Interrupt Target EL Lookup Table |
| 7592 | * |
| 7593 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] |
| 7594 | * |
| 7595 | * The below multi-dimensional table is used for looking up the target |
| 7596 | * exception level given numerous condition criteria. Specifically, the |
| 7597 | * target EL is based on SCR and HCR routing controls as well as the |
| 7598 | * currently executing EL and secure state. |
| 7599 | * |
| 7600 | * Dimensions: |
| 7601 | * target_el_table[2][2][2][2][2][4] |
| 7602 | * | | | | | +--- Current EL |
| 7603 | * | | | | +------ Non-secure(0)/Secure(1) |
| 7604 | * | | | +--------- HCR mask override |
| 7605 | * | | +------------ SCR exec state control |
| 7606 | * | +--------------- SCR mask override |
| 7607 | * +------------------ 32-bit(0)/64-bit(1) EL3 |
| 7608 | * |
| 7609 | * The table values are as such: |
| 7610 | * 0-3 = EL0-EL3 |
| 7611 | * -1 = Cannot occur |
| 7612 | * |
| 7613 | * The ARM ARM target EL table includes entries indicating that an "exception |
| 7614 | * is not taken". The two cases where this is applicable are: |
| 7615 | * 1) An exception is taken from EL3 but the SCR does not have the exception |
| 7616 | * routed to EL3. |
| 7617 | * 2) An exception is taken from EL2 but the HCR does not have the exception |
| 7618 | * routed to EL2. |
| 7619 | * In these two cases, the below table contain a target of EL1. This value is |
| 7620 | * returned as it is expected that the consumer of the table data will check |
| 7621 | * for "target EL >= current EL" to ensure the exception is not taken. |
| 7622 | * |
| 7623 | * SCR HCR |
| 7624 | * 64 EA AMO From |
| 7625 | * BIT IRQ IMO Non-secure Secure |
| 7626 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 |
| 7627 | */ |
| 7628 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
| 7629 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| 7630 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, |
| 7631 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| 7632 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, |
| 7633 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| 7634 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, |
| 7635 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| 7636 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, |
| 7637 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, |
| 7638 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, |
| 7639 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, |
| 7640 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, |
| 7641 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| 7642 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, |
| 7643 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| 7644 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, |
| 7645 | }; |
| 7646 | |
| 7647 | /* |
| 7648 | * Determine the target EL for physical exceptions |
| 7649 | */ |
| 7650 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| 7651 | uint32_t cur_el, bool secure) |
| 7652 | { |
| 7653 | CPUARMState *env = cs->env_ptr; |
| 7654 | bool rw; |
| 7655 | bool scr; |
| 7656 | bool hcr; |
| 7657 | int target_el; |
| 7658 | /* Is the highest EL AArch64? */ |
| 7659 | bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
| 7660 | uint64_t hcr_el2; |
| 7661 | |
| 7662 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
| 7663 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); |
| 7664 | } else { |
| 7665 | /* Either EL2 is the highest EL (and so the EL2 register width |
| 7666 | * is given by is64); or there is no EL2 or EL3, in which case |
| 7667 | * the value of 'rw' does not affect the table lookup anyway. |
| 7668 | */ |
| 7669 | rw = is64; |
| 7670 | } |
| 7671 | |
| 7672 | hcr_el2 = arm_hcr_el2_eff(env); |
| 7673 | switch (excp_idx) { |
| 7674 | case EXCP_IRQ: |
| 7675 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); |
| 7676 | hcr = hcr_el2 & HCR_IMO; |
| 7677 | break; |
| 7678 | case EXCP_FIQ: |
| 7679 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); |
| 7680 | hcr = hcr_el2 & HCR_FMO; |
| 7681 | break; |
| 7682 | default: |
| 7683 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); |
| 7684 | hcr = hcr_el2 & HCR_AMO; |
| 7685 | break; |
| 7686 | }; |
| 7687 | |
| 7688 | /* Perform a table-lookup for the target EL given the current state */ |
| 7689 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; |
| 7690 | |
| 7691 | assert(target_el > 0); |
| 7692 | |
| 7693 | return target_el; |
| 7694 | } |
| 7695 | |
| 7696 | void arm_log_exception(int idx) |
| 7697 | { |
| 7698 | if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| 7699 | const char *exc = NULL; |
| 7700 | static const char * const excnames[] = { |
| 7701 | [EXCP_UDEF] = "Undefined Instruction" , |
| 7702 | [EXCP_SWI] = "SVC" , |
| 7703 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort" , |
| 7704 | [EXCP_DATA_ABORT] = "Data Abort" , |
| 7705 | [EXCP_IRQ] = "IRQ" , |
| 7706 | [EXCP_FIQ] = "FIQ" , |
| 7707 | [EXCP_BKPT] = "Breakpoint" , |
| 7708 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit" , |
| 7709 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage" , |
| 7710 | [EXCP_HVC] = "Hypervisor Call" , |
| 7711 | [EXCP_HYP_TRAP] = "Hypervisor Trap" , |
| 7712 | [EXCP_SMC] = "Secure Monitor Call" , |
| 7713 | [EXCP_VIRQ] = "Virtual IRQ" , |
| 7714 | [EXCP_VFIQ] = "Virtual FIQ" , |
| 7715 | [EXCP_SEMIHOST] = "Semihosting call" , |
| 7716 | [EXCP_NOCP] = "v7M NOCP UsageFault" , |
| 7717 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault" , |
| 7718 | [EXCP_STKOF] = "v8M STKOF UsageFault" , |
| 7719 | [EXCP_LAZYFP] = "v7M exception during lazy FP stacking" , |
| 7720 | [EXCP_LSERR] = "v8M LSERR UsageFault" , |
| 7721 | [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault" , |
| 7722 | }; |
| 7723 | |
| 7724 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { |
| 7725 | exc = excnames[idx]; |
| 7726 | } |
| 7727 | if (!exc) { |
| 7728 | exc = "unknown" ; |
| 7729 | } |
| 7730 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n" , idx, exc); |
| 7731 | } |
| 7732 | } |
| 7733 | |
| 7734 | /* |
| 7735 | * Function used to synchronize QEMU's AArch64 register set with AArch32 |
| 7736 | * register set. This is necessary when switching between AArch32 and AArch64 |
| 7737 | * execution state. |
| 7738 | */ |
| 7739 | void aarch64_sync_32_to_64(CPUARMState *env) |
| 7740 | { |
| 7741 | int i; |
| 7742 | uint32_t mode = env->uncached_cpsr & CPSR_M; |
| 7743 | |
| 7744 | /* We can blanket copy R[0:7] to X[0:7] */ |
| 7745 | for (i = 0; i < 8; i++) { |
| 7746 | env->xregs[i] = env->regs[i]; |
| 7747 | } |
| 7748 | |
| 7749 | /* |
| 7750 | * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
| 7751 | * Otherwise, they come from the banked user regs. |
| 7752 | */ |
| 7753 | if (mode == ARM_CPU_MODE_FIQ) { |
| 7754 | for (i = 8; i < 13; i++) { |
| 7755 | env->xregs[i] = env->usr_regs[i - 8]; |
| 7756 | } |
| 7757 | } else { |
| 7758 | for (i = 8; i < 13; i++) { |
| 7759 | env->xregs[i] = env->regs[i]; |
| 7760 | } |
| 7761 | } |
| 7762 | |
| 7763 | /* |
| 7764 | * Registers x13-x23 are the various mode SP and FP registers. Registers |
| 7765 | * r13 and r14 are only copied if we are in that mode, otherwise we copy |
| 7766 | * from the mode banked register. |
| 7767 | */ |
| 7768 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| 7769 | env->xregs[13] = env->regs[13]; |
| 7770 | env->xregs[14] = env->regs[14]; |
| 7771 | } else { |
| 7772 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; |
| 7773 | /* HYP is an exception in that it is copied from r14 */ |
| 7774 | if (mode == ARM_CPU_MODE_HYP) { |
| 7775 | env->xregs[14] = env->regs[14]; |
| 7776 | } else { |
| 7777 | env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; |
| 7778 | } |
| 7779 | } |
| 7780 | |
| 7781 | if (mode == ARM_CPU_MODE_HYP) { |
| 7782 | env->xregs[15] = env->regs[13]; |
| 7783 | } else { |
| 7784 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; |
| 7785 | } |
| 7786 | |
| 7787 | if (mode == ARM_CPU_MODE_IRQ) { |
| 7788 | env->xregs[16] = env->regs[14]; |
| 7789 | env->xregs[17] = env->regs[13]; |
| 7790 | } else { |
| 7791 | env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; |
| 7792 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; |
| 7793 | } |
| 7794 | |
| 7795 | if (mode == ARM_CPU_MODE_SVC) { |
| 7796 | env->xregs[18] = env->regs[14]; |
| 7797 | env->xregs[19] = env->regs[13]; |
| 7798 | } else { |
| 7799 | env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; |
| 7800 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; |
| 7801 | } |
| 7802 | |
| 7803 | if (mode == ARM_CPU_MODE_ABT) { |
| 7804 | env->xregs[20] = env->regs[14]; |
| 7805 | env->xregs[21] = env->regs[13]; |
| 7806 | } else { |
| 7807 | env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; |
| 7808 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; |
| 7809 | } |
| 7810 | |
| 7811 | if (mode == ARM_CPU_MODE_UND) { |
| 7812 | env->xregs[22] = env->regs[14]; |
| 7813 | env->xregs[23] = env->regs[13]; |
| 7814 | } else { |
| 7815 | env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; |
| 7816 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; |
| 7817 | } |
| 7818 | |
| 7819 | /* |
| 7820 | * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| 7821 | * mode, then we can copy from r8-r14. Otherwise, we copy from the |
| 7822 | * FIQ bank for r8-r14. |
| 7823 | */ |
| 7824 | if (mode == ARM_CPU_MODE_FIQ) { |
| 7825 | for (i = 24; i < 31; i++) { |
| 7826 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ |
| 7827 | } |
| 7828 | } else { |
| 7829 | for (i = 24; i < 29; i++) { |
| 7830 | env->xregs[i] = env->fiq_regs[i - 24]; |
| 7831 | } |
| 7832 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
| 7833 | env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; |
| 7834 | } |
| 7835 | |
| 7836 | env->pc = env->regs[15]; |
| 7837 | } |
| 7838 | |
| 7839 | /* |
| 7840 | * Function used to synchronize QEMU's AArch32 register set with AArch64 |
| 7841 | * register set. This is necessary when switching between AArch32 and AArch64 |
| 7842 | * execution state. |
| 7843 | */ |
| 7844 | void aarch64_sync_64_to_32(CPUARMState *env) |
| 7845 | { |
| 7846 | int i; |
| 7847 | uint32_t mode = env->uncached_cpsr & CPSR_M; |
| 7848 | |
| 7849 | /* We can blanket copy X[0:7] to R[0:7] */ |
| 7850 | for (i = 0; i < 8; i++) { |
| 7851 | env->regs[i] = env->xregs[i]; |
| 7852 | } |
| 7853 | |
| 7854 | /* |
| 7855 | * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
| 7856 | * Otherwise, we copy x8-x12 into the banked user regs. |
| 7857 | */ |
| 7858 | if (mode == ARM_CPU_MODE_FIQ) { |
| 7859 | for (i = 8; i < 13; i++) { |
| 7860 | env->usr_regs[i - 8] = env->xregs[i]; |
| 7861 | } |
| 7862 | } else { |
| 7863 | for (i = 8; i < 13; i++) { |
| 7864 | env->regs[i] = env->xregs[i]; |
| 7865 | } |
| 7866 | } |
| 7867 | |
| 7868 | /* |
| 7869 | * Registers r13 & r14 depend on the current mode. |
| 7870 | * If we are in a given mode, we copy the corresponding x registers to r13 |
| 7871 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 |
| 7872 | * for the mode. |
| 7873 | */ |
| 7874 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| 7875 | env->regs[13] = env->xregs[13]; |
| 7876 | env->regs[14] = env->xregs[14]; |
| 7877 | } else { |
| 7878 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
| 7879 | |
| 7880 | /* |
| 7881 | * HYP is an exception in that it does not have its own banked r14 but |
| 7882 | * shares the USR r14 |
| 7883 | */ |
| 7884 | if (mode == ARM_CPU_MODE_HYP) { |
| 7885 | env->regs[14] = env->xregs[14]; |
| 7886 | } else { |
| 7887 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; |
| 7888 | } |
| 7889 | } |
| 7890 | |
| 7891 | if (mode == ARM_CPU_MODE_HYP) { |
| 7892 | env->regs[13] = env->xregs[15]; |
| 7893 | } else { |
| 7894 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
| 7895 | } |
| 7896 | |
| 7897 | if (mode == ARM_CPU_MODE_IRQ) { |
| 7898 | env->regs[14] = env->xregs[16]; |
| 7899 | env->regs[13] = env->xregs[17]; |
| 7900 | } else { |
| 7901 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
| 7902 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; |
| 7903 | } |
| 7904 | |
| 7905 | if (mode == ARM_CPU_MODE_SVC) { |
| 7906 | env->regs[14] = env->xregs[18]; |
| 7907 | env->regs[13] = env->xregs[19]; |
| 7908 | } else { |
| 7909 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
| 7910 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; |
| 7911 | } |
| 7912 | |
| 7913 | if (mode == ARM_CPU_MODE_ABT) { |
| 7914 | env->regs[14] = env->xregs[20]; |
| 7915 | env->regs[13] = env->xregs[21]; |
| 7916 | } else { |
| 7917 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
| 7918 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; |
| 7919 | } |
| 7920 | |
| 7921 | if (mode == ARM_CPU_MODE_UND) { |
| 7922 | env->regs[14] = env->xregs[22]; |
| 7923 | env->regs[13] = env->xregs[23]; |
| 7924 | } else { |
| 7925 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
| 7926 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
| 7927 | } |
| 7928 | |
| 7929 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| 7930 | * mode, then we can copy to r8-r14. Otherwise, we copy to the |
| 7931 | * FIQ bank for r8-r14. |
| 7932 | */ |
| 7933 | if (mode == ARM_CPU_MODE_FIQ) { |
| 7934 | for (i = 24; i < 31; i++) { |
| 7935 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ |
| 7936 | } |
| 7937 | } else { |
| 7938 | for (i = 24; i < 29; i++) { |
| 7939 | env->fiq_regs[i - 24] = env->xregs[i]; |
| 7940 | } |
| 7941 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; |
| 7942 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
| 7943 | } |
| 7944 | |
| 7945 | env->regs[15] = env->pc; |
| 7946 | } |
| 7947 | |
| 7948 | static void take_aarch32_exception(CPUARMState *env, int new_mode, |
| 7949 | uint32_t mask, uint32_t offset, |
| 7950 | uint32_t newpc) |
| 7951 | { |
| 7952 | /* Change the CPU state so as to actually take the exception. */ |
| 7953 | switch_mode(env, new_mode); |
| 7954 | /* |
| 7955 | * For exceptions taken to AArch32 we must clear the SS bit in both |
| 7956 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. |
| 7957 | */ |
| 7958 | env->uncached_cpsr &= ~PSTATE_SS; |
| 7959 | env->spsr = cpsr_read(env); |
| 7960 | /* Clear IT bits. */ |
| 7961 | env->condexec_bits = 0; |
| 7962 | /* Switch to the new mode, and to the correct instruction set. */ |
| 7963 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| 7964 | /* Set new mode endianness */ |
| 7965 | env->uncached_cpsr &= ~CPSR_E; |
| 7966 | if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { |
| 7967 | env->uncached_cpsr |= CPSR_E; |
| 7968 | } |
| 7969 | /* J and IL must always be cleared for exception entry */ |
| 7970 | env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); |
| 7971 | env->daif |= mask; |
| 7972 | |
| 7973 | if (new_mode == ARM_CPU_MODE_HYP) { |
| 7974 | env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; |
| 7975 | env->elr_el[2] = env->regs[15]; |
| 7976 | } else { |
| 7977 | /* |
| 7978 | * this is a lie, as there was no c1_sys on V4T/V5, but who cares |
| 7979 | * and we should just guard the thumb mode on V4 |
| 7980 | */ |
| 7981 | if (arm_feature(env, ARM_FEATURE_V4T)) { |
| 7982 | env->thumb = |
| 7983 | (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
| 7984 | } |
| 7985 | env->regs[14] = env->regs[15] + offset; |
| 7986 | } |
| 7987 | env->regs[15] = newpc; |
| 7988 | } |
| 7989 | |
| 7990 | static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) |
| 7991 | { |
| 7992 | /* |
| 7993 | * Handle exception entry to Hyp mode; this is sufficiently |
| 7994 | * different to entry to other AArch32 modes that we handle it |
| 7995 | * separately here. |
| 7996 | * |
| 7997 | * The vector table entry used is always the 0x14 Hyp mode entry point, |
| 7998 | * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. |
| 7999 | * The offset applied to the preferred return address is always zero |
| 8000 | * (see DDI0487C.a section G1.12.3). |
| 8001 | * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. |
| 8002 | */ |
| 8003 | uint32_t addr, mask; |
| 8004 | ARMCPU *cpu = ARM_CPU(cs); |
| 8005 | CPUARMState *env = &cpu->env; |
| 8006 | |
| 8007 | switch (cs->exception_index) { |
| 8008 | case EXCP_UDEF: |
| 8009 | addr = 0x04; |
| 8010 | break; |
| 8011 | case EXCP_SWI: |
| 8012 | addr = 0x14; |
| 8013 | break; |
| 8014 | case EXCP_BKPT: |
| 8015 | /* Fall through to prefetch abort. */ |
| 8016 | case EXCP_PREFETCH_ABORT: |
| 8017 | env->cp15.ifar_s = env->exception.vaddress; |
| 8018 | qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n" , |
| 8019 | (uint32_t)env->exception.vaddress); |
| 8020 | addr = 0x0c; |
| 8021 | break; |
| 8022 | case EXCP_DATA_ABORT: |
| 8023 | env->cp15.dfar_s = env->exception.vaddress; |
| 8024 | qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n" , |
| 8025 | (uint32_t)env->exception.vaddress); |
| 8026 | addr = 0x10; |
| 8027 | break; |
| 8028 | case EXCP_IRQ: |
| 8029 | addr = 0x18; |
| 8030 | break; |
| 8031 | case EXCP_FIQ: |
| 8032 | addr = 0x1c; |
| 8033 | break; |
| 8034 | case EXCP_HVC: |
| 8035 | addr = 0x08; |
| 8036 | break; |
| 8037 | case EXCP_HYP_TRAP: |
| 8038 | addr = 0x14; |
| 8039 | break; |
| 8040 | default: |
| 8041 | cpu_abort(cs, "Unhandled exception 0x%x\n" , cs->exception_index); |
| 8042 | } |
| 8043 | |
| 8044 | if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { |
| 8045 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
| 8046 | /* |
| 8047 | * QEMU syndrome values are v8-style. v7 has the IL bit |
| 8048 | * UNK/SBZP for "field not valid" cases, where v8 uses RES1. |
| 8049 | * If this is a v7 CPU, squash the IL bit in those cases. |
| 8050 | */ |
| 8051 | if (cs->exception_index == EXCP_PREFETCH_ABORT || |
| 8052 | (cs->exception_index == EXCP_DATA_ABORT && |
| 8053 | !(env->exception.syndrome & ARM_EL_ISV)) || |
| 8054 | syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { |
| 8055 | env->exception.syndrome &= ~ARM_EL_IL; |
| 8056 | } |
| 8057 | } |
| 8058 | env->cp15.esr_el[2] = env->exception.syndrome; |
| 8059 | } |
| 8060 | |
| 8061 | if (arm_current_el(env) != 2 && addr < 0x14) { |
| 8062 | addr = 0x14; |
| 8063 | } |
| 8064 | |
| 8065 | mask = 0; |
| 8066 | if (!(env->cp15.scr_el3 & SCR_EA)) { |
| 8067 | mask |= CPSR_A; |
| 8068 | } |
| 8069 | if (!(env->cp15.scr_el3 & SCR_IRQ)) { |
| 8070 | mask |= CPSR_I; |
| 8071 | } |
| 8072 | if (!(env->cp15.scr_el3 & SCR_FIQ)) { |
| 8073 | mask |= CPSR_F; |
| 8074 | } |
| 8075 | |
| 8076 | addr += env->cp15.hvbar; |
| 8077 | |
| 8078 | take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); |
| 8079 | } |
| 8080 | |
| 8081 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
| 8082 | { |
| 8083 | ARMCPU *cpu = ARM_CPU(cs); |
| 8084 | CPUARMState *env = &cpu->env; |
| 8085 | uint32_t addr; |
| 8086 | uint32_t mask; |
| 8087 | int new_mode; |
| 8088 | uint32_t offset; |
| 8089 | uint32_t moe; |
| 8090 | |
| 8091 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
| 8092 | switch (syn_get_ec(env->exception.syndrome)) { |
| 8093 | case EC_BREAKPOINT: |
| 8094 | case EC_BREAKPOINT_SAME_EL: |
| 8095 | moe = 1; |
| 8096 | break; |
| 8097 | case EC_WATCHPOINT: |
| 8098 | case EC_WATCHPOINT_SAME_EL: |
| 8099 | moe = 10; |
| 8100 | break; |
| 8101 | case EC_AA32_BKPT: |
| 8102 | moe = 3; |
| 8103 | break; |
| 8104 | case EC_VECTORCATCH: |
| 8105 | moe = 5; |
| 8106 | break; |
| 8107 | default: |
| 8108 | moe = 0; |
| 8109 | break; |
| 8110 | } |
| 8111 | |
| 8112 | if (moe) { |
| 8113 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); |
| 8114 | } |
| 8115 | |
| 8116 | if (env->exception.target_el == 2) { |
| 8117 | arm_cpu_do_interrupt_aarch32_hyp(cs); |
| 8118 | return; |
| 8119 | } |
| 8120 | |
| 8121 | switch (cs->exception_index) { |
| 8122 | case EXCP_UDEF: |
| 8123 | new_mode = ARM_CPU_MODE_UND; |
| 8124 | addr = 0x04; |
| 8125 | mask = CPSR_I; |
| 8126 | if (env->thumb) |
| 8127 | offset = 2; |
| 8128 | else |
| 8129 | offset = 4; |
| 8130 | break; |
| 8131 | case EXCP_SWI: |
| 8132 | new_mode = ARM_CPU_MODE_SVC; |
| 8133 | addr = 0x08; |
| 8134 | mask = CPSR_I; |
| 8135 | /* The PC already points to the next instruction. */ |
| 8136 | offset = 0; |
| 8137 | break; |
| 8138 | case EXCP_BKPT: |
| 8139 | /* Fall through to prefetch abort. */ |
| 8140 | case EXCP_PREFETCH_ABORT: |
| 8141 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
| 8142 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
| 8143 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n" , |
| 8144 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
| 8145 | new_mode = ARM_CPU_MODE_ABT; |
| 8146 | addr = 0x0c; |
| 8147 | mask = CPSR_A | CPSR_I; |
| 8148 | offset = 4; |
| 8149 | break; |
| 8150 | case EXCP_DATA_ABORT: |
| 8151 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
| 8152 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
| 8153 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n" , |
| 8154 | env->exception.fsr, |
| 8155 | (uint32_t)env->exception.vaddress); |
| 8156 | new_mode = ARM_CPU_MODE_ABT; |
| 8157 | addr = 0x10; |
| 8158 | mask = CPSR_A | CPSR_I; |
| 8159 | offset = 8; |
| 8160 | break; |
| 8161 | case EXCP_IRQ: |
| 8162 | new_mode = ARM_CPU_MODE_IRQ; |
| 8163 | addr = 0x18; |
| 8164 | /* Disable IRQ and imprecise data aborts. */ |
| 8165 | mask = CPSR_A | CPSR_I; |
| 8166 | offset = 4; |
| 8167 | if (env->cp15.scr_el3 & SCR_IRQ) { |
| 8168 | /* IRQ routed to monitor mode */ |
| 8169 | new_mode = ARM_CPU_MODE_MON; |
| 8170 | mask |= CPSR_F; |
| 8171 | } |
| 8172 | break; |
| 8173 | case EXCP_FIQ: |
| 8174 | new_mode = ARM_CPU_MODE_FIQ; |
| 8175 | addr = 0x1c; |
| 8176 | /* Disable FIQ, IRQ and imprecise data aborts. */ |
| 8177 | mask = CPSR_A | CPSR_I | CPSR_F; |
| 8178 | if (env->cp15.scr_el3 & SCR_FIQ) { |
| 8179 | /* FIQ routed to monitor mode */ |
| 8180 | new_mode = ARM_CPU_MODE_MON; |
| 8181 | } |
| 8182 | offset = 4; |
| 8183 | break; |
| 8184 | case EXCP_VIRQ: |
| 8185 | new_mode = ARM_CPU_MODE_IRQ; |
| 8186 | addr = 0x18; |
| 8187 | /* Disable IRQ and imprecise data aborts. */ |
| 8188 | mask = CPSR_A | CPSR_I; |
| 8189 | offset = 4; |
| 8190 | break; |
| 8191 | case EXCP_VFIQ: |
| 8192 | new_mode = ARM_CPU_MODE_FIQ; |
| 8193 | addr = 0x1c; |
| 8194 | /* Disable FIQ, IRQ and imprecise data aborts. */ |
| 8195 | mask = CPSR_A | CPSR_I | CPSR_F; |
| 8196 | offset = 4; |
| 8197 | break; |
| 8198 | case EXCP_SMC: |
| 8199 | new_mode = ARM_CPU_MODE_MON; |
| 8200 | addr = 0x08; |
| 8201 | mask = CPSR_A | CPSR_I | CPSR_F; |
| 8202 | offset = 0; |
| 8203 | break; |
| 8204 | default: |
| 8205 | cpu_abort(cs, "Unhandled exception 0x%x\n" , cs->exception_index); |
| 8206 | return; /* Never happens. Keep compiler happy. */ |
| 8207 | } |
| 8208 | |
| 8209 | if (new_mode == ARM_CPU_MODE_MON) { |
| 8210 | addr += env->cp15.mvbar; |
| 8211 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
| 8212 | /* High vectors. When enabled, base address cannot be remapped. */ |
| 8213 | addr += 0xffff0000; |
| 8214 | } else { |
| 8215 | /* ARM v7 architectures provide a vector base address register to remap |
| 8216 | * the interrupt vector table. |
| 8217 | * This register is only followed in non-monitor mode, and is banked. |
| 8218 | * Note: only bits 31:5 are valid. |
| 8219 | */ |
| 8220 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
| 8221 | } |
| 8222 | |
| 8223 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { |
| 8224 | env->cp15.scr_el3 &= ~SCR_NS; |
| 8225 | } |
| 8226 | |
| 8227 | take_aarch32_exception(env, new_mode, mask, offset, addr); |
| 8228 | } |
| 8229 | |
| 8230 | /* Handle exception entry to a target EL which is using AArch64 */ |
| 8231 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) |
| 8232 | { |
| 8233 | ARMCPU *cpu = ARM_CPU(cs); |
| 8234 | CPUARMState *env = &cpu->env; |
| 8235 | unsigned int new_el = env->exception.target_el; |
| 8236 | target_ulong addr = env->cp15.vbar_el[new_el]; |
| 8237 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); |
| 8238 | unsigned int cur_el = arm_current_el(env); |
| 8239 | |
| 8240 | /* |
| 8241 | * Note that new_el can never be 0. If cur_el is 0, then |
| 8242 | * el0_a64 is is_a64(), else el0_a64 is ignored. |
| 8243 | */ |
| 8244 | aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); |
| 8245 | |
| 8246 | if (cur_el < new_el) { |
| 8247 | /* Entry vector offset depends on whether the implemented EL |
| 8248 | * immediately lower than the target level is using AArch32 or AArch64 |
| 8249 | */ |
| 8250 | bool is_aa64; |
| 8251 | |
| 8252 | switch (new_el) { |
| 8253 | case 3: |
| 8254 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; |
| 8255 | break; |
| 8256 | case 2: |
| 8257 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; |
| 8258 | break; |
| 8259 | case 1: |
| 8260 | is_aa64 = is_a64(env); |
| 8261 | break; |
| 8262 | default: |
| 8263 | g_assert_not_reached(); |
| 8264 | } |
| 8265 | |
| 8266 | if (is_aa64) { |
| 8267 | addr += 0x400; |
| 8268 | } else { |
| 8269 | addr += 0x600; |
| 8270 | } |
| 8271 | } else if (pstate_read(env) & PSTATE_SP) { |
| 8272 | addr += 0x200; |
| 8273 | } |
| 8274 | |
| 8275 | switch (cs->exception_index) { |
| 8276 | case EXCP_PREFETCH_ABORT: |
| 8277 | case EXCP_DATA_ABORT: |
| 8278 | env->cp15.far_el[new_el] = env->exception.vaddress; |
| 8279 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n" , |
| 8280 | env->cp15.far_el[new_el]); |
| 8281 | /* fall through */ |
| 8282 | case EXCP_BKPT: |
| 8283 | case EXCP_UDEF: |
| 8284 | case EXCP_SWI: |
| 8285 | case EXCP_HVC: |
| 8286 | case EXCP_HYP_TRAP: |
| 8287 | case EXCP_SMC: |
| 8288 | if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { |
| 8289 | /* |
| 8290 | * QEMU internal FP/SIMD syndromes from AArch32 include the |
| 8291 | * TA and coproc fields which are only exposed if the exception |
| 8292 | * is taken to AArch32 Hyp mode. Mask them out to get a valid |
| 8293 | * AArch64 format syndrome. |
| 8294 | */ |
| 8295 | env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); |
| 8296 | } |
| 8297 | env->cp15.esr_el[new_el] = env->exception.syndrome; |
| 8298 | break; |
| 8299 | case EXCP_IRQ: |
| 8300 | case EXCP_VIRQ: |
| 8301 | addr += 0x80; |
| 8302 | break; |
| 8303 | case EXCP_FIQ: |
| 8304 | case EXCP_VFIQ: |
| 8305 | addr += 0x100; |
| 8306 | break; |
| 8307 | case EXCP_SEMIHOST: |
| 8308 | qemu_log_mask(CPU_LOG_INT, |
| 8309 | "...handling as semihosting call 0x%" PRIx64 "\n" , |
| 8310 | env->xregs[0]); |
| 8311 | env->xregs[0] = do_arm_semihosting(env); |
| 8312 | return; |
| 8313 | default: |
| 8314 | cpu_abort(cs, "Unhandled exception 0x%x\n" , cs->exception_index); |
| 8315 | } |
| 8316 | |
| 8317 | if (is_a64(env)) { |
| 8318 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); |
| 8319 | aarch64_save_sp(env, arm_current_el(env)); |
| 8320 | env->elr_el[new_el] = env->pc; |
| 8321 | } else { |
| 8322 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); |
| 8323 | env->elr_el[new_el] = env->regs[15]; |
| 8324 | |
| 8325 | aarch64_sync_32_to_64(env); |
| 8326 | |
| 8327 | env->condexec_bits = 0; |
| 8328 | } |
| 8329 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n" , |
| 8330 | env->elr_el[new_el]); |
| 8331 | |
| 8332 | pstate_write(env, PSTATE_DAIF | new_mode); |
| 8333 | env->aarch64 = 1; |
| 8334 | aarch64_restore_sp(env, new_el); |
| 8335 | |
| 8336 | env->pc = addr; |
| 8337 | |
| 8338 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n" , |
| 8339 | new_el, env->pc, pstate_read(env)); |
| 8340 | } |
| 8341 | |
| 8342 | static inline bool check_for_semihosting(CPUState *cs) |
| 8343 | { |
| 8344 | #ifdef CONFIG_TCG |
| 8345 | /* Check whether this exception is a semihosting call; if so |
| 8346 | * then handle it and return true; otherwise return false. |
| 8347 | */ |
| 8348 | ARMCPU *cpu = ARM_CPU(cs); |
| 8349 | CPUARMState *env = &cpu->env; |
| 8350 | |
| 8351 | if (is_a64(env)) { |
| 8352 | if (cs->exception_index == EXCP_SEMIHOST) { |
| 8353 | /* This is always the 64-bit semihosting exception. |
| 8354 | * The "is this usermode" and "is semihosting enabled" |
| 8355 | * checks have been done at translate time. |
| 8356 | */ |
| 8357 | qemu_log_mask(CPU_LOG_INT, |
| 8358 | "...handling as semihosting call 0x%" PRIx64 "\n" , |
| 8359 | env->xregs[0]); |
| 8360 | env->xregs[0] = do_arm_semihosting(env); |
| 8361 | return true; |
| 8362 | } |
| 8363 | return false; |
| 8364 | } else { |
| 8365 | uint32_t imm; |
| 8366 | |
| 8367 | /* Only intercept calls from privileged modes, to provide some |
| 8368 | * semblance of security. |
| 8369 | */ |
| 8370 | if (cs->exception_index != EXCP_SEMIHOST && |
| 8371 | (!semihosting_enabled() || |
| 8372 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { |
| 8373 | return false; |
| 8374 | } |
| 8375 | |
| 8376 | switch (cs->exception_index) { |
| 8377 | case EXCP_SEMIHOST: |
| 8378 | /* This is always a semihosting call; the "is this usermode" |
| 8379 | * and "is semihosting enabled" checks have been done at |
| 8380 | * translate time. |
| 8381 | */ |
| 8382 | break; |
| 8383 | case EXCP_SWI: |
| 8384 | /* Check for semihosting interrupt. */ |
| 8385 | if (env->thumb) { |
| 8386 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
| 8387 | & 0xff; |
| 8388 | if (imm == 0xab) { |
| 8389 | break; |
| 8390 | } |
| 8391 | } else { |
| 8392 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
| 8393 | & 0xffffff; |
| 8394 | if (imm == 0x123456) { |
| 8395 | break; |
| 8396 | } |
| 8397 | } |
| 8398 | return false; |
| 8399 | case EXCP_BKPT: |
| 8400 | /* See if this is a semihosting syscall. */ |
| 8401 | if (env->thumb) { |
| 8402 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
| 8403 | & 0xff; |
| 8404 | if (imm == 0xab) { |
| 8405 | env->regs[15] += 2; |
| 8406 | break; |
| 8407 | } |
| 8408 | } |
| 8409 | return false; |
| 8410 | default: |
| 8411 | return false; |
| 8412 | } |
| 8413 | |
| 8414 | qemu_log_mask(CPU_LOG_INT, |
| 8415 | "...handling as semihosting call 0x%x\n" , |
| 8416 | env->regs[0]); |
| 8417 | env->regs[0] = do_arm_semihosting(env); |
| 8418 | return true; |
| 8419 | } |
| 8420 | #else |
| 8421 | return false; |
| 8422 | #endif |
| 8423 | } |
| 8424 | |
| 8425 | /* Handle a CPU exception for A and R profile CPUs. |
| 8426 | * Do any appropriate logging, handle PSCI calls, and then hand off |
| 8427 | * to the AArch64-entry or AArch32-entry function depending on the |
| 8428 | * target exception level's register width. |
| 8429 | */ |
| 8430 | void arm_cpu_do_interrupt(CPUState *cs) |
| 8431 | { |
| 8432 | ARMCPU *cpu = ARM_CPU(cs); |
| 8433 | CPUARMState *env = &cpu->env; |
| 8434 | unsigned int new_el = env->exception.target_el; |
| 8435 | |
| 8436 | assert(!arm_feature(env, ARM_FEATURE_M)); |
| 8437 | |
| 8438 | arm_log_exception(cs->exception_index); |
| 8439 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n" , arm_current_el(env), |
| 8440 | new_el); |
| 8441 | if (qemu_loglevel_mask(CPU_LOG_INT) |
| 8442 | && !excp_is_internal(cs->exception_index)) { |
| 8443 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n" , |
| 8444 | syn_get_ec(env->exception.syndrome), |
| 8445 | env->exception.syndrome); |
| 8446 | } |
| 8447 | |
| 8448 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
| 8449 | arm_handle_psci_call(cpu); |
| 8450 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n" ); |
| 8451 | return; |
| 8452 | } |
| 8453 | |
| 8454 | /* Semihosting semantics depend on the register width of the |
| 8455 | * code that caused the exception, not the target exception level, |
| 8456 | * so must be handled here. |
| 8457 | */ |
| 8458 | if (check_for_semihosting(cs)) { |
| 8459 | return; |
| 8460 | } |
| 8461 | |
| 8462 | /* Hooks may change global state so BQL should be held, also the |
| 8463 | * BQL needs to be held for any modification of |
| 8464 | * cs->interrupt_request. |
| 8465 | */ |
| 8466 | g_assert(qemu_mutex_iothread_locked()); |
| 8467 | |
| 8468 | arm_call_pre_el_change_hook(cpu); |
| 8469 | |
| 8470 | assert(!excp_is_internal(cs->exception_index)); |
| 8471 | if (arm_el_is_aa64(env, new_el)) { |
| 8472 | arm_cpu_do_interrupt_aarch64(cs); |
| 8473 | } else { |
| 8474 | arm_cpu_do_interrupt_aarch32(cs); |
| 8475 | } |
| 8476 | |
| 8477 | arm_call_el_change_hook(cpu); |
| 8478 | |
| 8479 | if (!kvm_enabled()) { |
| 8480 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| 8481 | } |
| 8482 | } |
| 8483 | #endif /* !CONFIG_USER_ONLY */ |
| 8484 | |
| 8485 | /* Return the exception level which controls this address translation regime */ |
| 8486 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) |
| 8487 | { |
| 8488 | switch (mmu_idx) { |
| 8489 | case ARMMMUIdx_S2NS: |
| 8490 | case ARMMMUIdx_S1E2: |
| 8491 | return 2; |
| 8492 | case ARMMMUIdx_S1E3: |
| 8493 | return 3; |
| 8494 | case ARMMMUIdx_S1SE0: |
| 8495 | return arm_el_is_aa64(env, 3) ? 1 : 3; |
| 8496 | case ARMMMUIdx_S1SE1: |
| 8497 | case ARMMMUIdx_S1NSE0: |
| 8498 | case ARMMMUIdx_S1NSE1: |
| 8499 | case ARMMMUIdx_MPrivNegPri: |
| 8500 | case ARMMMUIdx_MUserNegPri: |
| 8501 | case ARMMMUIdx_MPriv: |
| 8502 | case ARMMMUIdx_MUser: |
| 8503 | case ARMMMUIdx_MSPrivNegPri: |
| 8504 | case ARMMMUIdx_MSUserNegPri: |
| 8505 | case ARMMMUIdx_MSPriv: |
| 8506 | case ARMMMUIdx_MSUser: |
| 8507 | return 1; |
| 8508 | default: |
| 8509 | g_assert_not_reached(); |
| 8510 | } |
| 8511 | } |
| 8512 | |
| 8513 | #ifndef CONFIG_USER_ONLY |
| 8514 | |
| 8515 | /* Return the SCTLR value which controls this address translation regime */ |
| 8516 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| 8517 | { |
| 8518 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; |
| 8519 | } |
| 8520 | |
| 8521 | /* Return true if the specified stage of address translation is disabled */ |
| 8522 | static inline bool regime_translation_disabled(CPUARMState *env, |
| 8523 | ARMMMUIdx mmu_idx) |
| 8524 | { |
| 8525 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 8526 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
| 8527 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
| 8528 | case R_V7M_MPU_CTRL_ENABLE_MASK: |
| 8529 | /* Enabled, but not for HardFault and NMI */ |
| 8530 | return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
| 8531 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
| 8532 | /* Enabled for all cases */ |
| 8533 | return false; |
| 8534 | case 0: |
| 8535 | default: |
| 8536 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but |
| 8537 | * we warned about that in armv7m_nvic.c when the guest set it. |
| 8538 | */ |
| 8539 | return true; |
| 8540 | } |
| 8541 | } |
| 8542 | |
| 8543 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 8544 | /* HCR.DC means HCR.VM behaves as 1 */ |
| 8545 | return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; |
| 8546 | } |
| 8547 | |
| 8548 | if (env->cp15.hcr_el2 & HCR_TGE) { |
| 8549 | /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ |
| 8550 | if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { |
| 8551 | return true; |
| 8552 | } |
| 8553 | } |
| 8554 | |
| 8555 | if ((env->cp15.hcr_el2 & HCR_DC) && |
| 8556 | (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { |
| 8557 | /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
| 8558 | return true; |
| 8559 | } |
| 8560 | |
| 8561 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
| 8562 | } |
| 8563 | |
| 8564 | static inline bool regime_translation_big_endian(CPUARMState *env, |
| 8565 | ARMMMUIdx mmu_idx) |
| 8566 | { |
| 8567 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; |
| 8568 | } |
| 8569 | |
| 8570 | /* Return the TTBR associated with this translation regime */ |
| 8571 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, |
| 8572 | int ttbrn) |
| 8573 | { |
| 8574 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 8575 | return env->cp15.vttbr_el2; |
| 8576 | } |
| 8577 | if (ttbrn == 0) { |
| 8578 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; |
| 8579 | } else { |
| 8580 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; |
| 8581 | } |
| 8582 | } |
| 8583 | |
| 8584 | #endif /* !CONFIG_USER_ONLY */ |
| 8585 | |
| 8586 | /* Return the TCR controlling this translation regime */ |
| 8587 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| 8588 | { |
| 8589 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 8590 | return &env->cp15.vtcr_el2; |
| 8591 | } |
| 8592 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; |
| 8593 | } |
| 8594 | |
| 8595 | /* Convert a possible stage1+2 MMU index into the appropriate |
| 8596 | * stage 1 MMU index |
| 8597 | */ |
| 8598 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) |
| 8599 | { |
| 8600 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| 8601 | mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); |
| 8602 | } |
| 8603 | return mmu_idx; |
| 8604 | } |
| 8605 | |
| 8606 | /* Return true if the translation regime is using LPAE format page tables */ |
| 8607 | static inline bool regime_using_lpae_format(CPUARMState *env, |
| 8608 | ARMMMUIdx mmu_idx) |
| 8609 | { |
| 8610 | int el = regime_el(env, mmu_idx); |
| 8611 | if (el == 2 || arm_el_is_aa64(env, el)) { |
| 8612 | return true; |
| 8613 | } |
| 8614 | if (arm_feature(env, ARM_FEATURE_LPAE) |
| 8615 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { |
| 8616 | return true; |
| 8617 | } |
| 8618 | return false; |
| 8619 | } |
| 8620 | |
| 8621 | /* Returns true if the stage 1 translation regime is using LPAE format page |
| 8622 | * tables. Used when raising alignment exceptions, whose FSR changes depending |
| 8623 | * on whether the long or short descriptor format is in use. */ |
| 8624 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) |
| 8625 | { |
| 8626 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
| 8627 | |
| 8628 | return regime_using_lpae_format(env, mmu_idx); |
| 8629 | } |
| 8630 | |
| 8631 | #ifndef CONFIG_USER_ONLY |
| 8632 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
| 8633 | { |
| 8634 | switch (mmu_idx) { |
| 8635 | case ARMMMUIdx_S1SE0: |
| 8636 | case ARMMMUIdx_S1NSE0: |
| 8637 | case ARMMMUIdx_MUser: |
| 8638 | case ARMMMUIdx_MSUser: |
| 8639 | case ARMMMUIdx_MUserNegPri: |
| 8640 | case ARMMMUIdx_MSUserNegPri: |
| 8641 | return true; |
| 8642 | default: |
| 8643 | return false; |
| 8644 | case ARMMMUIdx_S12NSE0: |
| 8645 | case ARMMMUIdx_S12NSE1: |
| 8646 | g_assert_not_reached(); |
| 8647 | } |
| 8648 | } |
| 8649 | |
| 8650 | /* Translate section/page access permissions to page |
| 8651 | * R/W protection flags |
| 8652 | * |
| 8653 | * @env: CPUARMState |
| 8654 | * @mmu_idx: MMU index indicating required translation regime |
| 8655 | * @ap: The 3-bit access permissions (AP[2:0]) |
| 8656 | * @domain_prot: The 2-bit domain access permissions |
| 8657 | */ |
| 8658 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, |
| 8659 | int ap, int domain_prot) |
| 8660 | { |
| 8661 | bool is_user = regime_is_user(env, mmu_idx); |
| 8662 | |
| 8663 | if (domain_prot == 3) { |
| 8664 | return PAGE_READ | PAGE_WRITE; |
| 8665 | } |
| 8666 | |
| 8667 | switch (ap) { |
| 8668 | case 0: |
| 8669 | if (arm_feature(env, ARM_FEATURE_V7)) { |
| 8670 | return 0; |
| 8671 | } |
| 8672 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
| 8673 | case SCTLR_S: |
| 8674 | return is_user ? 0 : PAGE_READ; |
| 8675 | case SCTLR_R: |
| 8676 | return PAGE_READ; |
| 8677 | default: |
| 8678 | return 0; |
| 8679 | } |
| 8680 | case 1: |
| 8681 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| 8682 | case 2: |
| 8683 | if (is_user) { |
| 8684 | return PAGE_READ; |
| 8685 | } else { |
| 8686 | return PAGE_READ | PAGE_WRITE; |
| 8687 | } |
| 8688 | case 3: |
| 8689 | return PAGE_READ | PAGE_WRITE; |
| 8690 | case 4: /* Reserved. */ |
| 8691 | return 0; |
| 8692 | case 5: |
| 8693 | return is_user ? 0 : PAGE_READ; |
| 8694 | case 6: |
| 8695 | return PAGE_READ; |
| 8696 | case 7: |
| 8697 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
| 8698 | return 0; |
| 8699 | } |
| 8700 | return PAGE_READ; |
| 8701 | default: |
| 8702 | g_assert_not_reached(); |
| 8703 | } |
| 8704 | } |
| 8705 | |
| 8706 | /* Translate section/page access permissions to page |
| 8707 | * R/W protection flags. |
| 8708 | * |
| 8709 | * @ap: The 2-bit simple AP (AP[2:1]) |
| 8710 | * @is_user: TRUE if accessing from PL0 |
| 8711 | */ |
| 8712 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
| 8713 | { |
| 8714 | switch (ap) { |
| 8715 | case 0: |
| 8716 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| 8717 | case 1: |
| 8718 | return PAGE_READ | PAGE_WRITE; |
| 8719 | case 2: |
| 8720 | return is_user ? 0 : PAGE_READ; |
| 8721 | case 3: |
| 8722 | return PAGE_READ; |
| 8723 | default: |
| 8724 | g_assert_not_reached(); |
| 8725 | } |
| 8726 | } |
| 8727 | |
| 8728 | static inline int |
| 8729 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) |
| 8730 | { |
| 8731 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); |
| 8732 | } |
| 8733 | |
| 8734 | /* Translate S2 section/page access permissions to protection flags |
| 8735 | * |
| 8736 | * @env: CPUARMState |
| 8737 | * @s2ap: The 2-bit stage2 access permissions (S2AP) |
| 8738 | * @xn: XN (execute-never) bit |
| 8739 | */ |
| 8740 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) |
| 8741 | { |
| 8742 | int prot = 0; |
| 8743 | |
| 8744 | if (s2ap & 1) { |
| 8745 | prot |= PAGE_READ; |
| 8746 | } |
| 8747 | if (s2ap & 2) { |
| 8748 | prot |= PAGE_WRITE; |
| 8749 | } |
| 8750 | if (!xn) { |
| 8751 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
| 8752 | prot |= PAGE_EXEC; |
| 8753 | } |
| 8754 | } |
| 8755 | return prot; |
| 8756 | } |
| 8757 | |
| 8758 | /* Translate section/page access permissions to protection flags |
| 8759 | * |
| 8760 | * @env: CPUARMState |
| 8761 | * @mmu_idx: MMU index indicating required translation regime |
| 8762 | * @is_aa64: TRUE if AArch64 |
| 8763 | * @ap: The 2-bit simple AP (AP[2:1]) |
| 8764 | * @ns: NS (non-secure) bit |
| 8765 | * @xn: XN (execute-never) bit |
| 8766 | * @pxn: PXN (privileged execute-never) bit |
| 8767 | */ |
| 8768 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, |
| 8769 | int ap, int ns, int xn, int pxn) |
| 8770 | { |
| 8771 | bool is_user = regime_is_user(env, mmu_idx); |
| 8772 | int prot_rw, user_rw; |
| 8773 | bool have_wxn; |
| 8774 | int wxn = 0; |
| 8775 | |
| 8776 | assert(mmu_idx != ARMMMUIdx_S2NS); |
| 8777 | |
| 8778 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); |
| 8779 | if (is_user) { |
| 8780 | prot_rw = user_rw; |
| 8781 | } else { |
| 8782 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); |
| 8783 | } |
| 8784 | |
| 8785 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { |
| 8786 | return prot_rw; |
| 8787 | } |
| 8788 | |
| 8789 | /* TODO have_wxn should be replaced with |
| 8790 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) |
| 8791 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE |
| 8792 | * compatible processors have EL2, which is required for [U]WXN. |
| 8793 | */ |
| 8794 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); |
| 8795 | |
| 8796 | if (have_wxn) { |
| 8797 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; |
| 8798 | } |
| 8799 | |
| 8800 | if (is_aa64) { |
| 8801 | switch (regime_el(env, mmu_idx)) { |
| 8802 | case 1: |
| 8803 | if (!is_user) { |
| 8804 | xn = pxn || (user_rw & PAGE_WRITE); |
| 8805 | } |
| 8806 | break; |
| 8807 | case 2: |
| 8808 | case 3: |
| 8809 | break; |
| 8810 | } |
| 8811 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 8812 | switch (regime_el(env, mmu_idx)) { |
| 8813 | case 1: |
| 8814 | case 3: |
| 8815 | if (is_user) { |
| 8816 | xn = xn || !(user_rw & PAGE_READ); |
| 8817 | } else { |
| 8818 | int uwxn = 0; |
| 8819 | if (have_wxn) { |
| 8820 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; |
| 8821 | } |
| 8822 | xn = xn || !(prot_rw & PAGE_READ) || pxn || |
| 8823 | (uwxn && (user_rw & PAGE_WRITE)); |
| 8824 | } |
| 8825 | break; |
| 8826 | case 2: |
| 8827 | break; |
| 8828 | } |
| 8829 | } else { |
| 8830 | xn = wxn = 0; |
| 8831 | } |
| 8832 | |
| 8833 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { |
| 8834 | return prot_rw; |
| 8835 | } |
| 8836 | return prot_rw | PAGE_EXEC; |
| 8837 | } |
| 8838 | |
| 8839 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
| 8840 | uint32_t *table, uint32_t address) |
| 8841 | { |
| 8842 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
| 8843 | TCR *tcr = regime_tcr(env, mmu_idx); |
| 8844 | |
| 8845 | if (address & tcr->mask) { |
| 8846 | if (tcr->raw_tcr & TTBCR_PD1) { |
| 8847 | /* Translation table walk disabled for TTBR1 */ |
| 8848 | return false; |
| 8849 | } |
| 8850 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
| 8851 | } else { |
| 8852 | if (tcr->raw_tcr & TTBCR_PD0) { |
| 8853 | /* Translation table walk disabled for TTBR0 */ |
| 8854 | return false; |
| 8855 | } |
| 8856 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
| 8857 | } |
| 8858 | *table |= (address >> 18) & 0x3ffc; |
| 8859 | return true; |
| 8860 | } |
| 8861 | |
| 8862 | /* Translate a S1 pagetable walk through S2 if needed. */ |
| 8863 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, |
| 8864 | hwaddr addr, MemTxAttrs txattrs, |
| 8865 | ARMMMUFaultInfo *fi) |
| 8866 | { |
| 8867 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && |
| 8868 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| 8869 | target_ulong s2size; |
| 8870 | hwaddr s2pa; |
| 8871 | int s2prot; |
| 8872 | int ret; |
| 8873 | ARMCacheAttrs cacheattrs = {}; |
| 8874 | ARMCacheAttrs *pcacheattrs = NULL; |
| 8875 | |
| 8876 | if (env->cp15.hcr_el2 & HCR_PTW) { |
| 8877 | /* |
| 8878 | * PTW means we must fault if this S1 walk touches S2 Device |
| 8879 | * memory; otherwise we don't care about the attributes and can |
| 8880 | * save the S2 translation the effort of computing them. |
| 8881 | */ |
| 8882 | pcacheattrs = &cacheattrs; |
| 8883 | } |
| 8884 | |
| 8885 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, |
| 8886 | &txattrs, &s2prot, &s2size, fi, pcacheattrs); |
| 8887 | if (ret) { |
| 8888 | assert(fi->type != ARMFault_None); |
| 8889 | fi->s2addr = addr; |
| 8890 | fi->stage2 = true; |
| 8891 | fi->s1ptw = true; |
| 8892 | return ~0; |
| 8893 | } |
| 8894 | if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { |
| 8895 | /* Access was to Device memory: generate Permission fault */ |
| 8896 | fi->type = ARMFault_Permission; |
| 8897 | fi->s2addr = addr; |
| 8898 | fi->stage2 = true; |
| 8899 | fi->s1ptw = true; |
| 8900 | return ~0; |
| 8901 | } |
| 8902 | addr = s2pa; |
| 8903 | } |
| 8904 | return addr; |
| 8905 | } |
| 8906 | |
| 8907 | /* All loads done in the course of a page table walk go through here. */ |
| 8908 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| 8909 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
| 8910 | { |
| 8911 | ARMCPU *cpu = ARM_CPU(cs); |
| 8912 | CPUARMState *env = &cpu->env; |
| 8913 | MemTxAttrs attrs = {}; |
| 8914 | MemTxResult result = MEMTX_OK; |
| 8915 | AddressSpace *as; |
| 8916 | uint32_t data; |
| 8917 | |
| 8918 | attrs.secure = is_secure; |
| 8919 | as = arm_addressspace(cs, attrs); |
| 8920 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
| 8921 | if (fi->s1ptw) { |
| 8922 | return 0; |
| 8923 | } |
| 8924 | if (regime_translation_big_endian(env, mmu_idx)) { |
| 8925 | data = address_space_ldl_be(as, addr, attrs, &result); |
| 8926 | } else { |
| 8927 | data = address_space_ldl_le(as, addr, attrs, &result); |
| 8928 | } |
| 8929 | if (result == MEMTX_OK) { |
| 8930 | return data; |
| 8931 | } |
| 8932 | fi->type = ARMFault_SyncExternalOnWalk; |
| 8933 | fi->ea = arm_extabort_type(result); |
| 8934 | return 0; |
| 8935 | } |
| 8936 | |
| 8937 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| 8938 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
| 8939 | { |
| 8940 | ARMCPU *cpu = ARM_CPU(cs); |
| 8941 | CPUARMState *env = &cpu->env; |
| 8942 | MemTxAttrs attrs = {}; |
| 8943 | MemTxResult result = MEMTX_OK; |
| 8944 | AddressSpace *as; |
| 8945 | uint64_t data; |
| 8946 | |
| 8947 | attrs.secure = is_secure; |
| 8948 | as = arm_addressspace(cs, attrs); |
| 8949 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
| 8950 | if (fi->s1ptw) { |
| 8951 | return 0; |
| 8952 | } |
| 8953 | if (regime_translation_big_endian(env, mmu_idx)) { |
| 8954 | data = address_space_ldq_be(as, addr, attrs, &result); |
| 8955 | } else { |
| 8956 | data = address_space_ldq_le(as, addr, attrs, &result); |
| 8957 | } |
| 8958 | if (result == MEMTX_OK) { |
| 8959 | return data; |
| 8960 | } |
| 8961 | fi->type = ARMFault_SyncExternalOnWalk; |
| 8962 | fi->ea = arm_extabort_type(result); |
| 8963 | return 0; |
| 8964 | } |
| 8965 | |
| 8966 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
| 8967 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 8968 | hwaddr *phys_ptr, int *prot, |
| 8969 | target_ulong *page_size, |
| 8970 | ARMMMUFaultInfo *fi) |
| 8971 | { |
| 8972 | CPUState *cs = env_cpu(env); |
| 8973 | int level = 1; |
| 8974 | uint32_t table; |
| 8975 | uint32_t desc; |
| 8976 | int type; |
| 8977 | int ap; |
| 8978 | int domain = 0; |
| 8979 | int domain_prot; |
| 8980 | hwaddr phys_addr; |
| 8981 | uint32_t dacr; |
| 8982 | |
| 8983 | /* Pagetable walk. */ |
| 8984 | /* Lookup l1 descriptor. */ |
| 8985 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| 8986 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| 8987 | fi->type = ARMFault_Translation; |
| 8988 | goto do_fault; |
| 8989 | } |
| 8990 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| 8991 | mmu_idx, fi); |
| 8992 | if (fi->type != ARMFault_None) { |
| 8993 | goto do_fault; |
| 8994 | } |
| 8995 | type = (desc & 3); |
| 8996 | domain = (desc >> 5) & 0x0f; |
| 8997 | if (regime_el(env, mmu_idx) == 1) { |
| 8998 | dacr = env->cp15.dacr_ns; |
| 8999 | } else { |
| 9000 | dacr = env->cp15.dacr_s; |
| 9001 | } |
| 9002 | domain_prot = (dacr >> (domain * 2)) & 3; |
| 9003 | if (type == 0) { |
| 9004 | /* Section translation fault. */ |
| 9005 | fi->type = ARMFault_Translation; |
| 9006 | goto do_fault; |
| 9007 | } |
| 9008 | if (type != 2) { |
| 9009 | level = 2; |
| 9010 | } |
| 9011 | if (domain_prot == 0 || domain_prot == 2) { |
| 9012 | fi->type = ARMFault_Domain; |
| 9013 | goto do_fault; |
| 9014 | } |
| 9015 | if (type == 2) { |
| 9016 | /* 1Mb section. */ |
| 9017 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| 9018 | ap = (desc >> 10) & 3; |
| 9019 | *page_size = 1024 * 1024; |
| 9020 | } else { |
| 9021 | /* Lookup l2 entry. */ |
| 9022 | if (type == 1) { |
| 9023 | /* Coarse pagetable. */ |
| 9024 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| 9025 | } else { |
| 9026 | /* Fine pagetable. */ |
| 9027 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| 9028 | } |
| 9029 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| 9030 | mmu_idx, fi); |
| 9031 | if (fi->type != ARMFault_None) { |
| 9032 | goto do_fault; |
| 9033 | } |
| 9034 | switch (desc & 3) { |
| 9035 | case 0: /* Page translation fault. */ |
| 9036 | fi->type = ARMFault_Translation; |
| 9037 | goto do_fault; |
| 9038 | case 1: /* 64k page. */ |
| 9039 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| 9040 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| 9041 | *page_size = 0x10000; |
| 9042 | break; |
| 9043 | case 2: /* 4k page. */ |
| 9044 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 9045 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
| 9046 | *page_size = 0x1000; |
| 9047 | break; |
| 9048 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
| 9049 | if (type == 1) { |
| 9050 | /* ARMv6/XScale extended small page format */ |
| 9051 | if (arm_feature(env, ARM_FEATURE_XSCALE) |
| 9052 | || arm_feature(env, ARM_FEATURE_V6)) { |
| 9053 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 9054 | *page_size = 0x1000; |
| 9055 | } else { |
| 9056 | /* UNPREDICTABLE in ARMv5; we choose to take a |
| 9057 | * page translation fault. |
| 9058 | */ |
| 9059 | fi->type = ARMFault_Translation; |
| 9060 | goto do_fault; |
| 9061 | } |
| 9062 | } else { |
| 9063 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| 9064 | *page_size = 0x400; |
| 9065 | } |
| 9066 | ap = (desc >> 4) & 3; |
| 9067 | break; |
| 9068 | default: |
| 9069 | /* Never happens, but compiler isn't smart enough to tell. */ |
| 9070 | abort(); |
| 9071 | } |
| 9072 | } |
| 9073 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| 9074 | *prot |= *prot ? PAGE_EXEC : 0; |
| 9075 | if (!(*prot & (1 << access_type))) { |
| 9076 | /* Access permission fault. */ |
| 9077 | fi->type = ARMFault_Permission; |
| 9078 | goto do_fault; |
| 9079 | } |
| 9080 | *phys_ptr = phys_addr; |
| 9081 | return false; |
| 9082 | do_fault: |
| 9083 | fi->domain = domain; |
| 9084 | fi->level = level; |
| 9085 | return true; |
| 9086 | } |
| 9087 | |
| 9088 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
| 9089 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 9090 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| 9091 | target_ulong *page_size, ARMMMUFaultInfo *fi) |
| 9092 | { |
| 9093 | CPUState *cs = env_cpu(env); |
| 9094 | int level = 1; |
| 9095 | uint32_t table; |
| 9096 | uint32_t desc; |
| 9097 | uint32_t xn; |
| 9098 | uint32_t pxn = 0; |
| 9099 | int type; |
| 9100 | int ap; |
| 9101 | int domain = 0; |
| 9102 | int domain_prot; |
| 9103 | hwaddr phys_addr; |
| 9104 | uint32_t dacr; |
| 9105 | bool ns; |
| 9106 | |
| 9107 | /* Pagetable walk. */ |
| 9108 | /* Lookup l1 descriptor. */ |
| 9109 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| 9110 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| 9111 | fi->type = ARMFault_Translation; |
| 9112 | goto do_fault; |
| 9113 | } |
| 9114 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| 9115 | mmu_idx, fi); |
| 9116 | if (fi->type != ARMFault_None) { |
| 9117 | goto do_fault; |
| 9118 | } |
| 9119 | type = (desc & 3); |
| 9120 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
| 9121 | /* Section translation fault, or attempt to use the encoding |
| 9122 | * which is Reserved on implementations without PXN. |
| 9123 | */ |
| 9124 | fi->type = ARMFault_Translation; |
| 9125 | goto do_fault; |
| 9126 | } |
| 9127 | if ((type == 1) || !(desc & (1 << 18))) { |
| 9128 | /* Page or Section. */ |
| 9129 | domain = (desc >> 5) & 0x0f; |
| 9130 | } |
| 9131 | if (regime_el(env, mmu_idx) == 1) { |
| 9132 | dacr = env->cp15.dacr_ns; |
| 9133 | } else { |
| 9134 | dacr = env->cp15.dacr_s; |
| 9135 | } |
| 9136 | if (type == 1) { |
| 9137 | level = 2; |
| 9138 | } |
| 9139 | domain_prot = (dacr >> (domain * 2)) & 3; |
| 9140 | if (domain_prot == 0 || domain_prot == 2) { |
| 9141 | /* Section or Page domain fault */ |
| 9142 | fi->type = ARMFault_Domain; |
| 9143 | goto do_fault; |
| 9144 | } |
| 9145 | if (type != 1) { |
| 9146 | if (desc & (1 << 18)) { |
| 9147 | /* Supersection. */ |
| 9148 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| 9149 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
| 9150 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; |
| 9151 | *page_size = 0x1000000; |
| 9152 | } else { |
| 9153 | /* Section. */ |
| 9154 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| 9155 | *page_size = 0x100000; |
| 9156 | } |
| 9157 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| 9158 | xn = desc & (1 << 4); |
| 9159 | pxn = desc & 1; |
| 9160 | ns = extract32(desc, 19, 1); |
| 9161 | } else { |
| 9162 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
| 9163 | pxn = (desc >> 2) & 1; |
| 9164 | } |
| 9165 | ns = extract32(desc, 3, 1); |
| 9166 | /* Lookup l2 entry. */ |
| 9167 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| 9168 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| 9169 | mmu_idx, fi); |
| 9170 | if (fi->type != ARMFault_None) { |
| 9171 | goto do_fault; |
| 9172 | } |
| 9173 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| 9174 | switch (desc & 3) { |
| 9175 | case 0: /* Page translation fault. */ |
| 9176 | fi->type = ARMFault_Translation; |
| 9177 | goto do_fault; |
| 9178 | case 1: /* 64k page. */ |
| 9179 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| 9180 | xn = desc & (1 << 15); |
| 9181 | *page_size = 0x10000; |
| 9182 | break; |
| 9183 | case 2: case 3: /* 4k page. */ |
| 9184 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 9185 | xn = desc & 1; |
| 9186 | *page_size = 0x1000; |
| 9187 | break; |
| 9188 | default: |
| 9189 | /* Never happens, but compiler isn't smart enough to tell. */ |
| 9190 | abort(); |
| 9191 | } |
| 9192 | } |
| 9193 | if (domain_prot == 3) { |
| 9194 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| 9195 | } else { |
| 9196 | if (pxn && !regime_is_user(env, mmu_idx)) { |
| 9197 | xn = 1; |
| 9198 | } |
| 9199 | if (xn && access_type == MMU_INST_FETCH) { |
| 9200 | fi->type = ARMFault_Permission; |
| 9201 | goto do_fault; |
| 9202 | } |
| 9203 | |
| 9204 | if (arm_feature(env, ARM_FEATURE_V6K) && |
| 9205 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { |
| 9206 | /* The simplified model uses AP[0] as an access control bit. */ |
| 9207 | if ((ap & 1) == 0) { |
| 9208 | /* Access flag fault. */ |
| 9209 | fi->type = ARMFault_AccessFlag; |
| 9210 | goto do_fault; |
| 9211 | } |
| 9212 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); |
| 9213 | } else { |
| 9214 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| 9215 | } |
| 9216 | if (*prot && !xn) { |
| 9217 | *prot |= PAGE_EXEC; |
| 9218 | } |
| 9219 | if (!(*prot & (1 << access_type))) { |
| 9220 | /* Access permission fault. */ |
| 9221 | fi->type = ARMFault_Permission; |
| 9222 | goto do_fault; |
| 9223 | } |
| 9224 | } |
| 9225 | if (ns) { |
| 9226 | /* The NS bit will (as required by the architecture) have no effect if |
| 9227 | * the CPU doesn't support TZ or this is a non-secure translation |
| 9228 | * regime, because the attribute will already be non-secure. |
| 9229 | */ |
| 9230 | attrs->secure = false; |
| 9231 | } |
| 9232 | *phys_ptr = phys_addr; |
| 9233 | return false; |
| 9234 | do_fault: |
| 9235 | fi->domain = domain; |
| 9236 | fi->level = level; |
| 9237 | return true; |
| 9238 | } |
| 9239 | |
| 9240 | /* |
| 9241 | * check_s2_mmu_setup |
| 9242 | * @cpu: ARMCPU |
| 9243 | * @is_aa64: True if the translation regime is in AArch64 state |
| 9244 | * @startlevel: Suggested starting level |
| 9245 | * @inputsize: Bitsize of IPAs |
| 9246 | * @stride: Page-table stride (See the ARM ARM) |
| 9247 | * |
| 9248 | * Returns true if the suggested S2 translation parameters are OK and |
| 9249 | * false otherwise. |
| 9250 | */ |
| 9251 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
| 9252 | int inputsize, int stride) |
| 9253 | { |
| 9254 | const int grainsize = stride + 3; |
| 9255 | int startsizecheck; |
| 9256 | |
| 9257 | /* Negative levels are never allowed. */ |
| 9258 | if (level < 0) { |
| 9259 | return false; |
| 9260 | } |
| 9261 | |
| 9262 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
| 9263 | if (startsizecheck < 1 || startsizecheck > stride + 4) { |
| 9264 | return false; |
| 9265 | } |
| 9266 | |
| 9267 | if (is_aa64) { |
| 9268 | CPUARMState *env = &cpu->env; |
| 9269 | unsigned int pamax = arm_pamax(cpu); |
| 9270 | |
| 9271 | switch (stride) { |
| 9272 | case 13: /* 64KB Pages. */ |
| 9273 | if (level == 0 || (level == 1 && pamax <= 42)) { |
| 9274 | return false; |
| 9275 | } |
| 9276 | break; |
| 9277 | case 11: /* 16KB Pages. */ |
| 9278 | if (level == 0 || (level == 1 && pamax <= 40)) { |
| 9279 | return false; |
| 9280 | } |
| 9281 | break; |
| 9282 | case 9: /* 4KB Pages. */ |
| 9283 | if (level == 0 && pamax <= 42) { |
| 9284 | return false; |
| 9285 | } |
| 9286 | break; |
| 9287 | default: |
| 9288 | g_assert_not_reached(); |
| 9289 | } |
| 9290 | |
| 9291 | /* Inputsize checks. */ |
| 9292 | if (inputsize > pamax && |
| 9293 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { |
| 9294 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ |
| 9295 | return false; |
| 9296 | } |
| 9297 | } else { |
| 9298 | /* AArch32 only supports 4KB pages. Assert on that. */ |
| 9299 | assert(stride == 9); |
| 9300 | |
| 9301 | if (level == 0) { |
| 9302 | return false; |
| 9303 | } |
| 9304 | } |
| 9305 | return true; |
| 9306 | } |
| 9307 | |
| 9308 | /* Translate from the 4-bit stage 2 representation of |
| 9309 | * memory attributes (without cache-allocation hints) to |
| 9310 | * the 8-bit representation of the stage 1 MAIR registers |
| 9311 | * (which includes allocation hints). |
| 9312 | * |
| 9313 | * ref: shared/translation/attrs/S2AttrDecode() |
| 9314 | * .../S2ConvertAttrsHints() |
| 9315 | */ |
| 9316 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) |
| 9317 | { |
| 9318 | uint8_t hiattr = extract32(s2attrs, 2, 2); |
| 9319 | uint8_t loattr = extract32(s2attrs, 0, 2); |
| 9320 | uint8_t hihint = 0, lohint = 0; |
| 9321 | |
| 9322 | if (hiattr != 0) { /* normal memory */ |
| 9323 | if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ |
| 9324 | hiattr = loattr = 1; /* non-cacheable */ |
| 9325 | } else { |
| 9326 | if (hiattr != 1) { /* Write-through or write-back */ |
| 9327 | hihint = 3; /* RW allocate */ |
| 9328 | } |
| 9329 | if (loattr != 1) { /* Write-through or write-back */ |
| 9330 | lohint = 3; /* RW allocate */ |
| 9331 | } |
| 9332 | } |
| 9333 | } |
| 9334 | |
| 9335 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; |
| 9336 | } |
| 9337 | #endif /* !CONFIG_USER_ONLY */ |
| 9338 | |
| 9339 | ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, |
| 9340 | ARMMMUIdx mmu_idx) |
| 9341 | { |
| 9342 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
| 9343 | uint32_t el = regime_el(env, mmu_idx); |
| 9344 | bool tbi, tbid, epd, hpd, using16k, using64k; |
| 9345 | int select, tsz; |
| 9346 | |
| 9347 | /* |
| 9348 | * Bit 55 is always between the two regions, and is canonical for |
| 9349 | * determining if address tagging is enabled. |
| 9350 | */ |
| 9351 | select = extract64(va, 55, 1); |
| 9352 | |
| 9353 | if (el > 1) { |
| 9354 | tsz = extract32(tcr, 0, 6); |
| 9355 | using64k = extract32(tcr, 14, 1); |
| 9356 | using16k = extract32(tcr, 15, 1); |
| 9357 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 9358 | /* VTCR_EL2 */ |
| 9359 | tbi = tbid = hpd = false; |
| 9360 | } else { |
| 9361 | tbi = extract32(tcr, 20, 1); |
| 9362 | hpd = extract32(tcr, 24, 1); |
| 9363 | tbid = extract32(tcr, 29, 1); |
| 9364 | } |
| 9365 | epd = false; |
| 9366 | } else if (!select) { |
| 9367 | tsz = extract32(tcr, 0, 6); |
| 9368 | epd = extract32(tcr, 7, 1); |
| 9369 | using64k = extract32(tcr, 14, 1); |
| 9370 | using16k = extract32(tcr, 15, 1); |
| 9371 | tbi = extract64(tcr, 37, 1); |
| 9372 | hpd = extract64(tcr, 41, 1); |
| 9373 | tbid = extract64(tcr, 51, 1); |
| 9374 | } else { |
| 9375 | int tg = extract32(tcr, 30, 2); |
| 9376 | using16k = tg == 1; |
| 9377 | using64k = tg == 3; |
| 9378 | tsz = extract32(tcr, 16, 6); |
| 9379 | epd = extract32(tcr, 23, 1); |
| 9380 | tbi = extract64(tcr, 38, 1); |
| 9381 | hpd = extract64(tcr, 42, 1); |
| 9382 | tbid = extract64(tcr, 52, 1); |
| 9383 | } |
| 9384 | tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ |
| 9385 | tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ |
| 9386 | |
| 9387 | return (ARMVAParameters) { |
| 9388 | .tsz = tsz, |
| 9389 | .select = select, |
| 9390 | .tbi = tbi, |
| 9391 | .tbid = tbid, |
| 9392 | .epd = epd, |
| 9393 | .hpd = hpd, |
| 9394 | .using16k = using16k, |
| 9395 | .using64k = using64k, |
| 9396 | }; |
| 9397 | } |
| 9398 | |
| 9399 | ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, |
| 9400 | ARMMMUIdx mmu_idx, bool data) |
| 9401 | { |
| 9402 | ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); |
| 9403 | |
| 9404 | /* Present TBI as a composite with TBID. */ |
| 9405 | ret.tbi &= (data || !ret.tbid); |
| 9406 | return ret; |
| 9407 | } |
| 9408 | |
| 9409 | #ifndef CONFIG_USER_ONLY |
| 9410 | static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
| 9411 | ARMMMUIdx mmu_idx) |
| 9412 | { |
| 9413 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
| 9414 | uint32_t el = regime_el(env, mmu_idx); |
| 9415 | int select, tsz; |
| 9416 | bool epd, hpd; |
| 9417 | |
| 9418 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 9419 | /* VTCR */ |
| 9420 | bool sext = extract32(tcr, 4, 1); |
| 9421 | bool sign = extract32(tcr, 3, 1); |
| 9422 | |
| 9423 | /* |
| 9424 | * If the sign-extend bit is not the same as t0sz[3], the result |
| 9425 | * is unpredictable. Flag this as a guest error. |
| 9426 | */ |
| 9427 | if (sign != sext) { |
| 9428 | qemu_log_mask(LOG_GUEST_ERROR, |
| 9429 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n" ); |
| 9430 | } |
| 9431 | tsz = sextract32(tcr, 0, 4) + 8; |
| 9432 | select = 0; |
| 9433 | hpd = false; |
| 9434 | epd = false; |
| 9435 | } else if (el == 2) { |
| 9436 | /* HTCR */ |
| 9437 | tsz = extract32(tcr, 0, 3); |
| 9438 | select = 0; |
| 9439 | hpd = extract64(tcr, 24, 1); |
| 9440 | epd = false; |
| 9441 | } else { |
| 9442 | int t0sz = extract32(tcr, 0, 3); |
| 9443 | int t1sz = extract32(tcr, 16, 3); |
| 9444 | |
| 9445 | if (t1sz == 0) { |
| 9446 | select = va > (0xffffffffu >> t0sz); |
| 9447 | } else { |
| 9448 | /* Note that we will detect errors later. */ |
| 9449 | select = va >= ~(0xffffffffu >> t1sz); |
| 9450 | } |
| 9451 | if (!select) { |
| 9452 | tsz = t0sz; |
| 9453 | epd = extract32(tcr, 7, 1); |
| 9454 | hpd = extract64(tcr, 41, 1); |
| 9455 | } else { |
| 9456 | tsz = t1sz; |
| 9457 | epd = extract32(tcr, 23, 1); |
| 9458 | hpd = extract64(tcr, 42, 1); |
| 9459 | } |
| 9460 | /* For aarch32, hpd0 is not enabled without t2e as well. */ |
| 9461 | hpd &= extract32(tcr, 6, 1); |
| 9462 | } |
| 9463 | |
| 9464 | return (ARMVAParameters) { |
| 9465 | .tsz = tsz, |
| 9466 | .select = select, |
| 9467 | .epd = epd, |
| 9468 | .hpd = hpd, |
| 9469 | }; |
| 9470 | } |
| 9471 | |
| 9472 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| 9473 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 9474 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| 9475 | target_ulong *page_size_ptr, |
| 9476 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
| 9477 | { |
| 9478 | ARMCPU *cpu = env_archcpu(env); |
| 9479 | CPUState *cs = CPU(cpu); |
| 9480 | /* Read an LPAE long-descriptor translation table. */ |
| 9481 | ARMFaultType fault_type = ARMFault_Translation; |
| 9482 | uint32_t level; |
| 9483 | ARMVAParameters param; |
| 9484 | uint64_t ttbr; |
| 9485 | hwaddr descaddr, indexmask, indexmask_grainsize; |
| 9486 | uint32_t tableattrs; |
| 9487 | target_ulong page_size; |
| 9488 | uint32_t attrs; |
| 9489 | int32_t stride; |
| 9490 | int addrsize, inputsize; |
| 9491 | TCR *tcr = regime_tcr(env, mmu_idx); |
| 9492 | int ap, ns, xn, pxn; |
| 9493 | uint32_t el = regime_el(env, mmu_idx); |
| 9494 | bool ttbr1_valid; |
| 9495 | uint64_t descaddrmask; |
| 9496 | bool aarch64 = arm_el_is_aa64(env, el); |
| 9497 | bool guarded = false; |
| 9498 | |
| 9499 | /* TODO: |
| 9500 | * This code does not handle the different format TCR for VTCR_EL2. |
| 9501 | * This code also does not support shareability levels. |
| 9502 | * Attribute and permission bit handling should also be checked when adding |
| 9503 | * support for those page table walks. |
| 9504 | */ |
| 9505 | if (aarch64) { |
| 9506 | param = aa64_va_parameters(env, address, mmu_idx, |
| 9507 | access_type != MMU_INST_FETCH); |
| 9508 | level = 0; |
| 9509 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it |
| 9510 | * invalid. |
| 9511 | */ |
| 9512 | ttbr1_valid = (el < 2); |
| 9513 | addrsize = 64 - 8 * param.tbi; |
| 9514 | inputsize = 64 - param.tsz; |
| 9515 | } else { |
| 9516 | param = aa32_va_parameters(env, address, mmu_idx); |
| 9517 | level = 1; |
| 9518 | /* There is no TTBR1 for EL2 */ |
| 9519 | ttbr1_valid = (el != 2); |
| 9520 | addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); |
| 9521 | inputsize = addrsize - param.tsz; |
| 9522 | } |
| 9523 | |
| 9524 | /* |
| 9525 | * We determined the region when collecting the parameters, but we |
| 9526 | * have not yet validated that the address is valid for the region. |
| 9527 | * Extract the top bits and verify that they all match select. |
| 9528 | * |
| 9529 | * For aa32, if inputsize == addrsize, then we have selected the |
| 9530 | * region by exclusion in aa32_va_parameters and there is no more |
| 9531 | * validation to do here. |
| 9532 | */ |
| 9533 | if (inputsize < addrsize) { |
| 9534 | target_ulong top_bits = sextract64(address, inputsize, |
| 9535 | addrsize - inputsize); |
| 9536 | if (-top_bits != param.select || (param.select && !ttbr1_valid)) { |
| 9537 | /* The gap between the two regions is a Translation fault */ |
| 9538 | fault_type = ARMFault_Translation; |
| 9539 | goto do_fault; |
| 9540 | } |
| 9541 | } |
| 9542 | |
| 9543 | if (param.using64k) { |
| 9544 | stride = 13; |
| 9545 | } else if (param.using16k) { |
| 9546 | stride = 11; |
| 9547 | } else { |
| 9548 | stride = 9; |
| 9549 | } |
| 9550 | |
| 9551 | /* Note that QEMU ignores shareability and cacheability attributes, |
| 9552 | * so we don't need to do anything with the SH, ORGN, IRGN fields |
| 9553 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| 9554 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| 9555 | * implement any ASID-like capability so we can ignore it (instead |
| 9556 | * we will always flush the TLB any time the ASID is changed). |
| 9557 | */ |
| 9558 | ttbr = regime_ttbr(env, mmu_idx, param.select); |
| 9559 | |
| 9560 | /* Here we should have set up all the parameters for the translation: |
| 9561 | * inputsize, ttbr, epd, stride, tbi |
| 9562 | */ |
| 9563 | |
| 9564 | if (param.epd) { |
| 9565 | /* Translation table walk disabled => Translation fault on TLB miss |
| 9566 | * Note: This is always 0 on 64-bit EL2 and EL3. |
| 9567 | */ |
| 9568 | goto do_fault; |
| 9569 | } |
| 9570 | |
| 9571 | if (mmu_idx != ARMMMUIdx_S2NS) { |
| 9572 | /* The starting level depends on the virtual address size (which can |
| 9573 | * be up to 48 bits) and the translation granule size. It indicates |
| 9574 | * the number of strides (stride bits at a time) needed to |
| 9575 | * consume the bits of the input address. In the pseudocode this is: |
| 9576 | * level = 4 - RoundUp((inputsize - grainsize) / stride) |
| 9577 | * where their 'inputsize' is our 'inputsize', 'grainsize' is |
| 9578 | * our 'stride + 3' and 'stride' is our 'stride'. |
| 9579 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: |
| 9580 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride |
| 9581 | * = 4 - (inputsize - 4) / stride; |
| 9582 | */ |
| 9583 | level = 4 - (inputsize - 4) / stride; |
| 9584 | } else { |
| 9585 | /* For stage 2 translations the starting level is specified by the |
| 9586 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) |
| 9587 | */ |
| 9588 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
| 9589 | uint32_t startlevel; |
| 9590 | bool ok; |
| 9591 | |
| 9592 | if (!aarch64 || stride == 9) { |
| 9593 | /* AArch32 or 4KB pages */ |
| 9594 | startlevel = 2 - sl0; |
| 9595 | } else { |
| 9596 | /* 16KB or 64KB pages */ |
| 9597 | startlevel = 3 - sl0; |
| 9598 | } |
| 9599 | |
| 9600 | /* Check that the starting level is valid. */ |
| 9601 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
| 9602 | inputsize, stride); |
| 9603 | if (!ok) { |
| 9604 | fault_type = ARMFault_Translation; |
| 9605 | goto do_fault; |
| 9606 | } |
| 9607 | level = startlevel; |
| 9608 | } |
| 9609 | |
| 9610 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
| 9611 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; |
| 9612 | |
| 9613 | /* Now we can extract the actual base address from the TTBR */ |
| 9614 | descaddr = extract64(ttbr, 0, 48); |
| 9615 | descaddr &= ~indexmask; |
| 9616 | |
| 9617 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
| 9618 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
| 9619 | * up to bit 39 for AArch32, because we don't need other bits in that case |
| 9620 | * to construct next descriptor address (anyway they should be all zeroes). |
| 9621 | */ |
| 9622 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
| 9623 | ~indexmask_grainsize; |
| 9624 | |
| 9625 | /* Secure accesses start with the page table in secure memory and |
| 9626 | * can be downgraded to non-secure at any step. Non-secure accesses |
| 9627 | * remain non-secure. We implement this by just ORing in the NSTable/NS |
| 9628 | * bits at each step. |
| 9629 | */ |
| 9630 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); |
| 9631 | for (;;) { |
| 9632 | uint64_t descriptor; |
| 9633 | bool nstable; |
| 9634 | |
| 9635 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
| 9636 | descaddr &= ~7ULL; |
| 9637 | nstable = extract32(tableattrs, 4, 1); |
| 9638 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
| 9639 | if (fi->type != ARMFault_None) { |
| 9640 | goto do_fault; |
| 9641 | } |
| 9642 | |
| 9643 | if (!(descriptor & 1) || |
| 9644 | (!(descriptor & 2) && (level == 3))) { |
| 9645 | /* Invalid, or the Reserved level 3 encoding */ |
| 9646 | goto do_fault; |
| 9647 | } |
| 9648 | descaddr = descriptor & descaddrmask; |
| 9649 | |
| 9650 | if ((descriptor & 2) && (level < 3)) { |
| 9651 | /* Table entry. The top five bits are attributes which may |
| 9652 | * propagate down through lower levels of the table (and |
| 9653 | * which are all arranged so that 0 means "no effect", so |
| 9654 | * we can gather them up by ORing in the bits at each level). |
| 9655 | */ |
| 9656 | tableattrs |= extract64(descriptor, 59, 5); |
| 9657 | level++; |
| 9658 | indexmask = indexmask_grainsize; |
| 9659 | continue; |
| 9660 | } |
| 9661 | /* Block entry at level 1 or 2, or page entry at level 3. |
| 9662 | * These are basically the same thing, although the number |
| 9663 | * of bits we pull in from the vaddr varies. |
| 9664 | */ |
| 9665 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
| 9666 | descaddr |= (address & (page_size - 1)); |
| 9667 | /* Extract attributes from the descriptor */ |
| 9668 | attrs = extract64(descriptor, 2, 10) |
| 9669 | | (extract64(descriptor, 52, 12) << 10); |
| 9670 | |
| 9671 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 9672 | /* Stage 2 table descriptors do not include any attribute fields */ |
| 9673 | break; |
| 9674 | } |
| 9675 | /* Merge in attributes from table descriptors */ |
| 9676 | attrs |= nstable << 3; /* NS */ |
| 9677 | guarded = extract64(descriptor, 50, 1); /* GP */ |
| 9678 | if (param.hpd) { |
| 9679 | /* HPD disables all the table attributes except NSTable. */ |
| 9680 | break; |
| 9681 | } |
| 9682 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
| 9683 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| 9684 | * means "force PL1 access only", which means forcing AP[1] to 0. |
| 9685 | */ |
| 9686 | attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ |
| 9687 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ |
| 9688 | break; |
| 9689 | } |
| 9690 | /* Here descaddr is the final physical address, and attributes |
| 9691 | * are all in attrs. |
| 9692 | */ |
| 9693 | fault_type = ARMFault_AccessFlag; |
| 9694 | if ((attrs & (1 << 8)) == 0) { |
| 9695 | /* Access flag */ |
| 9696 | goto do_fault; |
| 9697 | } |
| 9698 | |
| 9699 | ap = extract32(attrs, 4, 2); |
| 9700 | xn = extract32(attrs, 12, 1); |
| 9701 | |
| 9702 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 9703 | ns = true; |
| 9704 | *prot = get_S2prot(env, ap, xn); |
| 9705 | } else { |
| 9706 | ns = extract32(attrs, 3, 1); |
| 9707 | pxn = extract32(attrs, 11, 1); |
| 9708 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
| 9709 | } |
| 9710 | |
| 9711 | fault_type = ARMFault_Permission; |
| 9712 | if (!(*prot & (1 << access_type))) { |
| 9713 | goto do_fault; |
| 9714 | } |
| 9715 | |
| 9716 | if (ns) { |
| 9717 | /* The NS bit will (as required by the architecture) have no effect if |
| 9718 | * the CPU doesn't support TZ or this is a non-secure translation |
| 9719 | * regime, because the attribute will already be non-secure. |
| 9720 | */ |
| 9721 | txattrs->secure = false; |
| 9722 | } |
| 9723 | /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ |
| 9724 | if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { |
| 9725 | txattrs->target_tlb_bit0 = true; |
| 9726 | } |
| 9727 | |
| 9728 | if (cacheattrs != NULL) { |
| 9729 | if (mmu_idx == ARMMMUIdx_S2NS) { |
| 9730 | cacheattrs->attrs = convert_stage2_attrs(env, |
| 9731 | extract32(attrs, 0, 4)); |
| 9732 | } else { |
| 9733 | /* Index into MAIR registers for cache attributes */ |
| 9734 | uint8_t attrindx = extract32(attrs, 0, 3); |
| 9735 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; |
| 9736 | assert(attrindx <= 7); |
| 9737 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); |
| 9738 | } |
| 9739 | cacheattrs->shareability = extract32(attrs, 6, 2); |
| 9740 | } |
| 9741 | |
| 9742 | *phys_ptr = descaddr; |
| 9743 | *page_size_ptr = page_size; |
| 9744 | return false; |
| 9745 | |
| 9746 | do_fault: |
| 9747 | fi->type = fault_type; |
| 9748 | fi->level = level; |
| 9749 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
| 9750 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); |
| 9751 | return true; |
| 9752 | } |
| 9753 | |
| 9754 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
| 9755 | ARMMMUIdx mmu_idx, |
| 9756 | int32_t address, int *prot) |
| 9757 | { |
| 9758 | if (!arm_feature(env, ARM_FEATURE_M)) { |
| 9759 | *prot = PAGE_READ | PAGE_WRITE; |
| 9760 | switch (address) { |
| 9761 | case 0xF0000000 ... 0xFFFFFFFF: |
| 9762 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { |
| 9763 | /* hivecs execing is ok */ |
| 9764 | *prot |= PAGE_EXEC; |
| 9765 | } |
| 9766 | break; |
| 9767 | case 0x00000000 ... 0x7FFFFFFF: |
| 9768 | *prot |= PAGE_EXEC; |
| 9769 | break; |
| 9770 | } |
| 9771 | } else { |
| 9772 | /* Default system address map for M profile cores. |
| 9773 | * The architecture specifies which regions are execute-never; |
| 9774 | * at the MPU level no other checks are defined. |
| 9775 | */ |
| 9776 | switch (address) { |
| 9777 | case 0x00000000 ... 0x1fffffff: /* ROM */ |
| 9778 | case 0x20000000 ... 0x3fffffff: /* SRAM */ |
| 9779 | case 0x60000000 ... 0x7fffffff: /* RAM */ |
| 9780 | case 0x80000000 ... 0x9fffffff: /* RAM */ |
| 9781 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| 9782 | break; |
| 9783 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ |
| 9784 | case 0xa0000000 ... 0xbfffffff: /* Device */ |
| 9785 | case 0xc0000000 ... 0xdfffffff: /* Device */ |
| 9786 | case 0xe0000000 ... 0xffffffff: /* System */ |
| 9787 | *prot = PAGE_READ | PAGE_WRITE; |
| 9788 | break; |
| 9789 | default: |
| 9790 | g_assert_not_reached(); |
| 9791 | } |
| 9792 | } |
| 9793 | } |
| 9794 | |
| 9795 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
| 9796 | ARMMMUIdx mmu_idx, bool is_user) |
| 9797 | { |
| 9798 | /* Return true if we should use the default memory map as a |
| 9799 | * "background" region if there are no hits against any MPU regions. |
| 9800 | */ |
| 9801 | CPUARMState *env = &cpu->env; |
| 9802 | |
| 9803 | if (is_user) { |
| 9804 | return false; |
| 9805 | } |
| 9806 | |
| 9807 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 9808 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
| 9809 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; |
| 9810 | } else { |
| 9811 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; |
| 9812 | } |
| 9813 | } |
| 9814 | |
| 9815 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
| 9816 | { |
| 9817 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ |
| 9818 | return arm_feature(env, ARM_FEATURE_M) && |
| 9819 | extract32(address, 20, 12) == 0xe00; |
| 9820 | } |
| 9821 | |
| 9822 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
| 9823 | { |
| 9824 | /* True if address is in the M profile system region |
| 9825 | * 0xe0000000 - 0xffffffff |
| 9826 | */ |
| 9827 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; |
| 9828 | } |
| 9829 | |
| 9830 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
| 9831 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 9832 | hwaddr *phys_ptr, int *prot, |
| 9833 | target_ulong *page_size, |
| 9834 | ARMMMUFaultInfo *fi) |
| 9835 | { |
| 9836 | ARMCPU *cpu = env_archcpu(env); |
| 9837 | int n; |
| 9838 | bool is_user = regime_is_user(env, mmu_idx); |
| 9839 | |
| 9840 | *phys_ptr = address; |
| 9841 | *page_size = TARGET_PAGE_SIZE; |
| 9842 | *prot = 0; |
| 9843 | |
| 9844 | if (regime_translation_disabled(env, mmu_idx) || |
| 9845 | m_is_ppb_region(env, address)) { |
| 9846 | /* MPU disabled or M profile PPB access: use default memory map. |
| 9847 | * The other case which uses the default memory map in the |
| 9848 | * v7M ARM ARM pseudocode is exception vector reads from the vector |
| 9849 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), |
| 9850 | * which always does a direct read using address_space_ldl(), rather |
| 9851 | * than going via this function, so we don't need to check that here. |
| 9852 | */ |
| 9853 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| 9854 | } else { /* MPU enabled */ |
| 9855 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| 9856 | /* region search */ |
| 9857 | uint32_t base = env->pmsav7.drbar[n]; |
| 9858 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); |
| 9859 | uint32_t rmask; |
| 9860 | bool srdis = false; |
| 9861 | |
| 9862 | if (!(env->pmsav7.drsr[n] & 0x1)) { |
| 9863 | continue; |
| 9864 | } |
| 9865 | |
| 9866 | if (!rsize) { |
| 9867 | qemu_log_mask(LOG_GUEST_ERROR, |
| 9868 | "DRSR[%d]: Rsize field cannot be 0\n" , n); |
| 9869 | continue; |
| 9870 | } |
| 9871 | rsize++; |
| 9872 | rmask = (1ull << rsize) - 1; |
| 9873 | |
| 9874 | if (base & rmask) { |
| 9875 | qemu_log_mask(LOG_GUEST_ERROR, |
| 9876 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " |
| 9877 | "to DRSR region size, mask = 0x%" PRIx32 "\n" , |
| 9878 | n, base, rmask); |
| 9879 | continue; |
| 9880 | } |
| 9881 | |
| 9882 | if (address < base || address > base + rmask) { |
| 9883 | /* |
| 9884 | * Address not in this region. We must check whether the |
| 9885 | * region covers addresses in the same page as our address. |
| 9886 | * In that case we must not report a size that covers the |
| 9887 | * whole page for a subsequent hit against a different MPU |
| 9888 | * region or the background region, because it would result in |
| 9889 | * incorrect TLB hits for subsequent accesses to addresses that |
| 9890 | * are in this MPU region. |
| 9891 | */ |
| 9892 | if (ranges_overlap(base, rmask, |
| 9893 | address & TARGET_PAGE_MASK, |
| 9894 | TARGET_PAGE_SIZE)) { |
| 9895 | *page_size = 1; |
| 9896 | } |
| 9897 | continue; |
| 9898 | } |
| 9899 | |
| 9900 | /* Region matched */ |
| 9901 | |
| 9902 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ |
| 9903 | int i, snd; |
| 9904 | uint32_t srdis_mask; |
| 9905 | |
| 9906 | rsize -= 3; /* sub region size (power of 2) */ |
| 9907 | snd = ((address - base) >> rsize) & 0x7; |
| 9908 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); |
| 9909 | |
| 9910 | srdis_mask = srdis ? 0x3 : 0x0; |
| 9911 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { |
| 9912 | /* This will check in groups of 2, 4 and then 8, whether |
| 9913 | * the subregion bits are consistent. rsize is incremented |
| 9914 | * back up to give the region size, considering consistent |
| 9915 | * adjacent subregions as one region. Stop testing if rsize |
| 9916 | * is already big enough for an entire QEMU page. |
| 9917 | */ |
| 9918 | int snd_rounded = snd & ~(i - 1); |
| 9919 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], |
| 9920 | snd_rounded + 8, i); |
| 9921 | if (srdis_mask ^ srdis_multi) { |
| 9922 | break; |
| 9923 | } |
| 9924 | srdis_mask = (srdis_mask << i) | srdis_mask; |
| 9925 | rsize++; |
| 9926 | } |
| 9927 | } |
| 9928 | if (srdis) { |
| 9929 | continue; |
| 9930 | } |
| 9931 | if (rsize < TARGET_PAGE_BITS) { |
| 9932 | *page_size = 1 << rsize; |
| 9933 | } |
| 9934 | break; |
| 9935 | } |
| 9936 | |
| 9937 | if (n == -1) { /* no hits */ |
| 9938 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
| 9939 | /* background fault */ |
| 9940 | fi->type = ARMFault_Background; |
| 9941 | return true; |
| 9942 | } |
| 9943 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| 9944 | } else { /* a MPU hit! */ |
| 9945 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); |
| 9946 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
| 9947 | |
| 9948 | if (m_is_system_region(env, address)) { |
| 9949 | /* System space is always execute never */ |
| 9950 | xn = 1; |
| 9951 | } |
| 9952 | |
| 9953 | if (is_user) { /* User mode AP bit decoding */ |
| 9954 | switch (ap) { |
| 9955 | case 0: |
| 9956 | case 1: |
| 9957 | case 5: |
| 9958 | break; /* no access */ |
| 9959 | case 3: |
| 9960 | *prot |= PAGE_WRITE; |
| 9961 | /* fall through */ |
| 9962 | case 2: |
| 9963 | case 6: |
| 9964 | *prot |= PAGE_READ | PAGE_EXEC; |
| 9965 | break; |
| 9966 | case 7: |
| 9967 | /* for v7M, same as 6; for R profile a reserved value */ |
| 9968 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 9969 | *prot |= PAGE_READ | PAGE_EXEC; |
| 9970 | break; |
| 9971 | } |
| 9972 | /* fall through */ |
| 9973 | default: |
| 9974 | qemu_log_mask(LOG_GUEST_ERROR, |
| 9975 | "DRACR[%d]: Bad value for AP bits: 0x%" |
| 9976 | PRIx32 "\n" , n, ap); |
| 9977 | } |
| 9978 | } else { /* Priv. mode AP bits decoding */ |
| 9979 | switch (ap) { |
| 9980 | case 0: |
| 9981 | break; /* no access */ |
| 9982 | case 1: |
| 9983 | case 2: |
| 9984 | case 3: |
| 9985 | *prot |= PAGE_WRITE; |
| 9986 | /* fall through */ |
| 9987 | case 5: |
| 9988 | case 6: |
| 9989 | *prot |= PAGE_READ | PAGE_EXEC; |
| 9990 | break; |
| 9991 | case 7: |
| 9992 | /* for v7M, same as 6; for R profile a reserved value */ |
| 9993 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 9994 | *prot |= PAGE_READ | PAGE_EXEC; |
| 9995 | break; |
| 9996 | } |
| 9997 | /* fall through */ |
| 9998 | default: |
| 9999 | qemu_log_mask(LOG_GUEST_ERROR, |
| 10000 | "DRACR[%d]: Bad value for AP bits: 0x%" |
| 10001 | PRIx32 "\n" , n, ap); |
| 10002 | } |
| 10003 | } |
| 10004 | |
| 10005 | /* execute never */ |
| 10006 | if (xn) { |
| 10007 | *prot &= ~PAGE_EXEC; |
| 10008 | } |
| 10009 | } |
| 10010 | } |
| 10011 | |
| 10012 | fi->type = ARMFault_Permission; |
| 10013 | fi->level = 1; |
| 10014 | return !(*prot & (1 << access_type)); |
| 10015 | } |
| 10016 | |
| 10017 | static bool v8m_is_sau_exempt(CPUARMState *env, |
| 10018 | uint32_t address, MMUAccessType access_type) |
| 10019 | { |
| 10020 | /* The architecture specifies that certain address ranges are |
| 10021 | * exempt from v8M SAU/IDAU checks. |
| 10022 | */ |
| 10023 | return |
| 10024 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || |
| 10025 | (address >= 0xe0000000 && address <= 0xe0002fff) || |
| 10026 | (address >= 0xe000e000 && address <= 0xe000efff) || |
| 10027 | (address >= 0xe002e000 && address <= 0xe002efff) || |
| 10028 | (address >= 0xe0040000 && address <= 0xe0041fff) || |
| 10029 | (address >= 0xe00ff000 && address <= 0xe00fffff); |
| 10030 | } |
| 10031 | |
| 10032 | void v8m_security_lookup(CPUARMState *env, uint32_t address, |
| 10033 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 10034 | V8M_SAttributes *sattrs) |
| 10035 | { |
| 10036 | /* Look up the security attributes for this address. Compare the |
| 10037 | * pseudocode SecurityCheck() function. |
| 10038 | * We assume the caller has zero-initialized *sattrs. |
| 10039 | */ |
| 10040 | ARMCPU *cpu = env_archcpu(env); |
| 10041 | int r; |
| 10042 | bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
| 10043 | int idau_region = IREGION_NOTVALID; |
| 10044 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| 10045 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| 10046 | |
| 10047 | if (cpu->idau) { |
| 10048 | IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); |
| 10049 | IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); |
| 10050 | |
| 10051 | iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, |
| 10052 | &idau_nsc); |
| 10053 | } |
| 10054 | |
| 10055 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { |
| 10056 | /* 0xf0000000..0xffffffff is always S for insn fetches */ |
| 10057 | return; |
| 10058 | } |
| 10059 | |
| 10060 | if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
| 10061 | sattrs->ns = !regime_is_secure(env, mmu_idx); |
| 10062 | return; |
| 10063 | } |
| 10064 | |
| 10065 | if (idau_region != IREGION_NOTVALID) { |
| 10066 | sattrs->irvalid = true; |
| 10067 | sattrs->iregion = idau_region; |
| 10068 | } |
| 10069 | |
| 10070 | switch (env->sau.ctrl & 3) { |
| 10071 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ |
| 10072 | break; |
| 10073 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ |
| 10074 | sattrs->ns = true; |
| 10075 | break; |
| 10076 | default: /* SAU.ENABLE == 1 */ |
| 10077 | for (r = 0; r < cpu->sau_sregion; r++) { |
| 10078 | if (env->sau.rlar[r] & 1) { |
| 10079 | uint32_t base = env->sau.rbar[r] & ~0x1f; |
| 10080 | uint32_t limit = env->sau.rlar[r] | 0x1f; |
| 10081 | |
| 10082 | if (base <= address && limit >= address) { |
| 10083 | if (base > addr_page_base || limit < addr_page_limit) { |
| 10084 | sattrs->subpage = true; |
| 10085 | } |
| 10086 | if (sattrs->srvalid) { |
| 10087 | /* If we hit in more than one region then we must report |
| 10088 | * as Secure, not NS-Callable, with no valid region |
| 10089 | * number info. |
| 10090 | */ |
| 10091 | sattrs->ns = false; |
| 10092 | sattrs->nsc = false; |
| 10093 | sattrs->sregion = 0; |
| 10094 | sattrs->srvalid = false; |
| 10095 | break; |
| 10096 | } else { |
| 10097 | if (env->sau.rlar[r] & 2) { |
| 10098 | sattrs->nsc = true; |
| 10099 | } else { |
| 10100 | sattrs->ns = true; |
| 10101 | } |
| 10102 | sattrs->srvalid = true; |
| 10103 | sattrs->sregion = r; |
| 10104 | } |
| 10105 | } else { |
| 10106 | /* |
| 10107 | * Address not in this region. We must check whether the |
| 10108 | * region covers addresses in the same page as our address. |
| 10109 | * In that case we must not report a size that covers the |
| 10110 | * whole page for a subsequent hit against a different MPU |
| 10111 | * region or the background region, because it would result |
| 10112 | * in incorrect TLB hits for subsequent accesses to |
| 10113 | * addresses that are in this MPU region. |
| 10114 | */ |
| 10115 | if (limit >= base && |
| 10116 | ranges_overlap(base, limit - base + 1, |
| 10117 | addr_page_base, |
| 10118 | TARGET_PAGE_SIZE)) { |
| 10119 | sattrs->subpage = true; |
| 10120 | } |
| 10121 | } |
| 10122 | } |
| 10123 | } |
| 10124 | break; |
| 10125 | } |
| 10126 | |
| 10127 | /* |
| 10128 | * The IDAU will override the SAU lookup results if it specifies |
| 10129 | * higher security than the SAU does. |
| 10130 | */ |
| 10131 | if (!idau_ns) { |
| 10132 | if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { |
| 10133 | sattrs->ns = false; |
| 10134 | sattrs->nsc = idau_nsc; |
| 10135 | } |
| 10136 | } |
| 10137 | } |
| 10138 | |
| 10139 | bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
| 10140 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 10141 | hwaddr *phys_ptr, MemTxAttrs *txattrs, |
| 10142 | int *prot, bool *is_subpage, |
| 10143 | ARMMMUFaultInfo *fi, uint32_t *mregion) |
| 10144 | { |
| 10145 | /* Perform a PMSAv8 MPU lookup (without also doing the SAU check |
| 10146 | * that a full phys-to-virt translation does). |
| 10147 | * mregion is (if not NULL) set to the region number which matched, |
| 10148 | * or -1 if no region number is returned (MPU off, address did not |
| 10149 | * hit a region, address hit in multiple regions). |
| 10150 | * We set is_subpage to true if the region hit doesn't cover the |
| 10151 | * entire TARGET_PAGE the address is within. |
| 10152 | */ |
| 10153 | ARMCPU *cpu = env_archcpu(env); |
| 10154 | bool is_user = regime_is_user(env, mmu_idx); |
| 10155 | uint32_t secure = regime_is_secure(env, mmu_idx); |
| 10156 | int n; |
| 10157 | int matchregion = -1; |
| 10158 | bool hit = false; |
| 10159 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| 10160 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| 10161 | |
| 10162 | *is_subpage = false; |
| 10163 | *phys_ptr = address; |
| 10164 | *prot = 0; |
| 10165 | if (mregion) { |
| 10166 | *mregion = -1; |
| 10167 | } |
| 10168 | |
| 10169 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
| 10170 | * was an exception vector read from the vector table (which is always |
| 10171 | * done using the default system address map), because those accesses |
| 10172 | * are done in arm_v7m_load_vector(), which always does a direct |
| 10173 | * read using address_space_ldl(), rather than going via this function. |
| 10174 | */ |
| 10175 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ |
| 10176 | hit = true; |
| 10177 | } else if (m_is_ppb_region(env, address)) { |
| 10178 | hit = true; |
| 10179 | } else { |
| 10180 | if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
| 10181 | hit = true; |
| 10182 | } |
| 10183 | |
| 10184 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| 10185 | /* region search */ |
| 10186 | /* Note that the base address is bits [31:5] from the register |
| 10187 | * with bits [4:0] all zeroes, but the limit address is bits |
| 10188 | * [31:5] from the register with bits [4:0] all ones. |
| 10189 | */ |
| 10190 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
| 10191 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; |
| 10192 | |
| 10193 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
| 10194 | /* Region disabled */ |
| 10195 | continue; |
| 10196 | } |
| 10197 | |
| 10198 | if (address < base || address > limit) { |
| 10199 | /* |
| 10200 | * Address not in this region. We must check whether the |
| 10201 | * region covers addresses in the same page as our address. |
| 10202 | * In that case we must not report a size that covers the |
| 10203 | * whole page for a subsequent hit against a different MPU |
| 10204 | * region or the background region, because it would result in |
| 10205 | * incorrect TLB hits for subsequent accesses to addresses that |
| 10206 | * are in this MPU region. |
| 10207 | */ |
| 10208 | if (limit >= base && |
| 10209 | ranges_overlap(base, limit - base + 1, |
| 10210 | addr_page_base, |
| 10211 | TARGET_PAGE_SIZE)) { |
| 10212 | *is_subpage = true; |
| 10213 | } |
| 10214 | continue; |
| 10215 | } |
| 10216 | |
| 10217 | if (base > addr_page_base || limit < addr_page_limit) { |
| 10218 | *is_subpage = true; |
| 10219 | } |
| 10220 | |
| 10221 | if (matchregion != -1) { |
| 10222 | /* Multiple regions match -- always a failure (unlike |
| 10223 | * PMSAv7 where highest-numbered-region wins) |
| 10224 | */ |
| 10225 | fi->type = ARMFault_Permission; |
| 10226 | fi->level = 1; |
| 10227 | return true; |
| 10228 | } |
| 10229 | |
| 10230 | matchregion = n; |
| 10231 | hit = true; |
| 10232 | } |
| 10233 | } |
| 10234 | |
| 10235 | if (!hit) { |
| 10236 | /* background fault */ |
| 10237 | fi->type = ARMFault_Background; |
| 10238 | return true; |
| 10239 | } |
| 10240 | |
| 10241 | if (matchregion == -1) { |
| 10242 | /* hit using the background region */ |
| 10243 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| 10244 | } else { |
| 10245 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
| 10246 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); |
| 10247 | |
| 10248 | if (m_is_system_region(env, address)) { |
| 10249 | /* System space is always execute never */ |
| 10250 | xn = 1; |
| 10251 | } |
| 10252 | |
| 10253 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); |
| 10254 | if (*prot && !xn) { |
| 10255 | *prot |= PAGE_EXEC; |
| 10256 | } |
| 10257 | /* We don't need to look the attribute up in the MAIR0/MAIR1 |
| 10258 | * registers because that only tells us about cacheability. |
| 10259 | */ |
| 10260 | if (mregion) { |
| 10261 | *mregion = matchregion; |
| 10262 | } |
| 10263 | } |
| 10264 | |
| 10265 | fi->type = ARMFault_Permission; |
| 10266 | fi->level = 1; |
| 10267 | return !(*prot & (1 << access_type)); |
| 10268 | } |
| 10269 | |
| 10270 | |
| 10271 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, |
| 10272 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 10273 | hwaddr *phys_ptr, MemTxAttrs *txattrs, |
| 10274 | int *prot, target_ulong *page_size, |
| 10275 | ARMMMUFaultInfo *fi) |
| 10276 | { |
| 10277 | uint32_t secure = regime_is_secure(env, mmu_idx); |
| 10278 | V8M_SAttributes sattrs = {}; |
| 10279 | bool ret; |
| 10280 | bool mpu_is_subpage; |
| 10281 | |
| 10282 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| 10283 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); |
| 10284 | if (access_type == MMU_INST_FETCH) { |
| 10285 | /* Instruction fetches always use the MMU bank and the |
| 10286 | * transaction attribute determined by the fetch address, |
| 10287 | * regardless of CPU state. This is painful for QEMU |
| 10288 | * to handle, because it would mean we need to encode |
| 10289 | * into the mmu_idx not just the (user, negpri) information |
| 10290 | * for the current security state but also that for the |
| 10291 | * other security state, which would balloon the number |
| 10292 | * of mmu_idx values needed alarmingly. |
| 10293 | * Fortunately we can avoid this because it's not actually |
| 10294 | * possible to arbitrarily execute code from memory with |
| 10295 | * the wrong security attribute: it will always generate |
| 10296 | * an exception of some kind or another, apart from the |
| 10297 | * special case of an NS CPU executing an SG instruction |
| 10298 | * in S&NSC memory. So we always just fail the translation |
| 10299 | * here and sort things out in the exception handler |
| 10300 | * (including possibly emulating an SG instruction). |
| 10301 | */ |
| 10302 | if (sattrs.ns != !secure) { |
| 10303 | if (sattrs.nsc) { |
| 10304 | fi->type = ARMFault_QEMU_NSCExec; |
| 10305 | } else { |
| 10306 | fi->type = ARMFault_QEMU_SFault; |
| 10307 | } |
| 10308 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
| 10309 | *phys_ptr = address; |
| 10310 | *prot = 0; |
| 10311 | return true; |
| 10312 | } |
| 10313 | } else { |
| 10314 | /* For data accesses we always use the MMU bank indicated |
| 10315 | * by the current CPU state, but the security attributes |
| 10316 | * might downgrade a secure access to nonsecure. |
| 10317 | */ |
| 10318 | if (sattrs.ns) { |
| 10319 | txattrs->secure = false; |
| 10320 | } else if (!secure) { |
| 10321 | /* NS access to S memory must fault. |
| 10322 | * Architecturally we should first check whether the |
| 10323 | * MPU information for this address indicates that we |
| 10324 | * are doing an unaligned access to Device memory, which |
| 10325 | * should generate a UsageFault instead. QEMU does not |
| 10326 | * currently check for that kind of unaligned access though. |
| 10327 | * If we added it we would need to do so as a special case |
| 10328 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). |
| 10329 | */ |
| 10330 | fi->type = ARMFault_QEMU_SFault; |
| 10331 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
| 10332 | *phys_ptr = address; |
| 10333 | *prot = 0; |
| 10334 | return true; |
| 10335 | } |
| 10336 | } |
| 10337 | } |
| 10338 | |
| 10339 | ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, |
| 10340 | txattrs, prot, &mpu_is_subpage, fi, NULL); |
| 10341 | *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; |
| 10342 | return ret; |
| 10343 | } |
| 10344 | |
| 10345 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
| 10346 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 10347 | hwaddr *phys_ptr, int *prot, |
| 10348 | ARMMMUFaultInfo *fi) |
| 10349 | { |
| 10350 | int n; |
| 10351 | uint32_t mask; |
| 10352 | uint32_t base; |
| 10353 | bool is_user = regime_is_user(env, mmu_idx); |
| 10354 | |
| 10355 | if (regime_translation_disabled(env, mmu_idx)) { |
| 10356 | /* MPU disabled. */ |
| 10357 | *phys_ptr = address; |
| 10358 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| 10359 | return false; |
| 10360 | } |
| 10361 | |
| 10362 | *phys_ptr = address; |
| 10363 | for (n = 7; n >= 0; n--) { |
| 10364 | base = env->cp15.c6_region[n]; |
| 10365 | if ((base & 1) == 0) { |
| 10366 | continue; |
| 10367 | } |
| 10368 | mask = 1 << ((base >> 1) & 0x1f); |
| 10369 | /* Keep this shift separate from the above to avoid an |
| 10370 | (undefined) << 32. */ |
| 10371 | mask = (mask << 1) - 1; |
| 10372 | if (((base ^ address) & ~mask) == 0) { |
| 10373 | break; |
| 10374 | } |
| 10375 | } |
| 10376 | if (n < 0) { |
| 10377 | fi->type = ARMFault_Background; |
| 10378 | return true; |
| 10379 | } |
| 10380 | |
| 10381 | if (access_type == MMU_INST_FETCH) { |
| 10382 | mask = env->cp15.pmsav5_insn_ap; |
| 10383 | } else { |
| 10384 | mask = env->cp15.pmsav5_data_ap; |
| 10385 | } |
| 10386 | mask = (mask >> (n * 4)) & 0xf; |
| 10387 | switch (mask) { |
| 10388 | case 0: |
| 10389 | fi->type = ARMFault_Permission; |
| 10390 | fi->level = 1; |
| 10391 | return true; |
| 10392 | case 1: |
| 10393 | if (is_user) { |
| 10394 | fi->type = ARMFault_Permission; |
| 10395 | fi->level = 1; |
| 10396 | return true; |
| 10397 | } |
| 10398 | *prot = PAGE_READ | PAGE_WRITE; |
| 10399 | break; |
| 10400 | case 2: |
| 10401 | *prot = PAGE_READ; |
| 10402 | if (!is_user) { |
| 10403 | *prot |= PAGE_WRITE; |
| 10404 | } |
| 10405 | break; |
| 10406 | case 3: |
| 10407 | *prot = PAGE_READ | PAGE_WRITE; |
| 10408 | break; |
| 10409 | case 5: |
| 10410 | if (is_user) { |
| 10411 | fi->type = ARMFault_Permission; |
| 10412 | fi->level = 1; |
| 10413 | return true; |
| 10414 | } |
| 10415 | *prot = PAGE_READ; |
| 10416 | break; |
| 10417 | case 6: |
| 10418 | *prot = PAGE_READ; |
| 10419 | break; |
| 10420 | default: |
| 10421 | /* Bad permission. */ |
| 10422 | fi->type = ARMFault_Permission; |
| 10423 | fi->level = 1; |
| 10424 | return true; |
| 10425 | } |
| 10426 | *prot |= PAGE_EXEC; |
| 10427 | return false; |
| 10428 | } |
| 10429 | |
| 10430 | /* Combine either inner or outer cacheability attributes for normal |
| 10431 | * memory, according to table D4-42 and pseudocode procedure |
| 10432 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). |
| 10433 | * |
| 10434 | * NB: only stage 1 includes allocation hints (RW bits), leading to |
| 10435 | * some asymmetry. |
| 10436 | */ |
| 10437 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) |
| 10438 | { |
| 10439 | if (s1 == 4 || s2 == 4) { |
| 10440 | /* non-cacheable has precedence */ |
| 10441 | return 4; |
| 10442 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { |
| 10443 | /* stage 1 write-through takes precedence */ |
| 10444 | return s1; |
| 10445 | } else if (extract32(s2, 2, 2) == 2) { |
| 10446 | /* stage 2 write-through takes precedence, but the allocation hint |
| 10447 | * is still taken from stage 1 |
| 10448 | */ |
| 10449 | return (2 << 2) | extract32(s1, 0, 2); |
| 10450 | } else { /* write-back */ |
| 10451 | return s1; |
| 10452 | } |
| 10453 | } |
| 10454 | |
| 10455 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 |
| 10456 | * and CombineS1S2Desc() |
| 10457 | * |
| 10458 | * @s1: Attributes from stage 1 walk |
| 10459 | * @s2: Attributes from stage 2 walk |
| 10460 | */ |
| 10461 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) |
| 10462 | { |
| 10463 | uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); |
| 10464 | uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); |
| 10465 | ARMCacheAttrs ret; |
| 10466 | |
| 10467 | /* Combine shareability attributes (table D4-43) */ |
| 10468 | if (s1.shareability == 2 || s2.shareability == 2) { |
| 10469 | /* if either are outer-shareable, the result is outer-shareable */ |
| 10470 | ret.shareability = 2; |
| 10471 | } else if (s1.shareability == 3 || s2.shareability == 3) { |
| 10472 | /* if either are inner-shareable, the result is inner-shareable */ |
| 10473 | ret.shareability = 3; |
| 10474 | } else { |
| 10475 | /* both non-shareable */ |
| 10476 | ret.shareability = 0; |
| 10477 | } |
| 10478 | |
| 10479 | /* Combine memory type and cacheability attributes */ |
| 10480 | if (s1hi == 0 || s2hi == 0) { |
| 10481 | /* Device has precedence over normal */ |
| 10482 | if (s1lo == 0 || s2lo == 0) { |
| 10483 | /* nGnRnE has precedence over anything */ |
| 10484 | ret.attrs = 0; |
| 10485 | } else if (s1lo == 4 || s2lo == 4) { |
| 10486 | /* non-Reordering has precedence over Reordering */ |
| 10487 | ret.attrs = 4; /* nGnRE */ |
| 10488 | } else if (s1lo == 8 || s2lo == 8) { |
| 10489 | /* non-Gathering has precedence over Gathering */ |
| 10490 | ret.attrs = 8; /* nGRE */ |
| 10491 | } else { |
| 10492 | ret.attrs = 0xc; /* GRE */ |
| 10493 | } |
| 10494 | |
| 10495 | /* Any location for which the resultant memory type is any |
| 10496 | * type of Device memory is always treated as Outer Shareable. |
| 10497 | */ |
| 10498 | ret.shareability = 2; |
| 10499 | } else { /* Normal memory */ |
| 10500 | /* Outer/inner cacheability combine independently */ |
| 10501 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 |
| 10502 | | combine_cacheattr_nibble(s1lo, s2lo); |
| 10503 | |
| 10504 | if (ret.attrs == 0x44) { |
| 10505 | /* Any location for which the resultant memory type is Normal |
| 10506 | * Inner Non-cacheable, Outer Non-cacheable is always treated |
| 10507 | * as Outer Shareable. |
| 10508 | */ |
| 10509 | ret.shareability = 2; |
| 10510 | } |
| 10511 | } |
| 10512 | |
| 10513 | return ret; |
| 10514 | } |
| 10515 | |
| 10516 | |
| 10517 | /* get_phys_addr - get the physical address for this virtual address |
| 10518 | * |
| 10519 | * Find the physical address corresponding to the given virtual address, |
| 10520 | * by doing a translation table walk on MMU based systems or using the |
| 10521 | * MPU state on MPU based systems. |
| 10522 | * |
| 10523 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
| 10524 | * prot and page_size may not be filled in, and the populated fsr value provides |
| 10525 | * information on why the translation aborted, in the format of a |
| 10526 | * DFSR/IFSR fault register, with the following caveats: |
| 10527 | * * we honour the short vs long DFSR format differences. |
| 10528 | * * the WnR bit is never set (the caller must do this). |
| 10529 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
| 10530 | * value. |
| 10531 | * |
| 10532 | * @env: CPUARMState |
| 10533 | * @address: virtual address to get physical address for |
| 10534 | * @access_type: 0 for read, 1 for write, 2 for execute |
| 10535 | * @mmu_idx: MMU index indicating required translation regime |
| 10536 | * @phys_ptr: set to the physical address corresponding to the virtual address |
| 10537 | * @attrs: set to the memory transaction attributes to use |
| 10538 | * @prot: set to the permissions for the page containing phys_ptr |
| 10539 | * @page_size: set to the size of the page containing phys_ptr |
| 10540 | * @fi: set to fault info if the translation fails |
| 10541 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes |
| 10542 | */ |
| 10543 | bool get_phys_addr(CPUARMState *env, target_ulong address, |
| 10544 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| 10545 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| 10546 | target_ulong *page_size, |
| 10547 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
| 10548 | { |
| 10549 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| 10550 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
| 10551 | * translations. |
| 10552 | */ |
| 10553 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
| 10554 | hwaddr ipa; |
| 10555 | int s2_prot; |
| 10556 | int ret; |
| 10557 | ARMCacheAttrs cacheattrs2 = {}; |
| 10558 | |
| 10559 | ret = get_phys_addr(env, address, access_type, |
| 10560 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
| 10561 | prot, page_size, fi, cacheattrs); |
| 10562 | |
| 10563 | /* If S1 fails or S2 is disabled, return early. */ |
| 10564 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| 10565 | *phys_ptr = ipa; |
| 10566 | return ret; |
| 10567 | } |
| 10568 | |
| 10569 | /* S1 is done. Now do S2 translation. */ |
| 10570 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, |
| 10571 | phys_ptr, attrs, &s2_prot, |
| 10572 | page_size, fi, |
| 10573 | cacheattrs != NULL ? &cacheattrs2 : NULL); |
| 10574 | fi->s2addr = ipa; |
| 10575 | /* Combine the S1 and S2 perms. */ |
| 10576 | *prot &= s2_prot; |
| 10577 | |
| 10578 | /* Combine the S1 and S2 cache attributes, if needed */ |
| 10579 | if (!ret && cacheattrs != NULL) { |
| 10580 | if (env->cp15.hcr_el2 & HCR_DC) { |
| 10581 | /* |
| 10582 | * HCR.DC forces the first stage attributes to |
| 10583 | * Normal Non-Shareable, |
| 10584 | * Inner Write-Back Read-Allocate Write-Allocate, |
| 10585 | * Outer Write-Back Read-Allocate Write-Allocate. |
| 10586 | */ |
| 10587 | cacheattrs->attrs = 0xff; |
| 10588 | cacheattrs->shareability = 0; |
| 10589 | } |
| 10590 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); |
| 10591 | } |
| 10592 | |
| 10593 | return ret; |
| 10594 | } else { |
| 10595 | /* |
| 10596 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
| 10597 | */ |
| 10598 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
| 10599 | } |
| 10600 | } |
| 10601 | |
| 10602 | /* The page table entries may downgrade secure to non-secure, but |
| 10603 | * cannot upgrade an non-secure translation regime's attributes |
| 10604 | * to secure. |
| 10605 | */ |
| 10606 | attrs->secure = regime_is_secure(env, mmu_idx); |
| 10607 | attrs->user = regime_is_user(env, mmu_idx); |
| 10608 | |
| 10609 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
| 10610 | * In v7 and earlier it affects all stage 1 translations. |
| 10611 | */ |
| 10612 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS |
| 10613 | && !arm_feature(env, ARM_FEATURE_V8)) { |
| 10614 | if (regime_el(env, mmu_idx) == 3) { |
| 10615 | address += env->cp15.fcseidr_s; |
| 10616 | } else { |
| 10617 | address += env->cp15.fcseidr_ns; |
| 10618 | } |
| 10619 | } |
| 10620 | |
| 10621 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| 10622 | bool ret; |
| 10623 | *page_size = TARGET_PAGE_SIZE; |
| 10624 | |
| 10625 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 10626 | /* PMSAv8 */ |
| 10627 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, |
| 10628 | phys_ptr, attrs, prot, page_size, fi); |
| 10629 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 10630 | /* PMSAv7 */ |
| 10631 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, |
| 10632 | phys_ptr, prot, page_size, fi); |
| 10633 | } else { |
| 10634 | /* Pre-v7 MPU */ |
| 10635 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
| 10636 | phys_ptr, prot, fi); |
| 10637 | } |
| 10638 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 |
| 10639 | " mmu_idx %u -> %s (prot %c%c%c)\n" , |
| 10640 | access_type == MMU_DATA_LOAD ? "reading" : |
| 10641 | (access_type == MMU_DATA_STORE ? "writing" : "execute" ), |
| 10642 | (uint32_t)address, mmu_idx, |
| 10643 | ret ? "Miss" : "Hit" , |
| 10644 | *prot & PAGE_READ ? 'r' : '-', |
| 10645 | *prot & PAGE_WRITE ? 'w' : '-', |
| 10646 | *prot & PAGE_EXEC ? 'x' : '-'); |
| 10647 | |
| 10648 | return ret; |
| 10649 | } |
| 10650 | |
| 10651 | /* Definitely a real MMU, not an MPU */ |
| 10652 | |
| 10653 | if (regime_translation_disabled(env, mmu_idx)) { |
| 10654 | /* MMU disabled. */ |
| 10655 | *phys_ptr = address; |
| 10656 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| 10657 | *page_size = TARGET_PAGE_SIZE; |
| 10658 | return 0; |
| 10659 | } |
| 10660 | |
| 10661 | if (regime_using_lpae_format(env, mmu_idx)) { |
| 10662 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, |
| 10663 | phys_ptr, attrs, prot, page_size, |
| 10664 | fi, cacheattrs); |
| 10665 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
| 10666 | return get_phys_addr_v6(env, address, access_type, mmu_idx, |
| 10667 | phys_ptr, attrs, prot, page_size, fi); |
| 10668 | } else { |
| 10669 | return get_phys_addr_v5(env, address, access_type, mmu_idx, |
| 10670 | phys_ptr, prot, page_size, fi); |
| 10671 | } |
| 10672 | } |
| 10673 | |
| 10674 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
| 10675 | MemTxAttrs *attrs) |
| 10676 | { |
| 10677 | ARMCPU *cpu = ARM_CPU(cs); |
| 10678 | CPUARMState *env = &cpu->env; |
| 10679 | hwaddr phys_addr; |
| 10680 | target_ulong page_size; |
| 10681 | int prot; |
| 10682 | bool ret; |
| 10683 | ARMMMUFaultInfo fi = {}; |
| 10684 | ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| 10685 | |
| 10686 | *attrs = (MemTxAttrs) {}; |
| 10687 | |
| 10688 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
| 10689 | attrs, &prot, &page_size, &fi, NULL); |
| 10690 | |
| 10691 | if (ret) { |
| 10692 | return -1; |
| 10693 | } |
| 10694 | return phys_addr; |
| 10695 | } |
| 10696 | |
| 10697 | #endif |
| 10698 | |
| 10699 | /* Note that signed overflow is undefined in C. The following routines are |
| 10700 | careful to use unsigned types where modulo arithmetic is required. |
| 10701 | Failure to do so _will_ break on newer gcc. */ |
| 10702 | |
| 10703 | /* Signed saturating arithmetic. */ |
| 10704 | |
| 10705 | /* Perform 16-bit signed saturating addition. */ |
| 10706 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| 10707 | { |
| 10708 | uint16_t res; |
| 10709 | |
| 10710 | res = a + b; |
| 10711 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| 10712 | if (a & 0x8000) |
| 10713 | res = 0x8000; |
| 10714 | else |
| 10715 | res = 0x7fff; |
| 10716 | } |
| 10717 | return res; |
| 10718 | } |
| 10719 | |
| 10720 | /* Perform 8-bit signed saturating addition. */ |
| 10721 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| 10722 | { |
| 10723 | uint8_t res; |
| 10724 | |
| 10725 | res = a + b; |
| 10726 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| 10727 | if (a & 0x80) |
| 10728 | res = 0x80; |
| 10729 | else |
| 10730 | res = 0x7f; |
| 10731 | } |
| 10732 | return res; |
| 10733 | } |
| 10734 | |
| 10735 | /* Perform 16-bit signed saturating subtraction. */ |
| 10736 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| 10737 | { |
| 10738 | uint16_t res; |
| 10739 | |
| 10740 | res = a - b; |
| 10741 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| 10742 | if (a & 0x8000) |
| 10743 | res = 0x8000; |
| 10744 | else |
| 10745 | res = 0x7fff; |
| 10746 | } |
| 10747 | return res; |
| 10748 | } |
| 10749 | |
| 10750 | /* Perform 8-bit signed saturating subtraction. */ |
| 10751 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| 10752 | { |
| 10753 | uint8_t res; |
| 10754 | |
| 10755 | res = a - b; |
| 10756 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| 10757 | if (a & 0x80) |
| 10758 | res = 0x80; |
| 10759 | else |
| 10760 | res = 0x7f; |
| 10761 | } |
| 10762 | return res; |
| 10763 | } |
| 10764 | |
| 10765 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| 10766 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| 10767 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| 10768 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| 10769 | #define PFX q |
| 10770 | |
| 10771 | #include "op_addsub.h" |
| 10772 | |
| 10773 | /* Unsigned saturating arithmetic. */ |
| 10774 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| 10775 | { |
| 10776 | uint16_t res; |
| 10777 | res = a + b; |
| 10778 | if (res < a) |
| 10779 | res = 0xffff; |
| 10780 | return res; |
| 10781 | } |
| 10782 | |
| 10783 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| 10784 | { |
| 10785 | if (a > b) |
| 10786 | return a - b; |
| 10787 | else |
| 10788 | return 0; |
| 10789 | } |
| 10790 | |
| 10791 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| 10792 | { |
| 10793 | uint8_t res; |
| 10794 | res = a + b; |
| 10795 | if (res < a) |
| 10796 | res = 0xff; |
| 10797 | return res; |
| 10798 | } |
| 10799 | |
| 10800 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| 10801 | { |
| 10802 | if (a > b) |
| 10803 | return a - b; |
| 10804 | else |
| 10805 | return 0; |
| 10806 | } |
| 10807 | |
| 10808 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| 10809 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| 10810 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| 10811 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| 10812 | #define PFX uq |
| 10813 | |
| 10814 | #include "op_addsub.h" |
| 10815 | |
| 10816 | /* Signed modulo arithmetic. */ |
| 10817 | #define SARITH16(a, b, n, op) do { \ |
| 10818 | int32_t sum; \ |
| 10819 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| 10820 | RESULT(sum, n, 16); \ |
| 10821 | if (sum >= 0) \ |
| 10822 | ge |= 3 << (n * 2); \ |
| 10823 | } while(0) |
| 10824 | |
| 10825 | #define SARITH8(a, b, n, op) do { \ |
| 10826 | int32_t sum; \ |
| 10827 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| 10828 | RESULT(sum, n, 8); \ |
| 10829 | if (sum >= 0) \ |
| 10830 | ge |= 1 << n; \ |
| 10831 | } while(0) |
| 10832 | |
| 10833 | |
| 10834 | #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| 10835 | #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| 10836 | #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| 10837 | #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| 10838 | #define PFX s |
| 10839 | #define ARITH_GE |
| 10840 | |
| 10841 | #include "op_addsub.h" |
| 10842 | |
| 10843 | /* Unsigned modulo arithmetic. */ |
| 10844 | #define ADD16(a, b, n) do { \ |
| 10845 | uint32_t sum; \ |
| 10846 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| 10847 | RESULT(sum, n, 16); \ |
| 10848 | if ((sum >> 16) == 1) \ |
| 10849 | ge |= 3 << (n * 2); \ |
| 10850 | } while(0) |
| 10851 | |
| 10852 | #define ADD8(a, b, n) do { \ |
| 10853 | uint32_t sum; \ |
| 10854 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| 10855 | RESULT(sum, n, 8); \ |
| 10856 | if ((sum >> 8) == 1) \ |
| 10857 | ge |= 1 << n; \ |
| 10858 | } while(0) |
| 10859 | |
| 10860 | #define SUB16(a, b, n) do { \ |
| 10861 | uint32_t sum; \ |
| 10862 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| 10863 | RESULT(sum, n, 16); \ |
| 10864 | if ((sum >> 16) == 0) \ |
| 10865 | ge |= 3 << (n * 2); \ |
| 10866 | } while(0) |
| 10867 | |
| 10868 | #define SUB8(a, b, n) do { \ |
| 10869 | uint32_t sum; \ |
| 10870 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| 10871 | RESULT(sum, n, 8); \ |
| 10872 | if ((sum >> 8) == 0) \ |
| 10873 | ge |= 1 << n; \ |
| 10874 | } while(0) |
| 10875 | |
| 10876 | #define PFX u |
| 10877 | #define ARITH_GE |
| 10878 | |
| 10879 | #include "op_addsub.h" |
| 10880 | |
| 10881 | /* Halved signed arithmetic. */ |
| 10882 | #define ADD16(a, b, n) \ |
| 10883 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| 10884 | #define SUB16(a, b, n) \ |
| 10885 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| 10886 | #define ADD8(a, b, n) \ |
| 10887 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| 10888 | #define SUB8(a, b, n) \ |
| 10889 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| 10890 | #define PFX sh |
| 10891 | |
| 10892 | #include "op_addsub.h" |
| 10893 | |
| 10894 | /* Halved unsigned arithmetic. */ |
| 10895 | #define ADD16(a, b, n) \ |
| 10896 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| 10897 | #define SUB16(a, b, n) \ |
| 10898 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| 10899 | #define ADD8(a, b, n) \ |
| 10900 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| 10901 | #define SUB8(a, b, n) \ |
| 10902 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| 10903 | #define PFX uh |
| 10904 | |
| 10905 | #include "op_addsub.h" |
| 10906 | |
| 10907 | static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| 10908 | { |
| 10909 | if (a > b) |
| 10910 | return a - b; |
| 10911 | else |
| 10912 | return b - a; |
| 10913 | } |
| 10914 | |
| 10915 | /* Unsigned sum of absolute byte differences. */ |
| 10916 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| 10917 | { |
| 10918 | uint32_t sum; |
| 10919 | sum = do_usad(a, b); |
| 10920 | sum += do_usad(a >> 8, b >> 8); |
| 10921 | sum += do_usad(a >> 16, b >>16); |
| 10922 | sum += do_usad(a >> 24, b >> 24); |
| 10923 | return sum; |
| 10924 | } |
| 10925 | |
| 10926 | /* For ARMv6 SEL instruction. */ |
| 10927 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| 10928 | { |
| 10929 | uint32_t mask; |
| 10930 | |
| 10931 | mask = 0; |
| 10932 | if (flags & 1) |
| 10933 | mask |= 0xff; |
| 10934 | if (flags & 2) |
| 10935 | mask |= 0xff00; |
| 10936 | if (flags & 4) |
| 10937 | mask |= 0xff0000; |
| 10938 | if (flags & 8) |
| 10939 | mask |= 0xff000000; |
| 10940 | return (a & mask) | (b & ~mask); |
| 10941 | } |
| 10942 | |
| 10943 | /* CRC helpers. |
| 10944 | * The upper bytes of val (above the number specified by 'bytes') must have |
| 10945 | * been zeroed out by the caller. |
| 10946 | */ |
| 10947 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
| 10948 | { |
| 10949 | uint8_t buf[4]; |
| 10950 | |
| 10951 | stl_le_p(buf, val); |
| 10952 | |
| 10953 | /* zlib crc32 converts the accumulator and output to one's complement. */ |
| 10954 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; |
| 10955 | } |
| 10956 | |
| 10957 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) |
| 10958 | { |
| 10959 | uint8_t buf[4]; |
| 10960 | |
| 10961 | stl_le_p(buf, val); |
| 10962 | |
| 10963 | /* Linux crc32c converts the output to one's complement. */ |
| 10964 | return crc32c(acc, buf, bytes) ^ 0xffffffff; |
| 10965 | } |
| 10966 | |
| 10967 | /* Return the exception level to which FP-disabled exceptions should |
| 10968 | * be taken, or 0 if FP is enabled. |
| 10969 | */ |
| 10970 | int fp_exception_el(CPUARMState *env, int cur_el) |
| 10971 | { |
| 10972 | #ifndef CONFIG_USER_ONLY |
| 10973 | int fpen; |
| 10974 | |
| 10975 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
| 10976 | * always accessible |
| 10977 | */ |
| 10978 | if (!arm_feature(env, ARM_FEATURE_V6)) { |
| 10979 | return 0; |
| 10980 | } |
| 10981 | |
| 10982 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 10983 | /* CPACR can cause a NOCP UsageFault taken to current security state */ |
| 10984 | if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { |
| 10985 | return 1; |
| 10986 | } |
| 10987 | |
| 10988 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { |
| 10989 | if (!extract32(env->v7m.nsacr, 10, 1)) { |
| 10990 | /* FP insns cause a NOCP UsageFault taken to Secure */ |
| 10991 | return 3; |
| 10992 | } |
| 10993 | } |
| 10994 | |
| 10995 | return 0; |
| 10996 | } |
| 10997 | |
| 10998 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
| 10999 | * 0, 2 : trap EL0 and EL1/PL1 accesses |
| 11000 | * 1 : trap only EL0 accesses |
| 11001 | * 3 : trap no accesses |
| 11002 | */ |
| 11003 | fpen = extract32(env->cp15.cpacr_el1, 20, 2); |
| 11004 | switch (fpen) { |
| 11005 | case 0: |
| 11006 | case 2: |
| 11007 | if (cur_el == 0 || cur_el == 1) { |
| 11008 | /* Trap to PL1, which might be EL1 or EL3 */ |
| 11009 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { |
| 11010 | return 3; |
| 11011 | } |
| 11012 | return 1; |
| 11013 | } |
| 11014 | if (cur_el == 3 && !is_a64(env)) { |
| 11015 | /* Secure PL1 running at EL3 */ |
| 11016 | return 3; |
| 11017 | } |
| 11018 | break; |
| 11019 | case 1: |
| 11020 | if (cur_el == 0) { |
| 11021 | return 1; |
| 11022 | } |
| 11023 | break; |
| 11024 | case 3: |
| 11025 | break; |
| 11026 | } |
| 11027 | |
| 11028 | /* |
| 11029 | * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode |
| 11030 | * to control non-secure access to the FPU. It doesn't have any |
| 11031 | * effect if EL3 is AArch64 or if EL3 doesn't exist at all. |
| 11032 | */ |
| 11033 | if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && |
| 11034 | cur_el <= 2 && !arm_is_secure_below_el3(env))) { |
| 11035 | if (!extract32(env->cp15.nsacr, 10, 1)) { |
| 11036 | /* FP insns act as UNDEF */ |
| 11037 | return cur_el == 2 ? 2 : 1; |
| 11038 | } |
| 11039 | } |
| 11040 | |
| 11041 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE |
| 11042 | * check because zero bits in the registers mean "don't trap". |
| 11043 | */ |
| 11044 | |
| 11045 | /* CPTR_EL2 : present in v7VE or v8 */ |
| 11046 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) |
| 11047 | && !arm_is_secure_below_el3(env)) { |
| 11048 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ |
| 11049 | return 2; |
| 11050 | } |
| 11051 | |
| 11052 | /* CPTR_EL3 : present in v8 */ |
| 11053 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { |
| 11054 | /* Trap all FP ops to EL3 */ |
| 11055 | return 3; |
| 11056 | } |
| 11057 | #endif |
| 11058 | return 0; |
| 11059 | } |
| 11060 | |
| 11061 | #ifndef CONFIG_TCG |
| 11062 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) |
| 11063 | { |
| 11064 | g_assert_not_reached(); |
| 11065 | } |
| 11066 | #endif |
| 11067 | |
| 11068 | ARMMMUIdx arm_mmu_idx(CPUARMState *env) |
| 11069 | { |
| 11070 | int el; |
| 11071 | |
| 11072 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 11073 | return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); |
| 11074 | } |
| 11075 | |
| 11076 | el = arm_current_el(env); |
| 11077 | if (el < 2 && arm_is_secure_below_el3(env)) { |
| 11078 | return ARMMMUIdx_S1SE0 + el; |
| 11079 | } else { |
| 11080 | return ARMMMUIdx_S12NSE0 + el; |
| 11081 | } |
| 11082 | } |
| 11083 | |
| 11084 | int cpu_mmu_index(CPUARMState *env, bool ifetch) |
| 11085 | { |
| 11086 | return arm_to_core_mmu_idx(arm_mmu_idx(env)); |
| 11087 | } |
| 11088 | |
| 11089 | #ifndef CONFIG_USER_ONLY |
| 11090 | ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) |
| 11091 | { |
| 11092 | return stage_1_mmu_idx(arm_mmu_idx(env)); |
| 11093 | } |
| 11094 | #endif |
| 11095 | |
| 11096 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
| 11097 | target_ulong *cs_base, uint32_t *pflags) |
| 11098 | { |
| 11099 | ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| 11100 | int current_el = arm_current_el(env); |
| 11101 | int fp_el = fp_exception_el(env, current_el); |
| 11102 | uint32_t flags = 0; |
| 11103 | |
| 11104 | if (is_a64(env)) { |
| 11105 | ARMCPU *cpu = env_archcpu(env); |
| 11106 | uint64_t sctlr; |
| 11107 | |
| 11108 | *pc = env->pc; |
| 11109 | flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); |
| 11110 | |
| 11111 | /* Get control bits for tagged addresses. */ |
| 11112 | { |
| 11113 | ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
| 11114 | ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); |
| 11115 | int tbii, tbid; |
| 11116 | |
| 11117 | /* FIXME: ARMv8.1-VHE S2 translation regime. */ |
| 11118 | if (regime_el(env, stage1) < 2) { |
| 11119 | ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); |
| 11120 | tbid = (p1.tbi << 1) | p0.tbi; |
| 11121 | tbii = tbid & ~((p1.tbid << 1) | p0.tbid); |
| 11122 | } else { |
| 11123 | tbid = p0.tbi; |
| 11124 | tbii = tbid & !p0.tbid; |
| 11125 | } |
| 11126 | |
| 11127 | flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); |
| 11128 | flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); |
| 11129 | } |
| 11130 | |
| 11131 | if (cpu_isar_feature(aa64_sve, cpu)) { |
| 11132 | int sve_el = sve_exception_el(env, current_el); |
| 11133 | uint32_t zcr_len; |
| 11134 | |
| 11135 | /* If SVE is disabled, but FP is enabled, |
| 11136 | * then the effective len is 0. |
| 11137 | */ |
| 11138 | if (sve_el != 0 && fp_el == 0) { |
| 11139 | zcr_len = 0; |
| 11140 | } else { |
| 11141 | zcr_len = sve_zcr_len_for_el(env, current_el); |
| 11142 | } |
| 11143 | flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); |
| 11144 | flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); |
| 11145 | } |
| 11146 | |
| 11147 | sctlr = arm_sctlr(env, current_el); |
| 11148 | |
| 11149 | if (cpu_isar_feature(aa64_pauth, cpu)) { |
| 11150 | /* |
| 11151 | * In order to save space in flags, we record only whether |
| 11152 | * pauth is "inactive", meaning all insns are implemented as |
| 11153 | * a nop, or "active" when some action must be performed. |
| 11154 | * The decision of which action to take is left to a helper. |
| 11155 | */ |
| 11156 | if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { |
| 11157 | flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); |
| 11158 | } |
| 11159 | } |
| 11160 | |
| 11161 | if (cpu_isar_feature(aa64_bti, cpu)) { |
| 11162 | /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ |
| 11163 | if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { |
| 11164 | flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); |
| 11165 | } |
| 11166 | flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); |
| 11167 | } |
| 11168 | } else { |
| 11169 | *pc = env->regs[15]; |
| 11170 | flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); |
| 11171 | flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); |
| 11172 | flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); |
| 11173 | flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); |
| 11174 | flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); |
| 11175 | flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); |
| 11176 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) |
| 11177 | || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { |
| 11178 | flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); |
| 11179 | } |
| 11180 | /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ |
| 11181 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 11182 | flags = FIELD_DP32(flags, TBFLAG_A32, |
| 11183 | XSCALE_CPAR, env->cp15.c15_cpar); |
| 11184 | } |
| 11185 | } |
| 11186 | |
| 11187 | flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); |
| 11188 | |
| 11189 | /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine |
| 11190 | * states defined in the ARM ARM for software singlestep: |
| 11191 | * SS_ACTIVE PSTATE.SS State |
| 11192 | * 0 x Inactive (the TB flag for SS is always 0) |
| 11193 | * 1 0 Active-pending |
| 11194 | * 1 1 Active-not-pending |
| 11195 | */ |
| 11196 | if (arm_singlestep_active(env)) { |
| 11197 | flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); |
| 11198 | if (is_a64(env)) { |
| 11199 | if (env->pstate & PSTATE_SS) { |
| 11200 | flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); |
| 11201 | } |
| 11202 | } else { |
| 11203 | if (env->uncached_cpsr & PSTATE_SS) { |
| 11204 | flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); |
| 11205 | } |
| 11206 | } |
| 11207 | } |
| 11208 | if (arm_cpu_data_is_big_endian(env)) { |
| 11209 | flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); |
| 11210 | } |
| 11211 | flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); |
| 11212 | |
| 11213 | if (arm_v7m_is_handler_mode(env)) { |
| 11214 | flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); |
| 11215 | } |
| 11216 | |
| 11217 | /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is |
| 11218 | * suppressing them because the requested execution priority is less than 0. |
| 11219 | */ |
| 11220 | if (arm_feature(env, ARM_FEATURE_V8) && |
| 11221 | arm_feature(env, ARM_FEATURE_M) && |
| 11222 | !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && |
| 11223 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { |
| 11224 | flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); |
| 11225 | } |
| 11226 | |
| 11227 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
| 11228 | FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { |
| 11229 | flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); |
| 11230 | } |
| 11231 | |
| 11232 | if (arm_feature(env, ARM_FEATURE_M) && |
| 11233 | (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && |
| 11234 | (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || |
| 11235 | (env->v7m.secure && |
| 11236 | !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { |
| 11237 | /* |
| 11238 | * ASPEN is set, but FPCA/SFPA indicate that there is no active |
| 11239 | * FP context; we must create a new FP context before executing |
| 11240 | * any FP insn. |
| 11241 | */ |
| 11242 | flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); |
| 11243 | } |
| 11244 | |
| 11245 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 11246 | bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; |
| 11247 | |
| 11248 | if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { |
| 11249 | flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); |
| 11250 | } |
| 11251 | } |
| 11252 | |
| 11253 | if (!arm_feature(env, ARM_FEATURE_M)) { |
| 11254 | int target_el = arm_debug_target_el(env); |
| 11255 | |
| 11256 | flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, target_el); |
| 11257 | } |
| 11258 | |
| 11259 | *pflags = flags; |
| 11260 | *cs_base = 0; |
| 11261 | } |
| 11262 | |
| 11263 | #ifdef TARGET_AARCH64 |
| 11264 | /* |
| 11265 | * The manual says that when SVE is enabled and VQ is widened the |
| 11266 | * implementation is allowed to zero the previously inaccessible |
| 11267 | * portion of the registers. The corollary to that is that when |
| 11268 | * SVE is enabled and VQ is narrowed we are also allowed to zero |
| 11269 | * the now inaccessible portion of the registers. |
| 11270 | * |
| 11271 | * The intent of this is that no predicate bit beyond VQ is ever set. |
| 11272 | * Which means that some operations on predicate registers themselves |
| 11273 | * may operate on full uint64_t or even unrolled across the maximum |
| 11274 | * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally |
| 11275 | * may well be cheaper than conditionals to restrict the operation |
| 11276 | * to the relevant portion of a uint16_t[16]. |
| 11277 | */ |
| 11278 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) |
| 11279 | { |
| 11280 | int i, j; |
| 11281 | uint64_t pmask; |
| 11282 | |
| 11283 | assert(vq >= 1 && vq <= ARM_MAX_VQ); |
| 11284 | assert(vq <= env_archcpu(env)->sve_max_vq); |
| 11285 | |
| 11286 | /* Zap the high bits of the zregs. */ |
| 11287 | for (i = 0; i < 32; i++) { |
| 11288 | memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); |
| 11289 | } |
| 11290 | |
| 11291 | /* Zap the high bits of the pregs and ffr. */ |
| 11292 | pmask = 0; |
| 11293 | if (vq & 3) { |
| 11294 | pmask = ~(-1ULL << (16 * (vq & 3))); |
| 11295 | } |
| 11296 | for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { |
| 11297 | for (i = 0; i < 17; ++i) { |
| 11298 | env->vfp.pregs[i].p[j] &= pmask; |
| 11299 | } |
| 11300 | pmask = 0; |
| 11301 | } |
| 11302 | } |
| 11303 | |
| 11304 | /* |
| 11305 | * Notice a change in SVE vector size when changing EL. |
| 11306 | */ |
| 11307 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
| 11308 | int new_el, bool el0_a64) |
| 11309 | { |
| 11310 | ARMCPU *cpu = env_archcpu(env); |
| 11311 | int old_len, new_len; |
| 11312 | bool old_a64, new_a64; |
| 11313 | |
| 11314 | /* Nothing to do if no SVE. */ |
| 11315 | if (!cpu_isar_feature(aa64_sve, cpu)) { |
| 11316 | return; |
| 11317 | } |
| 11318 | |
| 11319 | /* Nothing to do if FP is disabled in either EL. */ |
| 11320 | if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { |
| 11321 | return; |
| 11322 | } |
| 11323 | |
| 11324 | /* |
| 11325 | * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped |
| 11326 | * at ELx, or not available because the EL is in AArch32 state, then |
| 11327 | * for all purposes other than a direct read, the ZCR_ELx.LEN field |
| 11328 | * has an effective value of 0". |
| 11329 | * |
| 11330 | * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). |
| 11331 | * If we ignore aa32 state, we would fail to see the vq4->vq0 transition |
| 11332 | * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that |
| 11333 | * we already have the correct register contents when encountering the |
| 11334 | * vq0->vq0 transition between EL0->EL1. |
| 11335 | */ |
| 11336 | old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; |
| 11337 | old_len = (old_a64 && !sve_exception_el(env, old_el) |
| 11338 | ? sve_zcr_len_for_el(env, old_el) : 0); |
| 11339 | new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; |
| 11340 | new_len = (new_a64 && !sve_exception_el(env, new_el) |
| 11341 | ? sve_zcr_len_for_el(env, new_el) : 0); |
| 11342 | |
| 11343 | /* When changing vector length, clear inaccessible state. */ |
| 11344 | if (new_len < old_len) { |
| 11345 | aarch64_sve_narrow_vq(env, new_len + 1); |
| 11346 | } |
| 11347 | } |
| 11348 | #endif |
| 11349 | |