1/*
2 * TriCore emulation for qemu: fpu helper.
3 *
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "cpu.h"
22#include "exec/helper-proto.h"
23#include "fpu/softfloat.h"
24
25#define QUIET_NAN 0x7fc00000
26#define ADD_NAN 0x7fc00001
27#define SQRT_NAN 0x7fc00004
28#define DIV_NAN 0x7fc00008
29#define MUL_NAN 0x7fc00002
30#define FPU_FS PSW_USB_C
31#define FPU_FI PSW_USB_V
32#define FPU_FV PSW_USB_SV
33#define FPU_FZ PSW_USB_AV
34#define FPU_FU PSW_USB_SAV
35
36#define float32_sqrt_nan make_float32(SQRT_NAN)
37#define float32_quiet_nan make_float32(QUIET_NAN)
38
39/* we don't care about input_denormal */
40static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
41{
42 return get_float_exception_flags(&env->fp_status)
43 & (float_flag_invalid
44 | float_flag_overflow
45 | float_flag_underflow
46 | float_flag_output_denormal
47 | float_flag_divbyzero
48 | float_flag_inexact);
49}
50
51static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
52 float32 arg3, float32 result,
53 uint32_t muladd_negate_c)
54{
55 uint32_t aSign, bSign, cSign;
56 uint32_t aExp, bExp, cExp;
57
58 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
59 float32_is_any_nan(arg3)) {
60 return QUIET_NAN;
61 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
62 return MUL_NAN;
63 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
64 return MUL_NAN;
65 } else {
66 aSign = arg1 >> 31;
67 bSign = arg2 >> 31;
68 cSign = arg3 >> 31;
69
70 aExp = (arg1 >> 23) & 0xff;
71 bExp = (arg2 >> 23) & 0xff;
72 cExp = (arg3 >> 23) & 0xff;
73
74 if (muladd_negate_c) {
75 cSign ^= 1;
76 }
77 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
78 if (aSign ^ bSign ^ cSign) {
79 return ADD_NAN;
80 }
81 }
82 }
83
84 return result;
85}
86
87static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
88{
89 uint8_t some_excp = 0;
90 set_float_exception_flags(0, &env->fp_status);
91
92 if (flags & float_flag_invalid) {
93 env->FPU_FI = 1 << 31;
94 some_excp = 1;
95 }
96
97 if (flags & float_flag_overflow) {
98 env->FPU_FV = 1 << 31;
99 some_excp = 1;
100 }
101
102 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
103 env->FPU_FU = 1 << 31;
104 some_excp = 1;
105 }
106
107 if (flags & float_flag_divbyzero) {
108 env->FPU_FZ = 1 << 31;
109 some_excp = 1;
110 }
111
112 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
113 env->PSW |= 1 << 26;
114 some_excp = 1;
115 }
116
117 env->FPU_FS = some_excp;
118}
119
120#define FADD_SUB(op) \
121uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
122{ \
123 float32 arg1 = make_float32(r1); \
124 float32 arg2 = make_float32(r2); \
125 uint32_t flags; \
126 float32 f_result; \
127 \
128 f_result = float32_##op(arg2, arg1, &env->fp_status); \
129 flags = f_get_excp_flags(env); \
130 if (flags) { \
131 /* If the output is a NaN, but the inputs aren't, \
132 we return a unique value. */ \
133 if ((flags & float_flag_invalid) \
134 && !float32_is_any_nan(arg1) \
135 && !float32_is_any_nan(arg2)) { \
136 f_result = ADD_NAN; \
137 } \
138 f_update_psw_flags(env, flags); \
139 } else { \
140 env->FPU_FS = 0; \
141 } \
142 return (uint32_t)f_result; \
143}
144FADD_SUB(add)
145FADD_SUB(sub)
146
147uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
148{
149 uint32_t flags;
150 float32 arg1 = make_float32(r1);
151 float32 arg2 = make_float32(r2);
152 float32 f_result;
153
154 f_result = float32_mul(arg1, arg2, &env->fp_status);
155
156 flags = f_get_excp_flags(env);
157 if (flags) {
158 /* If the output is a NaN, but the inputs aren't,
159 we return a unique value. */
160 if ((flags & float_flag_invalid)
161 && !float32_is_any_nan(arg1)
162 && !float32_is_any_nan(arg2)) {
163 f_result = MUL_NAN;
164 }
165 f_update_psw_flags(env, flags);
166 } else {
167 env->FPU_FS = 0;
168 }
169 return (uint32_t)f_result;
170
171}
172
173/*
174 * Target TriCore QSEED.F significand Lookup Table
175 *
176 * The QSEED.F output significand depends on the least-significant
177 * exponent bit and the 6 most-significant significand bits.
178 *
179 * IEEE 754 float datatype
180 * partitioned into Sign (S), Exponent (E) and Significand (M):
181 *
182 * S E E E E E E E E M M M M M M ...
183 * | | |
184 * +------+------+-------+-------+
185 * | |
186 * for lookup table
187 * calculating index for
188 * output E output M
189 *
190 * This lookup table was extracted by analyzing QSEED output
191 * from the real hardware
192 */
193static const uint8_t target_qseed_significand_table[128] = {
194 253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216,
195 211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184,
196 179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156,
197 153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132,
198 131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114,
199 111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83,
200 82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55,
201 54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33,
202 32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15,
203 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
204};
205
206uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1)
207{
208 uint32_t arg1, S, E, M, E_minus_one, m_idx;
209 uint32_t new_E, new_M, new_S, result;
210
211 arg1 = make_float32(r1);
212
213 /* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */
214 S = extract32(arg1, 31, 1);
215 E = extract32(arg1, 23, 8);
216 M = extract32(arg1, 17, 6);
217
218 if (float32_is_any_nan(arg1)) {
219 result = float32_quiet_nan;
220 } else if (float32_is_zero_or_denormal(arg1)) {
221 if (float32_is_neg(arg1)) {
222 result = float32_infinity | (1 << 31);
223 } else {
224 result = float32_infinity;
225 }
226 } else if (float32_is_neg(arg1)) {
227 result = float32_sqrt_nan;
228 } else if (float32_is_infinity(arg1)) {
229 result = float32_zero;
230 } else {
231 E_minus_one = E - 1;
232 m_idx = ((E_minus_one & 1) << 6) | M;
233 new_S = S;
234 new_E = 0xBD - E_minus_one / 2;
235 new_M = target_qseed_significand_table[m_idx];
236
237 result = 0;
238 result = deposit32(result, 31, 1, new_S);
239 result = deposit32(result, 23, 8, new_E);
240 result = deposit32(result, 15, 8, new_M);
241 }
242
243 if (float32_is_signaling_nan(arg1, &env->fp_status)
244 || result == float32_sqrt_nan) {
245 env->FPU_FI = 1 << 31;
246 env->FPU_FS = 1;
247 } else {
248 env->FPU_FS = 0;
249 }
250
251 return (uint32_t) result;
252}
253
254uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
255{
256 uint32_t flags;
257 float32 arg1 = make_float32(r1);
258 float32 arg2 = make_float32(r2);
259 float32 f_result;
260
261 f_result = float32_div(arg1, arg2 , &env->fp_status);
262
263 flags = f_get_excp_flags(env);
264 if (flags) {
265 /* If the output is a NaN, but the inputs aren't,
266 we return a unique value. */
267 if ((flags & float_flag_invalid)
268 && !float32_is_any_nan(arg1)
269 && !float32_is_any_nan(arg2)) {
270 f_result = DIV_NAN;
271 }
272 f_update_psw_flags(env, flags);
273 } else {
274 env->FPU_FS = 0;
275 }
276
277 return (uint32_t)f_result;
278}
279
280uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
281 uint32_t r2, uint32_t r3)
282{
283 uint32_t flags;
284 float32 arg1 = make_float32(r1);
285 float32 arg2 = make_float32(r2);
286 float32 arg3 = make_float32(r3);
287 float32 f_result;
288
289 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
290
291 flags = f_get_excp_flags(env);
292 if (flags) {
293 if (flags & float_flag_invalid) {
294 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
295 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
296 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
297 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
298 }
299 f_update_psw_flags(env, flags);
300 } else {
301 env->FPU_FS = 0;
302 }
303 return (uint32_t)f_result;
304}
305
306uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
307 uint32_t r2, uint32_t r3)
308{
309 uint32_t flags;
310 float32 arg1 = make_float32(r1);
311 float32 arg2 = make_float32(r2);
312 float32 arg3 = make_float32(r3);
313 float32 f_result;
314
315 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
316 &env->fp_status);
317
318 flags = f_get_excp_flags(env);
319 if (flags) {
320 if (flags & float_flag_invalid) {
321 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
322 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
323 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
324
325 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
326 }
327 f_update_psw_flags(env, flags);
328 } else {
329 env->FPU_FS = 0;
330 }
331 return (uint32_t)f_result;
332}
333
334uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
335{
336 uint32_t result, flags;
337 float32 arg1 = make_float32(r1);
338 float32 arg2 = make_float32(r2);
339
340 set_flush_inputs_to_zero(0, &env->fp_status);
341
342 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
343 result |= float32_is_denormal(arg1) << 4;
344 result |= float32_is_denormal(arg2) << 5;
345
346 flags = f_get_excp_flags(env);
347 if (flags) {
348 f_update_psw_flags(env, flags);
349 } else {
350 env->FPU_FS = 0;
351 }
352
353 set_flush_inputs_to_zero(1, &env->fp_status);
354 return result;
355}
356
357uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
358{
359 float32 f_arg = make_float32(arg);
360 int32_t result, flags;
361
362 result = float32_to_int32(f_arg, &env->fp_status);
363
364 flags = f_get_excp_flags(env);
365 if (flags) {
366 if (float32_is_any_nan(f_arg)) {
367 result = 0;
368 }
369 f_update_psw_flags(env, flags);
370 } else {
371 env->FPU_FS = 0;
372 }
373 return (uint32_t)result;
374}
375
376uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
377{
378 float32 f_result;
379 uint32_t flags;
380 f_result = int32_to_float32(arg, &env->fp_status);
381
382 flags = f_get_excp_flags(env);
383 if (flags) {
384 f_update_psw_flags(env, flags);
385 } else {
386 env->FPU_FS = 0;
387 }
388 return (uint32_t)f_result;
389}
390
391uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg)
392{
393 float32 f_result;
394 uint32_t flags;
395
396 f_result = uint32_to_float32(arg, &env->fp_status);
397
398 flags = f_get_excp_flags(env);
399 if (flags) {
400 f_update_psw_flags(env, flags);
401 } else {
402 env->FPU_FS = 0;
403 }
404 return (uint32_t)f_result;
405}
406
407uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg)
408{
409 float32 f_arg = make_float32(arg);
410 uint32_t result;
411 int32_t flags;
412
413 result = float32_to_int32_round_to_zero(f_arg, &env->fp_status);
414
415 flags = f_get_excp_flags(env);
416 if (flags & float_flag_invalid) {
417 flags &= ~float_flag_inexact;
418 if (float32_is_any_nan(f_arg)) {
419 result = 0;
420 }
421 }
422
423 if (flags) {
424 f_update_psw_flags(env, flags);
425 } else {
426 env->FPU_FS = 0;
427 }
428
429 return result;
430}
431
432uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
433{
434 float32 f_arg = make_float32(arg);
435 uint32_t result;
436 int32_t flags;
437
438 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
439
440 flags = f_get_excp_flags(env);
441 if (flags & float_flag_invalid) {
442 flags &= ~float_flag_inexact;
443 if (float32_is_any_nan(f_arg)) {
444 result = 0;
445 }
446 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
447 flags = float_flag_invalid;
448 result = 0;
449 }
450
451 if (flags) {
452 f_update_psw_flags(env, flags);
453 } else {
454 env->FPU_FS = 0;
455 }
456 return result;
457}
458
459void helper_updfl(CPUTriCoreState *env, uint32_t arg)
460{
461 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
462 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
463 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
464 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
465 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
466 /* clear FX and RM */
467 env->PSW &= ~(extract32(arg, 10, 1) << 26);
468 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
469
470 fpu_set_state(env);
471}
472