| 1 | // |
| 2 | // Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | // |
| 22 | |
| 23 | #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H |
| 24 | #define AMD_VULKAN_MEMORY_ALLOCATOR_H |
| 25 | |
| 26 | #ifdef __cplusplus |
| 27 | extern "C" { |
| 28 | #endif |
| 29 | |
| 30 | /** \mainpage Vulkan Memory Allocator |
| 31 | |
| 32 | <b>Version 2.2.0</b> (2018-12-13) |
| 33 | |
| 34 | Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n |
| 35 | License: MIT |
| 36 | |
| 37 | Documentation of all members: vk_mem_alloc.h |
| 38 | |
| 39 | \section main_table_of_contents Table of contents |
| 40 | |
| 41 | - <b>User guide</b> |
| 42 | - \subpage quick_start |
| 43 | - [Project setup](@ref quick_start_project_setup) |
| 44 | - [Initialization](@ref quick_start_initialization) |
| 45 | - [Resource allocation](@ref quick_start_resource_allocation) |
| 46 | - \subpage choosing_memory_type |
| 47 | - [Usage](@ref choosing_memory_type_usage) |
| 48 | - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) |
| 49 | - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) |
| 50 | - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) |
| 51 | - \subpage memory_mapping |
| 52 | - [Mapping functions](@ref memory_mapping_mapping_functions) |
| 53 | - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) |
| 54 | - [Cache control](@ref memory_mapping_cache_control) |
| 55 | - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable) |
| 56 | - \subpage custom_memory_pools |
| 57 | - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) |
| 58 | - [Linear allocation algorithm](@ref linear_algorithm) |
| 59 | - [Free-at-once](@ref linear_algorithm_free_at_once) |
| 60 | - [Stack](@ref linear_algorithm_stack) |
| 61 | - [Double stack](@ref linear_algorithm_double_stack) |
| 62 | - [Ring buffer](@ref linear_algorithm_ring_buffer) |
| 63 | - [Buddy allocation algorithm](@ref buddy_algorithm) |
| 64 | - \subpage defragmentation |
| 65 | - [Defragmenting CPU memory](@ref defragmentation_cpu) |
| 66 | - [Defragmenting GPU memory](@ref defragmentation_gpu) |
| 67 | - [Additional notes](@ref defragmentation_additional_notes) |
| 68 | - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) |
| 69 | - \subpage lost_allocations |
| 70 | - \subpage statistics |
| 71 | - [Numeric statistics](@ref statistics_numeric_statistics) |
| 72 | - [JSON dump](@ref statistics_json_dump) |
| 73 | - \subpage allocation_annotation |
| 74 | - [Allocation user data](@ref allocation_user_data) |
| 75 | - [Allocation names](@ref allocation_names) |
| 76 | - \subpage debugging_memory_usage |
| 77 | - [Memory initialization](@ref debugging_memory_usage_initialization) |
| 78 | - [Margins](@ref debugging_memory_usage_margins) |
| 79 | - [Corruption detection](@ref debugging_memory_usage_corruption_detection) |
| 80 | - \subpage record_and_replay |
| 81 | - \subpage usage_patterns |
| 82 | - [Simple patterns](@ref usage_patterns_simple) |
| 83 | - [Advanced patterns](@ref usage_patterns_advanced) |
| 84 | - \subpage configuration |
| 85 | - [Pointers to Vulkan functions](@ref config_Vulkan_functions) |
| 86 | - [Custom host memory allocator](@ref custom_memory_allocator) |
| 87 | - [Device memory allocation callbacks](@ref allocation_callbacks) |
| 88 | - [Device heap memory limit](@ref heap_memory_limit) |
| 89 | - \subpage vk_khr_dedicated_allocation |
| 90 | - \subpage general_considerations |
| 91 | - [Thread safety](@ref general_considerations_thread_safety) |
| 92 | - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) |
| 93 | - [Allocation algorithm](@ref general_considerations_allocation_algorithm) |
| 94 | - [Features not supported](@ref general_considerations_features_not_supported) |
| 95 | |
| 96 | \section main_see_also See also |
| 97 | |
| 98 | - [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) |
| 99 | - [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) |
| 100 | |
| 101 | |
| 102 | |
| 103 | |
| 104 | \page quick_start Quick start |
| 105 | |
| 106 | \section quick_start_project_setup Project setup |
| 107 | |
| 108 | Vulkan Memory Allocator comes in form of a single header file. |
| 109 | You don't need to build it as a separate library project. |
| 110 | You can add this file directly to your project and submit it to code repository next to your other source files. |
| 111 | |
| 112 | "Single header" doesn't mean that everything is contained in C/C++ declarations, |
| 113 | like it tends to be in case of inline functions or C++ templates. |
| 114 | It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. |
| 115 | If you don't do it properly, you will get linker errors. |
| 116 | |
| 117 | To do it properly: |
| 118 | |
| 119 | -# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. |
| 120 | This includes declarations of all members of the library. |
| 121 | -# In exacly one CPP file define following macro before this include. |
| 122 | It enables also internal definitions. |
| 123 | |
| 124 | \code |
| 125 | #define VMA_IMPLEMENTATION |
| 126 | #include "vk_mem_alloc.h" |
| 127 | \endcode |
| 128 | |
| 129 | It may be a good idea to create dedicated CPP file just for this purpose. |
| 130 | |
| 131 | Note on language: This library is written in C++, but has C-compatible interface. |
| 132 | Thus you can include and use vk_mem_alloc.h in C or C++ code, but full |
| 133 | implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. |
| 134 | |
| 135 | Please note that this library includes header `<vulkan/vulkan.h>`, which in turn |
| 136 | includes `<windows.h>` on Windows. If you need some specific macros defined |
| 137 | before including these headers (like `WIN32_LEAN_AND_MEAN` or |
| 138 | `WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define |
| 139 | them before every `#include` of this library. |
| 140 | |
| 141 | |
| 142 | \section quick_start_initialization Initialization |
| 143 | |
| 144 | At program startup: |
| 145 | |
| 146 | -# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object. |
| 147 | -# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by |
| 148 | calling vmaCreateAllocator(). |
| 149 | |
| 150 | \code |
| 151 | VmaAllocatorCreateInfo allocatorInfo = {}; |
| 152 | allocatorInfo.physicalDevice = physicalDevice; |
| 153 | allocatorInfo.device = device; |
| 154 | |
| 155 | VmaAllocator allocator; |
| 156 | vmaCreateAllocator(&allocatorInfo, &allocator); |
| 157 | \endcode |
| 158 | |
| 159 | \section quick_start_resource_allocation Resource allocation |
| 160 | |
| 161 | When you want to create a buffer or image: |
| 162 | |
| 163 | -# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. |
| 164 | -# Fill VmaAllocationCreateInfo structure. |
| 165 | -# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory |
| 166 | already allocated and bound to it. |
| 167 | |
| 168 | \code |
| 169 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 170 | bufferInfo.size = 65536; |
| 171 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 172 | |
| 173 | VmaAllocationCreateInfo allocInfo = {}; |
| 174 | allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 175 | |
| 176 | VkBuffer buffer; |
| 177 | VmaAllocation allocation; |
| 178 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); |
| 179 | \endcode |
| 180 | |
| 181 | Don't forget to destroy your objects when no longer needed: |
| 182 | |
| 183 | \code |
| 184 | vmaDestroyBuffer(allocator, buffer, allocation); |
| 185 | vmaDestroyAllocator(allocator); |
| 186 | \endcode |
| 187 | |
| 188 | |
| 189 | \page choosing_memory_type Choosing memory type |
| 190 | |
| 191 | Physical devices in Vulkan support various combinations of memory heaps and |
| 192 | types. Help with choosing correct and optimal memory type for your specific |
| 193 | resource is one of the key features of this library. You can use it by filling |
| 194 | appropriate members of VmaAllocationCreateInfo structure, as described below. |
| 195 | You can also combine multiple methods. |
| 196 | |
| 197 | -# If you just want to find memory type index that meets your requirements, you |
| 198 | can use function vmaFindMemoryTypeIndex(). |
| 199 | -# If you want to allocate a region of device memory without association with any |
| 200 | specific image or buffer, you can use function vmaAllocateMemory(). Usage of |
| 201 | this function is not recommended and usually not needed. |
| 202 | -# If you already have a buffer or an image created, you want to allocate memory |
| 203 | for it and then you will bind it yourself, you can use function |
| 204 | vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). |
| 205 | For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory(). |
| 206 | -# If you want to create a buffer or an image, allocate memory for it and bind |
| 207 | them together, all in one call, you can use function vmaCreateBuffer(), |
| 208 | vmaCreateImage(). This is the recommended way to use this library. |
| 209 | |
| 210 | When using 3. or 4., the library internally queries Vulkan for memory types |
| 211 | supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) |
| 212 | and uses only one of these types. |
| 213 | |
| 214 | If no memory type can be found that meets all the requirements, these functions |
| 215 | return `VK_ERROR_FEATURE_NOT_PRESENT`. |
| 216 | |
| 217 | You can leave VmaAllocationCreateInfo structure completely filled with zeros. |
| 218 | It means no requirements are specified for memory type. |
| 219 | It is valid, although not very useful. |
| 220 | |
| 221 | \section choosing_memory_type_usage Usage |
| 222 | |
| 223 | The easiest way to specify memory requirements is to fill member |
| 224 | VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. |
| 225 | It defines high level, common usage types. |
| 226 | For more details, see description of this enum. |
| 227 | |
| 228 | For example, if you want to create a uniform buffer that will be filled using |
| 229 | transfer only once or infrequently and used for rendering every frame, you can |
| 230 | do it using following code: |
| 231 | |
| 232 | \code |
| 233 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 234 | bufferInfo.size = 65536; |
| 235 | bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 236 | |
| 237 | VmaAllocationCreateInfo allocInfo = {}; |
| 238 | allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 239 | |
| 240 | VkBuffer buffer; |
| 241 | VmaAllocation allocation; |
| 242 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); |
| 243 | \endcode |
| 244 | |
| 245 | \section choosing_memory_type_required_preferred_flags Required and preferred flags |
| 246 | |
| 247 | You can specify more detailed requirements by filling members |
| 248 | VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags |
| 249 | with a combination of bits from enum `VkMemoryPropertyFlags`. For example, |
| 250 | if you want to create a buffer that will be persistently mapped on host (so it |
| 251 | must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, |
| 252 | use following code: |
| 253 | |
| 254 | \code |
| 255 | VmaAllocationCreateInfo allocInfo = {}; |
| 256 | allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 257 | allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; |
| 258 | allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; |
| 259 | |
| 260 | VkBuffer buffer; |
| 261 | VmaAllocation allocation; |
| 262 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); |
| 263 | \endcode |
| 264 | |
| 265 | A memory type is chosen that has all the required flags and as many preferred |
| 266 | flags set as possible. |
| 267 | |
| 268 | If you use VmaAllocationCreateInfo::usage, it is just internally converted to |
| 269 | a set of required and preferred flags. |
| 270 | |
| 271 | \section choosing_memory_type_explicit_memory_types Explicit memory types |
| 272 | |
| 273 | If you inspected memory types available on the physical device and you have |
| 274 | a preference for memory types that you want to use, you can fill member |
| 275 | VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set |
| 276 | means that a memory type with that index is allowed to be used for the |
| 277 | allocation. Special value 0, just like `UINT32_MAX`, means there are no |
| 278 | restrictions to memory type index. |
| 279 | |
| 280 | Please note that this member is NOT just a memory type index. |
| 281 | Still you can use it to choose just one, specific memory type. |
| 282 | For example, if you already determined that your buffer should be created in |
| 283 | memory type 2, use following code: |
| 284 | |
| 285 | \code |
| 286 | uint32_t memoryTypeIndex = 2; |
| 287 | |
| 288 | VmaAllocationCreateInfo allocInfo = {}; |
| 289 | allocInfo.memoryTypeBits = 1u << memoryTypeIndex; |
| 290 | |
| 291 | VkBuffer buffer; |
| 292 | VmaAllocation allocation; |
| 293 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); |
| 294 | \endcode |
| 295 | |
| 296 | \section choosing_memory_type_custom_memory_pools Custom memory pools |
| 297 | |
| 298 | If you allocate from custom memory pool, all the ways of specifying memory |
| 299 | requirements described above are not applicable and the aforementioned members |
| 300 | of VmaAllocationCreateInfo structure are ignored. Memory type is selected |
| 301 | explicitly when creating the pool and then used to make all the allocations from |
| 302 | that pool. For further details, see \ref custom_memory_pools. |
| 303 | |
| 304 | |
| 305 | \page memory_mapping Memory mapping |
| 306 | |
| 307 | To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, |
| 308 | to be able to read from it or write to it in CPU code. |
| 309 | Mapping is possible only of memory allocated from a memory type that has |
| 310 | `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. |
| 311 | Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. |
| 312 | You can use them directly with memory allocated by this library, |
| 313 | but it is not recommended because of following issue: |
| 314 | Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. |
| 315 | This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. |
| 316 | Because of this, Vulkan Memory Allocator provides following facilities: |
| 317 | |
| 318 | \section memory_mapping_mapping_functions Mapping functions |
| 319 | |
| 320 | The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). |
| 321 | They are safer and more convenient to use than standard Vulkan functions. |
| 322 | You can map an allocation multiple times simultaneously - mapping is reference-counted internally. |
| 323 | You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. |
| 324 | The way it's implemented is that the library always maps entire memory block, not just region of the allocation. |
| 325 | For further details, see description of vmaMapMemory() function. |
| 326 | Example: |
| 327 | |
| 328 | \code |
| 329 | // Having these objects initialized: |
| 330 | |
| 331 | struct ConstantBuffer |
| 332 | { |
| 333 | ... |
| 334 | }; |
| 335 | ConstantBuffer constantBufferData; |
| 336 | |
| 337 | VmaAllocator allocator; |
| 338 | VkBuffer constantBuffer; |
| 339 | VmaAllocation constantBufferAllocation; |
| 340 | |
| 341 | // You can map and fill your buffer using following code: |
| 342 | |
| 343 | void* mappedData; |
| 344 | vmaMapMemory(allocator, constantBufferAllocation, &mappedData); |
| 345 | memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); |
| 346 | vmaUnmapMemory(allocator, constantBufferAllocation); |
| 347 | \endcode |
| 348 | |
| 349 | When mapping, you may see a warning from Vulkan validation layer similar to this one: |
| 350 | |
| 351 | <i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i> |
| 352 | |
| 353 | It happens because the library maps entire `VkDeviceMemory` block, where different |
| 354 | types of images and buffers may end up together, especially on GPUs with unified memory like Intel. |
| 355 | You can safely ignore it if you are sure you access only memory of the intended |
| 356 | object that you wanted to map. |
| 357 | |
| 358 | |
| 359 | \section memory_mapping_persistently_mapped_memory Persistently mapped memory |
| 360 | |
| 361 | Kepping your memory persistently mapped is generally OK in Vulkan. |
| 362 | You don't need to unmap it before using its data on the GPU. |
| 363 | The library provides a special feature designed for that: |
| 364 | Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in |
| 365 | VmaAllocationCreateInfo::flags stay mapped all the time, |
| 366 | so you can just access CPU pointer to it any time |
| 367 | without a need to call any "map" or "unmap" function. |
| 368 | Example: |
| 369 | |
| 370 | \code |
| 371 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 372 | bufCreateInfo.size = sizeof(ConstantBuffer); |
| 373 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; |
| 374 | |
| 375 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 376 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; |
| 377 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; |
| 378 | |
| 379 | VkBuffer buf; |
| 380 | VmaAllocation alloc; |
| 381 | VmaAllocationInfo allocInfo; |
| 382 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); |
| 383 | |
| 384 | // Buffer is already mapped. You can access its memory. |
| 385 | memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); |
| 386 | \endcode |
| 387 | |
| 388 | There are some exceptions though, when you should consider mapping memory only for a short period of time: |
| 389 | |
| 390 | - When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), |
| 391 | device is discrete AMD GPU, |
| 392 | and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory |
| 393 | (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), |
| 394 | then whenever a memory block allocated from this memory type stays mapped |
| 395 | for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this |
| 396 | block is migrated by WDDM to system RAM, which degrades performance. It doesn't |
| 397 | matter if that particular memory block is actually used by the command buffer |
| 398 | being submitted. |
| 399 | - On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175) |
| 400 | which requires unmapping before GPU can see updated texture. |
| 401 | - Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. |
| 402 | |
| 403 | \section memory_mapping_cache_control Cache control |
| 404 | |
| 405 | Memory in Vulkan doesn't need to be unmapped before using it on GPU, |
| 406 | but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, |
| 407 | you need to manually invalidate cache before reading of mapped pointer |
| 408 | and flush cache after writing to mapped pointer. |
| 409 | Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, |
| 410 | `vkInvalidateMappedMemoryRanges()`, but this library provides more convenient |
| 411 | functions that refer to given allocation object: vmaFlushAllocation(), |
| 412 | vmaInvalidateAllocation(). |
| 413 | |
| 414 | Regions of memory specified for flush/invalidate must be aligned to |
| 415 | `VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. |
| 416 | In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations |
| 417 | within blocks are aligned to this value, so their offsets are always multiply of |
| 418 | `nonCoherentAtomSize` and two different allocations never share same "line" of this size. |
| 419 | |
| 420 | Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. |
| 421 | |
| 422 | Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) |
| 423 | currently provide `HOST_COHERENT` flag on all memory types that are |
| 424 | `HOST_VISIBLE`, so on this platform you may not need to bother. |
| 425 | |
| 426 | \section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable |
| 427 | |
| 428 | It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) |
| 429 | despite it wasn't explicitly requested. |
| 430 | For example, application may work on integrated graphics with unified memory (like Intel) or |
| 431 | allocation from video memory might have failed, so the library chose system memory as fallback. |
| 432 | |
| 433 | You can detect this case and map such allocation to access its memory on CPU directly, |
| 434 | instead of launching a transfer operation. |
| 435 | In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), |
| 436 | and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. |
| 437 | |
| 438 | \code |
| 439 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 440 | bufCreateInfo.size = sizeof(ConstantBuffer); |
| 441 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 442 | |
| 443 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 444 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 445 | allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 446 | |
| 447 | VkBuffer buf; |
| 448 | VmaAllocation alloc; |
| 449 | VmaAllocationInfo allocInfo; |
| 450 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); |
| 451 | |
| 452 | VkMemoryPropertyFlags memFlags; |
| 453 | vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); |
| 454 | if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) |
| 455 | { |
| 456 | // Allocation ended up in mappable memory. You can map it and access it directly. |
| 457 | void* mappedData; |
| 458 | vmaMapMemory(allocator, alloc, &mappedData); |
| 459 | memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); |
| 460 | vmaUnmapMemory(allocator, alloc); |
| 461 | } |
| 462 | else |
| 463 | { |
| 464 | // Allocation ended up in non-mappable memory. |
| 465 | // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. |
| 466 | } |
| 467 | \endcode |
| 468 | |
| 469 | You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations |
| 470 | that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). |
| 471 | If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. |
| 472 | If not, the flag is just ignored. |
| 473 | Example: |
| 474 | |
| 475 | \code |
| 476 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 477 | bufCreateInfo.size = sizeof(ConstantBuffer); |
| 478 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 479 | |
| 480 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 481 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 482 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; |
| 483 | |
| 484 | VkBuffer buf; |
| 485 | VmaAllocation alloc; |
| 486 | VmaAllocationInfo allocInfo; |
| 487 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); |
| 488 | |
| 489 | if(allocInfo.pUserData != nullptr) |
| 490 | { |
| 491 | // Allocation ended up in mappable memory. |
| 492 | // It's persistently mapped. You can access it directly. |
| 493 | memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); |
| 494 | } |
| 495 | else |
| 496 | { |
| 497 | // Allocation ended up in non-mappable memory. |
| 498 | // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. |
| 499 | } |
| 500 | \endcode |
| 501 | |
| 502 | |
| 503 | \page custom_memory_pools Custom memory pools |
| 504 | |
| 505 | A memory pool contains a number of `VkDeviceMemory` blocks. |
| 506 | The library automatically creates and manages default pool for each memory type available on the device. |
| 507 | Default memory pool automatically grows in size. |
| 508 | Size of allocated blocks is also variable and managed automatically. |
| 509 | |
| 510 | You can create custom pool and allocate memory out of it. |
| 511 | It can be useful if you want to: |
| 512 | |
| 513 | - Keep certain kind of allocations separate from others. |
| 514 | - Enforce particular, fixed size of Vulkan memory blocks. |
| 515 | - Limit maximum amount of Vulkan memory allocated for that pool. |
| 516 | - Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. |
| 517 | |
| 518 | To use custom memory pools: |
| 519 | |
| 520 | -# Fill VmaPoolCreateInfo structure. |
| 521 | -# Call vmaCreatePool() to obtain #VmaPool handle. |
| 522 | -# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. |
| 523 | You don't need to specify any other parameters of this structure, like `usage`. |
| 524 | |
| 525 | Example: |
| 526 | |
| 527 | \code |
| 528 | // Create a pool that can have at most 2 blocks, 128 MiB each. |
| 529 | VmaPoolCreateInfo poolCreateInfo = {}; |
| 530 | poolCreateInfo.memoryTypeIndex = ... |
| 531 | poolCreateInfo.blockSize = 128ull * 1024 * 1024; |
| 532 | poolCreateInfo.maxBlockCount = 2; |
| 533 | |
| 534 | VmaPool pool; |
| 535 | vmaCreatePool(allocator, &poolCreateInfo, &pool); |
| 536 | |
| 537 | // Allocate a buffer out of it. |
| 538 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 539 | bufCreateInfo.size = 1024; |
| 540 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 541 | |
| 542 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 543 | allocCreateInfo.pool = pool; |
| 544 | |
| 545 | VkBuffer buf; |
| 546 | VmaAllocation alloc; |
| 547 | VmaAllocationInfo allocInfo; |
| 548 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); |
| 549 | \endcode |
| 550 | |
| 551 | You have to free all allocations made from this pool before destroying it. |
| 552 | |
| 553 | \code |
| 554 | vmaDestroyBuffer(allocator, buf, alloc); |
| 555 | vmaDestroyPool(allocator, pool); |
| 556 | \endcode |
| 557 | |
| 558 | \section custom_memory_pools_MemTypeIndex Choosing memory type index |
| 559 | |
| 560 | When creating a pool, you must explicitly specify memory type index. |
| 561 | To find the one suitable for your buffers or images, you can use helper functions |
| 562 | vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). |
| 563 | You need to provide structures with example parameters of buffers or images |
| 564 | that you are going to create in that pool. |
| 565 | |
| 566 | \code |
| 567 | VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 568 | exampleBufCreateInfo.size = 1024; // Whatever. |
| 569 | exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. |
| 570 | |
| 571 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 572 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. |
| 573 | |
| 574 | uint32_t memTypeIndex; |
| 575 | vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); |
| 576 | |
| 577 | VmaPoolCreateInfo poolCreateInfo = {}; |
| 578 | poolCreateInfo.memoryTypeIndex = memTypeIndex; |
| 579 | // ... |
| 580 | \endcode |
| 581 | |
| 582 | When creating buffers/images allocated in that pool, provide following parameters: |
| 583 | |
| 584 | - `VkBufferCreateInfo`: Prefer to pass same parameters as above. |
| 585 | Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. |
| 586 | Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers |
| 587 | or the other way around. |
| 588 | - VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. |
| 589 | Other members are ignored anyway. |
| 590 | |
| 591 | \section linear_algorithm Linear allocation algorithm |
| 592 | |
| 593 | Each Vulkan memory block managed by this library has accompanying metadata that |
| 594 | keeps track of used and unused regions. By default, the metadata structure and |
| 595 | algorithm tries to find best place for new allocations among free regions to |
| 596 | optimize memory usage. This way you can allocate and free objects in any order. |
| 597 | |
| 598 |  |
| 599 | |
| 600 | Sometimes there is a need to use simpler, linear allocation algorithm. You can |
| 601 | create custom pool that uses such algorithm by adding flag |
| 602 | #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating |
| 603 | #VmaPool object. Then an alternative metadata management is used. It always |
| 604 | creates new allocations after last one and doesn't reuse free regions after |
| 605 | allocations freed in the middle. It results in better allocation performance and |
| 606 | less memory consumed by metadata. |
| 607 | |
| 608 |  |
| 609 | |
| 610 | With this one flag, you can create a custom pool that can be used in many ways: |
| 611 | free-at-once, stack, double stack, and ring buffer. See below for details. |
| 612 | |
| 613 | \subsection linear_algorithm_free_at_once Free-at-once |
| 614 | |
| 615 | In a pool that uses linear algorithm, you still need to free all the allocations |
| 616 | individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free |
| 617 | them in any order. New allocations are always made after last one - free space |
| 618 | in the middle is not reused. However, when you release all the allocation and |
| 619 | the pool becomes empty, allocation starts from the beginning again. This way you |
| 620 | can use linear algorithm to speed up creation of allocations that you are going |
| 621 | to release all at once. |
| 622 | |
| 623 |  |
| 624 | |
| 625 | This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount |
| 626 | value that allows multiple memory blocks. |
| 627 | |
| 628 | \subsection linear_algorithm_stack Stack |
| 629 | |
| 630 | When you free an allocation that was created last, its space can be reused. |
| 631 | Thanks to this, if you always release allocations in the order opposite to their |
| 632 | creation (LIFO - Last In First Out), you can achieve behavior of a stack. |
| 633 | |
| 634 |  |
| 635 | |
| 636 | This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount |
| 637 | value that allows multiple memory blocks. |
| 638 | |
| 639 | \subsection linear_algorithm_double_stack Double stack |
| 640 | |
| 641 | The space reserved by a custom pool with linear algorithm may be used by two |
| 642 | stacks: |
| 643 | |
| 644 | - First, default one, growing up from offset 0. |
| 645 | - Second, "upper" one, growing down from the end towards lower offsets. |
| 646 | |
| 647 | To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT |
| 648 | to VmaAllocationCreateInfo::flags. |
| 649 | |
| 650 |  |
| 651 | |
| 652 | Double stack is available only in pools with one memory block - |
| 653 | VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. |
| 654 | |
| 655 | When the two stacks' ends meet so there is not enough space between them for a |
| 656 | new allocation, such allocation fails with usual |
| 657 | `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. |
| 658 | |
| 659 | \subsection linear_algorithm_ring_buffer Ring buffer |
| 660 | |
| 661 | When you free some allocations from the beginning and there is not enough free space |
| 662 | for a new one at the end of a pool, allocator's "cursor" wraps around to the |
| 663 | beginning and starts allocation there. Thanks to this, if you always release |
| 664 | allocations in the same order as you created them (FIFO - First In First Out), |
| 665 | you can achieve behavior of a ring buffer / queue. |
| 666 | |
| 667 |  |
| 668 | |
| 669 | Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. |
| 670 | If there is not enough free space for a new allocation, but existing allocations |
| 671 | from the front of the queue can become lost, they become lost and the allocation |
| 672 | succeeds. |
| 673 | |
| 674 |  |
| 675 | |
| 676 | Ring buffer is available only in pools with one memory block - |
| 677 | VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. |
| 678 | |
| 679 | \section buddy_algorithm Buddy allocation algorithm |
| 680 | |
| 681 | There is another allocation algorithm that can be used with custom pools, called |
| 682 | "buddy". Its internal data structure is based on a tree of blocks, each having |
| 683 | size that is a power of two and a half of its parent's size. When you want to |
| 684 | allocate memory of certain size, a free node in the tree is located. If it's too |
| 685 | large, it is recursively split into two halves (called "buddies"). However, if |
| 686 | requested allocation size is not a power of two, the size of a tree node is |
| 687 | aligned up to the nearest power of two and the remaining space is wasted. When |
| 688 | two buddy nodes become free, they are merged back into one larger node. |
| 689 | |
| 690 |  |
| 691 | |
| 692 | The advantage of buddy allocation algorithm over default algorithm is faster |
| 693 | allocation and deallocation, as well as smaller external fragmentation. The |
| 694 | disadvantage is more wasted space (internal fragmentation). |
| 695 | |
| 696 | For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) |
| 697 | or other sources that describe this concept in general. |
| 698 | |
| 699 | To use buddy allocation algorithm with a custom pool, add flag |
| 700 | #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating |
| 701 | #VmaPool object. |
| 702 | |
| 703 | Several limitations apply to pools that use buddy algorithm: |
| 704 | |
| 705 | - It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. |
| 706 | Otherwise, only largest power of two smaller than the size is used for |
| 707 | allocations. The remaining space always stays unused. |
| 708 | - [Margins](@ref debugging_memory_usage_margins) and |
| 709 | [corruption detection](@ref debugging_memory_usage_corruption_detection) |
| 710 | don't work in such pools. |
| 711 | - [Lost allocations](@ref lost_allocations) don't work in such pools. You can |
| 712 | use them, but they never become lost. Support may be added in the future. |
| 713 | - [Defragmentation](@ref defragmentation) doesn't work with allocations made from |
| 714 | such pool. |
| 715 | |
| 716 | \page defragmentation Defragmentation |
| 717 | |
| 718 | Interleaved allocations and deallocations of many objects of varying size can |
| 719 | cause fragmentation over time, which can lead to a situation where the library is unable |
| 720 | to find a continuous range of free memory for a new allocation despite there is |
| 721 | enough free space, just scattered across many small free ranges between existing |
| 722 | allocations. |
| 723 | |
| 724 | To mitigate this problem, you can use defragmentation feature: |
| 725 | structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). |
| 726 | Given set of allocations, |
| 727 | this function can move them to compact used memory, ensure more continuous free |
| 728 | space and possibly also free some `VkDeviceMemory` blocks. |
| 729 | |
| 730 | What the defragmentation does is: |
| 731 | |
| 732 | - Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. |
| 733 | After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or |
| 734 | VmaAllocationInfo::offset changes. You must query them again using |
| 735 | vmaGetAllocationInfo() if you need them. |
| 736 | - Moves actual data in memory. |
| 737 | |
| 738 | What it doesn't do, so you need to do it yourself: |
| 739 | |
| 740 | - Recreate buffers and images that were bound to allocations that were defragmented and |
| 741 | bind them with their new places in memory. |
| 742 | You must use `vkDestroyBuffer()`, `vkDestroyImage()`, |
| 743 | `vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(), |
| 744 | vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to |
| 745 | destroy or create allocation objects! |
| 746 | - Recreate views and update descriptors that point to these buffers and images. |
| 747 | |
| 748 | \section defragmentation_cpu Defragmenting CPU memory |
| 749 | |
| 750 | Following example demonstrates how you can run defragmentation on CPU. |
| 751 | Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. |
| 752 | Others are ignored. |
| 753 | |
| 754 | The way it works is: |
| 755 | |
| 756 | - It temporarily maps entire memory blocks when necessary. |
| 757 | - It moves data using `memmove()` function. |
| 758 | |
| 759 | \code |
| 760 | // Given following variables already initialized: |
| 761 | VkDevice device; |
| 762 | VmaAllocator allocator; |
| 763 | std::vector<VkBuffer> buffers; |
| 764 | std::vector<VmaAllocation> allocations; |
| 765 | |
| 766 | |
| 767 | const uint32_t allocCount = (uint32_t)allocations.size(); |
| 768 | std::vector<VkBool32> allocationsChanged(allocCount); |
| 769 | |
| 770 | VmaDefragmentationInfo2 defragInfo = {}; |
| 771 | defragInfo.allocationCount = allocCount; |
| 772 | defragInfo.pAllocations = allocations.data(); |
| 773 | defragInfo.pAllocationsChanged = allocationsChanged.data(); |
| 774 | defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. |
| 775 | defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. |
| 776 | |
| 777 | VmaDefragmentationContext defragCtx; |
| 778 | vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); |
| 779 | vmaDefragmentationEnd(allocator, defragCtx); |
| 780 | |
| 781 | for(uint32_t i = 0; i < allocCount; ++i) |
| 782 | { |
| 783 | if(allocationsChanged[i]) |
| 784 | { |
| 785 | // Destroy buffer that is immutably bound to memory region which is no longer valid. |
| 786 | vkDestroyBuffer(device, buffers[i], nullptr); |
| 787 | |
| 788 | // Create new buffer with same parameters. |
| 789 | VkBufferCreateInfo bufferInfo = ...; |
| 790 | vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); |
| 791 | |
| 792 | // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. |
| 793 | |
| 794 | // Bind new buffer to new memory region. Data contained in it is already moved. |
| 795 | VmaAllocationInfo allocInfo; |
| 796 | vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); |
| 797 | vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset); |
| 798 | } |
| 799 | } |
| 800 | \endcode |
| 801 | |
| 802 | Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. |
| 803 | This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index |
| 804 | has been modified during defragmentation. |
| 805 | You can pass null, but you then need to query every allocation passed to defragmentation |
| 806 | for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. |
| 807 | |
| 808 | If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), |
| 809 | you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools |
| 810 | instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations |
| 811 | to defragment all allocations in given pools. |
| 812 | You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. |
| 813 | You can also combine both methods. |
| 814 | |
| 815 | \section defragmentation_gpu Defragmenting GPU memory |
| 816 | |
| 817 | It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. |
| 818 | To do that, you need to pass a command buffer that meets requirements as described in |
| 819 | VmaDefragmentationInfo2::commandBuffer. The way it works is: |
| 820 | |
| 821 | - It creates temporary buffers and binds them to entire memory blocks when necessary. |
| 822 | - It issues `vkCmdCopyBuffer()` to passed command buffer. |
| 823 | |
| 824 | Example: |
| 825 | |
| 826 | \code |
| 827 | // Given following variables already initialized: |
| 828 | VkDevice device; |
| 829 | VmaAllocator allocator; |
| 830 | VkCommandBuffer commandBuffer; |
| 831 | std::vector<VkBuffer> buffers; |
| 832 | std::vector<VmaAllocation> allocations; |
| 833 | |
| 834 | |
| 835 | const uint32_t allocCount = (uint32_t)allocations.size(); |
| 836 | std::vector<VkBool32> allocationsChanged(allocCount); |
| 837 | |
| 838 | VkCommandBufferBeginInfo cmdBufBeginInfo = ...; |
| 839 | vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); |
| 840 | |
| 841 | VmaDefragmentationInfo2 defragInfo = {}; |
| 842 | defragInfo.allocationCount = allocCount; |
| 843 | defragInfo.pAllocations = allocations.data(); |
| 844 | defragInfo.pAllocationsChanged = allocationsChanged.data(); |
| 845 | defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. |
| 846 | defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. |
| 847 | defragInfo.commandBuffer = commandBuffer; |
| 848 | |
| 849 | VmaDefragmentationContext defragCtx; |
| 850 | vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); |
| 851 | |
| 852 | vkEndCommandBuffer(commandBuffer); |
| 853 | |
| 854 | // Submit commandBuffer. |
| 855 | // Wait for a fence that ensures commandBuffer execution finished. |
| 856 | |
| 857 | vmaDefragmentationEnd(allocator, defragCtx); |
| 858 | |
| 859 | for(uint32_t i = 0; i < allocCount; ++i) |
| 860 | { |
| 861 | if(allocationsChanged[i]) |
| 862 | { |
| 863 | // Destroy buffer that is immutably bound to memory region which is no longer valid. |
| 864 | vkDestroyBuffer(device, buffers[i], nullptr); |
| 865 | |
| 866 | // Create new buffer with same parameters. |
| 867 | VkBufferCreateInfo bufferInfo = ...; |
| 868 | vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); |
| 869 | |
| 870 | // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. |
| 871 | |
| 872 | // Bind new buffer to new memory region. Data contained in it is already moved. |
| 873 | VmaAllocationInfo allocInfo; |
| 874 | vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); |
| 875 | vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset); |
| 876 | } |
| 877 | } |
| 878 | \endcode |
| 879 | |
| 880 | You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. |
| 881 | The library automatically chooses best method to defragment each memory pool. |
| 882 | |
| 883 | You may try not to block your entire program to wait until defragmentation finishes, |
| 884 | but do it in the background, as long as you carefully fullfill requirements described |
| 885 | in function vmaDefragmentationBegin(). |
| 886 | |
| 887 | \section defragmentation_additional_notes Additional notes |
| 888 | |
| 889 | While using defragmentation, you may experience validation layer warnings, which you just need to ignore. |
| 890 | See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). |
| 891 | |
| 892 | If you defragment allocations bound to images, these images should be created with |
| 893 | `VK_IMAGE_CREATE_ALIAS_BIT` flag, to make sure that new image created with same |
| 894 | parameters and pointing to data copied to another memory region will interpret |
| 895 | its contents consistently. Otherwise you may experience corrupted data on some |
| 896 | implementations, e.g. due to different pixel swizzling used internally by the graphics driver. |
| 897 | |
| 898 | If you defragment allocations bound to images, new images to be bound to new |
| 899 | memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` |
| 900 | and then transitioned to their original layout from before defragmentation using |
| 901 | an image memory barrier. |
| 902 | |
| 903 | Please don't expect memory to be fully compacted after defragmentation. |
| 904 | Algorithms inside are based on some heuristics that try to maximize number of Vulkan |
| 905 | memory blocks to make totally empty to release them, as well as to maximimze continuous |
| 906 | empty space inside remaining blocks, while minimizing the number and size of allocations that |
| 907 | need to be moved. Some fragmentation may still remain - this is normal. |
| 908 | |
| 909 | \section defragmentation_custom_algorithm Writing custom defragmentation algorithm |
| 910 | |
| 911 | If you want to implement your own, custom defragmentation algorithm, |
| 912 | there is infrastructure prepared for that, |
| 913 | but it is not exposed through the library API - you need to hack its source code. |
| 914 | Here are steps needed to do this: |
| 915 | |
| 916 | -# Main thing you need to do is to define your own class derived from base abstract |
| 917 | class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. |
| 918 | See definition and comments of this class for details. |
| 919 | -# Your code needs to interact with device memory block metadata. |
| 920 | If you need more access to its data than it's provided by its public interface, |
| 921 | declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. |
| 922 | -# If you want to create a flag that would enable your algorithm or pass some additional |
| 923 | flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in |
| 924 | VmaDefragmentationInfo2::flags. |
| 925 | -# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object |
| 926 | of your new class whenever needed. |
| 927 | |
| 928 | |
| 929 | \page lost_allocations Lost allocations |
| 930 | |
| 931 | If your game oversubscribes video memory, if may work OK in previous-generation |
| 932 | graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically |
| 933 | paged to system RAM. In Vulkan you can't do it because when you run out of |
| 934 | memory, an allocation just fails. If you have more data (e.g. textures) that can |
| 935 | fit into VRAM and you don't need it all at once, you may want to upload them to |
| 936 | GPU on demand and "push out" ones that are not used for a long time to make room |
| 937 | for the new ones, effectively using VRAM (or a cartain memory pool) as a form of |
| 938 | cache. Vulkan Memory Allocator can help you with that by supporting a concept of |
| 939 | "lost allocations". |
| 940 | |
| 941 | To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
| 942 | flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to |
| 943 | such allocation in every new frame, you need to query it if it's not lost. |
| 944 | To check it, call vmaTouchAllocation(). |
| 945 | If the allocation is lost, you should not use it or buffer/image bound to it. |
| 946 | You mustn't forget to destroy this allocation and this buffer/image. |
| 947 | vmaGetAllocationInfo() can also be used for checking status of the allocation. |
| 948 | Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. |
| 949 | |
| 950 | To create an allocation that can make some other allocations lost to make room |
| 951 | for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will |
| 952 | usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and |
| 953 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. |
| 954 | |
| 955 | Warning! Current implementation uses quite naive, brute force algorithm, |
| 956 | which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT |
| 957 | flag quite slow. A new, more optimal algorithm and data structure to speed this |
| 958 | up is planned for the future. |
| 959 | |
| 960 | <b>Q: When interleaving creation of new allocations with usage of existing ones, |
| 961 | how do you make sure that an allocation won't become lost while it's used in the |
| 962 | current frame?</b> |
| 963 | |
| 964 | It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation |
| 965 | status/parameters and checks whether it's not lost, but when it's not, it also |
| 966 | atomically marks it as used in the current frame, which makes it impossible to |
| 967 | become lost in that frame. It uses lockless algorithm, so it works fast and |
| 968 | doesn't involve locking any internal mutex. |
| 969 | |
| 970 | <b>Q: What if my allocation may still be in use by the GPU when it's rendering a |
| 971 | previous frame while I already submit new frame on the CPU?</b> |
| 972 | |
| 973 | You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not |
| 974 | become lost for a number of additional frames back from the current one by |
| 975 | specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default |
| 976 | memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). |
| 977 | |
| 978 | <b>Q: How do you inform the library when new frame starts?</b> |
| 979 | |
| 980 | You need to call function vmaSetCurrentFrameIndex(). |
| 981 | |
| 982 | Example code: |
| 983 | |
| 984 | \code |
| 985 | struct MyBuffer |
| 986 | { |
| 987 | VkBuffer m_Buf = nullptr; |
| 988 | VmaAllocation m_Alloc = nullptr; |
| 989 | |
| 990 | // Called when the buffer is really needed in the current frame. |
| 991 | void EnsureBuffer(); |
| 992 | }; |
| 993 | |
| 994 | void MyBuffer::EnsureBuffer() |
| 995 | { |
| 996 | // Buffer has been created. |
| 997 | if(m_Buf != VK_NULL_HANDLE) |
| 998 | { |
| 999 | // Check if its allocation is not lost + mark it as used in current frame. |
| 1000 | if(vmaTouchAllocation(allocator, m_Alloc)) |
| 1001 | { |
| 1002 | // It's all OK - safe to use m_Buf. |
| 1003 | return; |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | // Buffer not yet exists or lost - destroy and recreate it. |
| 1008 | |
| 1009 | vmaDestroyBuffer(allocator, m_Buf, m_Alloc); |
| 1010 | |
| 1011 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 1012 | bufCreateInfo.size = 1024; |
| 1013 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 1014 | |
| 1015 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 1016 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 1017 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | |
| 1018 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; |
| 1019 | |
| 1020 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); |
| 1021 | } |
| 1022 | \endcode |
| 1023 | |
| 1024 | When using lost allocations, you may see some Vulkan validation layer warnings |
| 1025 | about overlapping regions of memory bound to different kinds of buffers and |
| 1026 | images. This is still valid as long as you implement proper handling of lost |
| 1027 | allocations (like in the example above) and don't use them. |
| 1028 | |
| 1029 | You can create an allocation that is already in lost state from the beginning using function |
| 1030 | vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. |
| 1031 | |
| 1032 | You can call function vmaMakePoolAllocationsLost() to set all eligible allocations |
| 1033 | in a specified custom pool to lost state. |
| 1034 | Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back |
| 1035 | cannot become lost. |
| 1036 | |
| 1037 | <b>Q: Can I touch allocation that cannot become lost?</b> |
| 1038 | |
| 1039 | Yes, although it has no visible effect. |
| 1040 | Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index |
| 1041 | also for allocations that cannot become lost, but the only way to observe it is to dump |
| 1042 | internal allocator state using vmaBuildStatsString(). |
| 1043 | You can use this feature for debugging purposes to explicitly mark allocations that you use |
| 1044 | in current frame and then analyze JSON dump to see for how long each allocation stays unused. |
| 1045 | |
| 1046 | |
| 1047 | \page statistics Statistics |
| 1048 | |
| 1049 | This library contains functions that return information about its internal state, |
| 1050 | especially the amount of memory allocated from Vulkan. |
| 1051 | Please keep in mind that these functions need to traverse all internal data structures |
| 1052 | to gather these information, so they may be quite time-consuming. |
| 1053 | Don't call them too often. |
| 1054 | |
| 1055 | \section statistics_numeric_statistics Numeric statistics |
| 1056 | |
| 1057 | You can query for overall statistics of the allocator using function vmaCalculateStats(). |
| 1058 | Information are returned using structure #VmaStats. |
| 1059 | It contains #VmaStatInfo - number of allocated blocks, number of allocations |
| 1060 | (occupied ranges in these blocks), number of unused (free) ranges in these blocks, |
| 1061 | number of bytes used and unused (but still allocated from Vulkan) and other information. |
| 1062 | They are summed across memory heaps, memory types and total for whole allocator. |
| 1063 | |
| 1064 | You can query for statistics of a custom pool using function vmaGetPoolStats(). |
| 1065 | Information are returned using structure #VmaPoolStats. |
| 1066 | |
| 1067 | You can query for information about specific allocation using function vmaGetAllocationInfo(). |
| 1068 | It fill structure #VmaAllocationInfo. |
| 1069 | |
| 1070 | \section statistics_json_dump JSON dump |
| 1071 | |
| 1072 | You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). |
| 1073 | The result is guaranteed to be correct JSON. |
| 1074 | It uses ANSI encoding. |
| 1075 | Any strings provided by user (see [Allocation names](@ref allocation_names)) |
| 1076 | are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, |
| 1077 | this JSON string can be treated as using this encoding. |
| 1078 | It must be freed using function vmaFreeStatsString(). |
| 1079 | |
| 1080 | The format of this JSON string is not part of official documentation of the library, |
| 1081 | but it will not change in backward-incompatible way without increasing library major version number |
| 1082 | and appropriate mention in changelog. |
| 1083 | |
| 1084 | The JSON string contains all the data that can be obtained using vmaCalculateStats(). |
| 1085 | It can also contain detailed map of allocated memory blocks and their regions - |
| 1086 | free and occupied by allocations. |
| 1087 | This allows e.g. to visualize the memory or assess fragmentation. |
| 1088 | |
| 1089 | |
| 1090 | \page allocation_annotation Allocation names and user data |
| 1091 | |
| 1092 | \section allocation_user_data Allocation user data |
| 1093 | |
| 1094 | You can annotate allocations with your own information, e.g. for debugging purposes. |
| 1095 | To do that, fill VmaAllocationCreateInfo::pUserData field when creating |
| 1096 | an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, |
| 1097 | some handle, index, key, ordinal number or any other value that would associate |
| 1098 | the allocation with your custom metadata. |
| 1099 | |
| 1100 | \code |
| 1101 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; |
| 1102 | // Fill bufferInfo... |
| 1103 | |
| 1104 | MyBufferMetadata* pMetadata = CreateBufferMetadata(); |
| 1105 | |
| 1106 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 1107 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 1108 | allocCreateInfo.pUserData = pMetadata; |
| 1109 | |
| 1110 | VkBuffer buffer; |
| 1111 | VmaAllocation allocation; |
| 1112 | vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); |
| 1113 | \endcode |
| 1114 | |
| 1115 | The pointer may be later retrieved as VmaAllocationInfo::pUserData: |
| 1116 | |
| 1117 | \code |
| 1118 | VmaAllocationInfo allocInfo; |
| 1119 | vmaGetAllocationInfo(allocator, allocation, &allocInfo); |
| 1120 | MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; |
| 1121 | \endcode |
| 1122 | |
| 1123 | It can also be changed using function vmaSetAllocationUserData(). |
| 1124 | |
| 1125 | Values of (non-zero) allocations' `pUserData` are printed in JSON report created by |
| 1126 | vmaBuildStatsString(), in hexadecimal form. |
| 1127 | |
| 1128 | \section allocation_names Allocation names |
| 1129 | |
| 1130 | There is alternative mode available where `pUserData` pointer is used to point to |
| 1131 | a null-terminated string, giving a name to the allocation. To use this mode, |
| 1132 | set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. |
| 1133 | Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to |
| 1134 | vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. |
| 1135 | The library creates internal copy of the string, so the pointer you pass doesn't need |
| 1136 | to be valid for whole lifetime of the allocation. You can free it after the call. |
| 1137 | |
| 1138 | \code |
| 1139 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; |
| 1140 | // Fill imageInfo... |
| 1141 | |
| 1142 | std::string imageName = "Texture: "; |
| 1143 | imageName += fileName; |
| 1144 | |
| 1145 | VmaAllocationCreateInfo allocCreateInfo = {}; |
| 1146 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; |
| 1147 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; |
| 1148 | allocCreateInfo.pUserData = imageName.c_str(); |
| 1149 | |
| 1150 | VkImage image; |
| 1151 | VmaAllocation allocation; |
| 1152 | vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); |
| 1153 | \endcode |
| 1154 | |
| 1155 | The value of `pUserData` pointer of the allocation will be different than the one |
| 1156 | you passed when setting allocation's name - pointing to a buffer managed |
| 1157 | internally that holds copy of the string. |
| 1158 | |
| 1159 | \code |
| 1160 | VmaAllocationInfo allocInfo; |
| 1161 | vmaGetAllocationInfo(allocator, allocation, &allocInfo); |
| 1162 | const char* imageName = (const char*)allocInfo.pUserData; |
| 1163 | printf("Image name: %s\n", imageName); |
| 1164 | \endcode |
| 1165 | |
| 1166 | That string is also printed in JSON report created by vmaBuildStatsString(). |
| 1167 | |
| 1168 | |
| 1169 | \page debugging_memory_usage Debugging incorrect memory usage |
| 1170 | |
| 1171 | If you suspect a bug with memory usage, like usage of uninitialized memory or |
| 1172 | memory being overwritten out of bounds of an allocation, |
| 1173 | you can use debug features of this library to verify this. |
| 1174 | |
| 1175 | \section debugging_memory_usage_initialization Memory initialization |
| 1176 | |
| 1177 | If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, |
| 1178 | you can enable automatic memory initialization to verify this. |
| 1179 | To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. |
| 1180 | |
| 1181 | \code |
| 1182 | #define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 |
| 1183 | #include "vk_mem_alloc.h" |
| 1184 | \endcode |
| 1185 | |
| 1186 | It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. |
| 1187 | Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. |
| 1188 | Memory is automatically mapped and unmapped if necessary. |
| 1189 | |
| 1190 | If you find these values while debugging your program, good chances are that you incorrectly |
| 1191 | read Vulkan memory that is allocated but not initialized, or already freed, respectively. |
| 1192 | |
| 1193 | Memory initialization works only with memory types that are `HOST_VISIBLE`. |
| 1194 | It works also with dedicated allocations. |
| 1195 | It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, |
| 1196 | as they cannot be mapped. |
| 1197 | |
| 1198 | \section debugging_memory_usage_margins Margins |
| 1199 | |
| 1200 | By default, allocations are laid out in memory blocks next to each other if possible |
| 1201 | (considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). |
| 1202 | |
| 1203 |  |
| 1204 | |
| 1205 | Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified |
| 1206 | number of bytes as a margin before and after every allocation. |
| 1207 | |
| 1208 | \code |
| 1209 | #define VMA_DEBUG_MARGIN 16 |
| 1210 | #include "vk_mem_alloc.h" |
| 1211 | \endcode |
| 1212 | |
| 1213 |  |
| 1214 | |
| 1215 | If your bug goes away after enabling margins, it means it may be caused by memory |
| 1216 | being overwritten outside of allocation boundaries. It is not 100% certain though. |
| 1217 | Change in application behavior may also be caused by different order and distribution |
| 1218 | of allocations across memory blocks after margins are applied. |
| 1219 | |
| 1220 | The margin is applied also before first and after last allocation in a block. |
| 1221 | It may occur only once between two adjacent allocations. |
| 1222 | |
| 1223 | Margins work with all types of memory. |
| 1224 | |
| 1225 | Margin is applied only to allocations made out of memory blocks and not to dedicated |
| 1226 | allocations, which have their own memory block of specific size. |
| 1227 | It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag |
| 1228 | or those automatically decided to put into dedicated allocations, e.g. due to its |
| 1229 | large size or recommended by VK_KHR_dedicated_allocation extension. |
| 1230 | Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. |
| 1231 | |
| 1232 | Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. |
| 1233 | |
| 1234 | Note that enabling margins increases memory usage and fragmentation. |
| 1235 | |
| 1236 | \section debugging_memory_usage_corruption_detection Corruption detection |
| 1237 | |
| 1238 | You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation |
| 1239 | of contents of the margins. |
| 1240 | |
| 1241 | \code |
| 1242 | #define VMA_DEBUG_MARGIN 16 |
| 1243 | #define VMA_DEBUG_DETECT_CORRUPTION 1 |
| 1244 | #include "vk_mem_alloc.h" |
| 1245 | \endcode |
| 1246 | |
| 1247 | When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` |
| 1248 | (it must be multiply of 4) before and after every allocation is filled with a magic number. |
| 1249 | This idea is also know as "canary". |
| 1250 | Memory is automatically mapped and unmapped if necessary. |
| 1251 | |
| 1252 | This number is validated automatically when the allocation is destroyed. |
| 1253 | If it's not equal to the expected value, `VMA_ASSERT()` is executed. |
| 1254 | It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, |
| 1255 | which indicates a serious bug. |
| 1256 | |
| 1257 | You can also explicitly request checking margins of all allocations in all memory blocks |
| 1258 | that belong to specified memory types by using function vmaCheckCorruption(), |
| 1259 | or in memory blocks that belong to specified custom pool, by using function |
| 1260 | vmaCheckPoolCorruption(). |
| 1261 | |
| 1262 | Margin validation (corruption detection) works only for memory types that are |
| 1263 | `HOST_VISIBLE` and `HOST_COHERENT`. |
| 1264 | |
| 1265 | |
| 1266 | \page record_and_replay Record and replay |
| 1267 | |
| 1268 | \section record_and_replay_introduction Introduction |
| 1269 | |
| 1270 | While using the library, sequence of calls to its functions together with their |
| 1271 | parameters can be recorded to a file and later replayed using standalone player |
| 1272 | application. It can be useful to: |
| 1273 | |
| 1274 | - Test correctness - check if same sequence of calls will not cause crash or |
| 1275 | failures on a target platform. |
| 1276 | - Gather statistics - see number of allocations, peak memory usage, number of |
| 1277 | calls etc. |
| 1278 | - Benchmark performance - see how much time it takes to replay the whole |
| 1279 | sequence. |
| 1280 | |
| 1281 | \section record_and_replay_usage Usage |
| 1282 | |
| 1283 | <b>To record sequence of calls to a file:</b> Fill in |
| 1284 | VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator |
| 1285 | object. File is opened and written during whole lifetime of the allocator. |
| 1286 | |
| 1287 | <b>To replay file:</b> Use VmaReplay - standalone command-line program. |
| 1288 | Precompiled binary can be found in "bin" directory. |
| 1289 | Its source can be found in "src/VmaReplay" directory. |
| 1290 | Its project is generated by Premake. |
| 1291 | Command line syntax is printed when the program is launched without parameters. |
| 1292 | Basic usage: |
| 1293 | |
| 1294 | VmaReplay.exe MyRecording.csv |
| 1295 | |
| 1296 | <b>Documentation of file format</b> can be found in file: "docs/Recording file format.md". |
| 1297 | It's a human-readable, text file in CSV format (Comma Separated Values). |
| 1298 | |
| 1299 | \section record_and_replay_additional_considerations Additional considerations |
| 1300 | |
| 1301 | - Replaying file that was recorded on a different GPU (with different parameters |
| 1302 | like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different |
| 1303 | set of memory heaps and types) may give different performance and memory usage |
| 1304 | results, as well as issue some warnings and errors. |
| 1305 | - Current implementation of recording in VMA, as well as VmaReplay application, is |
| 1306 | coded and tested only on Windows. Inclusion of recording code is driven by |
| 1307 | `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to |
| 1308 | add. Contributions are welcomed. |
| 1309 | - Currently calls to vmaDefragment() function are not recorded. |
| 1310 | |
| 1311 | |
| 1312 | \page usage_patterns Recommended usage patterns |
| 1313 | |
| 1314 | See also slides from talk: |
| 1315 | [Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) |
| 1316 | |
| 1317 | |
| 1318 | \section usage_patterns_simple Simple patterns |
| 1319 | |
| 1320 | \subsection usage_patterns_simple_render_targets Render targets |
| 1321 | |
| 1322 | <b>When:</b> |
| 1323 | Any resources that you frequently write and read on GPU, |
| 1324 | e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, |
| 1325 | images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). |
| 1326 | |
| 1327 | <b>What to do:</b> |
| 1328 | Create them in video memory that is fastest to access from GPU using |
| 1329 | #VMA_MEMORY_USAGE_GPU_ONLY. |
| 1330 | |
| 1331 | Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension |
| 1332 | and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, |
| 1333 | especially if they are large or if you plan to destroy and recreate them e.g. when |
| 1334 | display resolution changes. |
| 1335 | Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. |
| 1336 | |
| 1337 | \subsection usage_patterns_simple_immutable_resources Immutable resources |
| 1338 | |
| 1339 | <b>When:</b> |
| 1340 | Any resources that you fill on CPU only once (aka "immutable") or infrequently |
| 1341 | and then read frequently on GPU, |
| 1342 | e.g. textures, vertex and index buffers, constant buffers that don't change often. |
| 1343 | |
| 1344 | <b>What to do:</b> |
| 1345 | Create them in video memory that is fastest to access from GPU using |
| 1346 | #VMA_MEMORY_USAGE_GPU_ONLY. |
| 1347 | |
| 1348 | To initialize content of such resource, create a CPU-side (aka "staging") copy of it |
| 1349 | in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, |
| 1350 | and submit a transfer from it to the GPU resource. |
| 1351 | You can keep the staging copy if you need it for another upload transfer in the future. |
| 1352 | If you don't, you can destroy it or reuse this buffer for uploading different resource |
| 1353 | after the transfer finishes. |
| 1354 | |
| 1355 | Prefer to create just buffers in system memory rather than images, even for uploading textures. |
| 1356 | Use `vkCmdCopyBufferToImage()`. |
| 1357 | Dont use images with `VK_IMAGE_TILING_LINEAR`. |
| 1358 | |
| 1359 | \subsection usage_patterns_dynamic_resources Dynamic resources |
| 1360 | |
| 1361 | <b>When:</b> |
| 1362 | Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, |
| 1363 | written on CPU, read on GPU. |
| 1364 | |
| 1365 | <b>What to do:</b> |
| 1366 | Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. |
| 1367 | You can map it and write to it directly on CPU, as well as read from it on GPU. |
| 1368 | |
| 1369 | This is a more complex situation. Different solutions are possible, |
| 1370 | and the best one depends on specific GPU type, but you can use this simple approach for the start. |
| 1371 | Prefer to write to such resource sequentially (e.g. using `memcpy`). |
| 1372 | Don't perform random access or any reads from it on CPU, as it may be very slow. |
| 1373 | |
| 1374 | \subsection usage_patterns_readback Readback |
| 1375 | |
| 1376 | <b>When:</b> |
| 1377 | Resources that contain data written by GPU that you want to read back on CPU, |
| 1378 | e.g. results of some computations. |
| 1379 | |
| 1380 | <b>What to do:</b> |
| 1381 | Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. |
| 1382 | You can write to them directly on GPU, as well as map and read them on CPU. |
| 1383 | |
| 1384 | \section usage_patterns_advanced Advanced patterns |
| 1385 | |
| 1386 | \subsection usage_patterns_integrated_graphics Detecting integrated graphics |
| 1387 | |
| 1388 | You can support integrated graphics (like Intel HD Graphics, AMD APU) better |
| 1389 | by detecting it in Vulkan. |
| 1390 | To do it, call `vkGetPhysicalDeviceProperties()`, inspect |
| 1391 | `VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. |
| 1392 | When you find it, you can assume that memory is unified and all memory types are comparably fast |
| 1393 | to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. |
| 1394 | |
| 1395 | You can then sum up sizes of all available memory heaps and treat them as useful for |
| 1396 | your GPU resources, instead of only `DEVICE_LOCAL` ones. |
| 1397 | You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them |
| 1398 | directly instead of submitting explicit transfer (see below). |
| 1399 | |
| 1400 | \subsection usage_patterns_direct_vs_transfer Direct access versus transfer |
| 1401 | |
| 1402 | For resources that you frequently write on CPU and read on GPU, many solutions are possible: |
| 1403 | |
| 1404 | -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, |
| 1405 | second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time. |
| 1406 | -# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, |
| 1407 | read it directly on GPU. |
| 1408 | -# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, |
| 1409 | read it directly on GPU. |
| 1410 | |
| 1411 | Which solution is the most efficient depends on your resource and especially on the GPU. |
| 1412 | It is best to measure it and then make the decision. |
| 1413 | Some general recommendations: |
| 1414 | |
| 1415 | - On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead |
| 1416 | related to using a second copy and making transfer. |
| 1417 | - For small resources (e.g. constant buffers) use (2). |
| 1418 | Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. |
| 1419 | Even if the resource ends up in system memory, its data may be cached on GPU after first |
| 1420 | fetch over PCIe bus. |
| 1421 | - For larger resources (e.g. textures), decide between (1) and (2). |
| 1422 | You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is |
| 1423 | both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). |
| 1424 | |
| 1425 | Similarly, for resources that you frequently write on GPU and read on CPU, multiple |
| 1426 | solutions are possible: |
| 1427 | |
| 1428 | -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, |
| 1429 | second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. |
| 1430 | -# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, |
| 1431 | map it and read it on CPU. |
| 1432 | |
| 1433 | You should take some measurements to decide which option is faster in case of your specific |
| 1434 | resource. |
| 1435 | |
| 1436 | If you don't want to specialize your code for specific types of GPUs, you can still make |
| 1437 | an simple optimization for cases when your resource ends up in mappable memory to use it |
| 1438 | directly in this case instead of creating CPU-side staging copy. |
| 1439 | For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). |
| 1440 | |
| 1441 | |
| 1442 | \page configuration Configuration |
| 1443 | |
| 1444 | Please check "CONFIGURATION SECTION" in the code to find macros that you can define |
| 1445 | before each include of this file or change directly in this file to provide |
| 1446 | your own implementation of basic facilities like assert, `min()` and `max()` functions, |
| 1447 | mutex, atomic etc. |
| 1448 | The library uses its own implementation of containers by default, but you can switch to using |
| 1449 | STL containers instead. |
| 1450 | |
| 1451 | \section config_Vulkan_functions Pointers to Vulkan functions |
| 1452 | |
| 1453 | The library uses Vulkan functions straight from the `vulkan.h` header by default. |
| 1454 | If you want to provide your own pointers to these functions, e.g. fetched using |
| 1455 | `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`: |
| 1456 | |
| 1457 | -# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`. |
| 1458 | -# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions. |
| 1459 | |
| 1460 | \section custom_memory_allocator Custom host memory allocator |
| 1461 | |
| 1462 | If you use custom allocator for CPU memory rather than default operator `new` |
| 1463 | and `delete` from C++, you can make this library using your allocator as well |
| 1464 | by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These |
| 1465 | functions will be passed to Vulkan, as well as used by the library itself to |
| 1466 | make any CPU-side allocations. |
| 1467 | |
| 1468 | \section allocation_callbacks Device memory allocation callbacks |
| 1469 | |
| 1470 | The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. |
| 1471 | You can setup callbacks to be informed about these calls, e.g. for the purpose |
| 1472 | of gathering some statistics. To do it, fill optional member |
| 1473 | VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. |
| 1474 | |
| 1475 | \section heap_memory_limit Device heap memory limit |
| 1476 | |
| 1477 | If you want to test how your program behaves with limited amount of Vulkan device |
| 1478 | memory available without switching your graphics card to one that really has |
| 1479 | smaller VRAM, you can use a feature of this library intended for this purpose. |
| 1480 | To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. |
| 1481 | |
| 1482 | |
| 1483 | |
| 1484 | \page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation |
| 1485 | |
| 1486 | VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve |
| 1487 | performance on some GPUs. It augments Vulkan API with possibility to query |
| 1488 | driver whether it prefers particular buffer or image to have its own, dedicated |
| 1489 | allocation (separate `VkDeviceMemory` block) for better efficiency - to be able |
| 1490 | to do some internal optimizations. |
| 1491 | |
| 1492 | The extension is supported by this library. It will be used automatically when |
| 1493 | enabled. To enable it: |
| 1494 | |
| 1495 | 1 . When creating Vulkan device, check if following 2 device extensions are |
| 1496 | supported (call `vkEnumerateDeviceExtensionProperties()`). |
| 1497 | If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). |
| 1498 | |
| 1499 | - VK_KHR_get_memory_requirements2 |
| 1500 | - VK_KHR_dedicated_allocation |
| 1501 | |
| 1502 | If you enabled these extensions: |
| 1503 | |
| 1504 | 2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating |
| 1505 | your #VmaAllocator`to inform the library that you enabled required extensions |
| 1506 | and you want the library to use them. |
| 1507 | |
| 1508 | \code |
| 1509 | allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; |
| 1510 | |
| 1511 | vmaCreateAllocator(&allocatorInfo, &allocator); |
| 1512 | \endcode |
| 1513 | |
| 1514 | That's all. The extension will be automatically used whenever you create a |
| 1515 | buffer using vmaCreateBuffer() or image using vmaCreateImage(). |
| 1516 | |
| 1517 | When using the extension together with Vulkan Validation Layer, you will receive |
| 1518 | warnings like this: |
| 1519 | |
| 1520 | vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. |
| 1521 | |
| 1522 | It is OK, you should just ignore it. It happens because you use function |
| 1523 | `vkGetBufferMemoryRequirements2KHR()` instead of standard |
| 1524 | `vkGetBufferMemoryRequirements()`, while the validation layer seems to be |
| 1525 | unaware of it. |
| 1526 | |
| 1527 | To learn more about this extension, see: |
| 1528 | |
| 1529 | - [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation) |
| 1530 | - [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) |
| 1531 | |
| 1532 | |
| 1533 | |
| 1534 | \page general_considerations General considerations |
| 1535 | |
| 1536 | \section general_considerations_thread_safety Thread safety |
| 1537 | |
| 1538 | - The library has no global state, so separate #VmaAllocator objects can be used |
| 1539 | independently. |
| 1540 | There should be no need to create multiple such objects though - one per `VkDevice` is enough. |
| 1541 | - By default, all calls to functions that take #VmaAllocator as first parameter |
| 1542 | are safe to call from multiple threads simultaneously because they are |
| 1543 | synchronized internally when needed. |
| 1544 | - When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT |
| 1545 | flag, calls to functions that take such #VmaAllocator object must be |
| 1546 | synchronized externally. |
| 1547 | - Access to a #VmaAllocation object must be externally synchronized. For example, |
| 1548 | you must not call vmaGetAllocationInfo() and vmaMapMemory() from different |
| 1549 | threads at the same time if you pass the same #VmaAllocation object to these |
| 1550 | functions. |
| 1551 | |
| 1552 | \section general_considerations_validation_layer_warnings Validation layer warnings |
| 1553 | |
| 1554 | When using this library, you can meet following types of warnings issued by |
| 1555 | Vulkan validation layer. They don't necessarily indicate a bug, so you may need |
| 1556 | to just ignore them. |
| 1557 | |
| 1558 | - *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* |
| 1559 | - It happens when VK_KHR_dedicated_allocation extension is enabled. |
| 1560 | `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. |
| 1561 | - *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* |
| 1562 | - It happens when you map a buffer or image, because the library maps entire |
| 1563 | `VkDeviceMemory` block, where different types of images and buffers may end |
| 1564 | up together, especially on GPUs with unified memory like Intel. |
| 1565 | - *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* |
| 1566 | - It happens when you use lost allocations, and a new image or buffer is |
| 1567 | created in place of an existing object that bacame lost. |
| 1568 | - It may happen also when you use [defragmentation](@ref defragmentation). |
| 1569 | |
| 1570 | \section general_considerations_allocation_algorithm Allocation algorithm |
| 1571 | |
| 1572 | The library uses following algorithm for allocation, in order: |
| 1573 | |
| 1574 | -# Try to find free range of memory in existing blocks. |
| 1575 | -# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. |
| 1576 | -# If failed, try to create such block with size/2, size/4, size/8. |
| 1577 | -# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was |
| 1578 | specified, try to find space in existing blocks, possilby making some other |
| 1579 | allocations lost. |
| 1580 | -# If failed, try to allocate separate `VkDeviceMemory` for this allocation, |
| 1581 | just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. |
| 1582 | -# If failed, choose other memory type that meets the requirements specified in |
| 1583 | VmaAllocationCreateInfo and go to point 1. |
| 1584 | -# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. |
| 1585 | |
| 1586 | \section general_considerations_features_not_supported Features not supported |
| 1587 | |
| 1588 | Features deliberately excluded from the scope of this library: |
| 1589 | |
| 1590 | - Data transfer. Uploading (straming) and downloading data of buffers and images |
| 1591 | between CPU and GPU memory and related synchronization is responsibility of the user. |
| 1592 | - Allocations for imported/exported external memory. They tend to require |
| 1593 | explicit memory type index and dedicated allocation anyway, so they don't |
| 1594 | interact with main features of this library. Such special purpose allocations |
| 1595 | should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. |
| 1596 | - Recreation of buffers and images. Although the library has functions for |
| 1597 | buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to |
| 1598 | recreate these objects yourself after defragmentation. That's because the big |
| 1599 | structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in |
| 1600 | #VmaAllocation object. |
| 1601 | - Handling CPU memory allocation failures. When dynamically creating small C++ |
| 1602 | objects in CPU memory (not Vulkan memory), allocation failures are not checked |
| 1603 | and handled gracefully, because that would complicate code significantly and |
| 1604 | is usually not needed in desktop PC applications anyway. |
| 1605 | - Code free of any compiler warnings. Maintaining the library to compile and |
| 1606 | work correctly on so many different platforms is hard enough. Being free of |
| 1607 | any warnings, on any version of any compiler, is simply not feasible. |
| 1608 | - This is a C++ library with C interface. |
| 1609 | Bindings or ports to any other programming languages are welcomed as external projects and |
| 1610 | are not going to be included into this repository. |
| 1611 | |
| 1612 | */ |
| 1613 | |
| 1614 | /* |
| 1615 | Define this macro to 0/1 to disable/enable support for recording functionality, |
| 1616 | available through VmaAllocatorCreateInfo::pRecordSettings. |
| 1617 | */ |
| 1618 | #ifndef VMA_RECORDING_ENABLED |
| 1619 | #ifdef _WIN32 |
| 1620 | #define VMA_RECORDING_ENABLED 1 |
| 1621 | #else |
| 1622 | #define VMA_RECORDING_ENABLED 0 |
| 1623 | #endif |
| 1624 | #endif |
| 1625 | |
| 1626 | #ifndef NOMINMAX |
| 1627 | #define NOMINMAX // For windows.h |
| 1628 | #endif |
| 1629 | |
| 1630 | #ifndef VULKAN_H_ |
| 1631 | #include <vulkan/vulkan.h> |
| 1632 | #endif |
| 1633 | |
| 1634 | #if VMA_RECORDING_ENABLED |
| 1635 | #include <windows.h> |
| 1636 | #endif |
| 1637 | |
| 1638 | #if !defined(VMA_DEDICATED_ALLOCATION) |
| 1639 | #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation |
| 1640 | #define VMA_DEDICATED_ALLOCATION 1 |
| 1641 | #else |
| 1642 | #define VMA_DEDICATED_ALLOCATION 0 |
| 1643 | #endif |
| 1644 | #endif |
| 1645 | |
| 1646 | /** \struct VmaAllocator |
| 1647 | \brief Represents main object of this library initialized. |
| 1648 | |
| 1649 | Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. |
| 1650 | Call function vmaDestroyAllocator() to destroy it. |
| 1651 | |
| 1652 | It is recommended to create just one object of this type per `VkDevice` object, |
| 1653 | right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. |
| 1654 | */ |
| 1655 | VK_DEFINE_HANDLE(VmaAllocator) |
| 1656 | |
| 1657 | /// Callback function called after successful vkAllocateMemory. |
| 1658 | typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)( |
| 1659 | VmaAllocator allocator, |
| 1660 | uint32_t memoryType, |
| 1661 | VkDeviceMemory memory, |
| 1662 | VkDeviceSize size); |
| 1663 | /// Callback function called before vkFreeMemory. |
| 1664 | typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)( |
| 1665 | VmaAllocator allocator, |
| 1666 | uint32_t memoryType, |
| 1667 | VkDeviceMemory memory, |
| 1668 | VkDeviceSize size); |
| 1669 | |
| 1670 | /** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. |
| 1671 | |
| 1672 | Provided for informative purpose, e.g. to gather statistics about number of |
| 1673 | allocations or total amount of memory allocated in Vulkan. |
| 1674 | |
| 1675 | Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. |
| 1676 | */ |
| 1677 | typedef struct VmaDeviceMemoryCallbacks { |
| 1678 | /// Optional, can be null. |
| 1679 | PFN_vmaAllocateDeviceMemoryFunction pfnAllocate; |
| 1680 | /// Optional, can be null. |
| 1681 | PFN_vmaFreeDeviceMemoryFunction pfnFree; |
| 1682 | } VmaDeviceMemoryCallbacks; |
| 1683 | |
| 1684 | /// Flags for created #VmaAllocator. |
| 1685 | typedef enum VmaAllocatorCreateFlagBits { |
| 1686 | /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. |
| 1687 | |
| 1688 | Using this flag may increase performance because internal mutexes are not used. |
| 1689 | */ |
| 1690 | VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, |
| 1691 | /** \brief Enables usage of VK_KHR_dedicated_allocation extension. |
| 1692 | |
| 1693 | Using this extenion will automatically allocate dedicated blocks of memory for |
| 1694 | some buffers and images instead of suballocating place for them out of bigger |
| 1695 | memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT |
| 1696 | flag) when it is recommended by the driver. It may improve performance on some |
| 1697 | GPUs. |
| 1698 | |
| 1699 | You may set this flag only if you found out that following device extensions are |
| 1700 | supported, you enabled them while creating Vulkan device passed as |
| 1701 | VmaAllocatorCreateInfo::device, and you want them to be used internally by this |
| 1702 | library: |
| 1703 | |
| 1704 | - VK_KHR_get_memory_requirements2 |
| 1705 | - VK_KHR_dedicated_allocation |
| 1706 | |
| 1707 | When this flag is set, you can experience following warnings reported by Vulkan |
| 1708 | validation layer. You can ignore them. |
| 1709 | |
| 1710 | > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. |
| 1711 | */ |
| 1712 | VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, |
| 1713 | |
| 1714 | VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF |
| 1715 | } VmaAllocatorCreateFlagBits; |
| 1716 | typedef VkFlags VmaAllocatorCreateFlags; |
| 1717 | |
| 1718 | /** \brief Pointers to some Vulkan functions - a subset used by the library. |
| 1719 | |
| 1720 | Used in VmaAllocatorCreateInfo::pVulkanFunctions. |
| 1721 | */ |
| 1722 | typedef struct VmaVulkanFunctions { |
| 1723 | PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; |
| 1724 | PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; |
| 1725 | PFN_vkAllocateMemory vkAllocateMemory; |
| 1726 | PFN_vkFreeMemory vkFreeMemory; |
| 1727 | PFN_vkMapMemory vkMapMemory; |
| 1728 | PFN_vkUnmapMemory vkUnmapMemory; |
| 1729 | PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; |
| 1730 | PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; |
| 1731 | PFN_vkBindBufferMemory vkBindBufferMemory; |
| 1732 | PFN_vkBindImageMemory vkBindImageMemory; |
| 1733 | PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; |
| 1734 | PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; |
| 1735 | PFN_vkCreateBuffer vkCreateBuffer; |
| 1736 | PFN_vkDestroyBuffer vkDestroyBuffer; |
| 1737 | PFN_vkCreateImage vkCreateImage; |
| 1738 | PFN_vkDestroyImage vkDestroyImage; |
| 1739 | PFN_vkCmdCopyBuffer vkCmdCopyBuffer; |
| 1740 | #if VMA_DEDICATED_ALLOCATION |
| 1741 | PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; |
| 1742 | PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; |
| 1743 | #endif |
| 1744 | } VmaVulkanFunctions; |
| 1745 | |
| 1746 | /// Flags to be used in VmaRecordSettings::flags. |
| 1747 | typedef enum VmaRecordFlagBits { |
| 1748 | /** \brief Enables flush after recording every function call. |
| 1749 | |
| 1750 | Enable it if you expect your application to crash, which may leave recording file truncated. |
| 1751 | It may degrade performance though. |
| 1752 | */ |
| 1753 | VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, |
| 1754 | |
| 1755 | VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF |
| 1756 | } VmaRecordFlagBits; |
| 1757 | typedef VkFlags VmaRecordFlags; |
| 1758 | |
| 1759 | /// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. |
| 1760 | typedef struct VmaRecordSettings |
| 1761 | { |
| 1762 | /// Flags for recording. Use #VmaRecordFlagBits enum. |
| 1763 | VmaRecordFlags flags; |
| 1764 | /** \brief Path to the file that should be written by the recording. |
| 1765 | |
| 1766 | Suggested extension: "csv". |
| 1767 | If the file already exists, it will be overwritten. |
| 1768 | It will be opened for the whole time #VmaAllocator object is alive. |
| 1769 | If opening this file fails, creation of the whole allocator object fails. |
| 1770 | */ |
| 1771 | const char* pFilePath; |
| 1772 | } VmaRecordSettings; |
| 1773 | |
| 1774 | /// Description of a Allocator to be created. |
| 1775 | typedef struct VmaAllocatorCreateInfo |
| 1776 | { |
| 1777 | /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. |
| 1778 | VmaAllocatorCreateFlags flags; |
| 1779 | /// Vulkan physical device. |
| 1780 | /** It must be valid throughout whole lifetime of created allocator. */ |
| 1781 | VkPhysicalDevice physicalDevice; |
| 1782 | /// Vulkan device. |
| 1783 | /** It must be valid throughout whole lifetime of created allocator. */ |
| 1784 | VkDevice device; |
| 1785 | /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. |
| 1786 | /** Set to 0 to use default, which is currently 256 MiB. */ |
| 1787 | VkDeviceSize preferredLargeHeapBlockSize; |
| 1788 | /// Custom CPU memory allocation callbacks. Optional. |
| 1789 | /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ |
| 1790 | const VkAllocationCallbacks* pAllocationCallbacks; |
| 1791 | /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. |
| 1792 | /** Optional, can be null. */ |
| 1793 | const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks; |
| 1794 | /** \brief Maximum number of additional frames that are in use at the same time as current frame. |
| 1795 | |
| 1796 | This value is used only when you make allocations with |
| 1797 | VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become |
| 1798 | lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. |
| 1799 | |
| 1800 | For example, if you double-buffer your command buffers, so resources used for |
| 1801 | rendering in previous frame may still be in use by the GPU at the moment you |
| 1802 | allocate resources needed for the current frame, set this value to 1. |
| 1803 | |
| 1804 | If you want to allow any allocations other than used in the current frame to |
| 1805 | become lost, set this value to 0. |
| 1806 | */ |
| 1807 | uint32_t frameInUseCount; |
| 1808 | /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. |
| 1809 | |
| 1810 | If not NULL, it must be a pointer to an array of |
| 1811 | `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on |
| 1812 | maximum number of bytes that can be allocated out of particular Vulkan memory |
| 1813 | heap. |
| 1814 | |
| 1815 | Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that |
| 1816 | heap. This is also the default in case of `pHeapSizeLimit` = NULL. |
| 1817 | |
| 1818 | If there is a limit defined for a heap: |
| 1819 | |
| 1820 | - If user tries to allocate more memory from that heap using this allocator, |
| 1821 | the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. |
| 1822 | - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the |
| 1823 | value of this limit will be reported instead when using vmaGetMemoryProperties(). |
| 1824 | |
| 1825 | Warning! Using this feature may not be equivalent to installing a GPU with |
| 1826 | smaller amount of memory, because graphics driver doesn't necessary fail new |
| 1827 | allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is |
| 1828 | exceeded. It may return success and just silently migrate some device memory |
| 1829 | blocks to system RAM. This driver behavior can also be controlled using |
| 1830 | VK_AMD_memory_overallocation_behavior extension. |
| 1831 | */ |
| 1832 | const VkDeviceSize* pHeapSizeLimit; |
| 1833 | /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`. |
| 1834 | |
| 1835 | If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section, |
| 1836 | you can pass null as this member, because the library will fetch pointers to |
| 1837 | Vulkan functions internally in a static way, like: |
| 1838 | |
| 1839 | vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; |
| 1840 | |
| 1841 | Fill this member if you want to provide your own pointers to Vulkan functions, |
| 1842 | e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`. |
| 1843 | */ |
| 1844 | const VmaVulkanFunctions* pVulkanFunctions; |
| 1845 | /** \brief Parameters for recording of VMA calls. Can be null. |
| 1846 | |
| 1847 | If not null, it enables recording of calls to VMA functions to a file. |
| 1848 | If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, |
| 1849 | creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. |
| 1850 | */ |
| 1851 | const VmaRecordSettings* pRecordSettings; |
| 1852 | } VmaAllocatorCreateInfo; |
| 1853 | |
| 1854 | /// Creates Allocator object. |
| 1855 | VkResult vmaCreateAllocator( |
| 1856 | const VmaAllocatorCreateInfo* pCreateInfo, |
| 1857 | VmaAllocator* pAllocator); |
| 1858 | |
| 1859 | /// Destroys allocator object. |
| 1860 | void vmaDestroyAllocator( |
| 1861 | VmaAllocator allocator); |
| 1862 | |
| 1863 | /** |
| 1864 | PhysicalDeviceProperties are fetched from physicalDevice by the allocator. |
| 1865 | You can access it here, without fetching it again on your own. |
| 1866 | */ |
| 1867 | void vmaGetPhysicalDeviceProperties( |
| 1868 | VmaAllocator allocator, |
| 1869 | const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties); |
| 1870 | |
| 1871 | /** |
| 1872 | PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. |
| 1873 | You can access it here, without fetching it again on your own. |
| 1874 | */ |
| 1875 | void vmaGetMemoryProperties( |
| 1876 | VmaAllocator allocator, |
| 1877 | const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties); |
| 1878 | |
| 1879 | /** |
| 1880 | \brief Given Memory Type Index, returns Property Flags of this memory type. |
| 1881 | |
| 1882 | This is just a convenience function. Same information can be obtained using |
| 1883 | vmaGetMemoryProperties(). |
| 1884 | */ |
| 1885 | void vmaGetMemoryTypeProperties( |
| 1886 | VmaAllocator allocator, |
| 1887 | uint32_t memoryTypeIndex, |
| 1888 | VkMemoryPropertyFlags* pFlags); |
| 1889 | |
| 1890 | /** \brief Sets index of the current frame. |
| 1891 | |
| 1892 | This function must be used if you make allocations with |
| 1893 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and |
| 1894 | #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator |
| 1895 | when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot |
| 1896 | become lost in the current frame. |
| 1897 | */ |
| 1898 | void vmaSetCurrentFrameIndex( |
| 1899 | VmaAllocator allocator, |
| 1900 | uint32_t frameIndex); |
| 1901 | |
| 1902 | /** \brief Calculated statistics of memory usage in entire allocator. |
| 1903 | */ |
| 1904 | typedef struct VmaStatInfo |
| 1905 | { |
| 1906 | /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. |
| 1907 | uint32_t blockCount; |
| 1908 | /// Number of #VmaAllocation allocation objects allocated. |
| 1909 | uint32_t allocationCount; |
| 1910 | /// Number of free ranges of memory between allocations. |
| 1911 | uint32_t unusedRangeCount; |
| 1912 | /// Total number of bytes occupied by all allocations. |
| 1913 | VkDeviceSize usedBytes; |
| 1914 | /// Total number of bytes occupied by unused ranges. |
| 1915 | VkDeviceSize unusedBytes; |
| 1916 | VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; |
| 1917 | VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; |
| 1918 | } VmaStatInfo; |
| 1919 | |
| 1920 | /// General statistics from current state of Allocator. |
| 1921 | typedef struct VmaStats |
| 1922 | { |
| 1923 | VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; |
| 1924 | VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; |
| 1925 | VmaStatInfo total; |
| 1926 | } VmaStats; |
| 1927 | |
| 1928 | /// Retrieves statistics from current state of the Allocator. |
| 1929 | void vmaCalculateStats( |
| 1930 | VmaAllocator allocator, |
| 1931 | VmaStats* pStats); |
| 1932 | |
| 1933 | #define VMA_STATS_STRING_ENABLED 1 |
| 1934 | |
| 1935 | #if VMA_STATS_STRING_ENABLED |
| 1936 | |
| 1937 | /// Builds and returns statistics as string in JSON format. |
| 1938 | /** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. |
| 1939 | */ |
| 1940 | void vmaBuildStatsString( |
| 1941 | VmaAllocator allocator, |
| 1942 | char** ppStatsString, |
| 1943 | VkBool32 detailedMap); |
| 1944 | |
| 1945 | void vmaFreeStatsString( |
| 1946 | VmaAllocator allocator, |
| 1947 | char* pStatsString); |
| 1948 | |
| 1949 | #endif // #if VMA_STATS_STRING_ENABLED |
| 1950 | |
| 1951 | /** \struct VmaPool |
| 1952 | \brief Represents custom memory pool |
| 1953 | |
| 1954 | Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. |
| 1955 | Call function vmaDestroyPool() to destroy it. |
| 1956 | |
| 1957 | For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). |
| 1958 | */ |
| 1959 | VK_DEFINE_HANDLE(VmaPool) |
| 1960 | |
| 1961 | typedef enum VmaMemoryUsage |
| 1962 | { |
| 1963 | /** No intended memory usage specified. |
| 1964 | Use other members of VmaAllocationCreateInfo to specify your requirements. |
| 1965 | */ |
| 1966 | VMA_MEMORY_USAGE_UNKNOWN = 0, |
| 1967 | /** Memory will be used on device only, so fast access from the device is preferred. |
| 1968 | It usually means device-local GPU (video) memory. |
| 1969 | No need to be mappable on host. |
| 1970 | It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. |
| 1971 | |
| 1972 | Usage: |
| 1973 | |
| 1974 | - Resources written and read by device, e.g. images used as attachments. |
| 1975 | - Resources transferred from host once (immutable) or infrequently and read by |
| 1976 | device multiple times, e.g. textures to be sampled, vertex buffers, uniform |
| 1977 | (constant) buffers, and majority of other types of resources used on GPU. |
| 1978 | |
| 1979 | Allocation may still end up in `HOST_VISIBLE` memory on some implementations. |
| 1980 | In such case, you are free to map it. |
| 1981 | You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. |
| 1982 | */ |
| 1983 | VMA_MEMORY_USAGE_GPU_ONLY = 1, |
| 1984 | /** Memory will be mappable on host. |
| 1985 | It usually means CPU (system) memory. |
| 1986 | Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. |
| 1987 | CPU access is typically uncached. Writes may be write-combined. |
| 1988 | Resources created in this pool may still be accessible to the device, but access to them can be slow. |
| 1989 | It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. |
| 1990 | |
| 1991 | Usage: Staging copy of resources used as transfer source. |
| 1992 | */ |
| 1993 | VMA_MEMORY_USAGE_CPU_ONLY = 2, |
| 1994 | /** |
| 1995 | Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. |
| 1996 | CPU access is typically uncached. Writes may be write-combined. |
| 1997 | |
| 1998 | Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call. |
| 1999 | */ |
| 2000 | VMA_MEMORY_USAGE_CPU_TO_GPU = 3, |
| 2001 | /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. |
| 2002 | It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. |
| 2003 | |
| 2004 | Usage: |
| 2005 | |
| 2006 | - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. |
| 2007 | - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. |
| 2008 | */ |
| 2009 | VMA_MEMORY_USAGE_GPU_TO_CPU = 4, |
| 2010 | VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF |
| 2011 | } VmaMemoryUsage; |
| 2012 | |
| 2013 | /// Flags to be passed as VmaAllocationCreateInfo::flags. |
| 2014 | typedef enum VmaAllocationCreateFlagBits { |
| 2015 | /** \brief Set this flag if the allocation should have its own memory block. |
| 2016 | |
| 2017 | Use it for special, big resources, like fullscreen images used as attachments. |
| 2018 | |
| 2019 | This flag must also be used for host visible resources that you want to map |
| 2020 | simultaneously because otherwise they might end up as regions of the same |
| 2021 | `VkDeviceMemory`, while mapping same `VkDeviceMemory` multiple times |
| 2022 | simultaneously is illegal. |
| 2023 | |
| 2024 | You should not use this flag if VmaAllocationCreateInfo::pool is not null. |
| 2025 | */ |
| 2026 | VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, |
| 2027 | |
| 2028 | /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. |
| 2029 | |
| 2030 | If new allocation cannot be placed in any of the existing blocks, allocation |
| 2031 | fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. |
| 2032 | |
| 2033 | You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and |
| 2034 | #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. |
| 2035 | |
| 2036 | If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ |
| 2037 | VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, |
| 2038 | /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. |
| 2039 | |
| 2040 | Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. |
| 2041 | |
| 2042 | Is it valid to use this flag for allocation made from memory type that is not |
| 2043 | `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is |
| 2044 | useful if you need an allocation that is efficient to use on GPU |
| 2045 | (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that |
| 2046 | support it (e.g. Intel GPU). |
| 2047 | |
| 2048 | You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. |
| 2049 | */ |
| 2050 | VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, |
| 2051 | /** Allocation created with this flag can become lost as a result of another |
| 2052 | allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you |
| 2053 | must check it before use. |
| 2054 | |
| 2055 | To check if allocation is not lost, call vmaGetAllocationInfo() and check if |
| 2056 | VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. |
| 2057 | |
| 2058 | For details about supporting lost allocations, see Lost Allocations |
| 2059 | chapter of User Guide on Main Page. |
| 2060 | |
| 2061 | You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. |
| 2062 | */ |
| 2063 | VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, |
| 2064 | /** While creating allocation using this flag, other allocations that were |
| 2065 | created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. |
| 2066 | |
| 2067 | For details about supporting lost allocations, see Lost Allocations |
| 2068 | chapter of User Guide on Main Page. |
| 2069 | */ |
| 2070 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, |
| 2071 | /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a |
| 2072 | null-terminated string. Instead of copying pointer value, a local copy of the |
| 2073 | string is made and stored in allocation's `pUserData`. The string is automatically |
| 2074 | freed together with the allocation. It is also used in vmaBuildStatsString(). |
| 2075 | */ |
| 2076 | VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, |
| 2077 | /** Allocation will be created from upper stack in a double stack pool. |
| 2078 | |
| 2079 | This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. |
| 2080 | */ |
| 2081 | VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, |
| 2082 | |
| 2083 | /** Allocation strategy that chooses smallest possible free range for the |
| 2084 | allocation. |
| 2085 | */ |
| 2086 | VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, |
| 2087 | /** Allocation strategy that chooses biggest possible free range for the |
| 2088 | allocation. |
| 2089 | */ |
| 2090 | VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, |
| 2091 | /** Allocation strategy that chooses first suitable free range for the |
| 2092 | allocation. |
| 2093 | |
| 2094 | "First" doesn't necessarily means the one with smallest offset in memory, |
| 2095 | but rather the one that is easiest and fastest to find. |
| 2096 | */ |
| 2097 | VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, |
| 2098 | |
| 2099 | /** Allocation strategy that tries to minimize memory usage. |
| 2100 | */ |
| 2101 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, |
| 2102 | /** Allocation strategy that tries to minimize allocation time. |
| 2103 | */ |
| 2104 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, |
| 2105 | /** Allocation strategy that tries to minimize memory fragmentation. |
| 2106 | */ |
| 2107 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, |
| 2108 | |
| 2109 | /** A bit mask to extract only `STRATEGY` bits from entire set of flags. |
| 2110 | */ |
| 2111 | VMA_ALLOCATION_CREATE_STRATEGY_MASK = |
| 2112 | VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | |
| 2113 | VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | |
| 2114 | VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, |
| 2115 | |
| 2116 | VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF |
| 2117 | } VmaAllocationCreateFlagBits; |
| 2118 | typedef VkFlags VmaAllocationCreateFlags; |
| 2119 | |
| 2120 | typedef struct VmaAllocationCreateInfo |
| 2121 | { |
| 2122 | /// Use #VmaAllocationCreateFlagBits enum. |
| 2123 | VmaAllocationCreateFlags flags; |
| 2124 | /** \brief Intended usage of memory. |
| 2125 | |
| 2126 | You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n |
| 2127 | If `pool` is not null, this member is ignored. |
| 2128 | */ |
| 2129 | VmaMemoryUsage usage; |
| 2130 | /** \brief Flags that must be set in a Memory Type chosen for an allocation. |
| 2131 | |
| 2132 | Leave 0 if you specify memory requirements in other way. \n |
| 2133 | If `pool` is not null, this member is ignored.*/ |
| 2134 | VkMemoryPropertyFlags requiredFlags; |
| 2135 | /** \brief Flags that preferably should be set in a memory type chosen for an allocation. |
| 2136 | |
| 2137 | Set to 0 if no additional flags are prefered. \n |
| 2138 | If `pool` is not null, this member is ignored. */ |
| 2139 | VkMemoryPropertyFlags preferredFlags; |
| 2140 | /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. |
| 2141 | |
| 2142 | Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if |
| 2143 | it meets other requirements specified by this structure, with no further |
| 2144 | restrictions on memory type index. \n |
| 2145 | If `pool` is not null, this member is ignored. |
| 2146 | */ |
| 2147 | uint32_t memoryTypeBits; |
| 2148 | /** \brief Pool that this allocation should be created in. |
| 2149 | |
| 2150 | Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: |
| 2151 | `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. |
| 2152 | */ |
| 2153 | VmaPool pool; |
| 2154 | /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). |
| 2155 | |
| 2156 | If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either |
| 2157 | null or pointer to a null-terminated string. The string will be then copied to |
| 2158 | internal buffer, so it doesn't need to be valid after allocation call. |
| 2159 | */ |
| 2160 | void* pUserData; |
| 2161 | } VmaAllocationCreateInfo; |
| 2162 | |
| 2163 | /** |
| 2164 | \brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. |
| 2165 | |
| 2166 | This algorithm tries to find a memory type that: |
| 2167 | |
| 2168 | - Is allowed by memoryTypeBits. |
| 2169 | - Contains all the flags from pAllocationCreateInfo->requiredFlags. |
| 2170 | - Matches intended usage. |
| 2171 | - Has as many flags from pAllocationCreateInfo->preferredFlags as possible. |
| 2172 | |
| 2173 | \return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result |
| 2174 | from this function or any other allocating function probably means that your |
| 2175 | device doesn't support any memory type with requested features for the specific |
| 2176 | type of resource you want to use it for. Please check parameters of your |
| 2177 | resource, like image layout (OPTIMAL versus LINEAR) or mip level count. |
| 2178 | */ |
| 2179 | VkResult vmaFindMemoryTypeIndex( |
| 2180 | VmaAllocator allocator, |
| 2181 | uint32_t memoryTypeBits, |
| 2182 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 2183 | uint32_t* pMemoryTypeIndex); |
| 2184 | |
| 2185 | /** |
| 2186 | \brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. |
| 2187 | |
| 2188 | It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. |
| 2189 | It internally creates a temporary, dummy buffer that never has memory bound. |
| 2190 | It is just a convenience function, equivalent to calling: |
| 2191 | |
| 2192 | - `vkCreateBuffer` |
| 2193 | - `vkGetBufferMemoryRequirements` |
| 2194 | - `vmaFindMemoryTypeIndex` |
| 2195 | - `vkDestroyBuffer` |
| 2196 | */ |
| 2197 | VkResult vmaFindMemoryTypeIndexForBufferInfo( |
| 2198 | VmaAllocator allocator, |
| 2199 | const VkBufferCreateInfo* pBufferCreateInfo, |
| 2200 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 2201 | uint32_t* pMemoryTypeIndex); |
| 2202 | |
| 2203 | /** |
| 2204 | \brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. |
| 2205 | |
| 2206 | It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. |
| 2207 | It internally creates a temporary, dummy image that never has memory bound. |
| 2208 | It is just a convenience function, equivalent to calling: |
| 2209 | |
| 2210 | - `vkCreateImage` |
| 2211 | - `vkGetImageMemoryRequirements` |
| 2212 | - `vmaFindMemoryTypeIndex` |
| 2213 | - `vkDestroyImage` |
| 2214 | */ |
| 2215 | VkResult vmaFindMemoryTypeIndexForImageInfo( |
| 2216 | VmaAllocator allocator, |
| 2217 | const VkImageCreateInfo* pImageCreateInfo, |
| 2218 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 2219 | uint32_t* pMemoryTypeIndex); |
| 2220 | |
| 2221 | /// Flags to be passed as VmaPoolCreateInfo::flags. |
| 2222 | typedef enum VmaPoolCreateFlagBits { |
| 2223 | /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. |
| 2224 | |
| 2225 | This is an optional optimization flag. |
| 2226 | |
| 2227 | If you always allocate using vmaCreateBuffer(), vmaCreateImage(), |
| 2228 | vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator |
| 2229 | knows exact type of your allocations so it can handle Buffer-Image Granularity |
| 2230 | in the optimal way. |
| 2231 | |
| 2232 | If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), |
| 2233 | exact type of such allocations is not known, so allocator must be conservative |
| 2234 | in handling Buffer-Image Granularity, which can lead to suboptimal allocation |
| 2235 | (wasted memory). In that case, if you can make sure you always allocate only |
| 2236 | buffers and linear images or only optimal images out of this pool, use this flag |
| 2237 | to make allocator disregard Buffer-Image Granularity and so make allocations |
| 2238 | faster and more optimal. |
| 2239 | */ |
| 2240 | VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, |
| 2241 | |
| 2242 | /** \brief Enables alternative, linear allocation algorithm in this pool. |
| 2243 | |
| 2244 | Specify this flag to enable linear allocation algorithm, which always creates |
| 2245 | new allocations after last one and doesn't reuse space from allocations freed in |
| 2246 | between. It trades memory consumption for simplified algorithm and data |
| 2247 | structure, which has better performance and uses less memory for metadata. |
| 2248 | |
| 2249 | By using this flag, you can achieve behavior of free-at-once, stack, |
| 2250 | ring buffer, and double stack. For details, see documentation chapter |
| 2251 | \ref linear_algorithm. |
| 2252 | |
| 2253 | When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). |
| 2254 | |
| 2255 | For more details, see [Linear allocation algorithm](@ref linear_algorithm). |
| 2256 | */ |
| 2257 | VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, |
| 2258 | |
| 2259 | /** \brief Enables alternative, buddy allocation algorithm in this pool. |
| 2260 | |
| 2261 | It operates on a tree of blocks, each having size that is a power of two and |
| 2262 | a half of its parent's size. Comparing to default algorithm, this one provides |
| 2263 | faster allocation and deallocation and decreased external fragmentation, |
| 2264 | at the expense of more memory wasted (internal fragmentation). |
| 2265 | |
| 2266 | For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). |
| 2267 | */ |
| 2268 | VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, |
| 2269 | |
| 2270 | /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. |
| 2271 | */ |
| 2272 | VMA_POOL_CREATE_ALGORITHM_MASK = |
| 2273 | VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | |
| 2274 | VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, |
| 2275 | |
| 2276 | VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF |
| 2277 | } VmaPoolCreateFlagBits; |
| 2278 | typedef VkFlags VmaPoolCreateFlags; |
| 2279 | |
| 2280 | /** \brief Describes parameter of created #VmaPool. |
| 2281 | */ |
| 2282 | typedef struct VmaPoolCreateInfo { |
| 2283 | /** \brief Vulkan memory type index to allocate this pool from. |
| 2284 | */ |
| 2285 | uint32_t memoryTypeIndex; |
| 2286 | /** \brief Use combination of #VmaPoolCreateFlagBits. |
| 2287 | */ |
| 2288 | VmaPoolCreateFlags flags; |
| 2289 | /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. |
| 2290 | |
| 2291 | Specify nonzero to set explicit, constant size of memory blocks used by this |
| 2292 | pool. |
| 2293 | |
| 2294 | Leave 0 to use default and let the library manage block sizes automatically. |
| 2295 | Sizes of particular blocks may vary. |
| 2296 | */ |
| 2297 | VkDeviceSize blockSize; |
| 2298 | /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. |
| 2299 | |
| 2300 | Set to 0 to have no preallocated blocks and allow the pool be completely empty. |
| 2301 | */ |
| 2302 | size_t minBlockCount; |
| 2303 | /** \brief Maximum number of blocks that can be allocated in this pool. Optional. |
| 2304 | |
| 2305 | Set to 0 to use default, which is `SIZE_MAX`, which means no limit. |
| 2306 | |
| 2307 | Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated |
| 2308 | throughout whole lifetime of this pool. |
| 2309 | */ |
| 2310 | size_t maxBlockCount; |
| 2311 | /** \brief Maximum number of additional frames that are in use at the same time as current frame. |
| 2312 | |
| 2313 | This value is used only when you make allocations with |
| 2314 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become |
| 2315 | lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. |
| 2316 | |
| 2317 | For example, if you double-buffer your command buffers, so resources used for |
| 2318 | rendering in previous frame may still be in use by the GPU at the moment you |
| 2319 | allocate resources needed for the current frame, set this value to 1. |
| 2320 | |
| 2321 | If you want to allow any allocations other than used in the current frame to |
| 2322 | become lost, set this value to 0. |
| 2323 | */ |
| 2324 | uint32_t frameInUseCount; |
| 2325 | } VmaPoolCreateInfo; |
| 2326 | |
| 2327 | /** \brief Describes parameter of existing #VmaPool. |
| 2328 | */ |
| 2329 | typedef struct VmaPoolStats { |
| 2330 | /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. |
| 2331 | */ |
| 2332 | VkDeviceSize size; |
| 2333 | /** \brief Total number of bytes in the pool not used by any #VmaAllocation. |
| 2334 | */ |
| 2335 | VkDeviceSize unusedSize; |
| 2336 | /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. |
| 2337 | */ |
| 2338 | size_t allocationCount; |
| 2339 | /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. |
| 2340 | */ |
| 2341 | size_t unusedRangeCount; |
| 2342 | /** \brief Size of the largest continuous free memory region available for new allocation. |
| 2343 | |
| 2344 | Making a new allocation of that size is not guaranteed to succeed because of |
| 2345 | possible additional margin required to respect alignment and buffer/image |
| 2346 | granularity. |
| 2347 | */ |
| 2348 | VkDeviceSize unusedRangeSizeMax; |
| 2349 | /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. |
| 2350 | */ |
| 2351 | size_t blockCount; |
| 2352 | } VmaPoolStats; |
| 2353 | |
| 2354 | /** \brief Allocates Vulkan device memory and creates #VmaPool object. |
| 2355 | |
| 2356 | @param allocator Allocator object. |
| 2357 | @param pCreateInfo Parameters of pool to create. |
| 2358 | @param[out] pPool Handle to created pool. |
| 2359 | */ |
| 2360 | VkResult vmaCreatePool( |
| 2361 | VmaAllocator allocator, |
| 2362 | const VmaPoolCreateInfo* pCreateInfo, |
| 2363 | VmaPool* pPool); |
| 2364 | |
| 2365 | /** \brief Destroys #VmaPool object and frees Vulkan device memory. |
| 2366 | */ |
| 2367 | void vmaDestroyPool( |
| 2368 | VmaAllocator allocator, |
| 2369 | VmaPool pool); |
| 2370 | |
| 2371 | /** \brief Retrieves statistics of existing #VmaPool object. |
| 2372 | |
| 2373 | @param allocator Allocator object. |
| 2374 | @param pool Pool object. |
| 2375 | @param[out] pPoolStats Statistics of specified pool. |
| 2376 | */ |
| 2377 | void vmaGetPoolStats( |
| 2378 | VmaAllocator allocator, |
| 2379 | VmaPool pool, |
| 2380 | VmaPoolStats* pPoolStats); |
| 2381 | |
| 2382 | /** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. |
| 2383 | |
| 2384 | @param allocator Allocator object. |
| 2385 | @param pool Pool. |
| 2386 | @param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. |
| 2387 | */ |
| 2388 | void vmaMakePoolAllocationsLost( |
| 2389 | VmaAllocator allocator, |
| 2390 | VmaPool pool, |
| 2391 | size_t* pLostAllocationCount); |
| 2392 | |
| 2393 | /** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. |
| 2394 | |
| 2395 | Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, |
| 2396 | `VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is |
| 2397 | `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). |
| 2398 | |
| 2399 | Possible return values: |
| 2400 | |
| 2401 | - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. |
| 2402 | - `VK_SUCCESS` - corruption detection has been performed and succeeded. |
| 2403 | - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. |
| 2404 | `VMA_ASSERT` is also fired in that case. |
| 2405 | - Other value: Error returned by Vulkan, e.g. memory mapping failure. |
| 2406 | */ |
| 2407 | VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool); |
| 2408 | |
| 2409 | /** \struct VmaAllocation |
| 2410 | \brief Represents single memory allocation. |
| 2411 | |
| 2412 | It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type |
| 2413 | plus unique offset. |
| 2414 | |
| 2415 | There are multiple ways to create such object. |
| 2416 | You need to fill structure VmaAllocationCreateInfo. |
| 2417 | For more information see [Choosing memory type](@ref choosing_memory_type). |
| 2418 | |
| 2419 | Although the library provides convenience functions that create Vulkan buffer or image, |
| 2420 | allocate memory for it and bind them together, |
| 2421 | binding of the allocation to a buffer or an image is out of scope of the allocation itself. |
| 2422 | Allocation object can exist without buffer/image bound, |
| 2423 | binding can be done manually by the user, and destruction of it can be done |
| 2424 | independently of destruction of the allocation. |
| 2425 | |
| 2426 | The object also remembers its size and some other information. |
| 2427 | To retrieve this information, use function vmaGetAllocationInfo() and inspect |
| 2428 | returned structure VmaAllocationInfo. |
| 2429 | |
| 2430 | Some kinds allocations can be in lost state. |
| 2431 | For more information, see [Lost allocations](@ref lost_allocations). |
| 2432 | */ |
| 2433 | VK_DEFINE_HANDLE(VmaAllocation) |
| 2434 | |
| 2435 | /** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). |
| 2436 | */ |
| 2437 | typedef struct VmaAllocationInfo { |
| 2438 | /** \brief Memory type index that this allocation was allocated from. |
| 2439 | |
| 2440 | It never changes. |
| 2441 | */ |
| 2442 | uint32_t memoryType; |
| 2443 | /** \brief Handle to Vulkan memory object. |
| 2444 | |
| 2445 | Same memory object can be shared by multiple allocations. |
| 2446 | |
| 2447 | It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. |
| 2448 | |
| 2449 | If the allocation is lost, it is equal to `VK_NULL_HANDLE`. |
| 2450 | */ |
| 2451 | VkDeviceMemory deviceMemory; |
| 2452 | /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation. |
| 2453 | |
| 2454 | It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. |
| 2455 | */ |
| 2456 | VkDeviceSize offset; |
| 2457 | /** \brief Size of this allocation, in bytes. |
| 2458 | |
| 2459 | It never changes, unless allocation is lost. |
| 2460 | */ |
| 2461 | VkDeviceSize size; |
| 2462 | /** \brief Pointer to the beginning of this allocation as mapped data. |
| 2463 | |
| 2464 | If the allocation hasn't been mapped using vmaMapMemory() and hasn't been |
| 2465 | created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null. |
| 2466 | |
| 2467 | It can change after call to vmaMapMemory(), vmaUnmapMemory(). |
| 2468 | It can also change after call to vmaDefragment() if this allocation is passed to the function. |
| 2469 | */ |
| 2470 | void* pMappedData; |
| 2471 | /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). |
| 2472 | |
| 2473 | It can change after call to vmaSetAllocationUserData() for this allocation. |
| 2474 | */ |
| 2475 | void* pUserData; |
| 2476 | } VmaAllocationInfo; |
| 2477 | |
| 2478 | /** \brief General purpose memory allocation. |
| 2479 | |
| 2480 | @param[out] pAllocation Handle to allocated memory. |
| 2481 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). |
| 2482 | |
| 2483 | You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). |
| 2484 | |
| 2485 | It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), |
| 2486 | vmaCreateBuffer(), vmaCreateImage() instead whenever possible. |
| 2487 | */ |
| 2488 | VkResult vmaAllocateMemory( |
| 2489 | VmaAllocator allocator, |
| 2490 | const VkMemoryRequirements* pVkMemoryRequirements, |
| 2491 | const VmaAllocationCreateInfo* pCreateInfo, |
| 2492 | VmaAllocation* pAllocation, |
| 2493 | VmaAllocationInfo* pAllocationInfo); |
| 2494 | |
| 2495 | /** \brief General purpose memory allocation for multiple allocation objects at once. |
| 2496 | |
| 2497 | @param allocator Allocator object. |
| 2498 | @param pVkMemoryRequirements Memory requirements for each allocation. |
| 2499 | @param pCreateInfo Creation parameters for each alloction. |
| 2500 | @param allocationCount Number of allocations to make. |
| 2501 | @param[out] pAllocations Pointer to array that will be filled with handles to created allocations. |
| 2502 | @param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. |
| 2503 | |
| 2504 | You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). |
| 2505 | |
| 2506 | Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. |
| 2507 | It is just a general purpose allocation function able to make multiple allocations at once. |
| 2508 | It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. |
| 2509 | |
| 2510 | All allocations are made using same parameters. All of them are created out of the same memory pool and type. |
| 2511 | If any allocation fails, all allocations already made within this function call are also freed, so that when |
| 2512 | returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. |
| 2513 | */ |
| 2514 | VkResult vmaAllocateMemoryPages( |
| 2515 | VmaAllocator allocator, |
| 2516 | const VkMemoryRequirements* pVkMemoryRequirements, |
| 2517 | const VmaAllocationCreateInfo* pCreateInfo, |
| 2518 | size_t allocationCount, |
| 2519 | VmaAllocation* pAllocations, |
| 2520 | VmaAllocationInfo* pAllocationInfo); |
| 2521 | |
| 2522 | /** |
| 2523 | @param[out] pAllocation Handle to allocated memory. |
| 2524 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). |
| 2525 | |
| 2526 | You should free the memory using vmaFreeMemory(). |
| 2527 | */ |
| 2528 | VkResult vmaAllocateMemoryForBuffer( |
| 2529 | VmaAllocator allocator, |
| 2530 | VkBuffer buffer, |
| 2531 | const VmaAllocationCreateInfo* pCreateInfo, |
| 2532 | VmaAllocation* pAllocation, |
| 2533 | VmaAllocationInfo* pAllocationInfo); |
| 2534 | |
| 2535 | /// Function similar to vmaAllocateMemoryForBuffer(). |
| 2536 | VkResult vmaAllocateMemoryForImage( |
| 2537 | VmaAllocator allocator, |
| 2538 | VkImage image, |
| 2539 | const VmaAllocationCreateInfo* pCreateInfo, |
| 2540 | VmaAllocation* pAllocation, |
| 2541 | VmaAllocationInfo* pAllocationInfo); |
| 2542 | |
| 2543 | /** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). |
| 2544 | |
| 2545 | Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. |
| 2546 | */ |
| 2547 | void vmaFreeMemory( |
| 2548 | VmaAllocator allocator, |
| 2549 | VmaAllocation allocation); |
| 2550 | |
| 2551 | /** \brief Frees memory and destroys multiple allocations. |
| 2552 | |
| 2553 | Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. |
| 2554 | It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), |
| 2555 | vmaAllocateMemoryPages() and other functions. |
| 2556 | It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. |
| 2557 | |
| 2558 | Allocations in `pAllocations` array can come from any memory pools and types. |
| 2559 | Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. |
| 2560 | */ |
| 2561 | void vmaFreeMemoryPages( |
| 2562 | VmaAllocator allocator, |
| 2563 | size_t allocationCount, |
| 2564 | VmaAllocation* pAllocations); |
| 2565 | |
| 2566 | /** \brief Tries to resize an allocation in place, if there is enough free memory after it. |
| 2567 | |
| 2568 | Tries to change allocation's size without moving or reallocating it. |
| 2569 | You can both shrink and grow allocation size. |
| 2570 | When growing, it succeeds only when the allocation belongs to a memory block with enough |
| 2571 | free space after it. |
| 2572 | |
| 2573 | Returns `VK_SUCCESS` if allocation's size has been successfully changed. |
| 2574 | Returns `VK_ERROR_OUT_OF_POOL_MEMORY` if allocation's size could not be changed. |
| 2575 | |
| 2576 | After successful call to this function, VmaAllocationInfo::size of this allocation changes. |
| 2577 | All other parameters stay the same: memory pool and type, alignment, offset, mapped pointer. |
| 2578 | |
| 2579 | - Calling this function on allocation that is in lost state fails with result `VK_ERROR_VALIDATION_FAILED_EXT`. |
| 2580 | - Calling this function with `newSize` same as current allocation size does nothing and returns `VK_SUCCESS`. |
| 2581 | - Resizing dedicated allocations, as well as allocations created in pools that use linear |
| 2582 | or buddy algorithm, is not supported. |
| 2583 | The function returns `VK_ERROR_FEATURE_NOT_PRESENT` in such cases. |
| 2584 | Support may be added in the future. |
| 2585 | */ |
| 2586 | VkResult vmaResizeAllocation( |
| 2587 | VmaAllocator allocator, |
| 2588 | VmaAllocation allocation, |
| 2589 | VkDeviceSize newSize); |
| 2590 | |
| 2591 | /** \brief Returns current information about specified allocation and atomically marks it as used in current frame. |
| 2592 | |
| 2593 | Current paramters of given allocation are returned in `pAllocationInfo`. |
| 2594 | |
| 2595 | This function also atomically "touches" allocation - marks it as used in current frame, |
| 2596 | just like vmaTouchAllocation(). |
| 2597 | If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. |
| 2598 | |
| 2599 | Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, |
| 2600 | you can avoid calling it too often. |
| 2601 | |
| 2602 | - You can retrieve same VmaAllocationInfo structure while creating your resource, from function |
| 2603 | vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change |
| 2604 | (e.g. due to defragmentation or allocation becoming lost). |
| 2605 | - If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. |
| 2606 | */ |
| 2607 | void vmaGetAllocationInfo( |
| 2608 | VmaAllocator allocator, |
| 2609 | VmaAllocation allocation, |
| 2610 | VmaAllocationInfo* pAllocationInfo); |
| 2611 | |
| 2612 | /** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. |
| 2613 | |
| 2614 | If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, |
| 2615 | this function returns `VK_TRUE` if it's not in lost state, so it can still be used. |
| 2616 | It then also atomically "touches" the allocation - marks it as used in current frame, |
| 2617 | so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. |
| 2618 | |
| 2619 | If the allocation is in lost state, the function returns `VK_FALSE`. |
| 2620 | Memory of such allocation, as well as buffer or image bound to it, should not be used. |
| 2621 | Lost allocation and the buffer/image still need to be destroyed. |
| 2622 | |
| 2623 | If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, |
| 2624 | this function always returns `VK_TRUE`. |
| 2625 | */ |
| 2626 | VkBool32 vmaTouchAllocation( |
| 2627 | VmaAllocator allocator, |
| 2628 | VmaAllocation allocation); |
| 2629 | |
| 2630 | /** \brief Sets pUserData in given allocation to new value. |
| 2631 | |
| 2632 | If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, |
| 2633 | pUserData must be either null, or pointer to a null-terminated string. The function |
| 2634 | makes local copy of the string and sets it as allocation's `pUserData`. String |
| 2635 | passed as pUserData doesn't need to be valid for whole lifetime of the allocation - |
| 2636 | you can free it after this call. String previously pointed by allocation's |
| 2637 | pUserData is freed from memory. |
| 2638 | |
| 2639 | If the flag was not used, the value of pointer `pUserData` is just copied to |
| 2640 | allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. |
| 2641 | as a pointer, ordinal number or some handle to you own data. |
| 2642 | */ |
| 2643 | void vmaSetAllocationUserData( |
| 2644 | VmaAllocator allocator, |
| 2645 | VmaAllocation allocation, |
| 2646 | void* pUserData); |
| 2647 | |
| 2648 | /** \brief Creates new allocation that is in lost state from the beginning. |
| 2649 | |
| 2650 | It can be useful if you need a dummy, non-null allocation. |
| 2651 | |
| 2652 | You still need to destroy created object using vmaFreeMemory(). |
| 2653 | |
| 2654 | Returned allocation is not tied to any specific memory pool or memory type and |
| 2655 | not bound to any image or buffer. It has size = 0. It cannot be turned into |
| 2656 | a real, non-empty allocation. |
| 2657 | */ |
| 2658 | void vmaCreateLostAllocation( |
| 2659 | VmaAllocator allocator, |
| 2660 | VmaAllocation* pAllocation); |
| 2661 | |
| 2662 | /** \brief Maps memory represented by given allocation and returns pointer to it. |
| 2663 | |
| 2664 | Maps memory represented by given allocation to make it accessible to CPU code. |
| 2665 | When succeeded, `*ppData` contains pointer to first byte of this memory. |
| 2666 | If the allocation is part of bigger `VkDeviceMemory` block, the pointer is |
| 2667 | correctly offseted to the beginning of region assigned to this particular |
| 2668 | allocation. |
| 2669 | |
| 2670 | Mapping is internally reference-counted and synchronized, so despite raw Vulkan |
| 2671 | function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` |
| 2672 | multiple times simultaneously, it is safe to call this function on allocations |
| 2673 | assigned to the same memory block. Actual Vulkan memory will be mapped on first |
| 2674 | mapping and unmapped on last unmapping. |
| 2675 | |
| 2676 | If the function succeeded, you must call vmaUnmapMemory() to unmap the |
| 2677 | allocation when mapping is no longer needed or before freeing the allocation, at |
| 2678 | the latest. |
| 2679 | |
| 2680 | It also safe to call this function multiple times on the same allocation. You |
| 2681 | must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). |
| 2682 | |
| 2683 | It is also safe to call this function on allocation created with |
| 2684 | #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. |
| 2685 | You must still call vmaUnmapMemory() same number of times as you called |
| 2686 | vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the |
| 2687 | "0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. |
| 2688 | |
| 2689 | This function fails when used on allocation made in memory type that is not |
| 2690 | `HOST_VISIBLE`. |
| 2691 | |
| 2692 | This function always fails when called for allocation that was created with |
| 2693 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be |
| 2694 | mapped. |
| 2695 | */ |
| 2696 | VkResult vmaMapMemory( |
| 2697 | VmaAllocator allocator, |
| 2698 | VmaAllocation allocation, |
| 2699 | void** ppData); |
| 2700 | |
| 2701 | /** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). |
| 2702 | |
| 2703 | For details, see description of vmaMapMemory(). |
| 2704 | */ |
| 2705 | void vmaUnmapMemory( |
| 2706 | VmaAllocator allocator, |
| 2707 | VmaAllocation allocation); |
| 2708 | |
| 2709 | /** \brief Flushes memory of given allocation. |
| 2710 | |
| 2711 | Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. |
| 2712 | |
| 2713 | - `offset` must be relative to the beginning of allocation. |
| 2714 | - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. |
| 2715 | - `offset` and `size` don't have to be aligned. |
| 2716 | They are internally rounded down/up to multiply of `nonCoherentAtomSize`. |
| 2717 | - If `size` is 0, this call is ignored. |
| 2718 | - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, |
| 2719 | this call is ignored. |
| 2720 | */ |
| 2721 | void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); |
| 2722 | |
| 2723 | /** \brief Invalidates memory of given allocation. |
| 2724 | |
| 2725 | Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. |
| 2726 | |
| 2727 | - `offset` must be relative to the beginning of allocation. |
| 2728 | - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. |
| 2729 | - `offset` and `size` don't have to be aligned. |
| 2730 | They are internally rounded down/up to multiply of `nonCoherentAtomSize`. |
| 2731 | - If `size` is 0, this call is ignored. |
| 2732 | - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, |
| 2733 | this call is ignored. |
| 2734 | */ |
| 2735 | void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); |
| 2736 | |
| 2737 | /** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. |
| 2738 | |
| 2739 | @param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. |
| 2740 | |
| 2741 | Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, |
| 2742 | `VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are |
| 2743 | `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). |
| 2744 | |
| 2745 | Possible return values: |
| 2746 | |
| 2747 | - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. |
| 2748 | - `VK_SUCCESS` - corruption detection has been performed and succeeded. |
| 2749 | - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. |
| 2750 | `VMA_ASSERT` is also fired in that case. |
| 2751 | - Other value: Error returned by Vulkan, e.g. memory mapping failure. |
| 2752 | */ |
| 2753 | VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits); |
| 2754 | |
| 2755 | /** \struct VmaDefragmentationContext |
| 2756 | \brief Represents Opaque object that represents started defragmentation process. |
| 2757 | |
| 2758 | Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. |
| 2759 | Call function vmaDefragmentationEnd() to destroy it. |
| 2760 | */ |
| 2761 | VK_DEFINE_HANDLE(VmaDefragmentationContext) |
| 2762 | |
| 2763 | /// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. |
| 2764 | typedef enum VmaDefragmentationFlagBits { |
| 2765 | VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF |
| 2766 | } VmaDefragmentationFlagBits; |
| 2767 | typedef VkFlags VmaDefragmentationFlags; |
| 2768 | |
| 2769 | /** \brief Parameters for defragmentation. |
| 2770 | |
| 2771 | To be used with function vmaDefragmentationBegin(). |
| 2772 | */ |
| 2773 | typedef struct VmaDefragmentationInfo2 { |
| 2774 | /** \brief Reserved for future use. Should be 0. |
| 2775 | */ |
| 2776 | VmaDefragmentationFlags flags; |
| 2777 | /** \brief Number of allocations in `pAllocations` array. |
| 2778 | */ |
| 2779 | uint32_t allocationCount; |
| 2780 | /** \brief Pointer to array of allocations that can be defragmented. |
| 2781 | |
| 2782 | The array should have `allocationCount` elements. |
| 2783 | The array should not contain nulls. |
| 2784 | Elements in the array should be unique - same allocation cannot occur twice. |
| 2785 | It is safe to pass allocations that are in the lost state - they are ignored. |
| 2786 | All allocations not present in this array are considered non-moveable during this defragmentation. |
| 2787 | */ |
| 2788 | VmaAllocation* pAllocations; |
| 2789 | /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. |
| 2790 | |
| 2791 | The array should have `allocationCount` elements. |
| 2792 | You can pass null if you are not interested in this information. |
| 2793 | */ |
| 2794 | VkBool32* pAllocationsChanged; |
| 2795 | /** \brief Numer of pools in `pPools` array. |
| 2796 | */ |
| 2797 | uint32_t poolCount; |
| 2798 | /** \brief Either null or pointer to array of pools to be defragmented. |
| 2799 | |
| 2800 | All the allocations in the specified pools can be moved during defragmentation |
| 2801 | and there is no way to check if they were really moved as in `pAllocationsChanged`, |
| 2802 | so you must query all the allocations in all these pools for new `VkDeviceMemory` |
| 2803 | and offset using vmaGetAllocationInfo() if you might need to recreate buffers |
| 2804 | and images bound to them. |
| 2805 | |
| 2806 | The array should have `poolCount` elements. |
| 2807 | The array should not contain nulls. |
| 2808 | Elements in the array should be unique - same pool cannot occur twice. |
| 2809 | |
| 2810 | Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. |
| 2811 | It might be more efficient. |
| 2812 | */ |
| 2813 | VmaPool* pPools; |
| 2814 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. |
| 2815 | |
| 2816 | `VK_WHOLE_SIZE` means no limit. |
| 2817 | */ |
| 2818 | VkDeviceSize maxCpuBytesToMove; |
| 2819 | /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. |
| 2820 | |
| 2821 | `UINT32_MAX` means no limit. |
| 2822 | */ |
| 2823 | uint32_t maxCpuAllocationsToMove; |
| 2824 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. |
| 2825 | |
| 2826 | `VK_WHOLE_SIZE` means no limit. |
| 2827 | */ |
| 2828 | VkDeviceSize maxGpuBytesToMove; |
| 2829 | /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. |
| 2830 | |
| 2831 | `UINT32_MAX` means no limit. |
| 2832 | */ |
| 2833 | uint32_t maxGpuAllocationsToMove; |
| 2834 | /** \brief Optional. Command buffer where GPU copy commands will be posted. |
| 2835 | |
| 2836 | If not null, it must be a valid command buffer handle that supports Transfer queue type. |
| 2837 | It must be in the recording state and outside of a render pass instance. |
| 2838 | You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). |
| 2839 | |
| 2840 | Passing null means that only CPU defragmentation will be performed. |
| 2841 | */ |
| 2842 | VkCommandBuffer commandBuffer; |
| 2843 | } VmaDefragmentationInfo2; |
| 2844 | |
| 2845 | /** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). |
| 2846 | |
| 2847 | \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. |
| 2848 | */ |
| 2849 | typedef struct VmaDefragmentationInfo { |
| 2850 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. |
| 2851 | |
| 2852 | Default is `VK_WHOLE_SIZE`, which means no limit. |
| 2853 | */ |
| 2854 | VkDeviceSize maxBytesToMove; |
| 2855 | /** \brief Maximum number of allocations that can be moved to different place. |
| 2856 | |
| 2857 | Default is `UINT32_MAX`, which means no limit. |
| 2858 | */ |
| 2859 | uint32_t maxAllocationsToMove; |
| 2860 | } VmaDefragmentationInfo; |
| 2861 | |
| 2862 | /** \brief Statistics returned by function vmaDefragment(). */ |
| 2863 | typedef struct VmaDefragmentationStats { |
| 2864 | /// Total number of bytes that have been copied while moving allocations to different places. |
| 2865 | VkDeviceSize bytesMoved; |
| 2866 | /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. |
| 2867 | VkDeviceSize bytesFreed; |
| 2868 | /// Number of allocations that have been moved to different places. |
| 2869 | uint32_t allocationsMoved; |
| 2870 | /// Number of empty `VkDeviceMemory` objects that have been released to the system. |
| 2871 | uint32_t deviceMemoryBlocksFreed; |
| 2872 | } VmaDefragmentationStats; |
| 2873 | |
| 2874 | /** \brief Begins defragmentation process. |
| 2875 | |
| 2876 | @param allocator Allocator object. |
| 2877 | @param pInfo Structure filled with parameters of defragmentation. |
| 2878 | @param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. |
| 2879 | @param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. |
| 2880 | @return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. |
| 2881 | |
| 2882 | Use this function instead of old, deprecated vmaDefragment(). |
| 2883 | |
| 2884 | Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): |
| 2885 | |
| 2886 | - You should not use any of allocations passed as `pInfo->pAllocations` or |
| 2887 | any allocations that belong to pools passed as `pInfo->pPools`, |
| 2888 | including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access |
| 2889 | their data. |
| 2890 | - Some mutexes protecting internal data structures may be locked, so trying to |
| 2891 | make or free any allocations, bind buffers or images, map memory, or launch |
| 2892 | another simultaneous defragmentation in between may cause stall (when done on |
| 2893 | another thread) or deadlock (when done on the same thread), unless you are |
| 2894 | 100% sure that defragmented allocations are in different pools. |
| 2895 | - Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. |
| 2896 | They become valid after call to vmaDefragmentationEnd(). |
| 2897 | - If `pInfo->commandBuffer` is not null, you must submit that command buffer |
| 2898 | and make sure it finished execution before calling vmaDefragmentationEnd(). |
| 2899 | */ |
| 2900 | VkResult vmaDefragmentationBegin( |
| 2901 | VmaAllocator allocator, |
| 2902 | const VmaDefragmentationInfo2* pInfo, |
| 2903 | VmaDefragmentationStats* pStats, |
| 2904 | VmaDefragmentationContext *pContext); |
| 2905 | |
| 2906 | /** \brief Ends defragmentation process. |
| 2907 | |
| 2908 | Use this function to finish defragmentation started by vmaDefragmentationBegin(). |
| 2909 | It is safe to pass `context == null`. The function then does nothing. |
| 2910 | */ |
| 2911 | VkResult vmaDefragmentationEnd( |
| 2912 | VmaAllocator allocator, |
| 2913 | VmaDefragmentationContext context); |
| 2914 | |
| 2915 | /** \brief Deprecated. Compacts memory by moving allocations. |
| 2916 | |
| 2917 | @param pAllocations Array of allocations that can be moved during this compation. |
| 2918 | @param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. |
| 2919 | @param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. |
| 2920 | @param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. |
| 2921 | @param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. |
| 2922 | @return `VK_SUCCESS` if completed, negative error code in case of error. |
| 2923 | |
| 2924 | \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. |
| 2925 | |
| 2926 | This function works by moving allocations to different places (different |
| 2927 | `VkDeviceMemory` objects and/or different offsets) in order to optimize memory |
| 2928 | usage. Only allocations that are in `pAllocations` array can be moved. All other |
| 2929 | allocations are considered nonmovable in this call. Basic rules: |
| 2930 | |
| 2931 | - Only allocations made in memory types that have |
| 2932 | `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` |
| 2933 | flags can be compacted. You may pass other allocations but it makes no sense - |
| 2934 | these will never be moved. |
| 2935 | - Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or |
| 2936 | #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations |
| 2937 | passed to this function that come from such pools are ignored. |
| 2938 | - Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or |
| 2939 | created as dedicated allocations for any other reason are also ignored. |
| 2940 | - Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT |
| 2941 | flag can be compacted. If not persistently mapped, memory will be mapped |
| 2942 | temporarily inside this function if needed. |
| 2943 | - You must not pass same #VmaAllocation object multiple times in `pAllocations` array. |
| 2944 | |
| 2945 | The function also frees empty `VkDeviceMemory` blocks. |
| 2946 | |
| 2947 | Warning: This function may be time-consuming, so you shouldn't call it too often |
| 2948 | (like after every resource creation/destruction). |
| 2949 | You can call it on special occasions (like when reloading a game level or |
| 2950 | when you just destroyed a lot of objects). Calling it every frame may be OK, but |
| 2951 | you should measure that on your platform. |
| 2952 | |
| 2953 | For more information, see [Defragmentation](@ref defragmentation) chapter. |
| 2954 | */ |
| 2955 | VkResult vmaDefragment( |
| 2956 | VmaAllocator allocator, |
| 2957 | VmaAllocation* pAllocations, |
| 2958 | size_t allocationCount, |
| 2959 | VkBool32* pAllocationsChanged, |
| 2960 | const VmaDefragmentationInfo *pDefragmentationInfo, |
| 2961 | VmaDefragmentationStats* pDefragmentationStats); |
| 2962 | |
| 2963 | /** \brief Binds buffer to allocation. |
| 2964 | |
| 2965 | Binds specified buffer to region of memory represented by specified allocation. |
| 2966 | Gets `VkDeviceMemory` handle and offset from the allocation. |
| 2967 | If you want to create a buffer, allocate memory for it and bind them together separately, |
| 2968 | you should use this function for binding instead of standard `vkBindBufferMemory()`, |
| 2969 | because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple |
| 2970 | allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously |
| 2971 | (which is illegal in Vulkan). |
| 2972 | |
| 2973 | It is recommended to use function vmaCreateBuffer() instead of this one. |
| 2974 | */ |
| 2975 | VkResult vmaBindBufferMemory( |
| 2976 | VmaAllocator allocator, |
| 2977 | VmaAllocation allocation, |
| 2978 | VkBuffer buffer); |
| 2979 | |
| 2980 | /** \brief Binds image to allocation. |
| 2981 | |
| 2982 | Binds specified image to region of memory represented by specified allocation. |
| 2983 | Gets `VkDeviceMemory` handle and offset from the allocation. |
| 2984 | If you want to create an image, allocate memory for it and bind them together separately, |
| 2985 | you should use this function for binding instead of standard `vkBindImageMemory()`, |
| 2986 | because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple |
| 2987 | allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously |
| 2988 | (which is illegal in Vulkan). |
| 2989 | |
| 2990 | It is recommended to use function vmaCreateImage() instead of this one. |
| 2991 | */ |
| 2992 | VkResult vmaBindImageMemory( |
| 2993 | VmaAllocator allocator, |
| 2994 | VmaAllocation allocation, |
| 2995 | VkImage image); |
| 2996 | |
| 2997 | /** |
| 2998 | @param[out] pBuffer Buffer that was created. |
| 2999 | @param[out] pAllocation Allocation that was created. |
| 3000 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). |
| 3001 | |
| 3002 | This function automatically: |
| 3003 | |
| 3004 | -# Creates buffer. |
| 3005 | -# Allocates appropriate memory for it. |
| 3006 | -# Binds the buffer with the memory. |
| 3007 | |
| 3008 | If any of these operations fail, buffer and allocation are not created, |
| 3009 | returned value is negative error code, *pBuffer and *pAllocation are null. |
| 3010 | |
| 3011 | If the function succeeded, you must destroy both buffer and allocation when you |
| 3012 | no longer need them using either convenience function vmaDestroyBuffer() or |
| 3013 | separately, using `vkDestroyBuffer()` and vmaFreeMemory(). |
| 3014 | |
| 3015 | If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, |
| 3016 | VK_KHR_dedicated_allocation extension is used internally to query driver whether |
| 3017 | it requires or prefers the new buffer to have dedicated allocation. If yes, |
| 3018 | and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null |
| 3019 | and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated |
| 3020 | allocation for this buffer, just like when using |
| 3021 | VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. |
| 3022 | */ |
| 3023 | VkResult vmaCreateBuffer( |
| 3024 | VmaAllocator allocator, |
| 3025 | const VkBufferCreateInfo* pBufferCreateInfo, |
| 3026 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 3027 | VkBuffer* pBuffer, |
| 3028 | VmaAllocation* pAllocation, |
| 3029 | VmaAllocationInfo* pAllocationInfo); |
| 3030 | |
| 3031 | /** \brief Destroys Vulkan buffer and frees allocated memory. |
| 3032 | |
| 3033 | This is just a convenience function equivalent to: |
| 3034 | |
| 3035 | \code |
| 3036 | vkDestroyBuffer(device, buffer, allocationCallbacks); |
| 3037 | vmaFreeMemory(allocator, allocation); |
| 3038 | \endcode |
| 3039 | |
| 3040 | It it safe to pass null as buffer and/or allocation. |
| 3041 | */ |
| 3042 | void vmaDestroyBuffer( |
| 3043 | VmaAllocator allocator, |
| 3044 | VkBuffer buffer, |
| 3045 | VmaAllocation allocation); |
| 3046 | |
| 3047 | /// Function similar to vmaCreateBuffer(). |
| 3048 | VkResult vmaCreateImage( |
| 3049 | VmaAllocator allocator, |
| 3050 | const VkImageCreateInfo* pImageCreateInfo, |
| 3051 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 3052 | VkImage* pImage, |
| 3053 | VmaAllocation* pAllocation, |
| 3054 | VmaAllocationInfo* pAllocationInfo); |
| 3055 | |
| 3056 | /** \brief Destroys Vulkan image and frees allocated memory. |
| 3057 | |
| 3058 | This is just a convenience function equivalent to: |
| 3059 | |
| 3060 | \code |
| 3061 | vkDestroyImage(device, image, allocationCallbacks); |
| 3062 | vmaFreeMemory(allocator, allocation); |
| 3063 | \endcode |
| 3064 | |
| 3065 | It it safe to pass null as image and/or allocation. |
| 3066 | */ |
| 3067 | void vmaDestroyImage( |
| 3068 | VmaAllocator allocator, |
| 3069 | VkImage image, |
| 3070 | VmaAllocation allocation); |
| 3071 | |
| 3072 | #ifdef __cplusplus |
| 3073 | } |
| 3074 | #endif |
| 3075 | |
| 3076 | #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H |
| 3077 | |
| 3078 | // For Visual Studio IntelliSense. |
| 3079 | #if defined(__cplusplus) && defined(__INTELLISENSE__) |
| 3080 | #define VMA_IMPLEMENTATION |
| 3081 | #endif |
| 3082 | |
| 3083 | #ifdef VMA_IMPLEMENTATION |
| 3084 | #undef VMA_IMPLEMENTATION |
| 3085 | |
| 3086 | #include <cstdint> |
| 3087 | #include <cstdlib> |
| 3088 | #include <cstring> |
| 3089 | |
| 3090 | /******************************************************************************* |
| 3091 | CONFIGURATION SECTION |
| 3092 | |
| 3093 | Define some of these macros before each #include of this header or change them |
| 3094 | here if you need other then default behavior depending on your environment. |
| 3095 | */ |
| 3096 | |
| 3097 | /* |
| 3098 | Define this macro to 1 to make the library fetch pointers to Vulkan functions |
| 3099 | internally, like: |
| 3100 | |
| 3101 | vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; |
| 3102 | |
| 3103 | Define to 0 if you are going to provide you own pointers to Vulkan functions via |
| 3104 | VmaAllocatorCreateInfo::pVulkanFunctions. |
| 3105 | */ |
| 3106 | #if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) |
| 3107 | #define VMA_STATIC_VULKAN_FUNCTIONS 1 |
| 3108 | #endif |
| 3109 | |
| 3110 | // Define this macro to 1 to make the library use STL containers instead of its own implementation. |
| 3111 | //#define VMA_USE_STL_CONTAINERS 1 |
| 3112 | |
| 3113 | /* Set this macro to 1 to make the library including and using STL containers: |
| 3114 | std::pair, std::vector, std::list, std::unordered_map. |
| 3115 | |
| 3116 | Set it to 0 or undefined to make the library using its own implementation of |
| 3117 | the containers. |
| 3118 | */ |
| 3119 | #if VMA_USE_STL_CONTAINERS |
| 3120 | #define VMA_USE_STL_VECTOR 1 |
| 3121 | #define VMA_USE_STL_UNORDERED_MAP 1 |
| 3122 | #define VMA_USE_STL_LIST 1 |
| 3123 | #endif |
| 3124 | |
| 3125 | #ifndef VMA_USE_STL_SHARED_MUTEX |
| 3126 | // Minimum Visual Studio 2015 Update 2 |
| 3127 | #if defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 |
| 3128 | #define VMA_USE_STL_SHARED_MUTEX 1 |
| 3129 | #endif |
| 3130 | #endif |
| 3131 | |
| 3132 | #if VMA_USE_STL_VECTOR |
| 3133 | #include <vector> |
| 3134 | #endif |
| 3135 | |
| 3136 | #if VMA_USE_STL_UNORDERED_MAP |
| 3137 | #include <unordered_map> |
| 3138 | #endif |
| 3139 | |
| 3140 | #if VMA_USE_STL_LIST |
| 3141 | #include <list> |
| 3142 | #endif |
| 3143 | |
| 3144 | /* |
| 3145 | Following headers are used in this CONFIGURATION section only, so feel free to |
| 3146 | remove them if not needed. |
| 3147 | */ |
| 3148 | #include <cassert> // for assert |
| 3149 | #include <algorithm> // for min, max |
| 3150 | #include <mutex> |
| 3151 | #include <atomic> // for std::atomic |
| 3152 | |
| 3153 | #ifndef VMA_NULL |
| 3154 | // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. |
| 3155 | #define VMA_NULL nullptr |
| 3156 | #endif |
| 3157 | |
| 3158 | #if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) |
| 3159 | #include <cstdlib> |
| 3160 | void *aligned_alloc(size_t alignment, size_t size) |
| 3161 | { |
| 3162 | // alignment must be >= sizeof(void*) |
| 3163 | if(alignment < sizeof(void*)) |
| 3164 | { |
| 3165 | alignment = sizeof(void*); |
| 3166 | } |
| 3167 | |
| 3168 | return memalign(alignment, size); |
| 3169 | } |
| 3170 | #elif defined(__ANDROID__) |
| 3171 | #include <cstdlib> |
| 3172 | void *aligned_alloc(size_t alignment, size_t size) |
| 3173 | { |
| 3174 | // alignment must be >= sizeof(void*) |
| 3175 | if(alignment < sizeof(void*)) |
| 3176 | { |
| 3177 | alignment = sizeof(void*); |
| 3178 | } |
| 3179 | |
| 3180 | void *pointer; |
| 3181 | if(posix_memalign(&pointer, alignment, size) == 0) |
| 3182 | return pointer; |
| 3183 | return VMA_NULL; |
| 3184 | } |
| 3185 | #elif defined(__APPLE__) |
| 3186 | #include <cstdlib> |
| 3187 | // aligned_alloc() is marked as macOS 10.15 only in the 10.15 SDK, |
| 3188 | // avoid the mess by using a different name |
| 3189 | void *vma_aligned_alloc(size_t alignment, size_t size) |
| 3190 | { |
| 3191 | // alignment must be >= sizeof(void*) |
| 3192 | if(alignment < sizeof(void*)) |
| 3193 | { |
| 3194 | alignment = sizeof(void*); |
| 3195 | } |
| 3196 | |
| 3197 | void *pointer; |
| 3198 | if(posix_memalign(&pointer, alignment, size) == 0) |
| 3199 | return pointer; |
| 3200 | return VMA_NULL; |
| 3201 | } |
| 3202 | #endif |
| 3203 | |
| 3204 | // If your compiler is not compatible with C++11 and definition of |
| 3205 | // aligned_alloc() function is missing, uncommeting following line may help: |
| 3206 | |
| 3207 | //#include <malloc.h> |
| 3208 | |
| 3209 | // Normal assert to check for programmer's errors, especially in Debug configuration. |
| 3210 | #ifndef VMA_ASSERT |
| 3211 | #ifdef _DEBUG |
| 3212 | #define VMA_ASSERT(expr) assert(expr) |
| 3213 | #else |
| 3214 | #define VMA_ASSERT(expr) |
| 3215 | #endif |
| 3216 | #endif |
| 3217 | |
| 3218 | // Assert that will be called very often, like inside data structures e.g. operator[]. |
| 3219 | // Making it non-empty can make program slow. |
| 3220 | #ifndef VMA_HEAVY_ASSERT |
| 3221 | #ifdef _DEBUG |
| 3222 | #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) |
| 3223 | #else |
| 3224 | #define VMA_HEAVY_ASSERT(expr) |
| 3225 | #endif |
| 3226 | #endif |
| 3227 | |
| 3228 | #ifndef VMA_ALIGN_OF |
| 3229 | #define VMA_ALIGN_OF(type) (__alignof(type)) |
| 3230 | #endif |
| 3231 | |
| 3232 | #ifndef VMA_SYSTEM_ALIGNED_MALLOC |
| 3233 | #if defined(_WIN32) |
| 3234 | #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment))) |
| 3235 | #elif defined(__APPLE__) |
| 3236 | #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (vma_aligned_alloc((alignment), (size) )) |
| 3237 | #else |
| 3238 | #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) )) |
| 3239 | #endif |
| 3240 | #endif |
| 3241 | |
| 3242 | #ifndef VMA_SYSTEM_FREE |
| 3243 | #if defined(_WIN32) |
| 3244 | #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr) |
| 3245 | #else |
| 3246 | #define VMA_SYSTEM_FREE(ptr) free(ptr) |
| 3247 | #endif |
| 3248 | #endif |
| 3249 | |
| 3250 | #ifndef VMA_MIN |
| 3251 | #define VMA_MIN(v1, v2) (std::min((v1), (v2))) |
| 3252 | #endif |
| 3253 | |
| 3254 | #ifndef VMA_MAX |
| 3255 | #define VMA_MAX(v1, v2) (std::max((v1), (v2))) |
| 3256 | #endif |
| 3257 | |
| 3258 | #ifndef VMA_SWAP |
| 3259 | #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) |
| 3260 | #endif |
| 3261 | |
| 3262 | #ifndef VMA_SORT |
| 3263 | #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) |
| 3264 | #endif |
| 3265 | |
| 3266 | #ifndef VMA_DEBUG_LOG |
| 3267 | #define VMA_DEBUG_LOG(format, ...) |
| 3268 | /* |
| 3269 | #define VMA_DEBUG_LOG(format, ...) do { \ |
| 3270 | printf(format, __VA_ARGS__); \ |
| 3271 | printf("\n"); \ |
| 3272 | } while(false) |
| 3273 | */ |
| 3274 | #endif |
| 3275 | |
| 3276 | // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. |
| 3277 | #if VMA_STATS_STRING_ENABLED |
| 3278 | static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num) |
| 3279 | { |
| 3280 | snprintf(outStr, strLen, "%u" , static_cast<unsigned int>(num)); |
| 3281 | } |
| 3282 | static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num) |
| 3283 | { |
| 3284 | snprintf(outStr, strLen, "%llu" , static_cast<unsigned long long>(num)); |
| 3285 | } |
| 3286 | static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr) |
| 3287 | { |
| 3288 | snprintf(outStr, strLen, "%p" , ptr); |
| 3289 | } |
| 3290 | #endif |
| 3291 | |
| 3292 | #ifndef VMA_MUTEX |
| 3293 | class VmaMutex |
| 3294 | { |
| 3295 | public: |
| 3296 | void Lock() { m_Mutex.lock(); } |
| 3297 | void Unlock() { m_Mutex.unlock(); } |
| 3298 | private: |
| 3299 | std::mutex m_Mutex; |
| 3300 | }; |
| 3301 | #define VMA_MUTEX VmaMutex |
| 3302 | #endif |
| 3303 | |
| 3304 | // Read-write mutex, where "read" is shared access, "write" is exclusive access. |
| 3305 | #ifndef VMA_RW_MUTEX |
| 3306 | #if VMA_USE_STL_SHARED_MUTEX |
| 3307 | // Use std::shared_mutex from C++17. |
| 3308 | #include <shared_mutex> |
| 3309 | class VmaRWMutex |
| 3310 | { |
| 3311 | public: |
| 3312 | void LockRead() { m_Mutex.lock_shared(); } |
| 3313 | void UnlockRead() { m_Mutex.unlock_shared(); } |
| 3314 | void LockWrite() { m_Mutex.lock(); } |
| 3315 | void UnlockWrite() { m_Mutex.unlock(); } |
| 3316 | private: |
| 3317 | std::shared_mutex m_Mutex; |
| 3318 | }; |
| 3319 | #define VMA_RW_MUTEX VmaRWMutex |
| 3320 | #elif defined(_WIN32) && !defined(__MINGW32__) |
| 3321 | // Use SRWLOCK from WinAPI. |
| 3322 | class VmaRWMutex |
| 3323 | { |
| 3324 | public: |
| 3325 | VmaRWMutex() { InitializeSRWLock(&m_Lock); } |
| 3326 | void LockRead() { AcquireSRWLockShared(&m_Lock); } |
| 3327 | void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } |
| 3328 | void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } |
| 3329 | void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } |
| 3330 | private: |
| 3331 | SRWLOCK m_Lock; |
| 3332 | }; |
| 3333 | #define VMA_RW_MUTEX VmaRWMutex |
| 3334 | #else |
| 3335 | // Less efficient fallback: Use normal mutex. |
| 3336 | class VmaRWMutex |
| 3337 | { |
| 3338 | public: |
| 3339 | void LockRead() { m_Mutex.Lock(); } |
| 3340 | void UnlockRead() { m_Mutex.Unlock(); } |
| 3341 | void LockWrite() { m_Mutex.Lock(); } |
| 3342 | void UnlockWrite() { m_Mutex.Unlock(); } |
| 3343 | private: |
| 3344 | VMA_MUTEX m_Mutex; |
| 3345 | }; |
| 3346 | #define VMA_RW_MUTEX VmaRWMutex |
| 3347 | #endif // #if VMA_USE_STL_SHARED_MUTEX |
| 3348 | #endif // #ifndef VMA_RW_MUTEX |
| 3349 | |
| 3350 | /* |
| 3351 | If providing your own implementation, you need to implement a subset of std::atomic: |
| 3352 | |
| 3353 | - Constructor(uint32_t desired) |
| 3354 | - uint32_t load() const |
| 3355 | - void store(uint32_t desired) |
| 3356 | - bool compare_exchange_weak(uint32_t& expected, uint32_t desired) |
| 3357 | */ |
| 3358 | #ifndef VMA_ATOMIC_UINT32 |
| 3359 | #define VMA_ATOMIC_UINT32 std::atomic<uint32_t> |
| 3360 | #endif |
| 3361 | |
| 3362 | #ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY |
| 3363 | /** |
| 3364 | Every allocation will have its own memory block. |
| 3365 | Define to 1 for debugging purposes only. |
| 3366 | */ |
| 3367 | #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) |
| 3368 | #endif |
| 3369 | |
| 3370 | #ifndef VMA_DEBUG_ALIGNMENT |
| 3371 | /** |
| 3372 | Minimum alignment of all allocations, in bytes. |
| 3373 | Set to more than 1 for debugging purposes only. Must be power of two. |
| 3374 | */ |
| 3375 | #define VMA_DEBUG_ALIGNMENT (1) |
| 3376 | #endif |
| 3377 | |
| 3378 | #ifndef VMA_DEBUG_MARGIN |
| 3379 | /** |
| 3380 | Minimum margin before and after every allocation, in bytes. |
| 3381 | Set nonzero for debugging purposes only. |
| 3382 | */ |
| 3383 | #define VMA_DEBUG_MARGIN (0) |
| 3384 | #endif |
| 3385 | |
| 3386 | #ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS |
| 3387 | /** |
| 3388 | Define this macro to 1 to automatically fill new allocations and destroyed |
| 3389 | allocations with some bit pattern. |
| 3390 | */ |
| 3391 | #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) |
| 3392 | #endif |
| 3393 | |
| 3394 | #ifndef VMA_DEBUG_DETECT_CORRUPTION |
| 3395 | /** |
| 3396 | Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to |
| 3397 | enable writing magic value to the margin before and after every allocation and |
| 3398 | validating it, so that memory corruptions (out-of-bounds writes) are detected. |
| 3399 | */ |
| 3400 | #define VMA_DEBUG_DETECT_CORRUPTION (0) |
| 3401 | #endif |
| 3402 | |
| 3403 | #ifndef VMA_DEBUG_GLOBAL_MUTEX |
| 3404 | /** |
| 3405 | Set this to 1 for debugging purposes only, to enable single mutex protecting all |
| 3406 | entry calls to the library. Can be useful for debugging multithreading issues. |
| 3407 | */ |
| 3408 | #define VMA_DEBUG_GLOBAL_MUTEX (0) |
| 3409 | #endif |
| 3410 | |
| 3411 | #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY |
| 3412 | /** |
| 3413 | Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. |
| 3414 | Set to more than 1 for debugging purposes only. Must be power of two. |
| 3415 | */ |
| 3416 | #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) |
| 3417 | #endif |
| 3418 | |
| 3419 | #ifndef VMA_SMALL_HEAP_MAX_SIZE |
| 3420 | /// Maximum size of a memory heap in Vulkan to consider it "small". |
| 3421 | #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) |
| 3422 | #endif |
| 3423 | |
| 3424 | #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE |
| 3425 | /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. |
| 3426 | #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) |
| 3427 | #endif |
| 3428 | |
| 3429 | #ifndef VMA_CLASS_NO_COPY |
| 3430 | #define VMA_CLASS_NO_COPY(className) \ |
| 3431 | private: \ |
| 3432 | className(const className&) = delete; \ |
| 3433 | className& operator=(const className&) = delete; |
| 3434 | #endif |
| 3435 | |
| 3436 | static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; |
| 3437 | |
| 3438 | // Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. |
| 3439 | static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; |
| 3440 | |
| 3441 | static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; |
| 3442 | static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; |
| 3443 | |
| 3444 | /******************************************************************************* |
| 3445 | END OF CONFIGURATION |
| 3446 | */ |
| 3447 | |
| 3448 | static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; |
| 3449 | |
| 3450 | static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { |
| 3451 | VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; |
| 3452 | |
| 3453 | // Returns number of bits set to 1 in (v). |
| 3454 | static inline uint32_t VmaCountBitsSet(uint32_t v) |
| 3455 | { |
| 3456 | uint32_t c = v - ((v >> 1) & 0x55555555); |
| 3457 | c = ((c >> 2) & 0x33333333) + (c & 0x33333333); |
| 3458 | c = ((c >> 4) + c) & 0x0F0F0F0F; |
| 3459 | c = ((c >> 8) + c) & 0x00FF00FF; |
| 3460 | c = ((c >> 16) + c) & 0x0000FFFF; |
| 3461 | return c; |
| 3462 | } |
| 3463 | |
| 3464 | // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. |
| 3465 | // Use types like uint32_t, uint64_t as T. |
| 3466 | template <typename T> |
| 3467 | static inline T VmaAlignUp(T val, T align) |
| 3468 | { |
| 3469 | return (val + align - 1) / align * align; |
| 3470 | } |
| 3471 | // Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. |
| 3472 | // Use types like uint32_t, uint64_t as T. |
| 3473 | template <typename T> |
| 3474 | static inline T VmaAlignDown(T val, T align) |
| 3475 | { |
| 3476 | return val / align * align; |
| 3477 | } |
| 3478 | |
| 3479 | // Division with mathematical rounding to nearest number. |
| 3480 | template <typename T> |
| 3481 | static inline T VmaRoundDiv(T x, T y) |
| 3482 | { |
| 3483 | return (x + (y / (T)2)) / y; |
| 3484 | } |
| 3485 | |
| 3486 | /* |
| 3487 | Returns true if given number is a power of two. |
| 3488 | T must be unsigned integer number or signed integer but always nonnegative. |
| 3489 | For 0 returns true. |
| 3490 | */ |
| 3491 | template <typename T> |
| 3492 | inline bool VmaIsPow2(T x) |
| 3493 | { |
| 3494 | return (x & (x-1)) == 0; |
| 3495 | } |
| 3496 | |
| 3497 | // Returns smallest power of 2 greater or equal to v. |
| 3498 | static inline uint32_t VmaNextPow2(uint32_t v) |
| 3499 | { |
| 3500 | v--; |
| 3501 | v |= v >> 1; |
| 3502 | v |= v >> 2; |
| 3503 | v |= v >> 4; |
| 3504 | v |= v >> 8; |
| 3505 | v |= v >> 16; |
| 3506 | v++; |
| 3507 | return v; |
| 3508 | } |
| 3509 | static inline uint64_t VmaNextPow2(uint64_t v) |
| 3510 | { |
| 3511 | v--; |
| 3512 | v |= v >> 1; |
| 3513 | v |= v >> 2; |
| 3514 | v |= v >> 4; |
| 3515 | v |= v >> 8; |
| 3516 | v |= v >> 16; |
| 3517 | v |= v >> 32; |
| 3518 | v++; |
| 3519 | return v; |
| 3520 | } |
| 3521 | |
| 3522 | // Returns largest power of 2 less or equal to v. |
| 3523 | static inline uint32_t VmaPrevPow2(uint32_t v) |
| 3524 | { |
| 3525 | v |= v >> 1; |
| 3526 | v |= v >> 2; |
| 3527 | v |= v >> 4; |
| 3528 | v |= v >> 8; |
| 3529 | v |= v >> 16; |
| 3530 | v = v ^ (v >> 1); |
| 3531 | return v; |
| 3532 | } |
| 3533 | static inline uint64_t VmaPrevPow2(uint64_t v) |
| 3534 | { |
| 3535 | v |= v >> 1; |
| 3536 | v |= v >> 2; |
| 3537 | v |= v >> 4; |
| 3538 | v |= v >> 8; |
| 3539 | v |= v >> 16; |
| 3540 | v |= v >> 32; |
| 3541 | v = v ^ (v >> 1); |
| 3542 | return v; |
| 3543 | } |
| 3544 | |
| 3545 | static inline bool VmaStrIsEmpty(const char* pStr) |
| 3546 | { |
| 3547 | return pStr == VMA_NULL || *pStr == '\0'; |
| 3548 | } |
| 3549 | |
| 3550 | static const char* VmaAlgorithmToStr(uint32_t algorithm) |
| 3551 | { |
| 3552 | switch(algorithm) |
| 3553 | { |
| 3554 | case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: |
| 3555 | return "Linear" ; |
| 3556 | case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: |
| 3557 | return "Buddy" ; |
| 3558 | case 0: |
| 3559 | return "Default" ; |
| 3560 | default: |
| 3561 | VMA_ASSERT(0); |
| 3562 | return "" ; |
| 3563 | } |
| 3564 | } |
| 3565 | |
| 3566 | #ifndef VMA_SORT |
| 3567 | |
| 3568 | template<typename Iterator, typename Compare> |
| 3569 | Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) |
| 3570 | { |
| 3571 | Iterator centerValue = end; --centerValue; |
| 3572 | Iterator insertIndex = beg; |
| 3573 | for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) |
| 3574 | { |
| 3575 | if(cmp(*memTypeIndex, *centerValue)) |
| 3576 | { |
| 3577 | if(insertIndex != memTypeIndex) |
| 3578 | { |
| 3579 | VMA_SWAP(*memTypeIndex, *insertIndex); |
| 3580 | } |
| 3581 | ++insertIndex; |
| 3582 | } |
| 3583 | } |
| 3584 | if(insertIndex != centerValue) |
| 3585 | { |
| 3586 | VMA_SWAP(*insertIndex, *centerValue); |
| 3587 | } |
| 3588 | return insertIndex; |
| 3589 | } |
| 3590 | |
| 3591 | template<typename Iterator, typename Compare> |
| 3592 | void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) |
| 3593 | { |
| 3594 | if(beg < end) |
| 3595 | { |
| 3596 | Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp); |
| 3597 | VmaQuickSort<Iterator, Compare>(beg, it, cmp); |
| 3598 | VmaQuickSort<Iterator, Compare>(it + 1, end, cmp); |
| 3599 | } |
| 3600 | } |
| 3601 | |
| 3602 | #define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) |
| 3603 | |
| 3604 | #endif // #ifndef VMA_SORT |
| 3605 | |
| 3606 | /* |
| 3607 | Returns true if two memory blocks occupy overlapping pages. |
| 3608 | ResourceA must be in less memory offset than ResourceB. |
| 3609 | |
| 3610 | Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" |
| 3611 | chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". |
| 3612 | */ |
| 3613 | static inline bool VmaBlocksOnSamePage( |
| 3614 | VkDeviceSize resourceAOffset, |
| 3615 | VkDeviceSize resourceASize, |
| 3616 | VkDeviceSize resourceBOffset, |
| 3617 | VkDeviceSize pageSize) |
| 3618 | { |
| 3619 | VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); |
| 3620 | VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; |
| 3621 | VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); |
| 3622 | VkDeviceSize resourceBStart = resourceBOffset; |
| 3623 | VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); |
| 3624 | return resourceAEndPage == resourceBStartPage; |
| 3625 | } |
| 3626 | |
| 3627 | enum VmaSuballocationType |
| 3628 | { |
| 3629 | VMA_SUBALLOCATION_TYPE_FREE = 0, |
| 3630 | VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, |
| 3631 | VMA_SUBALLOCATION_TYPE_BUFFER = 2, |
| 3632 | VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, |
| 3633 | VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, |
| 3634 | VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, |
| 3635 | VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF |
| 3636 | }; |
| 3637 | |
| 3638 | /* |
| 3639 | Returns true if given suballocation types could conflict and must respect |
| 3640 | VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer |
| 3641 | or linear image and another one is optimal image. If type is unknown, behave |
| 3642 | conservatively. |
| 3643 | */ |
| 3644 | static inline bool VmaIsBufferImageGranularityConflict( |
| 3645 | VmaSuballocationType suballocType1, |
| 3646 | VmaSuballocationType suballocType2) |
| 3647 | { |
| 3648 | if(suballocType1 > suballocType2) |
| 3649 | { |
| 3650 | VMA_SWAP(suballocType1, suballocType2); |
| 3651 | } |
| 3652 | |
| 3653 | switch(suballocType1) |
| 3654 | { |
| 3655 | case VMA_SUBALLOCATION_TYPE_FREE: |
| 3656 | return false; |
| 3657 | case VMA_SUBALLOCATION_TYPE_UNKNOWN: |
| 3658 | return true; |
| 3659 | case VMA_SUBALLOCATION_TYPE_BUFFER: |
| 3660 | return |
| 3661 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || |
| 3662 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; |
| 3663 | case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: |
| 3664 | return |
| 3665 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || |
| 3666 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || |
| 3667 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; |
| 3668 | case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: |
| 3669 | return |
| 3670 | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; |
| 3671 | case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: |
| 3672 | return false; |
| 3673 | default: |
| 3674 | VMA_ASSERT(0); |
| 3675 | return true; |
| 3676 | } |
| 3677 | } |
| 3678 | |
| 3679 | static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) |
| 3680 | { |
| 3681 | uint32_t* pDst = (uint32_t*)((char*)pData + offset); |
| 3682 | const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); |
| 3683 | for(size_t i = 0; i != numberCount; ++i, ++pDst) |
| 3684 | { |
| 3685 | *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; |
| 3686 | } |
| 3687 | } |
| 3688 | |
| 3689 | static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) |
| 3690 | { |
| 3691 | const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); |
| 3692 | const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); |
| 3693 | for(size_t i = 0; i != numberCount; ++i, ++pSrc) |
| 3694 | { |
| 3695 | if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) |
| 3696 | { |
| 3697 | return false; |
| 3698 | } |
| 3699 | } |
| 3700 | return true; |
| 3701 | } |
| 3702 | |
| 3703 | // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). |
| 3704 | struct VmaMutexLock |
| 3705 | { |
| 3706 | VMA_CLASS_NO_COPY(VmaMutexLock) |
| 3707 | public: |
| 3708 | VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) : |
| 3709 | m_pMutex(useMutex ? &mutex : VMA_NULL) |
| 3710 | { if(m_pMutex) { m_pMutex->Lock(); } } |
| 3711 | ~VmaMutexLock() |
| 3712 | { if(m_pMutex) { m_pMutex->Unlock(); } } |
| 3713 | private: |
| 3714 | VMA_MUTEX* m_pMutex; |
| 3715 | }; |
| 3716 | |
| 3717 | // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. |
| 3718 | struct VmaMutexLockRead |
| 3719 | { |
| 3720 | VMA_CLASS_NO_COPY(VmaMutexLockRead) |
| 3721 | public: |
| 3722 | VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : |
| 3723 | m_pMutex(useMutex ? &mutex : VMA_NULL) |
| 3724 | { if(m_pMutex) { m_pMutex->LockRead(); } } |
| 3725 | ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } } |
| 3726 | private: |
| 3727 | VMA_RW_MUTEX* m_pMutex; |
| 3728 | }; |
| 3729 | |
| 3730 | // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. |
| 3731 | struct VmaMutexLockWrite |
| 3732 | { |
| 3733 | VMA_CLASS_NO_COPY(VmaMutexLockWrite) |
| 3734 | public: |
| 3735 | VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : |
| 3736 | m_pMutex(useMutex ? &mutex : VMA_NULL) |
| 3737 | { if(m_pMutex) { m_pMutex->LockWrite(); } } |
| 3738 | ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } } |
| 3739 | private: |
| 3740 | VMA_RW_MUTEX* m_pMutex; |
| 3741 | }; |
| 3742 | |
| 3743 | #if VMA_DEBUG_GLOBAL_MUTEX |
| 3744 | static VMA_MUTEX gDebugGlobalMutex; |
| 3745 | #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); |
| 3746 | #else |
| 3747 | #define VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 3748 | #endif |
| 3749 | |
| 3750 | // Minimum size of a free suballocation to register it in the free suballocation collection. |
| 3751 | static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; |
| 3752 | |
| 3753 | /* |
| 3754 | Performs binary search and returns iterator to first element that is greater or |
| 3755 | equal to (key), according to comparison (cmp). |
| 3756 | |
| 3757 | Cmp should return true if first argument is less than second argument. |
| 3758 | |
| 3759 | Returned value is the found element, if present in the collection or place where |
| 3760 | new element with value (key) should be inserted. |
| 3761 | */ |
| 3762 | template <typename CmpLess, typename IterT, typename KeyT> |
| 3763 | static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpLess cmp) |
| 3764 | { |
| 3765 | size_t down = 0, up = (end - beg); |
| 3766 | while(down < up) |
| 3767 | { |
| 3768 | const size_t mid = (down + up) / 2; |
| 3769 | if(cmp(*(beg+mid), key)) |
| 3770 | { |
| 3771 | down = mid + 1; |
| 3772 | } |
| 3773 | else |
| 3774 | { |
| 3775 | up = mid; |
| 3776 | } |
| 3777 | } |
| 3778 | return beg + down; |
| 3779 | } |
| 3780 | |
| 3781 | /* |
| 3782 | Returns true if all pointers in the array are not-null and unique. |
| 3783 | Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. |
| 3784 | T must be pointer type, e.g. VmaAllocation, VmaPool. |
| 3785 | */ |
| 3786 | template<typename T> |
| 3787 | static bool VmaValidatePointerArray(uint32_t count, const T* arr) |
| 3788 | { |
| 3789 | for(uint32_t i = 0; i < count; ++i) |
| 3790 | { |
| 3791 | const T iPtr = arr[i]; |
| 3792 | if(iPtr == VMA_NULL) |
| 3793 | { |
| 3794 | return false; |
| 3795 | } |
| 3796 | for(uint32_t j = i + 1; j < count; ++j) |
| 3797 | { |
| 3798 | if(iPtr == arr[j]) |
| 3799 | { |
| 3800 | return false; |
| 3801 | } |
| 3802 | } |
| 3803 | } |
| 3804 | return true; |
| 3805 | } |
| 3806 | |
| 3807 | //////////////////////////////////////////////////////////////////////////////// |
| 3808 | // Memory allocation |
| 3809 | |
| 3810 | static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) |
| 3811 | { |
| 3812 | if((pAllocationCallbacks != VMA_NULL) && |
| 3813 | (pAllocationCallbacks->pfnAllocation != VMA_NULL)) |
| 3814 | { |
| 3815 | return (*pAllocationCallbacks->pfnAllocation)( |
| 3816 | pAllocationCallbacks->pUserData, |
| 3817 | size, |
| 3818 | alignment, |
| 3819 | VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| 3820 | } |
| 3821 | else |
| 3822 | { |
| 3823 | return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) |
| 3828 | { |
| 3829 | if((pAllocationCallbacks != VMA_NULL) && |
| 3830 | (pAllocationCallbacks->pfnFree != VMA_NULL)) |
| 3831 | { |
| 3832 | (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); |
| 3833 | } |
| 3834 | else |
| 3835 | { |
| 3836 | VMA_SYSTEM_FREE(ptr); |
| 3837 | } |
| 3838 | } |
| 3839 | |
| 3840 | template<typename T> |
| 3841 | static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) |
| 3842 | { |
| 3843 | return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); |
| 3844 | } |
| 3845 | |
| 3846 | template<typename T> |
| 3847 | static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) |
| 3848 | { |
| 3849 | return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); |
| 3850 | } |
| 3851 | |
| 3852 | #define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type) |
| 3853 | |
| 3854 | #define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type) |
| 3855 | |
| 3856 | template<typename T> |
| 3857 | static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) |
| 3858 | { |
| 3859 | ptr->~T(); |
| 3860 | VmaFree(pAllocationCallbacks, ptr); |
| 3861 | } |
| 3862 | |
| 3863 | template<typename T> |
| 3864 | static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) |
| 3865 | { |
| 3866 | if(ptr != VMA_NULL) |
| 3867 | { |
| 3868 | for(size_t i = count; i--; ) |
| 3869 | { |
| 3870 | ptr[i].~T(); |
| 3871 | } |
| 3872 | VmaFree(pAllocationCallbacks, ptr); |
| 3873 | } |
| 3874 | } |
| 3875 | |
| 3876 | // STL-compatible allocator. |
| 3877 | template<typename T> |
| 3878 | class VmaStlAllocator |
| 3879 | { |
| 3880 | public: |
| 3881 | const VkAllocationCallbacks* const m_pCallbacks; |
| 3882 | typedef T value_type; |
| 3883 | |
| 3884 | VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { } |
| 3885 | template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { } |
| 3886 | |
| 3887 | T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); } |
| 3888 | void deallocate(T* p, size_t /*n*/) { VmaFree(m_pCallbacks, p); } |
| 3889 | |
| 3890 | template<typename U> |
| 3891 | bool operator==(const VmaStlAllocator<U>& rhs) const |
| 3892 | { |
| 3893 | return m_pCallbacks == rhs.m_pCallbacks; |
| 3894 | } |
| 3895 | template<typename U> |
| 3896 | bool operator!=(const VmaStlAllocator<U>& rhs) const |
| 3897 | { |
| 3898 | return m_pCallbacks != rhs.m_pCallbacks; |
| 3899 | } |
| 3900 | |
| 3901 | VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete; |
| 3902 | }; |
| 3903 | |
| 3904 | #if VMA_USE_STL_VECTOR |
| 3905 | |
| 3906 | #define VmaVector std::vector |
| 3907 | |
| 3908 | template<typename T, typename allocatorT> |
| 3909 | static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item) |
| 3910 | { |
| 3911 | vec.insert(vec.begin() + index, item); |
| 3912 | } |
| 3913 | |
| 3914 | template<typename T, typename allocatorT> |
| 3915 | static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index) |
| 3916 | { |
| 3917 | vec.erase(vec.begin() + index); |
| 3918 | } |
| 3919 | |
| 3920 | #else // #if VMA_USE_STL_VECTOR |
| 3921 | |
| 3922 | /* Class with interface compatible with subset of std::vector. |
| 3923 | T must be POD because constructors and destructors are not called and memcpy is |
| 3924 | used for these objects. */ |
| 3925 | template<typename T, typename AllocatorT> |
| 3926 | class VmaVector |
| 3927 | { |
| 3928 | public: |
| 3929 | typedef T value_type; |
| 3930 | |
| 3931 | VmaVector(const AllocatorT& allocator) : |
| 3932 | m_Allocator(allocator), |
| 3933 | m_pArray(VMA_NULL), |
| 3934 | m_Count(0), |
| 3935 | m_Capacity(0) |
| 3936 | { |
| 3937 | } |
| 3938 | |
| 3939 | VmaVector(size_t count, const AllocatorT& allocator) : |
| 3940 | m_Allocator(allocator), |
| 3941 | m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL), |
| 3942 | m_Count(count), |
| 3943 | m_Capacity(count) |
| 3944 | { |
| 3945 | } |
| 3946 | |
| 3947 | VmaVector(const VmaVector<T, AllocatorT>& src) : |
| 3948 | m_Allocator(src.m_Allocator), |
| 3949 | m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), |
| 3950 | m_Count(src.m_Count), |
| 3951 | m_Capacity(src.m_Count) |
| 3952 | { |
| 3953 | if(m_Count != 0) |
| 3954 | { |
| 3955 | memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); |
| 3956 | } |
| 3957 | } |
| 3958 | |
| 3959 | ~VmaVector() |
| 3960 | { |
| 3961 | VmaFree(m_Allocator.m_pCallbacks, m_pArray); |
| 3962 | } |
| 3963 | |
| 3964 | VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs) |
| 3965 | { |
| 3966 | if(&rhs != this) |
| 3967 | { |
| 3968 | resize(rhs.m_Count); |
| 3969 | if(m_Count != 0) |
| 3970 | { |
| 3971 | memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); |
| 3972 | } |
| 3973 | } |
| 3974 | return *this; |
| 3975 | } |
| 3976 | |
| 3977 | bool empty() const { return m_Count == 0; } |
| 3978 | size_t size() const { return m_Count; } |
| 3979 | T* data() { return m_pArray; } |
| 3980 | const T* data() const { return m_pArray; } |
| 3981 | |
| 3982 | T& operator[](size_t index) |
| 3983 | { |
| 3984 | VMA_HEAVY_ASSERT(index < m_Count); |
| 3985 | return m_pArray[index]; |
| 3986 | } |
| 3987 | const T& operator[](size_t index) const |
| 3988 | { |
| 3989 | VMA_HEAVY_ASSERT(index < m_Count); |
| 3990 | return m_pArray[index]; |
| 3991 | } |
| 3992 | |
| 3993 | T& front() |
| 3994 | { |
| 3995 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 3996 | return m_pArray[0]; |
| 3997 | } |
| 3998 | const T& front() const |
| 3999 | { |
| 4000 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4001 | return m_pArray[0]; |
| 4002 | } |
| 4003 | T& back() |
| 4004 | { |
| 4005 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4006 | return m_pArray[m_Count - 1]; |
| 4007 | } |
| 4008 | const T& back() const |
| 4009 | { |
| 4010 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4011 | return m_pArray[m_Count - 1]; |
| 4012 | } |
| 4013 | |
| 4014 | void reserve(size_t newCapacity, bool freeMemory = false) |
| 4015 | { |
| 4016 | newCapacity = VMA_MAX(newCapacity, m_Count); |
| 4017 | |
| 4018 | if((newCapacity < m_Capacity) && !freeMemory) |
| 4019 | { |
| 4020 | newCapacity = m_Capacity; |
| 4021 | } |
| 4022 | |
| 4023 | if(newCapacity != m_Capacity) |
| 4024 | { |
| 4025 | T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL; |
| 4026 | if(m_Count != 0) |
| 4027 | { |
| 4028 | memcpy(newArray, m_pArray, m_Count * sizeof(T)); |
| 4029 | } |
| 4030 | VmaFree(m_Allocator.m_pCallbacks, m_pArray); |
| 4031 | m_Capacity = newCapacity; |
| 4032 | m_pArray = newArray; |
| 4033 | } |
| 4034 | } |
| 4035 | |
| 4036 | void resize(size_t newCount, bool freeMemory = false) |
| 4037 | { |
| 4038 | size_t newCapacity = m_Capacity; |
| 4039 | if(newCount > m_Capacity) |
| 4040 | { |
| 4041 | newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); |
| 4042 | } |
| 4043 | else if(freeMemory) |
| 4044 | { |
| 4045 | newCapacity = newCount; |
| 4046 | } |
| 4047 | |
| 4048 | if(newCapacity != m_Capacity) |
| 4049 | { |
| 4050 | T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; |
| 4051 | const size_t elementsToCopy = VMA_MIN(m_Count, newCount); |
| 4052 | if(elementsToCopy != 0) |
| 4053 | { |
| 4054 | memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); |
| 4055 | } |
| 4056 | VmaFree(m_Allocator.m_pCallbacks, m_pArray); |
| 4057 | m_Capacity = newCapacity; |
| 4058 | m_pArray = newArray; |
| 4059 | } |
| 4060 | |
| 4061 | m_Count = newCount; |
| 4062 | } |
| 4063 | |
| 4064 | void clear(bool freeMemory = false) |
| 4065 | { |
| 4066 | resize(0, freeMemory); |
| 4067 | } |
| 4068 | |
| 4069 | void insert(size_t index, const T& src) |
| 4070 | { |
| 4071 | VMA_HEAVY_ASSERT(index <= m_Count); |
| 4072 | const size_t oldCount = size(); |
| 4073 | resize(oldCount + 1); |
| 4074 | if(index < oldCount) |
| 4075 | { |
| 4076 | memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); |
| 4077 | } |
| 4078 | m_pArray[index] = src; |
| 4079 | } |
| 4080 | |
| 4081 | void remove(size_t index) |
| 4082 | { |
| 4083 | VMA_HEAVY_ASSERT(index < m_Count); |
| 4084 | const size_t oldCount = size(); |
| 4085 | if(index < oldCount - 1) |
| 4086 | { |
| 4087 | memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); |
| 4088 | } |
| 4089 | resize(oldCount - 1); |
| 4090 | } |
| 4091 | |
| 4092 | void push_back(const T& src) |
| 4093 | { |
| 4094 | const size_t newIndex = size(); |
| 4095 | resize(newIndex + 1); |
| 4096 | m_pArray[newIndex] = src; |
| 4097 | } |
| 4098 | |
| 4099 | void pop_back() |
| 4100 | { |
| 4101 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4102 | resize(size() - 1); |
| 4103 | } |
| 4104 | |
| 4105 | void push_front(const T& src) |
| 4106 | { |
| 4107 | insert(0, src); |
| 4108 | } |
| 4109 | |
| 4110 | void pop_front() |
| 4111 | { |
| 4112 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4113 | remove(0); |
| 4114 | } |
| 4115 | |
| 4116 | typedef T* iterator; |
| 4117 | |
| 4118 | iterator begin() { return m_pArray; } |
| 4119 | iterator end() { return m_pArray + m_Count; } |
| 4120 | |
| 4121 | private: |
| 4122 | AllocatorT m_Allocator; |
| 4123 | T* m_pArray; |
| 4124 | size_t m_Count; |
| 4125 | size_t m_Capacity; |
| 4126 | }; |
| 4127 | |
| 4128 | template<typename T, typename allocatorT> |
| 4129 | static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item) |
| 4130 | { |
| 4131 | vec.insert(index, item); |
| 4132 | } |
| 4133 | |
| 4134 | template<typename T, typename allocatorT> |
| 4135 | static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index) |
| 4136 | { |
| 4137 | vec.remove(index); |
| 4138 | } |
| 4139 | |
| 4140 | #endif // #if VMA_USE_STL_VECTOR |
| 4141 | |
| 4142 | template<typename CmpLess, typename VectorT> |
| 4143 | size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) |
| 4144 | { |
| 4145 | const size_t indexToInsert = VmaBinaryFindFirstNotLess( |
| 4146 | vector.data(), |
| 4147 | vector.data() + vector.size(), |
| 4148 | value, |
| 4149 | CmpLess()) - vector.data(); |
| 4150 | VmaVectorInsert(vector, indexToInsert, value); |
| 4151 | return indexToInsert; |
| 4152 | } |
| 4153 | |
| 4154 | template<typename CmpLess, typename VectorT> |
| 4155 | bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) |
| 4156 | { |
| 4157 | CmpLess comparator; |
| 4158 | typename VectorT::iterator it = VmaBinaryFindFirstNotLess( |
| 4159 | vector.begin(), |
| 4160 | vector.end(), |
| 4161 | value, |
| 4162 | comparator); |
| 4163 | if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) |
| 4164 | { |
| 4165 | size_t indexToRemove = it - vector.begin(); |
| 4166 | VmaVectorRemove(vector, indexToRemove); |
| 4167 | return true; |
| 4168 | } |
| 4169 | return false; |
| 4170 | } |
| 4171 | |
| 4172 | template<typename CmpLess, typename IterT, typename KeyT> |
| 4173 | IterT VmaVectorFindSorted(const IterT& beg, const IterT& end, const KeyT& value) |
| 4174 | { |
| 4175 | CmpLess comparator; |
| 4176 | IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>( |
| 4177 | beg, end, value, comparator); |
| 4178 | if(it == end || |
| 4179 | (!comparator(*it, value) && !comparator(value, *it))) |
| 4180 | { |
| 4181 | return it; |
| 4182 | } |
| 4183 | return end; |
| 4184 | } |
| 4185 | |
| 4186 | //////////////////////////////////////////////////////////////////////////////// |
| 4187 | // class VmaPoolAllocator |
| 4188 | |
| 4189 | /* |
| 4190 | Allocator for objects of type T using a list of arrays (pools) to speed up |
| 4191 | allocation. Number of elements that can be allocated is not bounded because |
| 4192 | allocator can create multiple blocks. |
| 4193 | */ |
| 4194 | template<typename T> |
| 4195 | class VmaPoolAllocator |
| 4196 | { |
| 4197 | VMA_CLASS_NO_COPY(VmaPoolAllocator) |
| 4198 | public: |
| 4199 | VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock); |
| 4200 | ~VmaPoolAllocator(); |
| 4201 | void Clear(); |
| 4202 | T* Alloc(); |
| 4203 | void Free(T* ptr); |
| 4204 | |
| 4205 | private: |
| 4206 | union Item |
| 4207 | { |
| 4208 | uint32_t NextFreeIndex; |
| 4209 | T Value; |
| 4210 | }; |
| 4211 | |
| 4212 | struct ItemBlock |
| 4213 | { |
| 4214 | Item* pItems; |
| 4215 | uint32_t FirstFreeIndex; |
| 4216 | }; |
| 4217 | |
| 4218 | const VkAllocationCallbacks* m_pAllocationCallbacks; |
| 4219 | size_t m_ItemsPerBlock; |
| 4220 | VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks; |
| 4221 | |
| 4222 | ItemBlock& CreateNewBlock(); |
| 4223 | }; |
| 4224 | |
| 4225 | template<typename T> |
| 4226 | VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) : |
| 4227 | m_pAllocationCallbacks(pAllocationCallbacks), |
| 4228 | m_ItemsPerBlock(itemsPerBlock), |
| 4229 | m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks)) |
| 4230 | { |
| 4231 | VMA_ASSERT(itemsPerBlock > 0); |
| 4232 | } |
| 4233 | |
| 4234 | template<typename T> |
| 4235 | VmaPoolAllocator<T>::~VmaPoolAllocator() |
| 4236 | { |
| 4237 | Clear(); |
| 4238 | } |
| 4239 | |
| 4240 | template<typename T> |
| 4241 | void VmaPoolAllocator<T>::Clear() |
| 4242 | { |
| 4243 | for(size_t i = m_ItemBlocks.size(); i--; ) |
| 4244 | vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock); |
| 4245 | m_ItemBlocks.clear(); |
| 4246 | } |
| 4247 | |
| 4248 | template<typename T> |
| 4249 | T* VmaPoolAllocator<T>::Alloc() |
| 4250 | { |
| 4251 | for(size_t i = m_ItemBlocks.size(); i--; ) |
| 4252 | { |
| 4253 | ItemBlock& block = m_ItemBlocks[i]; |
| 4254 | // This block has some free items: Use first one. |
| 4255 | if(block.FirstFreeIndex != UINT32_MAX) |
| 4256 | { |
| 4257 | Item* const pItem = &block.pItems[block.FirstFreeIndex]; |
| 4258 | block.FirstFreeIndex = pItem->NextFreeIndex; |
| 4259 | return &pItem->Value; |
| 4260 | } |
| 4261 | } |
| 4262 | |
| 4263 | // No block has free item: Create new one and use it. |
| 4264 | ItemBlock& newBlock = CreateNewBlock(); |
| 4265 | Item* const pItem = &newBlock.pItems[0]; |
| 4266 | newBlock.FirstFreeIndex = pItem->NextFreeIndex; |
| 4267 | return &pItem->Value; |
| 4268 | } |
| 4269 | |
| 4270 | template<typename T> |
| 4271 | void VmaPoolAllocator<T>::Free(T* ptr) |
| 4272 | { |
| 4273 | // Search all memory blocks to find ptr. |
| 4274 | for(size_t i = 0; i < m_ItemBlocks.size(); ++i) |
| 4275 | { |
| 4276 | ItemBlock& block = m_ItemBlocks[i]; |
| 4277 | |
| 4278 | // Casting to union. |
| 4279 | Item* pItemPtr; |
| 4280 | memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); |
| 4281 | |
| 4282 | // Check if pItemPtr is in address range of this block. |
| 4283 | if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock)) |
| 4284 | { |
| 4285 | const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems); |
| 4286 | pItemPtr->NextFreeIndex = block.FirstFreeIndex; |
| 4287 | block.FirstFreeIndex = index; |
| 4288 | return; |
| 4289 | } |
| 4290 | } |
| 4291 | VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool." ); |
| 4292 | } |
| 4293 | |
| 4294 | template<typename T> |
| 4295 | typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock() |
| 4296 | { |
| 4297 | ItemBlock newBlock = { |
| 4298 | vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 }; |
| 4299 | |
| 4300 | m_ItemBlocks.push_back(newBlock); |
| 4301 | |
| 4302 | // Setup singly-linked list of all free items in this block. |
| 4303 | for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i) |
| 4304 | newBlock.pItems[i].NextFreeIndex = i + 1; |
| 4305 | newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX; |
| 4306 | return m_ItemBlocks.back(); |
| 4307 | } |
| 4308 | |
| 4309 | //////////////////////////////////////////////////////////////////////////////// |
| 4310 | // class VmaRawList, VmaList |
| 4311 | |
| 4312 | #if VMA_USE_STL_LIST |
| 4313 | |
| 4314 | #define VmaList std::list |
| 4315 | |
| 4316 | #else // #if VMA_USE_STL_LIST |
| 4317 | |
| 4318 | template<typename T> |
| 4319 | struct VmaListItem |
| 4320 | { |
| 4321 | VmaListItem* pPrev; |
| 4322 | VmaListItem* pNext; |
| 4323 | T Value; |
| 4324 | }; |
| 4325 | |
| 4326 | // Doubly linked list. |
| 4327 | template<typename T> |
| 4328 | class VmaRawList |
| 4329 | { |
| 4330 | VMA_CLASS_NO_COPY(VmaRawList) |
| 4331 | public: |
| 4332 | typedef VmaListItem<T> ItemType; |
| 4333 | |
| 4334 | VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); |
| 4335 | ~VmaRawList(); |
| 4336 | void Clear(); |
| 4337 | |
| 4338 | size_t GetCount() const { return m_Count; } |
| 4339 | bool IsEmpty() const { return m_Count == 0; } |
| 4340 | |
| 4341 | ItemType* Front() { return m_pFront; } |
| 4342 | const ItemType* Front() const { return m_pFront; } |
| 4343 | ItemType* Back() { return m_pBack; } |
| 4344 | const ItemType* Back() const { return m_pBack; } |
| 4345 | |
| 4346 | ItemType* PushBack(); |
| 4347 | ItemType* PushFront(); |
| 4348 | ItemType* PushBack(const T& value); |
| 4349 | ItemType* PushFront(const T& value); |
| 4350 | void PopBack(); |
| 4351 | void PopFront(); |
| 4352 | |
| 4353 | // Item can be null - it means PushBack. |
| 4354 | ItemType* InsertBefore(ItemType* pItem); |
| 4355 | // Item can be null - it means PushFront. |
| 4356 | ItemType* InsertAfter(ItemType* pItem); |
| 4357 | |
| 4358 | ItemType* InsertBefore(ItemType* pItem, const T& value); |
| 4359 | ItemType* InsertAfter(ItemType* pItem, const T& value); |
| 4360 | |
| 4361 | void Remove(ItemType* pItem); |
| 4362 | |
| 4363 | private: |
| 4364 | const VkAllocationCallbacks* const m_pAllocationCallbacks; |
| 4365 | VmaPoolAllocator<ItemType> m_ItemAllocator; |
| 4366 | ItemType* m_pFront; |
| 4367 | ItemType* m_pBack; |
| 4368 | size_t m_Count; |
| 4369 | }; |
| 4370 | |
| 4371 | template<typename T> |
| 4372 | VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : |
| 4373 | m_pAllocationCallbacks(pAllocationCallbacks), |
| 4374 | m_ItemAllocator(pAllocationCallbacks, 128), |
| 4375 | m_pFront(VMA_NULL), |
| 4376 | m_pBack(VMA_NULL), |
| 4377 | m_Count(0) |
| 4378 | { |
| 4379 | } |
| 4380 | |
| 4381 | template<typename T> |
| 4382 | VmaRawList<T>::~VmaRawList() |
| 4383 | { |
| 4384 | // Intentionally not calling Clear, because that would be unnecessary |
| 4385 | // computations to return all items to m_ItemAllocator as free. |
| 4386 | } |
| 4387 | |
| 4388 | template<typename T> |
| 4389 | void VmaRawList<T>::Clear() |
| 4390 | { |
| 4391 | if(IsEmpty() == false) |
| 4392 | { |
| 4393 | ItemType* pItem = m_pBack; |
| 4394 | while(pItem != VMA_NULL) |
| 4395 | { |
| 4396 | ItemType* const pPrevItem = pItem->pPrev; |
| 4397 | m_ItemAllocator.Free(pItem); |
| 4398 | pItem = pPrevItem; |
| 4399 | } |
| 4400 | m_pFront = VMA_NULL; |
| 4401 | m_pBack = VMA_NULL; |
| 4402 | m_Count = 0; |
| 4403 | } |
| 4404 | } |
| 4405 | |
| 4406 | template<typename T> |
| 4407 | VmaListItem<T>* VmaRawList<T>::PushBack() |
| 4408 | { |
| 4409 | ItemType* const pNewItem = m_ItemAllocator.Alloc(); |
| 4410 | pNewItem->pNext = VMA_NULL; |
| 4411 | if(IsEmpty()) |
| 4412 | { |
| 4413 | pNewItem->pPrev = VMA_NULL; |
| 4414 | m_pFront = pNewItem; |
| 4415 | m_pBack = pNewItem; |
| 4416 | m_Count = 1; |
| 4417 | } |
| 4418 | else |
| 4419 | { |
| 4420 | pNewItem->pPrev = m_pBack; |
| 4421 | m_pBack->pNext = pNewItem; |
| 4422 | m_pBack = pNewItem; |
| 4423 | ++m_Count; |
| 4424 | } |
| 4425 | return pNewItem; |
| 4426 | } |
| 4427 | |
| 4428 | template<typename T> |
| 4429 | VmaListItem<T>* VmaRawList<T>::PushFront() |
| 4430 | { |
| 4431 | ItemType* const pNewItem = m_ItemAllocator.Alloc(); |
| 4432 | pNewItem->pPrev = VMA_NULL; |
| 4433 | if(IsEmpty()) |
| 4434 | { |
| 4435 | pNewItem->pNext = VMA_NULL; |
| 4436 | m_pFront = pNewItem; |
| 4437 | m_pBack = pNewItem; |
| 4438 | m_Count = 1; |
| 4439 | } |
| 4440 | else |
| 4441 | { |
| 4442 | pNewItem->pNext = m_pFront; |
| 4443 | m_pFront->pPrev = pNewItem; |
| 4444 | m_pFront = pNewItem; |
| 4445 | ++m_Count; |
| 4446 | } |
| 4447 | return pNewItem; |
| 4448 | } |
| 4449 | |
| 4450 | template<typename T> |
| 4451 | VmaListItem<T>* VmaRawList<T>::PushBack(const T& value) |
| 4452 | { |
| 4453 | ItemType* const pNewItem = PushBack(); |
| 4454 | pNewItem->Value = value; |
| 4455 | return pNewItem; |
| 4456 | } |
| 4457 | |
| 4458 | template<typename T> |
| 4459 | VmaListItem<T>* VmaRawList<T>::PushFront(const T& value) |
| 4460 | { |
| 4461 | ItemType* const pNewItem = PushFront(); |
| 4462 | pNewItem->Value = value; |
| 4463 | return pNewItem; |
| 4464 | } |
| 4465 | |
| 4466 | template<typename T> |
| 4467 | void VmaRawList<T>::PopBack() |
| 4468 | { |
| 4469 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4470 | ItemType* const pBackItem = m_pBack; |
| 4471 | ItemType* const pPrevItem = pBackItem->pPrev; |
| 4472 | if(pPrevItem != VMA_NULL) |
| 4473 | { |
| 4474 | pPrevItem->pNext = VMA_NULL; |
| 4475 | } |
| 4476 | m_pBack = pPrevItem; |
| 4477 | m_ItemAllocator.Free(pBackItem); |
| 4478 | --m_Count; |
| 4479 | } |
| 4480 | |
| 4481 | template<typename T> |
| 4482 | void VmaRawList<T>::PopFront() |
| 4483 | { |
| 4484 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4485 | ItemType* const pFrontItem = m_pFront; |
| 4486 | ItemType* const pNextItem = pFrontItem->pNext; |
| 4487 | if(pNextItem != VMA_NULL) |
| 4488 | { |
| 4489 | pNextItem->pPrev = VMA_NULL; |
| 4490 | } |
| 4491 | m_pFront = pNextItem; |
| 4492 | m_ItemAllocator.Free(pFrontItem); |
| 4493 | --m_Count; |
| 4494 | } |
| 4495 | |
| 4496 | template<typename T> |
| 4497 | void VmaRawList<T>::Remove(ItemType* pItem) |
| 4498 | { |
| 4499 | VMA_HEAVY_ASSERT(pItem != VMA_NULL); |
| 4500 | VMA_HEAVY_ASSERT(m_Count > 0); |
| 4501 | |
| 4502 | if(pItem->pPrev != VMA_NULL) |
| 4503 | { |
| 4504 | pItem->pPrev->pNext = pItem->pNext; |
| 4505 | } |
| 4506 | else |
| 4507 | { |
| 4508 | VMA_HEAVY_ASSERT(m_pFront == pItem); |
| 4509 | m_pFront = pItem->pNext; |
| 4510 | } |
| 4511 | |
| 4512 | if(pItem->pNext != VMA_NULL) |
| 4513 | { |
| 4514 | pItem->pNext->pPrev = pItem->pPrev; |
| 4515 | } |
| 4516 | else |
| 4517 | { |
| 4518 | VMA_HEAVY_ASSERT(m_pBack == pItem); |
| 4519 | m_pBack = pItem->pPrev; |
| 4520 | } |
| 4521 | |
| 4522 | m_ItemAllocator.Free(pItem); |
| 4523 | --m_Count; |
| 4524 | } |
| 4525 | |
| 4526 | template<typename T> |
| 4527 | VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem) |
| 4528 | { |
| 4529 | if(pItem != VMA_NULL) |
| 4530 | { |
| 4531 | ItemType* const prevItem = pItem->pPrev; |
| 4532 | ItemType* const newItem = m_ItemAllocator.Alloc(); |
| 4533 | newItem->pPrev = prevItem; |
| 4534 | newItem->pNext = pItem; |
| 4535 | pItem->pPrev = newItem; |
| 4536 | if(prevItem != VMA_NULL) |
| 4537 | { |
| 4538 | prevItem->pNext = newItem; |
| 4539 | } |
| 4540 | else |
| 4541 | { |
| 4542 | VMA_HEAVY_ASSERT(m_pFront == pItem); |
| 4543 | m_pFront = newItem; |
| 4544 | } |
| 4545 | ++m_Count; |
| 4546 | return newItem; |
| 4547 | } |
| 4548 | else |
| 4549 | return PushBack(); |
| 4550 | } |
| 4551 | |
| 4552 | template<typename T> |
| 4553 | VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem) |
| 4554 | { |
| 4555 | if(pItem != VMA_NULL) |
| 4556 | { |
| 4557 | ItemType* const nextItem = pItem->pNext; |
| 4558 | ItemType* const newItem = m_ItemAllocator.Alloc(); |
| 4559 | newItem->pNext = nextItem; |
| 4560 | newItem->pPrev = pItem; |
| 4561 | pItem->pNext = newItem; |
| 4562 | if(nextItem != VMA_NULL) |
| 4563 | { |
| 4564 | nextItem->pPrev = newItem; |
| 4565 | } |
| 4566 | else |
| 4567 | { |
| 4568 | VMA_HEAVY_ASSERT(m_pBack == pItem); |
| 4569 | m_pBack = newItem; |
| 4570 | } |
| 4571 | ++m_Count; |
| 4572 | return newItem; |
| 4573 | } |
| 4574 | else |
| 4575 | return PushFront(); |
| 4576 | } |
| 4577 | |
| 4578 | template<typename T> |
| 4579 | VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value) |
| 4580 | { |
| 4581 | ItemType* const newItem = InsertBefore(pItem); |
| 4582 | newItem->Value = value; |
| 4583 | return newItem; |
| 4584 | } |
| 4585 | |
| 4586 | template<typename T> |
| 4587 | VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value) |
| 4588 | { |
| 4589 | ItemType* const newItem = InsertAfter(pItem); |
| 4590 | newItem->Value = value; |
| 4591 | return newItem; |
| 4592 | } |
| 4593 | |
| 4594 | template<typename T, typename AllocatorT> |
| 4595 | class VmaList |
| 4596 | { |
| 4597 | VMA_CLASS_NO_COPY(VmaList) |
| 4598 | public: |
| 4599 | class iterator |
| 4600 | { |
| 4601 | public: |
| 4602 | iterator() : |
| 4603 | m_pList(VMA_NULL), |
| 4604 | m_pItem(VMA_NULL) |
| 4605 | { |
| 4606 | } |
| 4607 | |
| 4608 | T& operator*() const |
| 4609 | { |
| 4610 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4611 | return m_pItem->Value; |
| 4612 | } |
| 4613 | T* operator->() const |
| 4614 | { |
| 4615 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4616 | return &m_pItem->Value; |
| 4617 | } |
| 4618 | |
| 4619 | iterator& operator++() |
| 4620 | { |
| 4621 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4622 | m_pItem = m_pItem->pNext; |
| 4623 | return *this; |
| 4624 | } |
| 4625 | iterator& operator--() |
| 4626 | { |
| 4627 | if(m_pItem != VMA_NULL) |
| 4628 | { |
| 4629 | m_pItem = m_pItem->pPrev; |
| 4630 | } |
| 4631 | else |
| 4632 | { |
| 4633 | VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); |
| 4634 | m_pItem = m_pList->Back(); |
| 4635 | } |
| 4636 | return *this; |
| 4637 | } |
| 4638 | |
| 4639 | iterator operator++(int) |
| 4640 | { |
| 4641 | iterator result = *this; |
| 4642 | ++*this; |
| 4643 | return result; |
| 4644 | } |
| 4645 | iterator operator--(int) |
| 4646 | { |
| 4647 | iterator result = *this; |
| 4648 | --*this; |
| 4649 | return result; |
| 4650 | } |
| 4651 | |
| 4652 | bool operator==(const iterator& rhs) const |
| 4653 | { |
| 4654 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); |
| 4655 | return m_pItem == rhs.m_pItem; |
| 4656 | } |
| 4657 | bool operator!=(const iterator& rhs) const |
| 4658 | { |
| 4659 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); |
| 4660 | return m_pItem != rhs.m_pItem; |
| 4661 | } |
| 4662 | |
| 4663 | private: |
| 4664 | VmaRawList<T>* m_pList; |
| 4665 | VmaListItem<T>* m_pItem; |
| 4666 | |
| 4667 | iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : |
| 4668 | m_pList(pList), |
| 4669 | m_pItem(pItem) |
| 4670 | { |
| 4671 | } |
| 4672 | |
| 4673 | friend class VmaList<T, AllocatorT>; |
| 4674 | }; |
| 4675 | |
| 4676 | class const_iterator |
| 4677 | { |
| 4678 | public: |
| 4679 | const_iterator() : |
| 4680 | m_pList(VMA_NULL), |
| 4681 | m_pItem(VMA_NULL) |
| 4682 | { |
| 4683 | } |
| 4684 | |
| 4685 | const_iterator(const iterator& src) : |
| 4686 | m_pList(src.m_pList), |
| 4687 | m_pItem(src.m_pItem) |
| 4688 | { |
| 4689 | } |
| 4690 | |
| 4691 | const T& operator*() const |
| 4692 | { |
| 4693 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4694 | return m_pItem->Value; |
| 4695 | } |
| 4696 | const T* operator->() const |
| 4697 | { |
| 4698 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4699 | return &m_pItem->Value; |
| 4700 | } |
| 4701 | |
| 4702 | const_iterator& operator++() |
| 4703 | { |
| 4704 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); |
| 4705 | m_pItem = m_pItem->pNext; |
| 4706 | return *this; |
| 4707 | } |
| 4708 | const_iterator& operator--() |
| 4709 | { |
| 4710 | if(m_pItem != VMA_NULL) |
| 4711 | { |
| 4712 | m_pItem = m_pItem->pPrev; |
| 4713 | } |
| 4714 | else |
| 4715 | { |
| 4716 | VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); |
| 4717 | m_pItem = m_pList->Back(); |
| 4718 | } |
| 4719 | return *this; |
| 4720 | } |
| 4721 | |
| 4722 | const_iterator operator++(int) |
| 4723 | { |
| 4724 | const_iterator result = *this; |
| 4725 | ++*this; |
| 4726 | return result; |
| 4727 | } |
| 4728 | const_iterator operator--(int) |
| 4729 | { |
| 4730 | const_iterator result = *this; |
| 4731 | --*this; |
| 4732 | return result; |
| 4733 | } |
| 4734 | |
| 4735 | bool operator==(const const_iterator& rhs) const |
| 4736 | { |
| 4737 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); |
| 4738 | return m_pItem == rhs.m_pItem; |
| 4739 | } |
| 4740 | bool operator!=(const const_iterator& rhs) const |
| 4741 | { |
| 4742 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); |
| 4743 | return m_pItem != rhs.m_pItem; |
| 4744 | } |
| 4745 | |
| 4746 | private: |
| 4747 | const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : |
| 4748 | m_pList(pList), |
| 4749 | m_pItem(pItem) |
| 4750 | { |
| 4751 | } |
| 4752 | |
| 4753 | const VmaRawList<T>* m_pList; |
| 4754 | const VmaListItem<T>* m_pItem; |
| 4755 | |
| 4756 | friend class VmaList<T, AllocatorT>; |
| 4757 | }; |
| 4758 | |
| 4759 | VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { } |
| 4760 | |
| 4761 | bool empty() const { return m_RawList.IsEmpty(); } |
| 4762 | size_t size() const { return m_RawList.GetCount(); } |
| 4763 | |
| 4764 | iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } |
| 4765 | iterator end() { return iterator(&m_RawList, VMA_NULL); } |
| 4766 | |
| 4767 | const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } |
| 4768 | const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } |
| 4769 | |
| 4770 | void clear() { m_RawList.Clear(); } |
| 4771 | void push_back(const T& value) { m_RawList.PushBack(value); } |
| 4772 | void erase(iterator it) { m_RawList.Remove(it.m_pItem); } |
| 4773 | iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } |
| 4774 | |
| 4775 | private: |
| 4776 | VmaRawList<T> m_RawList; |
| 4777 | }; |
| 4778 | |
| 4779 | #endif // #if VMA_USE_STL_LIST |
| 4780 | |
| 4781 | //////////////////////////////////////////////////////////////////////////////// |
| 4782 | // class VmaMap |
| 4783 | |
| 4784 | // Unused in this version. |
| 4785 | #if 0 |
| 4786 | |
| 4787 | #if VMA_USE_STL_UNORDERED_MAP |
| 4788 | |
| 4789 | #define VmaPair std::pair |
| 4790 | |
| 4791 | #define VMA_MAP_TYPE(KeyT, ValueT) \ |
| 4792 | std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > > |
| 4793 | |
| 4794 | #else // #if VMA_USE_STL_UNORDERED_MAP |
| 4795 | |
| 4796 | template<typename T1, typename T2> |
| 4797 | struct VmaPair |
| 4798 | { |
| 4799 | T1 first; |
| 4800 | T2 second; |
| 4801 | |
| 4802 | VmaPair() : first(), second() { } |
| 4803 | VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } |
| 4804 | }; |
| 4805 | |
| 4806 | /* Class compatible with subset of interface of std::unordered_map. |
| 4807 | KeyT, ValueT must be POD because they will be stored in VmaVector. |
| 4808 | */ |
| 4809 | template<typename KeyT, typename ValueT> |
| 4810 | class VmaMap |
| 4811 | { |
| 4812 | public: |
| 4813 | typedef VmaPair<KeyT, ValueT> PairType; |
| 4814 | typedef PairType* iterator; |
| 4815 | |
| 4816 | VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { } |
| 4817 | |
| 4818 | iterator begin() { return m_Vector.begin(); } |
| 4819 | iterator end() { return m_Vector.end(); } |
| 4820 | |
| 4821 | void insert(const PairType& pair); |
| 4822 | iterator find(const KeyT& key); |
| 4823 | void erase(iterator it); |
| 4824 | |
| 4825 | private: |
| 4826 | VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector; |
| 4827 | }; |
| 4828 | |
| 4829 | #define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT> |
| 4830 | |
| 4831 | template<typename FirstT, typename SecondT> |
| 4832 | struct VmaPairFirstLess |
| 4833 | { |
| 4834 | bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const |
| 4835 | { |
| 4836 | return lhs.first < rhs.first; |
| 4837 | } |
| 4838 | bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const |
| 4839 | { |
| 4840 | return lhs.first < rhsFirst; |
| 4841 | } |
| 4842 | }; |
| 4843 | |
| 4844 | template<typename KeyT, typename ValueT> |
| 4845 | void VmaMap<KeyT, ValueT>::insert(const PairType& pair) |
| 4846 | { |
| 4847 | const size_t indexToInsert = VmaBinaryFindFirstNotLess( |
| 4848 | m_Vector.data(), |
| 4849 | m_Vector.data() + m_Vector.size(), |
| 4850 | pair, |
| 4851 | VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data(); |
| 4852 | VmaVectorInsert(m_Vector, indexToInsert, pair); |
| 4853 | } |
| 4854 | |
| 4855 | template<typename KeyT, typename ValueT> |
| 4856 | VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key) |
| 4857 | { |
| 4858 | PairType* it = VmaBinaryFindFirstNotLess( |
| 4859 | m_Vector.data(), |
| 4860 | m_Vector.data() + m_Vector.size(), |
| 4861 | key, |
| 4862 | VmaPairFirstLess<KeyT, ValueT>()); |
| 4863 | if((it != m_Vector.end()) && (it->first == key)) |
| 4864 | { |
| 4865 | return it; |
| 4866 | } |
| 4867 | else |
| 4868 | { |
| 4869 | return m_Vector.end(); |
| 4870 | } |
| 4871 | } |
| 4872 | |
| 4873 | template<typename KeyT, typename ValueT> |
| 4874 | void VmaMap<KeyT, ValueT>::erase(iterator it) |
| 4875 | { |
| 4876 | VmaVectorRemove(m_Vector, it - m_Vector.begin()); |
| 4877 | } |
| 4878 | |
| 4879 | #endif // #if VMA_USE_STL_UNORDERED_MAP |
| 4880 | |
| 4881 | #endif // #if 0 |
| 4882 | |
| 4883 | //////////////////////////////////////////////////////////////////////////////// |
| 4884 | |
| 4885 | class VmaDeviceMemoryBlock; |
| 4886 | |
| 4887 | enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; |
| 4888 | |
| 4889 | struct VmaAllocation_T |
| 4890 | { |
| 4891 | VMA_CLASS_NO_COPY(VmaAllocation_T) |
| 4892 | private: |
| 4893 | static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; |
| 4894 | |
| 4895 | enum FLAGS |
| 4896 | { |
| 4897 | FLAG_USER_DATA_STRING = 0x01, |
| 4898 | }; |
| 4899 | |
| 4900 | public: |
| 4901 | enum ALLOCATION_TYPE |
| 4902 | { |
| 4903 | ALLOCATION_TYPE_NONE, |
| 4904 | ALLOCATION_TYPE_BLOCK, |
| 4905 | ALLOCATION_TYPE_DEDICATED, |
| 4906 | }; |
| 4907 | |
| 4908 | VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) : |
| 4909 | m_Alignment(1), |
| 4910 | m_Size(0), |
| 4911 | m_pUserData(VMA_NULL), |
| 4912 | m_LastUseFrameIndex(currentFrameIndex), |
| 4913 | m_Type((uint8_t)ALLOCATION_TYPE_NONE), |
| 4914 | m_SuballocationType((uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN), |
| 4915 | m_MapCount(0), |
| 4916 | m_Flags(userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0) |
| 4917 | { |
| 4918 | #if VMA_STATS_STRING_ENABLED |
| 4919 | m_CreationFrameIndex = currentFrameIndex; |
| 4920 | m_BufferImageUsage = 0; |
| 4921 | #endif |
| 4922 | } |
| 4923 | |
| 4924 | ~VmaAllocation_T() |
| 4925 | { |
| 4926 | VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction." ); |
| 4927 | |
| 4928 | // Check if owned string was freed. |
| 4929 | VMA_ASSERT(m_pUserData == VMA_NULL); |
| 4930 | } |
| 4931 | |
| 4932 | void InitBlockAllocation( |
| 4933 | VmaPool hPool, |
| 4934 | VmaDeviceMemoryBlock* block, |
| 4935 | VkDeviceSize offset, |
| 4936 | VkDeviceSize alignment, |
| 4937 | VkDeviceSize size, |
| 4938 | VmaSuballocationType suballocationType, |
| 4939 | bool mapped, |
| 4940 | bool canBecomeLost) |
| 4941 | { |
| 4942 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); |
| 4943 | VMA_ASSERT(block != VMA_NULL); |
| 4944 | m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; |
| 4945 | m_Alignment = alignment; |
| 4946 | m_Size = size; |
| 4947 | m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; |
| 4948 | m_SuballocationType = (uint8_t)suballocationType; |
| 4949 | m_BlockAllocation.m_hPool = hPool; |
| 4950 | m_BlockAllocation.m_Block = block; |
| 4951 | m_BlockAllocation.m_Offset = offset; |
| 4952 | m_BlockAllocation.m_CanBecomeLost = canBecomeLost; |
| 4953 | } |
| 4954 | |
| 4955 | void InitLost() |
| 4956 | { |
| 4957 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); |
| 4958 | VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); |
| 4959 | m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; |
| 4960 | m_BlockAllocation.m_hPool = VK_NULL_HANDLE; |
| 4961 | m_BlockAllocation.m_Block = VMA_NULL; |
| 4962 | m_BlockAllocation.m_Offset = 0; |
| 4963 | m_BlockAllocation.m_CanBecomeLost = true; |
| 4964 | } |
| 4965 | |
| 4966 | void ChangeBlockAllocation( |
| 4967 | VmaAllocator hAllocator, |
| 4968 | VmaDeviceMemoryBlock* block, |
| 4969 | VkDeviceSize offset); |
| 4970 | |
| 4971 | void ChangeSize(VkDeviceSize newSize); |
| 4972 | void ChangeOffset(VkDeviceSize newOffset); |
| 4973 | |
| 4974 | // pMappedData not null means allocation is created with MAPPED flag. |
| 4975 | void InitDedicatedAllocation( |
| 4976 | uint32_t memoryTypeIndex, |
| 4977 | VkDeviceMemory hMemory, |
| 4978 | VmaSuballocationType suballocationType, |
| 4979 | void* pMappedData, |
| 4980 | VkDeviceSize size) |
| 4981 | { |
| 4982 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); |
| 4983 | VMA_ASSERT(hMemory != VK_NULL_HANDLE); |
| 4984 | m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; |
| 4985 | m_Alignment = 0; |
| 4986 | m_Size = size; |
| 4987 | m_SuballocationType = (uint8_t)suballocationType; |
| 4988 | m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; |
| 4989 | m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex; |
| 4990 | m_DedicatedAllocation.m_hMemory = hMemory; |
| 4991 | m_DedicatedAllocation.m_pMappedData = pMappedData; |
| 4992 | } |
| 4993 | |
| 4994 | ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } |
| 4995 | VkDeviceSize GetAlignment() const { return m_Alignment; } |
| 4996 | VkDeviceSize GetSize() const { return m_Size; } |
| 4997 | bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } |
| 4998 | void* GetUserData() const { return m_pUserData; } |
| 4999 | void SetUserData(VmaAllocator hAllocator, void* pUserData); |
| 5000 | VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } |
| 5001 | |
| 5002 | VmaDeviceMemoryBlock* GetBlock() const |
| 5003 | { |
| 5004 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); |
| 5005 | return m_BlockAllocation.m_Block; |
| 5006 | } |
| 5007 | VkDeviceSize GetOffset() const; |
| 5008 | VkDeviceMemory GetMemory() const; |
| 5009 | uint32_t GetMemoryTypeIndex() const; |
| 5010 | bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } |
| 5011 | void* GetMappedData() const; |
| 5012 | bool CanBecomeLost() const; |
| 5013 | VmaPool GetPool() const; |
| 5014 | |
| 5015 | uint32_t GetLastUseFrameIndex() const |
| 5016 | { |
| 5017 | return m_LastUseFrameIndex.load(); |
| 5018 | } |
| 5019 | bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired) |
| 5020 | { |
| 5021 | return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); |
| 5022 | } |
| 5023 | /* |
| 5024 | - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, |
| 5025 | makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. |
| 5026 | - Else, returns false. |
| 5027 | |
| 5028 | If hAllocation is already lost, assert - you should not call it then. |
| 5029 | If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. |
| 5030 | */ |
| 5031 | bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); |
| 5032 | |
| 5033 | void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) |
| 5034 | { |
| 5035 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); |
| 5036 | outInfo.blockCount = 1; |
| 5037 | outInfo.allocationCount = 1; |
| 5038 | outInfo.unusedRangeCount = 0; |
| 5039 | outInfo.usedBytes = m_Size; |
| 5040 | outInfo.unusedBytes = 0; |
| 5041 | outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; |
| 5042 | outInfo.unusedRangeSizeMin = UINT64_MAX; |
| 5043 | outInfo.unusedRangeSizeMax = 0; |
| 5044 | } |
| 5045 | |
| 5046 | void BlockAllocMap(); |
| 5047 | void BlockAllocUnmap(); |
| 5048 | VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); |
| 5049 | void DedicatedAllocUnmap(VmaAllocator hAllocator); |
| 5050 | |
| 5051 | #if VMA_STATS_STRING_ENABLED |
| 5052 | uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } |
| 5053 | uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } |
| 5054 | |
| 5055 | void InitBufferImageUsage(uint32_t bufferImageUsage) |
| 5056 | { |
| 5057 | VMA_ASSERT(m_BufferImageUsage == 0); |
| 5058 | m_BufferImageUsage = bufferImageUsage; |
| 5059 | } |
| 5060 | |
| 5061 | void PrintParameters(class VmaJsonWriter& json) const; |
| 5062 | #endif |
| 5063 | |
| 5064 | private: |
| 5065 | VkDeviceSize m_Alignment; |
| 5066 | VkDeviceSize m_Size; |
| 5067 | void* m_pUserData; |
| 5068 | VMA_ATOMIC_UINT32 m_LastUseFrameIndex; |
| 5069 | uint8_t m_Type; // ALLOCATION_TYPE |
| 5070 | uint8_t m_SuballocationType; // VmaSuballocationType |
| 5071 | // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. |
| 5072 | // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). |
| 5073 | uint8_t m_MapCount; |
| 5074 | uint8_t m_Flags; // enum FLAGS |
| 5075 | |
| 5076 | // Allocation out of VmaDeviceMemoryBlock. |
| 5077 | struct BlockAllocation |
| 5078 | { |
| 5079 | VmaPool m_hPool; // Null if belongs to general memory. |
| 5080 | VmaDeviceMemoryBlock* m_Block; |
| 5081 | VkDeviceSize m_Offset; |
| 5082 | bool m_CanBecomeLost; |
| 5083 | }; |
| 5084 | |
| 5085 | // Allocation for an object that has its own private VkDeviceMemory. |
| 5086 | struct DedicatedAllocation |
| 5087 | { |
| 5088 | uint32_t m_MemoryTypeIndex; |
| 5089 | VkDeviceMemory m_hMemory; |
| 5090 | void* m_pMappedData; // Not null means memory is mapped. |
| 5091 | }; |
| 5092 | |
| 5093 | union |
| 5094 | { |
| 5095 | // Allocation out of VmaDeviceMemoryBlock. |
| 5096 | BlockAllocation m_BlockAllocation; |
| 5097 | // Allocation for an object that has its own private VkDeviceMemory. |
| 5098 | DedicatedAllocation m_DedicatedAllocation; |
| 5099 | }; |
| 5100 | |
| 5101 | #if VMA_STATS_STRING_ENABLED |
| 5102 | uint32_t m_CreationFrameIndex; |
| 5103 | uint32_t m_BufferImageUsage; // 0 if unknown. |
| 5104 | #endif |
| 5105 | |
| 5106 | void FreeUserDataString(VmaAllocator hAllocator); |
| 5107 | }; |
| 5108 | |
| 5109 | /* |
| 5110 | Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as |
| 5111 | allocated memory block or free. |
| 5112 | */ |
| 5113 | struct VmaSuballocation |
| 5114 | { |
| 5115 | VkDeviceSize offset; |
| 5116 | VkDeviceSize size; |
| 5117 | VmaAllocation hAllocation; |
| 5118 | VmaSuballocationType type; |
| 5119 | }; |
| 5120 | |
| 5121 | // Comparator for offsets. |
| 5122 | struct VmaSuballocationOffsetLess |
| 5123 | { |
| 5124 | bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const |
| 5125 | { |
| 5126 | return lhs.offset < rhs.offset; |
| 5127 | } |
| 5128 | }; |
| 5129 | struct VmaSuballocationOffsetGreater |
| 5130 | { |
| 5131 | bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const |
| 5132 | { |
| 5133 | return lhs.offset > rhs.offset; |
| 5134 | } |
| 5135 | }; |
| 5136 | |
| 5137 | typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList; |
| 5138 | |
| 5139 | // Cost of one additional allocation lost, as equivalent in bytes. |
| 5140 | static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; |
| 5141 | |
| 5142 | /* |
| 5143 | Parameters of planned allocation inside a VmaDeviceMemoryBlock. |
| 5144 | |
| 5145 | If canMakeOtherLost was false: |
| 5146 | - item points to a FREE suballocation. |
| 5147 | - itemsToMakeLostCount is 0. |
| 5148 | |
| 5149 | If canMakeOtherLost was true: |
| 5150 | - item points to first of sequence of suballocations, which are either FREE, |
| 5151 | or point to VmaAllocations that can become lost. |
| 5152 | - itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for |
| 5153 | the requested allocation to succeed. |
| 5154 | */ |
| 5155 | struct VmaAllocationRequest |
| 5156 | { |
| 5157 | VkDeviceSize offset; |
| 5158 | VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. |
| 5159 | VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. |
| 5160 | VmaSuballocationList::iterator item; |
| 5161 | size_t itemsToMakeLostCount; |
| 5162 | void* customData; |
| 5163 | |
| 5164 | VkDeviceSize CalcCost() const |
| 5165 | { |
| 5166 | return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; |
| 5167 | } |
| 5168 | }; |
| 5169 | |
| 5170 | /* |
| 5171 | Data structure used for bookkeeping of allocations and unused ranges of memory |
| 5172 | in a single VkDeviceMemory block. |
| 5173 | */ |
| 5174 | class VmaBlockMetadata |
| 5175 | { |
| 5176 | public: |
| 5177 | VmaBlockMetadata(VmaAllocator hAllocator); |
| 5178 | virtual ~VmaBlockMetadata() { } |
| 5179 | virtual void Init(VkDeviceSize size) { m_Size = size; } |
| 5180 | |
| 5181 | // Validates all data structures inside this object. If not valid, returns false. |
| 5182 | virtual bool Validate() const = 0; |
| 5183 | VkDeviceSize GetSize() const { return m_Size; } |
| 5184 | virtual size_t GetAllocationCount() const = 0; |
| 5185 | virtual VkDeviceSize GetSumFreeSize() const = 0; |
| 5186 | virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; |
| 5187 | // Returns true if this block is empty - contains only single free suballocation. |
| 5188 | virtual bool IsEmpty() const = 0; |
| 5189 | |
| 5190 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; |
| 5191 | // Shouldn't modify blockCount. |
| 5192 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; |
| 5193 | |
| 5194 | #if VMA_STATS_STRING_ENABLED |
| 5195 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; |
| 5196 | #endif |
| 5197 | |
| 5198 | // Tries to find a place for suballocation with given parameters inside this block. |
| 5199 | // If succeeded, fills pAllocationRequest and returns true. |
| 5200 | // If failed, returns false. |
| 5201 | virtual bool CreateAllocationRequest( |
| 5202 | uint32_t currentFrameIndex, |
| 5203 | uint32_t frameInUseCount, |
| 5204 | VkDeviceSize bufferImageGranularity, |
| 5205 | VkDeviceSize allocSize, |
| 5206 | VkDeviceSize allocAlignment, |
| 5207 | bool upperAddress, |
| 5208 | VmaSuballocationType allocType, |
| 5209 | bool canMakeOtherLost, |
| 5210 | // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. |
| 5211 | uint32_t strategy, |
| 5212 | VmaAllocationRequest* pAllocationRequest) = 0; |
| 5213 | |
| 5214 | virtual bool MakeRequestedAllocationsLost( |
| 5215 | uint32_t currentFrameIndex, |
| 5216 | uint32_t frameInUseCount, |
| 5217 | VmaAllocationRequest* pAllocationRequest) = 0; |
| 5218 | |
| 5219 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; |
| 5220 | |
| 5221 | virtual VkResult CheckCorruption(const void* pBlockData) = 0; |
| 5222 | |
| 5223 | // Makes actual allocation based on request. Request must already be checked and valid. |
| 5224 | virtual void Alloc( |
| 5225 | const VmaAllocationRequest& request, |
| 5226 | VmaSuballocationType type, |
| 5227 | VkDeviceSize allocSize, |
| 5228 | bool upperAddress, |
| 5229 | VmaAllocation hAllocation) = 0; |
| 5230 | |
| 5231 | // Frees suballocation assigned to given memory region. |
| 5232 | virtual void Free(const VmaAllocation allocation) = 0; |
| 5233 | virtual void FreeAtOffset(VkDeviceSize offset) = 0; |
| 5234 | |
| 5235 | // Tries to resize (grow or shrink) space for given allocation, in place. |
| 5236 | virtual bool ResizeAllocation(const VmaAllocation /*alloc*/, VkDeviceSize /*newSize*/) { return false; } |
| 5237 | |
| 5238 | protected: |
| 5239 | const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } |
| 5240 | |
| 5241 | #if VMA_STATS_STRING_ENABLED |
| 5242 | void PrintDetailedMap_Begin(class VmaJsonWriter& json, |
| 5243 | VkDeviceSize unusedBytes, |
| 5244 | size_t allocationCount, |
| 5245 | size_t unusedRangeCount) const; |
| 5246 | void PrintDetailedMap_Allocation(class VmaJsonWriter& json, |
| 5247 | VkDeviceSize offset, |
| 5248 | VmaAllocation hAllocation) const; |
| 5249 | void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, |
| 5250 | VkDeviceSize offset, |
| 5251 | VkDeviceSize size) const; |
| 5252 | void PrintDetailedMap_End(class VmaJsonWriter& json) const; |
| 5253 | #endif |
| 5254 | |
| 5255 | private: |
| 5256 | VkDeviceSize m_Size; |
| 5257 | const VkAllocationCallbacks* m_pAllocationCallbacks; |
| 5258 | }; |
| 5259 | |
| 5260 | #define VMA_VALIDATE(cond) do { if(!(cond)) { \ |
| 5261 | VMA_ASSERT(0 && "Validation failed: " #cond); \ |
| 5262 | return false; \ |
| 5263 | } } while(false) |
| 5264 | |
| 5265 | class VmaBlockMetadata_Generic : public VmaBlockMetadata |
| 5266 | { |
| 5267 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) |
| 5268 | public: |
| 5269 | VmaBlockMetadata_Generic(VmaAllocator hAllocator); |
| 5270 | virtual ~VmaBlockMetadata_Generic(); |
| 5271 | virtual void Init(VkDeviceSize size); |
| 5272 | |
| 5273 | virtual bool Validate() const; |
| 5274 | virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } |
| 5275 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } |
| 5276 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; |
| 5277 | virtual bool IsEmpty() const; |
| 5278 | |
| 5279 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; |
| 5280 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; |
| 5281 | |
| 5282 | #if VMA_STATS_STRING_ENABLED |
| 5283 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; |
| 5284 | #endif |
| 5285 | |
| 5286 | virtual bool CreateAllocationRequest( |
| 5287 | uint32_t currentFrameIndex, |
| 5288 | uint32_t frameInUseCount, |
| 5289 | VkDeviceSize bufferImageGranularity, |
| 5290 | VkDeviceSize allocSize, |
| 5291 | VkDeviceSize allocAlignment, |
| 5292 | bool upperAddress, |
| 5293 | VmaSuballocationType allocType, |
| 5294 | bool canMakeOtherLost, |
| 5295 | uint32_t strategy, |
| 5296 | VmaAllocationRequest* pAllocationRequest); |
| 5297 | |
| 5298 | virtual bool MakeRequestedAllocationsLost( |
| 5299 | uint32_t currentFrameIndex, |
| 5300 | uint32_t frameInUseCount, |
| 5301 | VmaAllocationRequest* pAllocationRequest); |
| 5302 | |
| 5303 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); |
| 5304 | |
| 5305 | virtual VkResult CheckCorruption(const void* pBlockData); |
| 5306 | |
| 5307 | virtual void Alloc( |
| 5308 | const VmaAllocationRequest& request, |
| 5309 | VmaSuballocationType type, |
| 5310 | VkDeviceSize allocSize, |
| 5311 | bool upperAddress, |
| 5312 | VmaAllocation hAllocation); |
| 5313 | |
| 5314 | virtual void Free(const VmaAllocation allocation); |
| 5315 | virtual void FreeAtOffset(VkDeviceSize offset); |
| 5316 | |
| 5317 | virtual bool ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize); |
| 5318 | |
| 5319 | //////////////////////////////////////////////////////////////////////////////// |
| 5320 | // For defragmentation |
| 5321 | |
| 5322 | bool IsBufferImageGranularityConflictPossible( |
| 5323 | VkDeviceSize bufferImageGranularity, |
| 5324 | VmaSuballocationType& inOutPrevSuballocType) const; |
| 5325 | |
| 5326 | private: |
| 5327 | friend class VmaDefragmentationAlgorithm_Generic; |
| 5328 | friend class VmaDefragmentationAlgorithm_Fast; |
| 5329 | |
| 5330 | uint32_t m_FreeCount; |
| 5331 | VkDeviceSize m_SumFreeSize; |
| 5332 | VmaSuballocationList m_Suballocations; |
| 5333 | // Suballocations that are free and have size greater than certain threshold. |
| 5334 | // Sorted by size, ascending. |
| 5335 | VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize; |
| 5336 | |
| 5337 | bool ValidateFreeSuballocationList() const; |
| 5338 | |
| 5339 | // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. |
| 5340 | // If yes, fills pOffset and returns true. If no, returns false. |
| 5341 | bool CheckAllocation( |
| 5342 | uint32_t currentFrameIndex, |
| 5343 | uint32_t frameInUseCount, |
| 5344 | VkDeviceSize bufferImageGranularity, |
| 5345 | VkDeviceSize allocSize, |
| 5346 | VkDeviceSize allocAlignment, |
| 5347 | VmaSuballocationType allocType, |
| 5348 | VmaSuballocationList::const_iterator suballocItem, |
| 5349 | bool canMakeOtherLost, |
| 5350 | VkDeviceSize* pOffset, |
| 5351 | size_t* itemsToMakeLostCount, |
| 5352 | VkDeviceSize* pSumFreeSize, |
| 5353 | VkDeviceSize* pSumItemSize) const; |
| 5354 | // Given free suballocation, it merges it with following one, which must also be free. |
| 5355 | void MergeFreeWithNext(VmaSuballocationList::iterator item); |
| 5356 | // Releases given suballocation, making it free. |
| 5357 | // Merges it with adjacent free suballocations if applicable. |
| 5358 | // Returns iterator to new free suballocation at this place. |
| 5359 | VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); |
| 5360 | // Given free suballocation, it inserts it into sorted list of |
| 5361 | // m_FreeSuballocationsBySize if it's suitable. |
| 5362 | void RegisterFreeSuballocation(VmaSuballocationList::iterator item); |
| 5363 | // Given free suballocation, it removes it from sorted list of |
| 5364 | // m_FreeSuballocationsBySize if it's suitable. |
| 5365 | void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); |
| 5366 | }; |
| 5367 | |
| 5368 | /* |
| 5369 | Allocations and their references in internal data structure look like this: |
| 5370 | |
| 5371 | if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): |
| 5372 | |
| 5373 | 0 +-------+ |
| 5374 | | | |
| 5375 | | | |
| 5376 | | | |
| 5377 | +-------+ |
| 5378 | | Alloc | 1st[m_1stNullItemsBeginCount] |
| 5379 | +-------+ |
| 5380 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] |
| 5381 | +-------+ |
| 5382 | | ... | |
| 5383 | +-------+ |
| 5384 | | Alloc | 1st[1st.size() - 1] |
| 5385 | +-------+ |
| 5386 | | | |
| 5387 | | | |
| 5388 | | | |
| 5389 | GetSize() +-------+ |
| 5390 | |
| 5391 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): |
| 5392 | |
| 5393 | 0 +-------+ |
| 5394 | | Alloc | 2nd[0] |
| 5395 | +-------+ |
| 5396 | | Alloc | 2nd[1] |
| 5397 | +-------+ |
| 5398 | | ... | |
| 5399 | +-------+ |
| 5400 | | Alloc | 2nd[2nd.size() - 1] |
| 5401 | +-------+ |
| 5402 | | | |
| 5403 | | | |
| 5404 | | | |
| 5405 | +-------+ |
| 5406 | | Alloc | 1st[m_1stNullItemsBeginCount] |
| 5407 | +-------+ |
| 5408 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] |
| 5409 | +-------+ |
| 5410 | | ... | |
| 5411 | +-------+ |
| 5412 | | Alloc | 1st[1st.size() - 1] |
| 5413 | +-------+ |
| 5414 | | | |
| 5415 | GetSize() +-------+ |
| 5416 | |
| 5417 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): |
| 5418 | |
| 5419 | 0 +-------+ |
| 5420 | | | |
| 5421 | | | |
| 5422 | | | |
| 5423 | +-------+ |
| 5424 | | Alloc | 1st[m_1stNullItemsBeginCount] |
| 5425 | +-------+ |
| 5426 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] |
| 5427 | +-------+ |
| 5428 | | ... | |
| 5429 | +-------+ |
| 5430 | | Alloc | 1st[1st.size() - 1] |
| 5431 | +-------+ |
| 5432 | | | |
| 5433 | | | |
| 5434 | | | |
| 5435 | +-------+ |
| 5436 | | Alloc | 2nd[2nd.size() - 1] |
| 5437 | +-------+ |
| 5438 | | ... | |
| 5439 | +-------+ |
| 5440 | | Alloc | 2nd[1] |
| 5441 | +-------+ |
| 5442 | | Alloc | 2nd[0] |
| 5443 | GetSize() +-------+ |
| 5444 | |
| 5445 | */ |
| 5446 | class VmaBlockMetadata_Linear : public VmaBlockMetadata |
| 5447 | { |
| 5448 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) |
| 5449 | public: |
| 5450 | VmaBlockMetadata_Linear(VmaAllocator hAllocator); |
| 5451 | virtual ~VmaBlockMetadata_Linear(); |
| 5452 | virtual void Init(VkDeviceSize size); |
| 5453 | |
| 5454 | virtual bool Validate() const; |
| 5455 | virtual size_t GetAllocationCount() const; |
| 5456 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } |
| 5457 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; |
| 5458 | virtual bool IsEmpty() const { return GetAllocationCount() == 0; } |
| 5459 | |
| 5460 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; |
| 5461 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; |
| 5462 | |
| 5463 | #if VMA_STATS_STRING_ENABLED |
| 5464 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; |
| 5465 | #endif |
| 5466 | |
| 5467 | virtual bool CreateAllocationRequest( |
| 5468 | uint32_t currentFrameIndex, |
| 5469 | uint32_t frameInUseCount, |
| 5470 | VkDeviceSize bufferImageGranularity, |
| 5471 | VkDeviceSize allocSize, |
| 5472 | VkDeviceSize allocAlignment, |
| 5473 | bool upperAddress, |
| 5474 | VmaSuballocationType allocType, |
| 5475 | bool canMakeOtherLost, |
| 5476 | uint32_t strategy, |
| 5477 | VmaAllocationRequest* pAllocationRequest); |
| 5478 | |
| 5479 | virtual bool MakeRequestedAllocationsLost( |
| 5480 | uint32_t currentFrameIndex, |
| 5481 | uint32_t frameInUseCount, |
| 5482 | VmaAllocationRequest* pAllocationRequest); |
| 5483 | |
| 5484 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); |
| 5485 | |
| 5486 | virtual VkResult CheckCorruption(const void* pBlockData); |
| 5487 | |
| 5488 | virtual void Alloc( |
| 5489 | const VmaAllocationRequest& request, |
| 5490 | VmaSuballocationType type, |
| 5491 | VkDeviceSize allocSize, |
| 5492 | bool upperAddress, |
| 5493 | VmaAllocation hAllocation); |
| 5494 | |
| 5495 | virtual void Free(const VmaAllocation allocation); |
| 5496 | virtual void FreeAtOffset(VkDeviceSize offset); |
| 5497 | |
| 5498 | private: |
| 5499 | /* |
| 5500 | There are two suballocation vectors, used in ping-pong way. |
| 5501 | The one with index m_1stVectorIndex is called 1st. |
| 5502 | The one with index (m_1stVectorIndex ^ 1) is called 2nd. |
| 5503 | 2nd can be non-empty only when 1st is not empty. |
| 5504 | When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. |
| 5505 | */ |
| 5506 | typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType; |
| 5507 | |
| 5508 | enum SECOND_VECTOR_MODE |
| 5509 | { |
| 5510 | SECOND_VECTOR_EMPTY, |
| 5511 | /* |
| 5512 | Suballocations in 2nd vector are created later than the ones in 1st, but they |
| 5513 | all have smaller offset. |
| 5514 | */ |
| 5515 | SECOND_VECTOR_RING_BUFFER, |
| 5516 | /* |
| 5517 | Suballocations in 2nd vector are upper side of double stack. |
| 5518 | They all have offsets higher than those in 1st vector. |
| 5519 | Top of this stack means smaller offsets, but higher indices in this vector. |
| 5520 | */ |
| 5521 | SECOND_VECTOR_DOUBLE_STACK, |
| 5522 | }; |
| 5523 | |
| 5524 | VkDeviceSize m_SumFreeSize; |
| 5525 | SuballocationVectorType m_Suballocations0, m_Suballocations1; |
| 5526 | uint32_t m_1stVectorIndex; |
| 5527 | SECOND_VECTOR_MODE m_2ndVectorMode; |
| 5528 | |
| 5529 | SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } |
| 5530 | SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } |
| 5531 | const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } |
| 5532 | const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } |
| 5533 | |
| 5534 | // Number of items in 1st vector with hAllocation = null at the beginning. |
| 5535 | size_t m_1stNullItemsBeginCount; |
| 5536 | // Number of other items in 1st vector with hAllocation = null somewhere in the middle. |
| 5537 | size_t m_1stNullItemsMiddleCount; |
| 5538 | // Number of items in 2nd vector with hAllocation = null. |
| 5539 | size_t m_2ndNullItemsCount; |
| 5540 | |
| 5541 | bool ShouldCompact1st() const; |
| 5542 | void CleanupAfterFree(); |
| 5543 | }; |
| 5544 | |
| 5545 | /* |
| 5546 | - GetSize() is the original size of allocated memory block. |
| 5547 | - m_UsableSize is this size aligned down to a power of two. |
| 5548 | All allocations and calculations happen relative to m_UsableSize. |
| 5549 | - GetUnusableSize() is the difference between them. |
| 5550 | It is repoted as separate, unused range, not available for allocations. |
| 5551 | |
| 5552 | Node at level 0 has size = m_UsableSize. |
| 5553 | Each next level contains nodes with size 2 times smaller than current level. |
| 5554 | m_LevelCount is the maximum number of levels to use in the current object. |
| 5555 | */ |
| 5556 | class VmaBlockMetadata_Buddy : public VmaBlockMetadata |
| 5557 | { |
| 5558 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) |
| 5559 | public: |
| 5560 | VmaBlockMetadata_Buddy(VmaAllocator hAllocator); |
| 5561 | virtual ~VmaBlockMetadata_Buddy(); |
| 5562 | virtual void Init(VkDeviceSize size); |
| 5563 | |
| 5564 | virtual bool Validate() const; |
| 5565 | virtual size_t GetAllocationCount() const { return m_AllocationCount; } |
| 5566 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } |
| 5567 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; |
| 5568 | virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } |
| 5569 | |
| 5570 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; |
| 5571 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; |
| 5572 | |
| 5573 | #if VMA_STATS_STRING_ENABLED |
| 5574 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; |
| 5575 | #endif |
| 5576 | |
| 5577 | virtual bool CreateAllocationRequest( |
| 5578 | uint32_t currentFrameIndex, |
| 5579 | uint32_t frameInUseCount, |
| 5580 | VkDeviceSize bufferImageGranularity, |
| 5581 | VkDeviceSize allocSize, |
| 5582 | VkDeviceSize allocAlignment, |
| 5583 | bool upperAddress, |
| 5584 | VmaSuballocationType allocType, |
| 5585 | bool canMakeOtherLost, |
| 5586 | uint32_t strategy, |
| 5587 | VmaAllocationRequest* pAllocationRequest); |
| 5588 | |
| 5589 | virtual bool MakeRequestedAllocationsLost( |
| 5590 | uint32_t currentFrameIndex, |
| 5591 | uint32_t frameInUseCount, |
| 5592 | VmaAllocationRequest* pAllocationRequest); |
| 5593 | |
| 5594 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); |
| 5595 | |
| 5596 | virtual VkResult CheckCorruption(const void* /*pBlockData*/) { return VK_ERROR_FEATURE_NOT_PRESENT; } |
| 5597 | |
| 5598 | virtual void Alloc( |
| 5599 | const VmaAllocationRequest& request, |
| 5600 | VmaSuballocationType type, |
| 5601 | VkDeviceSize allocSize, |
| 5602 | bool upperAddress, |
| 5603 | VmaAllocation hAllocation); |
| 5604 | |
| 5605 | virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } |
| 5606 | virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } |
| 5607 | |
| 5608 | private: |
| 5609 | static const VkDeviceSize MIN_NODE_SIZE = 32; |
| 5610 | static const size_t MAX_LEVELS = 30; |
| 5611 | |
| 5612 | struct ValidationContext |
| 5613 | { |
| 5614 | size_t calculatedAllocationCount; |
| 5615 | size_t calculatedFreeCount; |
| 5616 | VkDeviceSize calculatedSumFreeSize; |
| 5617 | |
| 5618 | ValidationContext() : |
| 5619 | calculatedAllocationCount(0), |
| 5620 | calculatedFreeCount(0), |
| 5621 | calculatedSumFreeSize(0) { } |
| 5622 | }; |
| 5623 | |
| 5624 | struct Node |
| 5625 | { |
| 5626 | VkDeviceSize offset; |
| 5627 | enum TYPE |
| 5628 | { |
| 5629 | TYPE_FREE, |
| 5630 | TYPE_ALLOCATION, |
| 5631 | TYPE_SPLIT, |
| 5632 | TYPE_COUNT |
| 5633 | } type; |
| 5634 | Node* parent; |
| 5635 | Node* buddy; |
| 5636 | |
| 5637 | union |
| 5638 | { |
| 5639 | struct |
| 5640 | { |
| 5641 | Node* prev; |
| 5642 | Node* next; |
| 5643 | } free; |
| 5644 | struct |
| 5645 | { |
| 5646 | VmaAllocation alloc; |
| 5647 | } allocation; |
| 5648 | struct |
| 5649 | { |
| 5650 | Node* leftChild; |
| 5651 | } split; |
| 5652 | }; |
| 5653 | }; |
| 5654 | |
| 5655 | // Size of the memory block aligned down to a power of two. |
| 5656 | VkDeviceSize m_UsableSize; |
| 5657 | uint32_t m_LevelCount; |
| 5658 | |
| 5659 | Node* m_Root; |
| 5660 | struct { |
| 5661 | Node* front; |
| 5662 | Node* back; |
| 5663 | } m_FreeList[MAX_LEVELS]; |
| 5664 | // Number of nodes in the tree with type == TYPE_ALLOCATION. |
| 5665 | size_t m_AllocationCount; |
| 5666 | // Number of nodes in the tree with type == TYPE_FREE. |
| 5667 | size_t m_FreeCount; |
| 5668 | // This includes space wasted due to internal fragmentation. Doesn't include unusable size. |
| 5669 | VkDeviceSize m_SumFreeSize; |
| 5670 | |
| 5671 | VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } |
| 5672 | void DeleteNode(Node* node); |
| 5673 | bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; |
| 5674 | uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; |
| 5675 | inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } |
| 5676 | // Alloc passed just for validation. Can be null. |
| 5677 | void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); |
| 5678 | void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const; |
| 5679 | // Adds node to the front of FreeList at given level. |
| 5680 | // node->type must be FREE. |
| 5681 | // node->free.prev, next can be undefined. |
| 5682 | void AddToFreeListFront(uint32_t level, Node* node); |
| 5683 | // Removes node from FreeList at given level. |
| 5684 | // node->type must be FREE. |
| 5685 | // node->free.prev, next stay untouched. |
| 5686 | void RemoveFromFreeList(uint32_t level, Node* node); |
| 5687 | |
| 5688 | #if VMA_STATS_STRING_ENABLED |
| 5689 | void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; |
| 5690 | #endif |
| 5691 | }; |
| 5692 | |
| 5693 | /* |
| 5694 | Represents a single block of device memory (`VkDeviceMemory`) with all the |
| 5695 | data about its regions (aka suballocations, #VmaAllocation), assigned and free. |
| 5696 | |
| 5697 | Thread-safety: This class must be externally synchronized. |
| 5698 | */ |
| 5699 | class VmaDeviceMemoryBlock |
| 5700 | { |
| 5701 | VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) |
| 5702 | public: |
| 5703 | VmaBlockMetadata* m_pMetadata; |
| 5704 | |
| 5705 | VmaDeviceMemoryBlock(VmaAllocator hAllocator); |
| 5706 | |
| 5707 | ~VmaDeviceMemoryBlock() |
| 5708 | { |
| 5709 | VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped." ); |
| 5710 | VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); |
| 5711 | } |
| 5712 | |
| 5713 | // Always call after construction. |
| 5714 | void Init( |
| 5715 | VmaAllocator hAllocator, |
| 5716 | uint32_t newMemoryTypeIndex, |
| 5717 | VkDeviceMemory newMemory, |
| 5718 | VkDeviceSize newSize, |
| 5719 | uint32_t id, |
| 5720 | uint32_t algorithm); |
| 5721 | // Always call before destruction. |
| 5722 | void Destroy(VmaAllocator allocator); |
| 5723 | |
| 5724 | VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } |
| 5725 | uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } |
| 5726 | uint32_t GetId() const { return m_Id; } |
| 5727 | void* GetMappedData() const { return m_pMappedData; } |
| 5728 | |
| 5729 | // Validates all data structures inside this object. If not valid, returns false. |
| 5730 | bool Validate() const; |
| 5731 | |
| 5732 | VkResult CheckCorruption(VmaAllocator hAllocator); |
| 5733 | |
| 5734 | // ppData can be null. |
| 5735 | VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); |
| 5736 | void Unmap(VmaAllocator hAllocator, uint32_t count); |
| 5737 | |
| 5738 | VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); |
| 5739 | VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); |
| 5740 | |
| 5741 | VkResult BindBufferMemory( |
| 5742 | const VmaAllocator hAllocator, |
| 5743 | const VmaAllocation hAllocation, |
| 5744 | VkBuffer hBuffer); |
| 5745 | VkResult BindImageMemory( |
| 5746 | const VmaAllocator hAllocator, |
| 5747 | const VmaAllocation hAllocation, |
| 5748 | VkImage hImage); |
| 5749 | |
| 5750 | private: |
| 5751 | uint32_t m_MemoryTypeIndex; |
| 5752 | uint32_t m_Id; |
| 5753 | VkDeviceMemory m_hMemory; |
| 5754 | |
| 5755 | /* |
| 5756 | Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. |
| 5757 | Also protects m_MapCount, m_pMappedData. |
| 5758 | Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. |
| 5759 | */ |
| 5760 | VMA_MUTEX m_Mutex; |
| 5761 | uint32_t m_MapCount; |
| 5762 | void* m_pMappedData; |
| 5763 | }; |
| 5764 | |
| 5765 | struct VmaPointerLess |
| 5766 | { |
| 5767 | bool operator()(const void* lhs, const void* rhs) const |
| 5768 | { |
| 5769 | return lhs < rhs; |
| 5770 | } |
| 5771 | }; |
| 5772 | |
| 5773 | struct VmaDefragmentationMove |
| 5774 | { |
| 5775 | size_t srcBlockIndex; |
| 5776 | size_t dstBlockIndex; |
| 5777 | VkDeviceSize srcOffset; |
| 5778 | VkDeviceSize dstOffset; |
| 5779 | VkDeviceSize size; |
| 5780 | }; |
| 5781 | |
| 5782 | class VmaDefragmentationAlgorithm; |
| 5783 | |
| 5784 | /* |
| 5785 | Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific |
| 5786 | Vulkan memory type. |
| 5787 | |
| 5788 | Synchronized internally with a mutex. |
| 5789 | */ |
| 5790 | struct VmaBlockVector |
| 5791 | { |
| 5792 | VMA_CLASS_NO_COPY(VmaBlockVector) |
| 5793 | public: |
| 5794 | VmaBlockVector( |
| 5795 | VmaAllocator hAllocator, |
| 5796 | uint32_t memoryTypeIndex, |
| 5797 | VkDeviceSize preferredBlockSize, |
| 5798 | size_t minBlockCount, |
| 5799 | size_t maxBlockCount, |
| 5800 | VkDeviceSize bufferImageGranularity, |
| 5801 | uint32_t frameInUseCount, |
| 5802 | bool isCustomPool, |
| 5803 | bool explicitBlockSize, |
| 5804 | uint32_t algorithm); |
| 5805 | ~VmaBlockVector(); |
| 5806 | |
| 5807 | VkResult CreateMinBlocks(); |
| 5808 | |
| 5809 | uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } |
| 5810 | VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } |
| 5811 | VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } |
| 5812 | uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } |
| 5813 | uint32_t GetAlgorithm() const { return m_Algorithm; } |
| 5814 | |
| 5815 | void GetPoolStats(VmaPoolStats* pStats); |
| 5816 | |
| 5817 | bool IsEmpty() const { return m_Blocks.empty(); } |
| 5818 | bool IsCorruptionDetectionEnabled() const; |
| 5819 | |
| 5820 | VkResult Allocate( |
| 5821 | VmaPool hCurrentPool, |
| 5822 | uint32_t currentFrameIndex, |
| 5823 | VkDeviceSize size, |
| 5824 | VkDeviceSize alignment, |
| 5825 | const VmaAllocationCreateInfo& createInfo, |
| 5826 | VmaSuballocationType suballocType, |
| 5827 | size_t allocationCount, |
| 5828 | VmaAllocation* pAllocations); |
| 5829 | |
| 5830 | void Free( |
| 5831 | VmaAllocation hAllocation); |
| 5832 | |
| 5833 | // Adds statistics of this BlockVector to pStats. |
| 5834 | void AddStats(VmaStats* pStats); |
| 5835 | |
| 5836 | #if VMA_STATS_STRING_ENABLED |
| 5837 | void PrintDetailedMap(class VmaJsonWriter& json); |
| 5838 | #endif |
| 5839 | |
| 5840 | void MakePoolAllocationsLost( |
| 5841 | uint32_t currentFrameIndex, |
| 5842 | size_t* pLostAllocationCount); |
| 5843 | VkResult CheckCorruption(); |
| 5844 | |
| 5845 | // Saves results in pCtx->res. |
| 5846 | void Defragment( |
| 5847 | class VmaBlockVectorDefragmentationContext* pCtx, |
| 5848 | VmaDefragmentationStats* pStats, |
| 5849 | VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, |
| 5850 | VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, |
| 5851 | VkCommandBuffer commandBuffer); |
| 5852 | void DefragmentationEnd( |
| 5853 | class VmaBlockVectorDefragmentationContext* pCtx, |
| 5854 | VmaDefragmentationStats* pStats); |
| 5855 | |
| 5856 | //////////////////////////////////////////////////////////////////////////////// |
| 5857 | // To be used only while the m_Mutex is locked. Used during defragmentation. |
| 5858 | |
| 5859 | size_t GetBlockCount() const { return m_Blocks.size(); } |
| 5860 | VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } |
| 5861 | size_t CalcAllocationCount() const; |
| 5862 | bool IsBufferImageGranularityConflictPossible() const; |
| 5863 | |
| 5864 | private: |
| 5865 | friend class VmaDefragmentationAlgorithm_Generic; |
| 5866 | |
| 5867 | const VmaAllocator m_hAllocator; |
| 5868 | const uint32_t m_MemoryTypeIndex; |
| 5869 | const VkDeviceSize m_PreferredBlockSize; |
| 5870 | const size_t m_MinBlockCount; |
| 5871 | const size_t m_MaxBlockCount; |
| 5872 | const VkDeviceSize m_BufferImageGranularity; |
| 5873 | const uint32_t m_FrameInUseCount; |
| 5874 | const bool m_IsCustomPool; |
| 5875 | const bool m_ExplicitBlockSize; |
| 5876 | const uint32_t m_Algorithm; |
| 5877 | /* There can be at most one allocation that is completely empty - a |
| 5878 | hysteresis to avoid pessimistic case of alternating creation and destruction |
| 5879 | of a VkDeviceMemory. */ |
| 5880 | bool m_HasEmptyBlock; |
| 5881 | VMA_RW_MUTEX m_Mutex; |
| 5882 | // Incrementally sorted by sumFreeSize, ascending. |
| 5883 | VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks; |
| 5884 | uint32_t m_NextBlockId; |
| 5885 | |
| 5886 | VkDeviceSize CalcMaxBlockSize() const; |
| 5887 | |
| 5888 | // Finds and removes given block from vector. |
| 5889 | void Remove(VmaDeviceMemoryBlock* pBlock); |
| 5890 | |
| 5891 | // Performs single step in sorting m_Blocks. They may not be fully sorted |
| 5892 | // after this call. |
| 5893 | void IncrementallySortBlocks(); |
| 5894 | |
| 5895 | VkResult AllocatePage( |
| 5896 | VmaPool hCurrentPool, |
| 5897 | uint32_t currentFrameIndex, |
| 5898 | VkDeviceSize size, |
| 5899 | VkDeviceSize alignment, |
| 5900 | const VmaAllocationCreateInfo& createInfo, |
| 5901 | VmaSuballocationType suballocType, |
| 5902 | VmaAllocation* pAllocation); |
| 5903 | |
| 5904 | // To be used only without CAN_MAKE_OTHER_LOST flag. |
| 5905 | VkResult AllocateFromBlock( |
| 5906 | VmaDeviceMemoryBlock* pBlock, |
| 5907 | VmaPool hCurrentPool, |
| 5908 | uint32_t currentFrameIndex, |
| 5909 | VkDeviceSize size, |
| 5910 | VkDeviceSize alignment, |
| 5911 | VmaAllocationCreateFlags allocFlags, |
| 5912 | void* pUserData, |
| 5913 | VmaSuballocationType suballocType, |
| 5914 | uint32_t strategy, |
| 5915 | VmaAllocation* pAllocation); |
| 5916 | |
| 5917 | VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); |
| 5918 | |
| 5919 | // Saves result to pCtx->res. |
| 5920 | void ApplyDefragmentationMovesCpu( |
| 5921 | class VmaBlockVectorDefragmentationContext* pDefragCtx, |
| 5922 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves); |
| 5923 | // Saves result to pCtx->res. |
| 5924 | void ApplyDefragmentationMovesGpu( |
| 5925 | class VmaBlockVectorDefragmentationContext* pDefragCtx, |
| 5926 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 5927 | VkCommandBuffer commandBuffer); |
| 5928 | |
| 5929 | /* |
| 5930 | Used during defragmentation. pDefragmentationStats is optional. It's in/out |
| 5931 | - updated with new data. |
| 5932 | */ |
| 5933 | void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); |
| 5934 | }; |
| 5935 | |
| 5936 | struct VmaPool_T |
| 5937 | { |
| 5938 | VMA_CLASS_NO_COPY(VmaPool_T) |
| 5939 | public: |
| 5940 | VmaBlockVector m_BlockVector; |
| 5941 | |
| 5942 | VmaPool_T( |
| 5943 | VmaAllocator hAllocator, |
| 5944 | const VmaPoolCreateInfo& createInfo, |
| 5945 | VkDeviceSize preferredBlockSize); |
| 5946 | ~VmaPool_T(); |
| 5947 | |
| 5948 | uint32_t GetId() const { return m_Id; } |
| 5949 | void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } |
| 5950 | |
| 5951 | #if VMA_STATS_STRING_ENABLED |
| 5952 | //void PrintDetailedMap(class VmaStringBuilder& sb); |
| 5953 | #endif |
| 5954 | |
| 5955 | private: |
| 5956 | uint32_t m_Id; |
| 5957 | }; |
| 5958 | |
| 5959 | /* |
| 5960 | Performs defragmentation: |
| 5961 | |
| 5962 | - Updates `pBlockVector->m_pMetadata`. |
| 5963 | - Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). |
| 5964 | - Does not move actual data, only returns requested moves as `moves`. |
| 5965 | */ |
| 5966 | class VmaDefragmentationAlgorithm |
| 5967 | { |
| 5968 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) |
| 5969 | public: |
| 5970 | VmaDefragmentationAlgorithm( |
| 5971 | VmaAllocator hAllocator, |
| 5972 | VmaBlockVector* pBlockVector, |
| 5973 | uint32_t currentFrameIndex) : |
| 5974 | m_hAllocator(hAllocator), |
| 5975 | m_pBlockVector(pBlockVector), |
| 5976 | m_CurrentFrameIndex(currentFrameIndex) |
| 5977 | { |
| 5978 | } |
| 5979 | virtual ~VmaDefragmentationAlgorithm() |
| 5980 | { |
| 5981 | } |
| 5982 | |
| 5983 | virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; |
| 5984 | virtual void AddAll() = 0; |
| 5985 | |
| 5986 | virtual VkResult Defragment( |
| 5987 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 5988 | VkDeviceSize maxBytesToMove, |
| 5989 | uint32_t maxAllocationsToMove) = 0; |
| 5990 | |
| 5991 | virtual VkDeviceSize GetBytesMoved() const = 0; |
| 5992 | virtual uint32_t GetAllocationsMoved() const = 0; |
| 5993 | |
| 5994 | protected: |
| 5995 | VmaAllocator const m_hAllocator; |
| 5996 | VmaBlockVector* const m_pBlockVector; |
| 5997 | const uint32_t m_CurrentFrameIndex; |
| 5998 | |
| 5999 | struct AllocationInfo |
| 6000 | { |
| 6001 | VmaAllocation m_hAllocation; |
| 6002 | VkBool32* m_pChanged; |
| 6003 | |
| 6004 | AllocationInfo() : |
| 6005 | m_hAllocation(VK_NULL_HANDLE), |
| 6006 | m_pChanged(VMA_NULL) |
| 6007 | { |
| 6008 | } |
| 6009 | AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : |
| 6010 | m_hAllocation(hAlloc), |
| 6011 | m_pChanged(pChanged) |
| 6012 | { |
| 6013 | } |
| 6014 | }; |
| 6015 | }; |
| 6016 | |
| 6017 | class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm |
| 6018 | { |
| 6019 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) |
| 6020 | public: |
| 6021 | VmaDefragmentationAlgorithm_Generic( |
| 6022 | VmaAllocator hAllocator, |
| 6023 | VmaBlockVector* pBlockVector, |
| 6024 | uint32_t currentFrameIndex, |
| 6025 | bool overlappingMoveSupported); |
| 6026 | virtual ~VmaDefragmentationAlgorithm_Generic(); |
| 6027 | |
| 6028 | virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); |
| 6029 | virtual void AddAll() { m_AllAllocations = true; } |
| 6030 | |
| 6031 | virtual VkResult Defragment( |
| 6032 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 6033 | VkDeviceSize maxBytesToMove, |
| 6034 | uint32_t maxAllocationsToMove); |
| 6035 | |
| 6036 | virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } |
| 6037 | virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } |
| 6038 | |
| 6039 | private: |
| 6040 | uint32_t m_AllocationCount; |
| 6041 | bool m_AllAllocations; |
| 6042 | |
| 6043 | VkDeviceSize m_BytesMoved; |
| 6044 | uint32_t m_AllocationsMoved; |
| 6045 | |
| 6046 | struct AllocationInfoSizeGreater |
| 6047 | { |
| 6048 | bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const |
| 6049 | { |
| 6050 | return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); |
| 6051 | } |
| 6052 | }; |
| 6053 | |
| 6054 | struct AllocationInfoOffsetGreater |
| 6055 | { |
| 6056 | bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const |
| 6057 | { |
| 6058 | return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); |
| 6059 | } |
| 6060 | }; |
| 6061 | |
| 6062 | struct BlockInfo |
| 6063 | { |
| 6064 | size_t m_OriginalBlockIndex; |
| 6065 | VmaDeviceMemoryBlock* m_pBlock; |
| 6066 | bool m_HasNonMovableAllocations; |
| 6067 | VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations; |
| 6068 | |
| 6069 | BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : |
| 6070 | m_OriginalBlockIndex(SIZE_MAX), |
| 6071 | m_pBlock(VMA_NULL), |
| 6072 | m_HasNonMovableAllocations(true), |
| 6073 | m_Allocations(pAllocationCallbacks) |
| 6074 | { |
| 6075 | } |
| 6076 | |
| 6077 | void CalcHasNonMovableAllocations() |
| 6078 | { |
| 6079 | const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); |
| 6080 | const size_t defragmentAllocCount = m_Allocations.size(); |
| 6081 | m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; |
| 6082 | } |
| 6083 | |
| 6084 | void SortAllocationsBySizeDescending() |
| 6085 | { |
| 6086 | VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); |
| 6087 | } |
| 6088 | |
| 6089 | void SortAllocationsByOffsetDescending() |
| 6090 | { |
| 6091 | VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); |
| 6092 | } |
| 6093 | }; |
| 6094 | |
| 6095 | struct BlockPointerLess |
| 6096 | { |
| 6097 | bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const |
| 6098 | { |
| 6099 | return pLhsBlockInfo->m_pBlock < pRhsBlock; |
| 6100 | } |
| 6101 | bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const |
| 6102 | { |
| 6103 | return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; |
| 6104 | } |
| 6105 | }; |
| 6106 | |
| 6107 | // 1. Blocks with some non-movable allocations go first. |
| 6108 | // 2. Blocks with smaller sumFreeSize go first. |
| 6109 | struct BlockInfoCompareMoveDestination |
| 6110 | { |
| 6111 | bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const |
| 6112 | { |
| 6113 | if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) |
| 6114 | { |
| 6115 | return true; |
| 6116 | } |
| 6117 | if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) |
| 6118 | { |
| 6119 | return false; |
| 6120 | } |
| 6121 | if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) |
| 6122 | { |
| 6123 | return true; |
| 6124 | } |
| 6125 | return false; |
| 6126 | } |
| 6127 | }; |
| 6128 | |
| 6129 | typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector; |
| 6130 | BlockInfoVector m_Blocks; |
| 6131 | |
| 6132 | VkResult DefragmentRound( |
| 6133 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 6134 | VkDeviceSize maxBytesToMove, |
| 6135 | uint32_t maxAllocationsToMove); |
| 6136 | |
| 6137 | size_t CalcBlocksWithNonMovableCount() const; |
| 6138 | |
| 6139 | static bool MoveMakesSense( |
| 6140 | size_t dstBlockIndex, VkDeviceSize dstOffset, |
| 6141 | size_t srcBlockIndex, VkDeviceSize srcOffset); |
| 6142 | }; |
| 6143 | |
| 6144 | class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm |
| 6145 | { |
| 6146 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) |
| 6147 | public: |
| 6148 | VmaDefragmentationAlgorithm_Fast( |
| 6149 | VmaAllocator hAllocator, |
| 6150 | VmaBlockVector* pBlockVector, |
| 6151 | uint32_t currentFrameIndex, |
| 6152 | bool overlappingMoveSupported); |
| 6153 | virtual ~VmaDefragmentationAlgorithm_Fast(); |
| 6154 | |
| 6155 | virtual void AddAllocation(VmaAllocation /*hAlloc*/, VkBool32* /*pChanged*/) { ++m_AllocationCount; } |
| 6156 | virtual void AddAll() { m_AllAllocations = true; } |
| 6157 | |
| 6158 | virtual VkResult Defragment( |
| 6159 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 6160 | VkDeviceSize maxBytesToMove, |
| 6161 | uint32_t maxAllocationsToMove); |
| 6162 | |
| 6163 | virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } |
| 6164 | virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } |
| 6165 | |
| 6166 | private: |
| 6167 | struct BlockInfo |
| 6168 | { |
| 6169 | size_t origBlockIndex; |
| 6170 | }; |
| 6171 | |
| 6172 | class FreeSpaceDatabase |
| 6173 | { |
| 6174 | public: |
| 6175 | FreeSpaceDatabase() |
| 6176 | { |
| 6177 | FreeSpace s = {}; |
| 6178 | s.blockInfoIndex = SIZE_MAX; |
| 6179 | for(size_t i = 0; i < MAX_COUNT; ++i) |
| 6180 | { |
| 6181 | m_FreeSpaces[i] = s; |
| 6182 | } |
| 6183 | } |
| 6184 | |
| 6185 | void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) |
| 6186 | { |
| 6187 | if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 6188 | { |
| 6189 | return; |
| 6190 | } |
| 6191 | |
| 6192 | // Find first invalid or the smallest structure. |
| 6193 | size_t bestIndex = SIZE_MAX; |
| 6194 | for(size_t i = 0; i < MAX_COUNT; ++i) |
| 6195 | { |
| 6196 | // Empty structure. |
| 6197 | if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) |
| 6198 | { |
| 6199 | bestIndex = i; |
| 6200 | break; |
| 6201 | } |
| 6202 | if(m_FreeSpaces[i].size < size && |
| 6203 | (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) |
| 6204 | { |
| 6205 | bestIndex = i; |
| 6206 | } |
| 6207 | } |
| 6208 | |
| 6209 | if(bestIndex != SIZE_MAX) |
| 6210 | { |
| 6211 | m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; |
| 6212 | m_FreeSpaces[bestIndex].offset = offset; |
| 6213 | m_FreeSpaces[bestIndex].size = size; |
| 6214 | } |
| 6215 | } |
| 6216 | |
| 6217 | bool Fetch(VkDeviceSize alignment, VkDeviceSize size, |
| 6218 | size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) |
| 6219 | { |
| 6220 | size_t bestIndex = SIZE_MAX; |
| 6221 | VkDeviceSize bestFreeSpaceAfter = 0; |
| 6222 | for(size_t i = 0; i < MAX_COUNT; ++i) |
| 6223 | { |
| 6224 | // Structure is valid. |
| 6225 | if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) |
| 6226 | { |
| 6227 | const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); |
| 6228 | // Allocation fits into this structure. |
| 6229 | if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) |
| 6230 | { |
| 6231 | const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - |
| 6232 | (dstOffset + size); |
| 6233 | if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) |
| 6234 | { |
| 6235 | bestIndex = i; |
| 6236 | bestFreeSpaceAfter = freeSpaceAfter; |
| 6237 | } |
| 6238 | } |
| 6239 | } |
| 6240 | } |
| 6241 | |
| 6242 | if(bestIndex != SIZE_MAX) |
| 6243 | { |
| 6244 | outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; |
| 6245 | outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); |
| 6246 | |
| 6247 | if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 6248 | { |
| 6249 | // Leave this structure for remaining empty space. |
| 6250 | const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; |
| 6251 | m_FreeSpaces[bestIndex].offset += alignmentPlusSize; |
| 6252 | m_FreeSpaces[bestIndex].size -= alignmentPlusSize; |
| 6253 | } |
| 6254 | else |
| 6255 | { |
| 6256 | // This structure becomes invalid. |
| 6257 | m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; |
| 6258 | } |
| 6259 | |
| 6260 | return true; |
| 6261 | } |
| 6262 | |
| 6263 | return false; |
| 6264 | } |
| 6265 | |
| 6266 | private: |
| 6267 | static const size_t MAX_COUNT = 4; |
| 6268 | |
| 6269 | struct FreeSpace |
| 6270 | { |
| 6271 | size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. |
| 6272 | VkDeviceSize offset; |
| 6273 | VkDeviceSize size; |
| 6274 | } m_FreeSpaces[MAX_COUNT]; |
| 6275 | }; |
| 6276 | |
| 6277 | const bool m_OverlappingMoveSupported; |
| 6278 | |
| 6279 | uint32_t m_AllocationCount; |
| 6280 | bool m_AllAllocations; |
| 6281 | |
| 6282 | VkDeviceSize m_BytesMoved; |
| 6283 | uint32_t m_AllocationsMoved; |
| 6284 | |
| 6285 | VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos; |
| 6286 | |
| 6287 | void PreprocessMetadata(); |
| 6288 | void PostprocessMetadata(); |
| 6289 | void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); |
| 6290 | }; |
| 6291 | |
| 6292 | struct VmaBlockDefragmentationContext |
| 6293 | { |
| 6294 | enum BLOCK_FLAG |
| 6295 | { |
| 6296 | BLOCK_FLAG_USED = 0x00000001, |
| 6297 | }; |
| 6298 | uint32_t flags; |
| 6299 | VkBuffer hBuffer; |
| 6300 | |
| 6301 | VmaBlockDefragmentationContext() : |
| 6302 | flags(0), |
| 6303 | hBuffer(VK_NULL_HANDLE) |
| 6304 | { |
| 6305 | } |
| 6306 | }; |
| 6307 | |
| 6308 | class VmaBlockVectorDefragmentationContext |
| 6309 | { |
| 6310 | VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) |
| 6311 | public: |
| 6312 | VkResult res; |
| 6313 | bool mutexLocked; |
| 6314 | VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts; |
| 6315 | |
| 6316 | VmaBlockVectorDefragmentationContext( |
| 6317 | VmaAllocator hAllocator, |
| 6318 | VmaPool hCustomPool, // Optional. |
| 6319 | VmaBlockVector* pBlockVector, |
| 6320 | uint32_t currFrameIndex, |
| 6321 | uint32_t flags); |
| 6322 | ~VmaBlockVectorDefragmentationContext(); |
| 6323 | |
| 6324 | VmaPool GetCustomPool() const { return m_hCustomPool; } |
| 6325 | VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } |
| 6326 | VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } |
| 6327 | |
| 6328 | void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); |
| 6329 | void AddAll() { m_AllAllocations = true; } |
| 6330 | |
| 6331 | void Begin(bool overlappingMoveSupported); |
| 6332 | |
| 6333 | private: |
| 6334 | const VmaAllocator m_hAllocator; |
| 6335 | // Null if not from custom pool. |
| 6336 | const VmaPool m_hCustomPool; |
| 6337 | // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. |
| 6338 | VmaBlockVector* const m_pBlockVector; |
| 6339 | const uint32_t m_CurrFrameIndex; |
| 6340 | /*const uint32_t m_AlgorithmFlags;*/ |
| 6341 | // Owner of this object. |
| 6342 | VmaDefragmentationAlgorithm* m_pAlgorithm; |
| 6343 | |
| 6344 | struct AllocInfo |
| 6345 | { |
| 6346 | VmaAllocation hAlloc; |
| 6347 | VkBool32* pChanged; |
| 6348 | }; |
| 6349 | // Used between constructor and Begin. |
| 6350 | VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations; |
| 6351 | bool m_AllAllocations; |
| 6352 | }; |
| 6353 | |
| 6354 | struct VmaDefragmentationContext_T |
| 6355 | { |
| 6356 | private: |
| 6357 | VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) |
| 6358 | public: |
| 6359 | VmaDefragmentationContext_T( |
| 6360 | VmaAllocator hAllocator, |
| 6361 | uint32_t currFrameIndex, |
| 6362 | uint32_t flags, |
| 6363 | VmaDefragmentationStats* pStats); |
| 6364 | ~VmaDefragmentationContext_T(); |
| 6365 | |
| 6366 | void AddPools(uint32_t poolCount, VmaPool* pPools); |
| 6367 | void AddAllocations( |
| 6368 | uint32_t allocationCount, |
| 6369 | VmaAllocation* pAllocations, |
| 6370 | VkBool32* pAllocationsChanged); |
| 6371 | |
| 6372 | /* |
| 6373 | Returns: |
| 6374 | - `VK_SUCCESS` if succeeded and object can be destroyed immediately. |
| 6375 | - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). |
| 6376 | - Negative value if error occured and object can be destroyed immediately. |
| 6377 | */ |
| 6378 | VkResult Defragment( |
| 6379 | VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, |
| 6380 | VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, |
| 6381 | VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats); |
| 6382 | |
| 6383 | private: |
| 6384 | const VmaAllocator m_hAllocator; |
| 6385 | const uint32_t m_CurrFrameIndex; |
| 6386 | const uint32_t m_Flags; |
| 6387 | VmaDefragmentationStats* const m_pStats; |
| 6388 | // Owner of these objects. |
| 6389 | VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; |
| 6390 | // Owner of these objects. |
| 6391 | VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts; |
| 6392 | }; |
| 6393 | |
| 6394 | #if VMA_RECORDING_ENABLED |
| 6395 | |
| 6396 | class VmaRecorder |
| 6397 | { |
| 6398 | public: |
| 6399 | VmaRecorder(); |
| 6400 | VkResult Init(const VmaRecordSettings& settings, bool useMutex); |
| 6401 | void WriteConfiguration( |
| 6402 | const VkPhysicalDeviceProperties& devProps, |
| 6403 | const VkPhysicalDeviceMemoryProperties& memProps, |
| 6404 | bool dedicatedAllocationExtensionEnabled); |
| 6405 | ~VmaRecorder(); |
| 6406 | |
| 6407 | void RecordCreateAllocator(uint32_t frameIndex); |
| 6408 | void RecordDestroyAllocator(uint32_t frameIndex); |
| 6409 | void RecordCreatePool(uint32_t frameIndex, |
| 6410 | const VmaPoolCreateInfo& createInfo, |
| 6411 | VmaPool pool); |
| 6412 | void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); |
| 6413 | void RecordAllocateMemory(uint32_t frameIndex, |
| 6414 | const VkMemoryRequirements& vkMemReq, |
| 6415 | const VmaAllocationCreateInfo& createInfo, |
| 6416 | VmaAllocation allocation); |
| 6417 | void RecordAllocateMemoryPages(uint32_t frameIndex, |
| 6418 | const VkMemoryRequirements& vkMemReq, |
| 6419 | const VmaAllocationCreateInfo& createInfo, |
| 6420 | uint64_t allocationCount, |
| 6421 | const VmaAllocation* pAllocations); |
| 6422 | void RecordAllocateMemoryForBuffer(uint32_t frameIndex, |
| 6423 | const VkMemoryRequirements& vkMemReq, |
| 6424 | bool requiresDedicatedAllocation, |
| 6425 | bool prefersDedicatedAllocation, |
| 6426 | const VmaAllocationCreateInfo& createInfo, |
| 6427 | VmaAllocation allocation); |
| 6428 | void RecordAllocateMemoryForImage(uint32_t frameIndex, |
| 6429 | const VkMemoryRequirements& vkMemReq, |
| 6430 | bool requiresDedicatedAllocation, |
| 6431 | bool prefersDedicatedAllocation, |
| 6432 | const VmaAllocationCreateInfo& createInfo, |
| 6433 | VmaAllocation allocation); |
| 6434 | void RecordFreeMemory(uint32_t frameIndex, |
| 6435 | VmaAllocation allocation); |
| 6436 | void RecordFreeMemoryPages(uint32_t frameIndex, |
| 6437 | uint64_t allocationCount, |
| 6438 | const VmaAllocation* pAllocations); |
| 6439 | void RecordResizeAllocation( |
| 6440 | uint32_t frameIndex, |
| 6441 | VmaAllocation allocation, |
| 6442 | VkDeviceSize newSize); |
| 6443 | void RecordSetAllocationUserData(uint32_t frameIndex, |
| 6444 | VmaAllocation allocation, |
| 6445 | const void* pUserData); |
| 6446 | void RecordCreateLostAllocation(uint32_t frameIndex, |
| 6447 | VmaAllocation allocation); |
| 6448 | void RecordMapMemory(uint32_t frameIndex, |
| 6449 | VmaAllocation allocation); |
| 6450 | void RecordUnmapMemory(uint32_t frameIndex, |
| 6451 | VmaAllocation allocation); |
| 6452 | void RecordFlushAllocation(uint32_t frameIndex, |
| 6453 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); |
| 6454 | void RecordInvalidateAllocation(uint32_t frameIndex, |
| 6455 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); |
| 6456 | void RecordCreateBuffer(uint32_t frameIndex, |
| 6457 | const VkBufferCreateInfo& bufCreateInfo, |
| 6458 | const VmaAllocationCreateInfo& allocCreateInfo, |
| 6459 | VmaAllocation allocation); |
| 6460 | void RecordCreateImage(uint32_t frameIndex, |
| 6461 | const VkImageCreateInfo& imageCreateInfo, |
| 6462 | const VmaAllocationCreateInfo& allocCreateInfo, |
| 6463 | VmaAllocation allocation); |
| 6464 | void RecordDestroyBuffer(uint32_t frameIndex, |
| 6465 | VmaAllocation allocation); |
| 6466 | void RecordDestroyImage(uint32_t frameIndex, |
| 6467 | VmaAllocation allocation); |
| 6468 | void RecordTouchAllocation(uint32_t frameIndex, |
| 6469 | VmaAllocation allocation); |
| 6470 | void RecordGetAllocationInfo(uint32_t frameIndex, |
| 6471 | VmaAllocation allocation); |
| 6472 | void RecordMakePoolAllocationsLost(uint32_t frameIndex, |
| 6473 | VmaPool pool); |
| 6474 | void RecordDefragmentationBegin(uint32_t frameIndex, |
| 6475 | const VmaDefragmentationInfo2& info, |
| 6476 | VmaDefragmentationContext ctx); |
| 6477 | void RecordDefragmentationEnd(uint32_t frameIndex, |
| 6478 | VmaDefragmentationContext ctx); |
| 6479 | |
| 6480 | private: |
| 6481 | struct CallParams |
| 6482 | { |
| 6483 | uint32_t threadId; |
| 6484 | double time; |
| 6485 | }; |
| 6486 | |
| 6487 | class UserDataString |
| 6488 | { |
| 6489 | public: |
| 6490 | UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData); |
| 6491 | const char* GetString() const { return m_Str; } |
| 6492 | |
| 6493 | private: |
| 6494 | char m_PtrStr[17]; |
| 6495 | const char* m_Str; |
| 6496 | }; |
| 6497 | |
| 6498 | bool m_UseMutex; |
| 6499 | VmaRecordFlags m_Flags; |
| 6500 | FILE* m_File; |
| 6501 | VMA_MUTEX m_FileMutex; |
| 6502 | int64_t m_Freq; |
| 6503 | int64_t m_StartCounter; |
| 6504 | |
| 6505 | void GetBasicParams(CallParams& outParams); |
| 6506 | |
| 6507 | // T must be a pointer type, e.g. VmaAllocation, VmaPool. |
| 6508 | template<typename T> |
| 6509 | void PrintPointerList(uint64_t count, const T* pItems) |
| 6510 | { |
| 6511 | if(count) |
| 6512 | { |
| 6513 | fprintf(m_File, "%p" , pItems[0]); |
| 6514 | for(uint64_t i = 1; i < count; ++i) |
| 6515 | { |
| 6516 | fprintf(m_File, " %p" , pItems[i]); |
| 6517 | } |
| 6518 | } |
| 6519 | } |
| 6520 | |
| 6521 | void PrintPointerList(uint64_t count, const VmaAllocation* pItems); |
| 6522 | void Flush(); |
| 6523 | }; |
| 6524 | |
| 6525 | #endif // #if VMA_RECORDING_ENABLED |
| 6526 | |
| 6527 | // Main allocator object. |
| 6528 | struct VmaAllocator_T |
| 6529 | { |
| 6530 | VMA_CLASS_NO_COPY(VmaAllocator_T) |
| 6531 | public: |
| 6532 | bool m_UseMutex; |
| 6533 | bool m_UseKhrDedicatedAllocation; |
| 6534 | VkDevice m_hDevice; |
| 6535 | bool m_AllocationCallbacksSpecified; |
| 6536 | VkAllocationCallbacks m_AllocationCallbacks; |
| 6537 | VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; |
| 6538 | |
| 6539 | // Number of bytes free out of limit, or VK_WHOLE_SIZE if no limit for that heap. |
| 6540 | VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS]; |
| 6541 | VMA_MUTEX m_HeapSizeLimitMutex; |
| 6542 | |
| 6543 | VkPhysicalDeviceProperties m_PhysicalDeviceProperties; |
| 6544 | VkPhysicalDeviceMemoryProperties m_MemProps; |
| 6545 | |
| 6546 | // Default pools. |
| 6547 | VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; |
| 6548 | |
| 6549 | // Each vector is sorted by memory (handle value). |
| 6550 | typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType; |
| 6551 | AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES]; |
| 6552 | VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; |
| 6553 | |
| 6554 | VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); |
| 6555 | VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); |
| 6556 | ~VmaAllocator_T(); |
| 6557 | |
| 6558 | const VkAllocationCallbacks* GetAllocationCallbacks() const |
| 6559 | { |
| 6560 | return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; |
| 6561 | } |
| 6562 | const VmaVulkanFunctions& GetVulkanFunctions() const |
| 6563 | { |
| 6564 | return m_VulkanFunctions; |
| 6565 | } |
| 6566 | |
| 6567 | VkDeviceSize GetBufferImageGranularity() const |
| 6568 | { |
| 6569 | return VMA_MAX( |
| 6570 | static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), |
| 6571 | m_PhysicalDeviceProperties.limits.bufferImageGranularity); |
| 6572 | } |
| 6573 | |
| 6574 | uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } |
| 6575 | uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } |
| 6576 | |
| 6577 | uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const |
| 6578 | { |
| 6579 | VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); |
| 6580 | return m_MemProps.memoryTypes[memTypeIndex].heapIndex; |
| 6581 | } |
| 6582 | // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. |
| 6583 | bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const |
| 6584 | { |
| 6585 | return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == |
| 6586 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 6587 | } |
| 6588 | // Minimum alignment for all allocations in specific memory type. |
| 6589 | VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const |
| 6590 | { |
| 6591 | return IsMemoryTypeNonCoherent(memTypeIndex) ? |
| 6592 | VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : |
| 6593 | (VkDeviceSize)VMA_DEBUG_ALIGNMENT; |
| 6594 | } |
| 6595 | |
| 6596 | bool IsIntegratedGpu() const |
| 6597 | { |
| 6598 | return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; |
| 6599 | } |
| 6600 | |
| 6601 | #if VMA_RECORDING_ENABLED |
| 6602 | VmaRecorder* GetRecorder() const { return m_pRecorder; } |
| 6603 | #endif |
| 6604 | |
| 6605 | void GetBufferMemoryRequirements( |
| 6606 | VkBuffer hBuffer, |
| 6607 | VkMemoryRequirements& memReq, |
| 6608 | bool& requiresDedicatedAllocation, |
| 6609 | bool& prefersDedicatedAllocation) const; |
| 6610 | void GetImageMemoryRequirements( |
| 6611 | VkImage hImage, |
| 6612 | VkMemoryRequirements& memReq, |
| 6613 | bool& requiresDedicatedAllocation, |
| 6614 | bool& prefersDedicatedAllocation) const; |
| 6615 | |
| 6616 | // Main allocation function. |
| 6617 | VkResult AllocateMemory( |
| 6618 | const VkMemoryRequirements& vkMemReq, |
| 6619 | bool requiresDedicatedAllocation, |
| 6620 | bool prefersDedicatedAllocation, |
| 6621 | VkBuffer dedicatedBuffer, |
| 6622 | VkImage dedicatedImage, |
| 6623 | const VmaAllocationCreateInfo& createInfo, |
| 6624 | VmaSuballocationType suballocType, |
| 6625 | size_t allocationCount, |
| 6626 | VmaAllocation* pAllocations); |
| 6627 | |
| 6628 | // Main deallocation function. |
| 6629 | void FreeMemory( |
| 6630 | size_t allocationCount, |
| 6631 | const VmaAllocation* pAllocations); |
| 6632 | |
| 6633 | VkResult ResizeAllocation( |
| 6634 | const VmaAllocation alloc, |
| 6635 | VkDeviceSize newSize); |
| 6636 | |
| 6637 | void CalculateStats(VmaStats* pStats); |
| 6638 | |
| 6639 | #if VMA_STATS_STRING_ENABLED |
| 6640 | void PrintDetailedMap(class VmaJsonWriter& json); |
| 6641 | #endif |
| 6642 | |
| 6643 | VkResult DefragmentationBegin( |
| 6644 | const VmaDefragmentationInfo2& info, |
| 6645 | VmaDefragmentationStats* pStats, |
| 6646 | VmaDefragmentationContext* pContext); |
| 6647 | VkResult DefragmentationEnd( |
| 6648 | VmaDefragmentationContext context); |
| 6649 | |
| 6650 | void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); |
| 6651 | bool TouchAllocation(VmaAllocation hAllocation); |
| 6652 | |
| 6653 | VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); |
| 6654 | void DestroyPool(VmaPool pool); |
| 6655 | void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); |
| 6656 | |
| 6657 | void SetCurrentFrameIndex(uint32_t frameIndex); |
| 6658 | uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } |
| 6659 | |
| 6660 | void MakePoolAllocationsLost( |
| 6661 | VmaPool hPool, |
| 6662 | size_t* pLostAllocationCount); |
| 6663 | VkResult CheckPoolCorruption(VmaPool hPool); |
| 6664 | VkResult CheckCorruption(uint32_t memoryTypeBits); |
| 6665 | |
| 6666 | void CreateLostAllocation(VmaAllocation* pAllocation); |
| 6667 | |
| 6668 | VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); |
| 6669 | void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); |
| 6670 | |
| 6671 | VkResult Map(VmaAllocation hAllocation, void** ppData); |
| 6672 | void Unmap(VmaAllocation hAllocation); |
| 6673 | |
| 6674 | VkResult BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer); |
| 6675 | VkResult BindImageMemory(VmaAllocation hAllocation, VkImage hImage); |
| 6676 | |
| 6677 | void FlushOrInvalidateAllocation( |
| 6678 | VmaAllocation hAllocation, |
| 6679 | VkDeviceSize offset, VkDeviceSize size, |
| 6680 | VMA_CACHE_OPERATION op); |
| 6681 | |
| 6682 | void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); |
| 6683 | |
| 6684 | private: |
| 6685 | VkDeviceSize m_PreferredLargeHeapBlockSize; |
| 6686 | |
| 6687 | VkPhysicalDevice m_PhysicalDevice; |
| 6688 | VMA_ATOMIC_UINT32 m_CurrentFrameIndex; |
| 6689 | |
| 6690 | VMA_RW_MUTEX m_PoolsMutex; |
| 6691 | // Protected by m_PoolsMutex. Sorted by pointer value. |
| 6692 | VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools; |
| 6693 | uint32_t m_NextPoolId; |
| 6694 | |
| 6695 | VmaVulkanFunctions m_VulkanFunctions; |
| 6696 | |
| 6697 | #if VMA_RECORDING_ENABLED |
| 6698 | VmaRecorder* m_pRecorder; |
| 6699 | #endif |
| 6700 | |
| 6701 | void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); |
| 6702 | |
| 6703 | VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); |
| 6704 | |
| 6705 | VkResult AllocateMemoryOfType( |
| 6706 | VkDeviceSize size, |
| 6707 | VkDeviceSize alignment, |
| 6708 | bool dedicatedAllocation, |
| 6709 | VkBuffer dedicatedBuffer, |
| 6710 | VkImage dedicatedImage, |
| 6711 | const VmaAllocationCreateInfo& createInfo, |
| 6712 | uint32_t memTypeIndex, |
| 6713 | VmaSuballocationType suballocType, |
| 6714 | size_t allocationCount, |
| 6715 | VmaAllocation* pAllocations); |
| 6716 | |
| 6717 | // Helper function only to be used inside AllocateDedicatedMemory. |
| 6718 | VkResult AllocateDedicatedMemoryPage( |
| 6719 | VkDeviceSize size, |
| 6720 | VmaSuballocationType suballocType, |
| 6721 | uint32_t memTypeIndex, |
| 6722 | const VkMemoryAllocateInfo& allocInfo, |
| 6723 | bool map, |
| 6724 | bool isUserDataString, |
| 6725 | void* pUserData, |
| 6726 | VmaAllocation* pAllocation); |
| 6727 | |
| 6728 | // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. |
| 6729 | VkResult AllocateDedicatedMemory( |
| 6730 | VkDeviceSize size, |
| 6731 | VmaSuballocationType suballocType, |
| 6732 | uint32_t memTypeIndex, |
| 6733 | bool map, |
| 6734 | bool isUserDataString, |
| 6735 | void* pUserData, |
| 6736 | VkBuffer dedicatedBuffer, |
| 6737 | VkImage dedicatedImage, |
| 6738 | size_t allocationCount, |
| 6739 | VmaAllocation* pAllocations); |
| 6740 | |
| 6741 | // Tries to free pMemory as Dedicated Memory. Returns true if found and freed. |
| 6742 | void FreeDedicatedMemory(VmaAllocation allocation); |
| 6743 | }; |
| 6744 | |
| 6745 | //////////////////////////////////////////////////////////////////////////////// |
| 6746 | // Memory allocation #2 after VmaAllocator_T definition |
| 6747 | |
| 6748 | static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) |
| 6749 | { |
| 6750 | return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); |
| 6751 | } |
| 6752 | |
| 6753 | static void VmaFree(VmaAllocator hAllocator, void* ptr) |
| 6754 | { |
| 6755 | VmaFree(&hAllocator->m_AllocationCallbacks, ptr); |
| 6756 | } |
| 6757 | |
| 6758 | template<typename T> |
| 6759 | static T* VmaAllocate(VmaAllocator hAllocator) |
| 6760 | { |
| 6761 | return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); |
| 6762 | } |
| 6763 | |
| 6764 | template<typename T> |
| 6765 | static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) |
| 6766 | { |
| 6767 | return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); |
| 6768 | } |
| 6769 | |
| 6770 | template<typename T> |
| 6771 | static void vma_delete(VmaAllocator hAllocator, T* ptr) |
| 6772 | { |
| 6773 | if(ptr != VMA_NULL) |
| 6774 | { |
| 6775 | ptr->~T(); |
| 6776 | VmaFree(hAllocator, ptr); |
| 6777 | } |
| 6778 | } |
| 6779 | |
| 6780 | template<typename T> |
| 6781 | static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) |
| 6782 | { |
| 6783 | if(ptr != VMA_NULL) |
| 6784 | { |
| 6785 | for(size_t i = count; i--; ) |
| 6786 | ptr[i].~T(); |
| 6787 | VmaFree(hAllocator, ptr); |
| 6788 | } |
| 6789 | } |
| 6790 | |
| 6791 | //////////////////////////////////////////////////////////////////////////////// |
| 6792 | // VmaStringBuilder |
| 6793 | |
| 6794 | #if VMA_STATS_STRING_ENABLED |
| 6795 | |
| 6796 | class VmaStringBuilder |
| 6797 | { |
| 6798 | public: |
| 6799 | VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { } |
| 6800 | size_t GetLength() const { return m_Data.size(); } |
| 6801 | const char* GetData() const { return m_Data.data(); } |
| 6802 | |
| 6803 | void Add(char ch) { m_Data.push_back(ch); } |
| 6804 | void Add(const char* pStr); |
| 6805 | void AddNewLine() { Add('\n'); } |
| 6806 | void AddNumber(uint32_t num); |
| 6807 | void AddNumber(uint64_t num); |
| 6808 | void AddPointer(const void* ptr); |
| 6809 | |
| 6810 | private: |
| 6811 | VmaVector< char, VmaStlAllocator<char> > m_Data; |
| 6812 | }; |
| 6813 | |
| 6814 | void VmaStringBuilder::Add(const char* pStr) |
| 6815 | { |
| 6816 | const size_t strLen = strlen(pStr); |
| 6817 | if(strLen > 0) |
| 6818 | { |
| 6819 | const size_t oldCount = m_Data.size(); |
| 6820 | m_Data.resize(oldCount + strLen); |
| 6821 | memcpy(m_Data.data() + oldCount, pStr, strLen); |
| 6822 | } |
| 6823 | } |
| 6824 | |
| 6825 | void VmaStringBuilder::AddNumber(uint32_t num) |
| 6826 | { |
| 6827 | char buf[11]; |
| 6828 | VmaUint32ToStr(buf, sizeof(buf), num); |
| 6829 | Add(buf); |
| 6830 | } |
| 6831 | |
| 6832 | void VmaStringBuilder::AddNumber(uint64_t num) |
| 6833 | { |
| 6834 | char buf[21]; |
| 6835 | VmaUint64ToStr(buf, sizeof(buf), num); |
| 6836 | Add(buf); |
| 6837 | } |
| 6838 | |
| 6839 | void VmaStringBuilder::AddPointer(const void* ptr) |
| 6840 | { |
| 6841 | char buf[21]; |
| 6842 | VmaPtrToStr(buf, sizeof(buf), ptr); |
| 6843 | Add(buf); |
| 6844 | } |
| 6845 | |
| 6846 | #endif // #if VMA_STATS_STRING_ENABLED |
| 6847 | |
| 6848 | //////////////////////////////////////////////////////////////////////////////// |
| 6849 | // VmaJsonWriter |
| 6850 | |
| 6851 | #if VMA_STATS_STRING_ENABLED |
| 6852 | |
| 6853 | class VmaJsonWriter |
| 6854 | { |
| 6855 | VMA_CLASS_NO_COPY(VmaJsonWriter) |
| 6856 | public: |
| 6857 | VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); |
| 6858 | ~VmaJsonWriter(); |
| 6859 | |
| 6860 | void BeginObject(bool singleLine = false); |
| 6861 | void EndObject(); |
| 6862 | |
| 6863 | void BeginArray(bool singleLine = false); |
| 6864 | void EndArray(); |
| 6865 | |
| 6866 | void WriteString(const char* pStr); |
| 6867 | void BeginString(const char* pStr = VMA_NULL); |
| 6868 | void ContinueString(const char* pStr); |
| 6869 | void ContinueString(uint32_t n); |
| 6870 | void ContinueString(uint64_t n); |
| 6871 | void ContinueString_Pointer(const void* ptr); |
| 6872 | void EndString(const char* pStr = VMA_NULL); |
| 6873 | |
| 6874 | void WriteNumber(uint32_t n); |
| 6875 | void WriteNumber(uint64_t n); |
| 6876 | void WriteBool(bool b); |
| 6877 | void WriteNull(); |
| 6878 | |
| 6879 | private: |
| 6880 | static const char* const INDENT; |
| 6881 | |
| 6882 | enum COLLECTION_TYPE |
| 6883 | { |
| 6884 | COLLECTION_TYPE_OBJECT, |
| 6885 | COLLECTION_TYPE_ARRAY, |
| 6886 | }; |
| 6887 | struct StackItem |
| 6888 | { |
| 6889 | COLLECTION_TYPE type; |
| 6890 | uint32_t valueCount; |
| 6891 | bool singleLineMode; |
| 6892 | }; |
| 6893 | |
| 6894 | VmaStringBuilder& m_SB; |
| 6895 | VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack; |
| 6896 | bool m_InsideString; |
| 6897 | |
| 6898 | void BeginValue(bool isString); |
| 6899 | void WriteIndent(bool oneLess = false); |
| 6900 | }; |
| 6901 | |
| 6902 | const char* const VmaJsonWriter::INDENT = " " ; |
| 6903 | |
| 6904 | VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : |
| 6905 | m_SB(sb), |
| 6906 | m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)), |
| 6907 | m_InsideString(false) |
| 6908 | { |
| 6909 | } |
| 6910 | |
| 6911 | VmaJsonWriter::~VmaJsonWriter() |
| 6912 | { |
| 6913 | VMA_ASSERT(!m_InsideString); |
| 6914 | VMA_ASSERT(m_Stack.empty()); |
| 6915 | } |
| 6916 | |
| 6917 | void VmaJsonWriter::BeginObject(bool singleLine) |
| 6918 | { |
| 6919 | VMA_ASSERT(!m_InsideString); |
| 6920 | |
| 6921 | BeginValue(false); |
| 6922 | m_SB.Add('{'); |
| 6923 | |
| 6924 | StackItem item; |
| 6925 | item.type = COLLECTION_TYPE_OBJECT; |
| 6926 | item.valueCount = 0; |
| 6927 | item.singleLineMode = singleLine; |
| 6928 | m_Stack.push_back(item); |
| 6929 | } |
| 6930 | |
| 6931 | void VmaJsonWriter::EndObject() |
| 6932 | { |
| 6933 | VMA_ASSERT(!m_InsideString); |
| 6934 | |
| 6935 | WriteIndent(true); |
| 6936 | m_SB.Add('}'); |
| 6937 | |
| 6938 | VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); |
| 6939 | m_Stack.pop_back(); |
| 6940 | } |
| 6941 | |
| 6942 | void VmaJsonWriter::BeginArray(bool singleLine) |
| 6943 | { |
| 6944 | VMA_ASSERT(!m_InsideString); |
| 6945 | |
| 6946 | BeginValue(false); |
| 6947 | m_SB.Add('['); |
| 6948 | |
| 6949 | StackItem item; |
| 6950 | item.type = COLLECTION_TYPE_ARRAY; |
| 6951 | item.valueCount = 0; |
| 6952 | item.singleLineMode = singleLine; |
| 6953 | m_Stack.push_back(item); |
| 6954 | } |
| 6955 | |
| 6956 | void VmaJsonWriter::EndArray() |
| 6957 | { |
| 6958 | VMA_ASSERT(!m_InsideString); |
| 6959 | |
| 6960 | WriteIndent(true); |
| 6961 | m_SB.Add(']'); |
| 6962 | |
| 6963 | VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); |
| 6964 | m_Stack.pop_back(); |
| 6965 | } |
| 6966 | |
| 6967 | void VmaJsonWriter::WriteString(const char* pStr) |
| 6968 | { |
| 6969 | BeginString(pStr); |
| 6970 | EndString(); |
| 6971 | } |
| 6972 | |
| 6973 | void VmaJsonWriter::BeginString(const char* pStr) |
| 6974 | { |
| 6975 | VMA_ASSERT(!m_InsideString); |
| 6976 | |
| 6977 | BeginValue(true); |
| 6978 | m_SB.Add('"'); |
| 6979 | m_InsideString = true; |
| 6980 | if(pStr != VMA_NULL && pStr[0] != '\0') |
| 6981 | { |
| 6982 | ContinueString(pStr); |
| 6983 | } |
| 6984 | } |
| 6985 | |
| 6986 | void VmaJsonWriter::ContinueString(const char* pStr) |
| 6987 | { |
| 6988 | VMA_ASSERT(m_InsideString); |
| 6989 | |
| 6990 | const size_t strLen = strlen(pStr); |
| 6991 | for(size_t i = 0; i < strLen; ++i) |
| 6992 | { |
| 6993 | char ch = pStr[i]; |
| 6994 | if(ch == '\\') |
| 6995 | { |
| 6996 | m_SB.Add("\\\\" ); |
| 6997 | } |
| 6998 | else if(ch == '"') |
| 6999 | { |
| 7000 | m_SB.Add("\\\"" ); |
| 7001 | } |
| 7002 | else if(ch >= 32) |
| 7003 | { |
| 7004 | m_SB.Add(ch); |
| 7005 | } |
| 7006 | else switch(ch) |
| 7007 | { |
| 7008 | case '\b': |
| 7009 | m_SB.Add("\\b" ); |
| 7010 | break; |
| 7011 | case '\f': |
| 7012 | m_SB.Add("\\f" ); |
| 7013 | break; |
| 7014 | case '\n': |
| 7015 | m_SB.Add("\\n" ); |
| 7016 | break; |
| 7017 | case '\r': |
| 7018 | m_SB.Add("\\r" ); |
| 7019 | break; |
| 7020 | case '\t': |
| 7021 | m_SB.Add("\\t" ); |
| 7022 | break; |
| 7023 | default: |
| 7024 | VMA_ASSERT(0 && "Character not currently supported." ); |
| 7025 | break; |
| 7026 | } |
| 7027 | } |
| 7028 | } |
| 7029 | |
| 7030 | void VmaJsonWriter::ContinueString(uint32_t n) |
| 7031 | { |
| 7032 | VMA_ASSERT(m_InsideString); |
| 7033 | m_SB.AddNumber(n); |
| 7034 | } |
| 7035 | |
| 7036 | void VmaJsonWriter::ContinueString(uint64_t n) |
| 7037 | { |
| 7038 | VMA_ASSERT(m_InsideString); |
| 7039 | m_SB.AddNumber(n); |
| 7040 | } |
| 7041 | |
| 7042 | void VmaJsonWriter::ContinueString_Pointer(const void* ptr) |
| 7043 | { |
| 7044 | VMA_ASSERT(m_InsideString); |
| 7045 | m_SB.AddPointer(ptr); |
| 7046 | } |
| 7047 | |
| 7048 | void VmaJsonWriter::EndString(const char* pStr) |
| 7049 | { |
| 7050 | VMA_ASSERT(m_InsideString); |
| 7051 | if(pStr != VMA_NULL && pStr[0] != '\0') |
| 7052 | { |
| 7053 | ContinueString(pStr); |
| 7054 | } |
| 7055 | m_SB.Add('"'); |
| 7056 | m_InsideString = false; |
| 7057 | } |
| 7058 | |
| 7059 | void VmaJsonWriter::WriteNumber(uint32_t n) |
| 7060 | { |
| 7061 | VMA_ASSERT(!m_InsideString); |
| 7062 | BeginValue(false); |
| 7063 | m_SB.AddNumber(n); |
| 7064 | } |
| 7065 | |
| 7066 | void VmaJsonWriter::WriteNumber(uint64_t n) |
| 7067 | { |
| 7068 | VMA_ASSERT(!m_InsideString); |
| 7069 | BeginValue(false); |
| 7070 | m_SB.AddNumber(n); |
| 7071 | } |
| 7072 | |
| 7073 | void VmaJsonWriter::WriteBool(bool b) |
| 7074 | { |
| 7075 | VMA_ASSERT(!m_InsideString); |
| 7076 | BeginValue(false); |
| 7077 | m_SB.Add(b ? "true" : "false" ); |
| 7078 | } |
| 7079 | |
| 7080 | void VmaJsonWriter::WriteNull() |
| 7081 | { |
| 7082 | VMA_ASSERT(!m_InsideString); |
| 7083 | BeginValue(false); |
| 7084 | m_SB.Add("null" ); |
| 7085 | } |
| 7086 | |
| 7087 | void VmaJsonWriter::BeginValue(bool isString) |
| 7088 | { |
| 7089 | if(!m_Stack.empty()) |
| 7090 | { |
| 7091 | StackItem& currItem = m_Stack.back(); |
| 7092 | if(currItem.type == COLLECTION_TYPE_OBJECT && |
| 7093 | currItem.valueCount % 2 == 0) |
| 7094 | { |
| 7095 | (void) isString; |
| 7096 | VMA_ASSERT(isString); |
| 7097 | } |
| 7098 | |
| 7099 | if(currItem.type == COLLECTION_TYPE_OBJECT && |
| 7100 | currItem.valueCount % 2 != 0) |
| 7101 | { |
| 7102 | m_SB.Add(": " ); |
| 7103 | } |
| 7104 | else if(currItem.valueCount > 0) |
| 7105 | { |
| 7106 | m_SB.Add(", " ); |
| 7107 | WriteIndent(); |
| 7108 | } |
| 7109 | else |
| 7110 | { |
| 7111 | WriteIndent(); |
| 7112 | } |
| 7113 | ++currItem.valueCount; |
| 7114 | } |
| 7115 | } |
| 7116 | |
| 7117 | void VmaJsonWriter::WriteIndent(bool oneLess) |
| 7118 | { |
| 7119 | if(!m_Stack.empty() && !m_Stack.back().singleLineMode) |
| 7120 | { |
| 7121 | m_SB.AddNewLine(); |
| 7122 | |
| 7123 | size_t count = m_Stack.size(); |
| 7124 | if(count > 0 && oneLess) |
| 7125 | { |
| 7126 | --count; |
| 7127 | } |
| 7128 | for(size_t i = 0; i < count; ++i) |
| 7129 | { |
| 7130 | m_SB.Add(INDENT); |
| 7131 | } |
| 7132 | } |
| 7133 | } |
| 7134 | |
| 7135 | #endif // #if VMA_STATS_STRING_ENABLED |
| 7136 | |
| 7137 | //////////////////////////////////////////////////////////////////////////////// |
| 7138 | |
| 7139 | void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) |
| 7140 | { |
| 7141 | if(IsUserDataString()) |
| 7142 | { |
| 7143 | VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); |
| 7144 | |
| 7145 | FreeUserDataString(hAllocator); |
| 7146 | |
| 7147 | if(pUserData != VMA_NULL) |
| 7148 | { |
| 7149 | const char* const newStrSrc = (char*)pUserData; |
| 7150 | const size_t newStrLen = strlen(newStrSrc); |
| 7151 | char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1); |
| 7152 | memcpy(newStrDst, newStrSrc, newStrLen + 1); |
| 7153 | m_pUserData = newStrDst; |
| 7154 | } |
| 7155 | } |
| 7156 | else |
| 7157 | { |
| 7158 | m_pUserData = pUserData; |
| 7159 | } |
| 7160 | } |
| 7161 | |
| 7162 | void VmaAllocation_T::ChangeBlockAllocation( |
| 7163 | VmaAllocator hAllocator, |
| 7164 | VmaDeviceMemoryBlock* block, |
| 7165 | VkDeviceSize offset) |
| 7166 | { |
| 7167 | VMA_ASSERT(block != VMA_NULL); |
| 7168 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); |
| 7169 | |
| 7170 | // Move mapping reference counter from old block to new block. |
| 7171 | if(block != m_BlockAllocation.m_Block) |
| 7172 | { |
| 7173 | uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; |
| 7174 | if(IsPersistentMap()) |
| 7175 | ++mapRefCount; |
| 7176 | m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); |
| 7177 | block->Map(hAllocator, mapRefCount, VMA_NULL); |
| 7178 | } |
| 7179 | |
| 7180 | m_BlockAllocation.m_Block = block; |
| 7181 | m_BlockAllocation.m_Offset = offset; |
| 7182 | } |
| 7183 | |
| 7184 | void VmaAllocation_T::ChangeSize(VkDeviceSize newSize) |
| 7185 | { |
| 7186 | VMA_ASSERT(newSize > 0); |
| 7187 | m_Size = newSize; |
| 7188 | } |
| 7189 | |
| 7190 | void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) |
| 7191 | { |
| 7192 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); |
| 7193 | m_BlockAllocation.m_Offset = newOffset; |
| 7194 | } |
| 7195 | |
| 7196 | VkDeviceSize VmaAllocation_T::GetOffset() const |
| 7197 | { |
| 7198 | switch(m_Type) |
| 7199 | { |
| 7200 | case ALLOCATION_TYPE_BLOCK: |
| 7201 | return m_BlockAllocation.m_Offset; |
| 7202 | case ALLOCATION_TYPE_DEDICATED: |
| 7203 | return 0; |
| 7204 | default: |
| 7205 | VMA_ASSERT(0); |
| 7206 | return 0; |
| 7207 | } |
| 7208 | } |
| 7209 | |
| 7210 | VkDeviceMemory VmaAllocation_T::GetMemory() const |
| 7211 | { |
| 7212 | switch(m_Type) |
| 7213 | { |
| 7214 | case ALLOCATION_TYPE_BLOCK: |
| 7215 | return m_BlockAllocation.m_Block->GetDeviceMemory(); |
| 7216 | case ALLOCATION_TYPE_DEDICATED: |
| 7217 | return m_DedicatedAllocation.m_hMemory; |
| 7218 | default: |
| 7219 | VMA_ASSERT(0); |
| 7220 | return VK_NULL_HANDLE; |
| 7221 | } |
| 7222 | } |
| 7223 | |
| 7224 | uint32_t VmaAllocation_T::GetMemoryTypeIndex() const |
| 7225 | { |
| 7226 | switch(m_Type) |
| 7227 | { |
| 7228 | case ALLOCATION_TYPE_BLOCK: |
| 7229 | return m_BlockAllocation.m_Block->GetMemoryTypeIndex(); |
| 7230 | case ALLOCATION_TYPE_DEDICATED: |
| 7231 | return m_DedicatedAllocation.m_MemoryTypeIndex; |
| 7232 | default: |
| 7233 | VMA_ASSERT(0); |
| 7234 | return UINT32_MAX; |
| 7235 | } |
| 7236 | } |
| 7237 | |
| 7238 | void* VmaAllocation_T::GetMappedData() const |
| 7239 | { |
| 7240 | switch(m_Type) |
| 7241 | { |
| 7242 | case ALLOCATION_TYPE_BLOCK: |
| 7243 | if(m_MapCount != 0) |
| 7244 | { |
| 7245 | void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); |
| 7246 | VMA_ASSERT(pBlockData != VMA_NULL); |
| 7247 | return (char*)pBlockData + m_BlockAllocation.m_Offset; |
| 7248 | } |
| 7249 | else |
| 7250 | { |
| 7251 | return VMA_NULL; |
| 7252 | } |
| 7253 | break; |
| 7254 | case ALLOCATION_TYPE_DEDICATED: |
| 7255 | VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); |
| 7256 | return m_DedicatedAllocation.m_pMappedData; |
| 7257 | default: |
| 7258 | VMA_ASSERT(0); |
| 7259 | return VMA_NULL; |
| 7260 | } |
| 7261 | } |
| 7262 | |
| 7263 | bool VmaAllocation_T::CanBecomeLost() const |
| 7264 | { |
| 7265 | switch(m_Type) |
| 7266 | { |
| 7267 | case ALLOCATION_TYPE_BLOCK: |
| 7268 | return m_BlockAllocation.m_CanBecomeLost; |
| 7269 | case ALLOCATION_TYPE_DEDICATED: |
| 7270 | return false; |
| 7271 | default: |
| 7272 | VMA_ASSERT(0); |
| 7273 | return false; |
| 7274 | } |
| 7275 | } |
| 7276 | |
| 7277 | VmaPool VmaAllocation_T::GetPool() const |
| 7278 | { |
| 7279 | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); |
| 7280 | return m_BlockAllocation.m_hPool; |
| 7281 | } |
| 7282 | |
| 7283 | bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) |
| 7284 | { |
| 7285 | VMA_ASSERT(CanBecomeLost()); |
| 7286 | |
| 7287 | /* |
| 7288 | Warning: This is a carefully designed algorithm. |
| 7289 | Do not modify unless you really know what you're doing :) |
| 7290 | */ |
| 7291 | uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); |
| 7292 | for(;;) |
| 7293 | { |
| 7294 | if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) |
| 7295 | { |
| 7296 | VMA_ASSERT(0); |
| 7297 | return false; |
| 7298 | } |
| 7299 | else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) |
| 7300 | { |
| 7301 | return false; |
| 7302 | } |
| 7303 | else // Last use time earlier than current time. |
| 7304 | { |
| 7305 | if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) |
| 7306 | { |
| 7307 | // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. |
| 7308 | // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. |
| 7309 | return true; |
| 7310 | } |
| 7311 | } |
| 7312 | } |
| 7313 | } |
| 7314 | |
| 7315 | #if VMA_STATS_STRING_ENABLED |
| 7316 | |
| 7317 | // Correspond to values of enum VmaSuballocationType. |
| 7318 | static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { |
| 7319 | "FREE" , |
| 7320 | "UNKNOWN" , |
| 7321 | "BUFFER" , |
| 7322 | "IMAGE_UNKNOWN" , |
| 7323 | "IMAGE_LINEAR" , |
| 7324 | "IMAGE_OPTIMAL" , |
| 7325 | }; |
| 7326 | |
| 7327 | void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const |
| 7328 | { |
| 7329 | json.WriteString("Type" ); |
| 7330 | json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); |
| 7331 | |
| 7332 | json.WriteString("Size" ); |
| 7333 | json.WriteNumber(m_Size); |
| 7334 | |
| 7335 | if(m_pUserData != VMA_NULL) |
| 7336 | { |
| 7337 | json.WriteString("UserData" ); |
| 7338 | if(IsUserDataString()) |
| 7339 | { |
| 7340 | json.WriteString((const char*)m_pUserData); |
| 7341 | } |
| 7342 | else |
| 7343 | { |
| 7344 | json.BeginString(); |
| 7345 | json.ContinueString_Pointer(m_pUserData); |
| 7346 | json.EndString(); |
| 7347 | } |
| 7348 | } |
| 7349 | |
| 7350 | json.WriteString("CreationFrameIndex" ); |
| 7351 | json.WriteNumber(m_CreationFrameIndex); |
| 7352 | |
| 7353 | json.WriteString("LastUseFrameIndex" ); |
| 7354 | json.WriteNumber(GetLastUseFrameIndex()); |
| 7355 | |
| 7356 | if(m_BufferImageUsage != 0) |
| 7357 | { |
| 7358 | json.WriteString("Usage" ); |
| 7359 | json.WriteNumber(m_BufferImageUsage); |
| 7360 | } |
| 7361 | } |
| 7362 | |
| 7363 | #endif |
| 7364 | |
| 7365 | void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) |
| 7366 | { |
| 7367 | VMA_ASSERT(IsUserDataString()); |
| 7368 | if(m_pUserData != VMA_NULL) |
| 7369 | { |
| 7370 | char* const oldStr = (char*)m_pUserData; |
| 7371 | const size_t oldStrLen = strlen(oldStr); |
| 7372 | vma_delete_array(hAllocator, oldStr, oldStrLen + 1); |
| 7373 | m_pUserData = VMA_NULL; |
| 7374 | } |
| 7375 | } |
| 7376 | |
| 7377 | void VmaAllocation_T::BlockAllocMap() |
| 7378 | { |
| 7379 | VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); |
| 7380 | |
| 7381 | if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) |
| 7382 | { |
| 7383 | ++m_MapCount; |
| 7384 | } |
| 7385 | else |
| 7386 | { |
| 7387 | VMA_ASSERT(0 && "Allocation mapped too many times simultaneously." ); |
| 7388 | } |
| 7389 | } |
| 7390 | |
| 7391 | void VmaAllocation_T::BlockAllocUnmap() |
| 7392 | { |
| 7393 | VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); |
| 7394 | |
| 7395 | if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) |
| 7396 | { |
| 7397 | --m_MapCount; |
| 7398 | } |
| 7399 | else |
| 7400 | { |
| 7401 | VMA_ASSERT(0 && "Unmapping allocation not previously mapped." ); |
| 7402 | } |
| 7403 | } |
| 7404 | |
| 7405 | VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) |
| 7406 | { |
| 7407 | VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); |
| 7408 | |
| 7409 | if(m_MapCount != 0) |
| 7410 | { |
| 7411 | if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) |
| 7412 | { |
| 7413 | VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); |
| 7414 | *ppData = m_DedicatedAllocation.m_pMappedData; |
| 7415 | ++m_MapCount; |
| 7416 | return VK_SUCCESS; |
| 7417 | } |
| 7418 | else |
| 7419 | { |
| 7420 | VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously." ); |
| 7421 | return VK_ERROR_MEMORY_MAP_FAILED; |
| 7422 | } |
| 7423 | } |
| 7424 | else |
| 7425 | { |
| 7426 | VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( |
| 7427 | hAllocator->m_hDevice, |
| 7428 | m_DedicatedAllocation.m_hMemory, |
| 7429 | 0, // offset |
| 7430 | VK_WHOLE_SIZE, |
| 7431 | 0, // flags |
| 7432 | ppData); |
| 7433 | if(result == VK_SUCCESS) |
| 7434 | { |
| 7435 | m_DedicatedAllocation.m_pMappedData = *ppData; |
| 7436 | m_MapCount = 1; |
| 7437 | } |
| 7438 | return result; |
| 7439 | } |
| 7440 | } |
| 7441 | |
| 7442 | void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) |
| 7443 | { |
| 7444 | VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); |
| 7445 | |
| 7446 | if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) |
| 7447 | { |
| 7448 | --m_MapCount; |
| 7449 | if(m_MapCount == 0) |
| 7450 | { |
| 7451 | m_DedicatedAllocation.m_pMappedData = VMA_NULL; |
| 7452 | (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( |
| 7453 | hAllocator->m_hDevice, |
| 7454 | m_DedicatedAllocation.m_hMemory); |
| 7455 | } |
| 7456 | } |
| 7457 | else |
| 7458 | { |
| 7459 | VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped." ); |
| 7460 | } |
| 7461 | } |
| 7462 | |
| 7463 | #if VMA_STATS_STRING_ENABLED |
| 7464 | |
| 7465 | static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) |
| 7466 | { |
| 7467 | json.BeginObject(); |
| 7468 | |
| 7469 | json.WriteString("Blocks" ); |
| 7470 | json.WriteNumber(stat.blockCount); |
| 7471 | |
| 7472 | json.WriteString("Allocations" ); |
| 7473 | json.WriteNumber(stat.allocationCount); |
| 7474 | |
| 7475 | json.WriteString("UnusedRanges" ); |
| 7476 | json.WriteNumber(stat.unusedRangeCount); |
| 7477 | |
| 7478 | json.WriteString("UsedBytes" ); |
| 7479 | json.WriteNumber(stat.usedBytes); |
| 7480 | |
| 7481 | json.WriteString("UnusedBytes" ); |
| 7482 | json.WriteNumber(stat.unusedBytes); |
| 7483 | |
| 7484 | if(stat.allocationCount > 1) |
| 7485 | { |
| 7486 | json.WriteString("AllocationSize" ); |
| 7487 | json.BeginObject(true); |
| 7488 | json.WriteString("Min" ); |
| 7489 | json.WriteNumber(stat.allocationSizeMin); |
| 7490 | json.WriteString("Avg" ); |
| 7491 | json.WriteNumber(stat.allocationSizeAvg); |
| 7492 | json.WriteString("Max" ); |
| 7493 | json.WriteNumber(stat.allocationSizeMax); |
| 7494 | json.EndObject(); |
| 7495 | } |
| 7496 | |
| 7497 | if(stat.unusedRangeCount > 1) |
| 7498 | { |
| 7499 | json.WriteString("UnusedRangeSize" ); |
| 7500 | json.BeginObject(true); |
| 7501 | json.WriteString("Min" ); |
| 7502 | json.WriteNumber(stat.unusedRangeSizeMin); |
| 7503 | json.WriteString("Avg" ); |
| 7504 | json.WriteNumber(stat.unusedRangeSizeAvg); |
| 7505 | json.WriteString("Max" ); |
| 7506 | json.WriteNumber(stat.unusedRangeSizeMax); |
| 7507 | json.EndObject(); |
| 7508 | } |
| 7509 | |
| 7510 | json.EndObject(); |
| 7511 | } |
| 7512 | |
| 7513 | #endif // #if VMA_STATS_STRING_ENABLED |
| 7514 | |
| 7515 | struct VmaSuballocationItemSizeLess |
| 7516 | { |
| 7517 | bool operator()( |
| 7518 | const VmaSuballocationList::iterator lhs, |
| 7519 | const VmaSuballocationList::iterator rhs) const |
| 7520 | { |
| 7521 | return lhs->size < rhs->size; |
| 7522 | } |
| 7523 | bool operator()( |
| 7524 | const VmaSuballocationList::iterator lhs, |
| 7525 | VkDeviceSize rhsSize) const |
| 7526 | { |
| 7527 | return lhs->size < rhsSize; |
| 7528 | } |
| 7529 | }; |
| 7530 | |
| 7531 | |
| 7532 | //////////////////////////////////////////////////////////////////////////////// |
| 7533 | // class VmaBlockMetadata |
| 7534 | |
| 7535 | VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : |
| 7536 | m_Size(0), |
| 7537 | m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) |
| 7538 | { |
| 7539 | } |
| 7540 | |
| 7541 | #if VMA_STATS_STRING_ENABLED |
| 7542 | |
| 7543 | void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, |
| 7544 | VkDeviceSize unusedBytes, |
| 7545 | size_t allocationCount, |
| 7546 | size_t unusedRangeCount) const |
| 7547 | { |
| 7548 | json.BeginObject(); |
| 7549 | |
| 7550 | json.WriteString("TotalBytes" ); |
| 7551 | json.WriteNumber(GetSize()); |
| 7552 | |
| 7553 | json.WriteString("UnusedBytes" ); |
| 7554 | json.WriteNumber(unusedBytes); |
| 7555 | |
| 7556 | json.WriteString("Allocations" ); |
| 7557 | json.WriteNumber((uint64_t)allocationCount); |
| 7558 | |
| 7559 | json.WriteString("UnusedRanges" ); |
| 7560 | json.WriteNumber((uint64_t)unusedRangeCount); |
| 7561 | |
| 7562 | json.WriteString("Suballocations" ); |
| 7563 | json.BeginArray(); |
| 7564 | } |
| 7565 | |
| 7566 | void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, |
| 7567 | VkDeviceSize offset, |
| 7568 | VmaAllocation hAllocation) const |
| 7569 | { |
| 7570 | json.BeginObject(true); |
| 7571 | |
| 7572 | json.WriteString("Offset" ); |
| 7573 | json.WriteNumber(offset); |
| 7574 | |
| 7575 | hAllocation->PrintParameters(json); |
| 7576 | |
| 7577 | json.EndObject(); |
| 7578 | } |
| 7579 | |
| 7580 | void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, |
| 7581 | VkDeviceSize offset, |
| 7582 | VkDeviceSize size) const |
| 7583 | { |
| 7584 | json.BeginObject(true); |
| 7585 | |
| 7586 | json.WriteString("Offset" ); |
| 7587 | json.WriteNumber(offset); |
| 7588 | |
| 7589 | json.WriteString("Type" ); |
| 7590 | json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); |
| 7591 | |
| 7592 | json.WriteString("Size" ); |
| 7593 | json.WriteNumber(size); |
| 7594 | |
| 7595 | json.EndObject(); |
| 7596 | } |
| 7597 | |
| 7598 | void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const |
| 7599 | { |
| 7600 | json.EndArray(); |
| 7601 | json.EndObject(); |
| 7602 | } |
| 7603 | |
| 7604 | #endif // #if VMA_STATS_STRING_ENABLED |
| 7605 | |
| 7606 | //////////////////////////////////////////////////////////////////////////////// |
| 7607 | // class VmaBlockMetadata_Generic |
| 7608 | |
| 7609 | VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : |
| 7610 | VmaBlockMetadata(hAllocator), |
| 7611 | m_FreeCount(0), |
| 7612 | m_SumFreeSize(0), |
| 7613 | m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), |
| 7614 | m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks())) |
| 7615 | { |
| 7616 | } |
| 7617 | |
| 7618 | VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() |
| 7619 | { |
| 7620 | } |
| 7621 | |
| 7622 | void VmaBlockMetadata_Generic::Init(VkDeviceSize size) |
| 7623 | { |
| 7624 | VmaBlockMetadata::Init(size); |
| 7625 | |
| 7626 | m_FreeCount = 1; |
| 7627 | m_SumFreeSize = size; |
| 7628 | |
| 7629 | VmaSuballocation suballoc = {}; |
| 7630 | suballoc.offset = 0; |
| 7631 | suballoc.size = size; |
| 7632 | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 7633 | suballoc.hAllocation = VK_NULL_HANDLE; |
| 7634 | |
| 7635 | VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); |
| 7636 | m_Suballocations.push_back(suballoc); |
| 7637 | VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); |
| 7638 | --suballocItem; |
| 7639 | m_FreeSuballocationsBySize.push_back(suballocItem); |
| 7640 | } |
| 7641 | |
| 7642 | bool VmaBlockMetadata_Generic::Validate() const |
| 7643 | { |
| 7644 | VMA_VALIDATE(!m_Suballocations.empty()); |
| 7645 | |
| 7646 | // Expected offset of new suballocation as calculated from previous ones. |
| 7647 | VkDeviceSize calculatedOffset = 0; |
| 7648 | // Expected number of free suballocations as calculated from traversing their list. |
| 7649 | uint32_t calculatedFreeCount = 0; |
| 7650 | // Expected sum size of free suballocations as calculated from traversing their list. |
| 7651 | VkDeviceSize calculatedSumFreeSize = 0; |
| 7652 | // Expected number of free suballocations that should be registered in |
| 7653 | // m_FreeSuballocationsBySize calculated from traversing their list. |
| 7654 | size_t freeSuballocationsToRegister = 0; |
| 7655 | // True if previous visited suballocation was free. |
| 7656 | bool prevFree = false; |
| 7657 | |
| 7658 | for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); |
| 7659 | suballocItem != m_Suballocations.cend(); |
| 7660 | ++suballocItem) |
| 7661 | { |
| 7662 | const VmaSuballocation& subAlloc = *suballocItem; |
| 7663 | |
| 7664 | // Actual offset of this suballocation doesn't match expected one. |
| 7665 | VMA_VALIDATE(subAlloc.offset == calculatedOffset); |
| 7666 | |
| 7667 | const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 7668 | // Two adjacent free suballocations are invalid. They should be merged. |
| 7669 | VMA_VALIDATE(!prevFree || !currFree); |
| 7670 | |
| 7671 | VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); |
| 7672 | |
| 7673 | if(currFree) |
| 7674 | { |
| 7675 | calculatedSumFreeSize += subAlloc.size; |
| 7676 | ++calculatedFreeCount; |
| 7677 | if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 7678 | { |
| 7679 | ++freeSuballocationsToRegister; |
| 7680 | } |
| 7681 | |
| 7682 | // Margin required between allocations - every free space must be at least that large. |
| 7683 | #if VMA_DEBUG_MARGIN |
| 7684 | VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); |
| 7685 | #endif |
| 7686 | } |
| 7687 | else |
| 7688 | { |
| 7689 | VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); |
| 7690 | VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); |
| 7691 | |
| 7692 | // Margin required between allocations - previous allocation must be free. |
| 7693 | VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); |
| 7694 | } |
| 7695 | |
| 7696 | calculatedOffset += subAlloc.size; |
| 7697 | prevFree = currFree; |
| 7698 | } |
| 7699 | |
| 7700 | // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't |
| 7701 | // match expected one. |
| 7702 | VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); |
| 7703 | |
| 7704 | VkDeviceSize lastSize = 0; |
| 7705 | for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) |
| 7706 | { |
| 7707 | VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; |
| 7708 | |
| 7709 | // Only free suballocations can be registered in m_FreeSuballocationsBySize. |
| 7710 | VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 7711 | // They must be sorted by size ascending. |
| 7712 | VMA_VALIDATE(suballocItem->size >= lastSize); |
| 7713 | |
| 7714 | lastSize = suballocItem->size; |
| 7715 | } |
| 7716 | |
| 7717 | // Check if totals match calculacted values. |
| 7718 | VMA_VALIDATE(ValidateFreeSuballocationList()); |
| 7719 | VMA_VALIDATE(calculatedOffset == GetSize()); |
| 7720 | VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); |
| 7721 | VMA_VALIDATE(calculatedFreeCount == m_FreeCount); |
| 7722 | |
| 7723 | return true; |
| 7724 | } |
| 7725 | |
| 7726 | VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const |
| 7727 | { |
| 7728 | if(!m_FreeSuballocationsBySize.empty()) |
| 7729 | { |
| 7730 | return m_FreeSuballocationsBySize.back()->size; |
| 7731 | } |
| 7732 | else |
| 7733 | { |
| 7734 | return 0; |
| 7735 | } |
| 7736 | } |
| 7737 | |
| 7738 | bool VmaBlockMetadata_Generic::IsEmpty() const |
| 7739 | { |
| 7740 | return (m_Suballocations.size() == 1) && (m_FreeCount == 1); |
| 7741 | } |
| 7742 | |
| 7743 | void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const |
| 7744 | { |
| 7745 | outInfo.blockCount = 1; |
| 7746 | |
| 7747 | const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); |
| 7748 | outInfo.allocationCount = rangeCount - m_FreeCount; |
| 7749 | outInfo.unusedRangeCount = m_FreeCount; |
| 7750 | |
| 7751 | outInfo.unusedBytes = m_SumFreeSize; |
| 7752 | outInfo.usedBytes = GetSize() - outInfo.unusedBytes; |
| 7753 | |
| 7754 | outInfo.allocationSizeMin = UINT64_MAX; |
| 7755 | outInfo.allocationSizeMax = 0; |
| 7756 | outInfo.unusedRangeSizeMin = UINT64_MAX; |
| 7757 | outInfo.unusedRangeSizeMax = 0; |
| 7758 | |
| 7759 | for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); |
| 7760 | suballocItem != m_Suballocations.cend(); |
| 7761 | ++suballocItem) |
| 7762 | { |
| 7763 | const VmaSuballocation& suballoc = *suballocItem; |
| 7764 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) |
| 7765 | { |
| 7766 | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); |
| 7767 | outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); |
| 7768 | } |
| 7769 | else |
| 7770 | { |
| 7771 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); |
| 7772 | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); |
| 7773 | } |
| 7774 | } |
| 7775 | } |
| 7776 | |
| 7777 | void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const |
| 7778 | { |
| 7779 | const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); |
| 7780 | |
| 7781 | inoutStats.size += GetSize(); |
| 7782 | inoutStats.unusedSize += m_SumFreeSize; |
| 7783 | inoutStats.allocationCount += rangeCount - m_FreeCount; |
| 7784 | inoutStats.unusedRangeCount += m_FreeCount; |
| 7785 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); |
| 7786 | } |
| 7787 | |
| 7788 | #if VMA_STATS_STRING_ENABLED |
| 7789 | |
| 7790 | void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const |
| 7791 | { |
| 7792 | PrintDetailedMap_Begin(json, |
| 7793 | m_SumFreeSize, // unusedBytes |
| 7794 | m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount |
| 7795 | m_FreeCount); // unusedRangeCount |
| 7796 | |
| 7797 | size_t i = 0; |
| 7798 | for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); |
| 7799 | suballocItem != m_Suballocations.cend(); |
| 7800 | ++suballocItem, ++i) |
| 7801 | { |
| 7802 | if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 7803 | { |
| 7804 | PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size); |
| 7805 | } |
| 7806 | else |
| 7807 | { |
| 7808 | PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation); |
| 7809 | } |
| 7810 | } |
| 7811 | |
| 7812 | PrintDetailedMap_End(json); |
| 7813 | } |
| 7814 | |
| 7815 | #endif // #if VMA_STATS_STRING_ENABLED |
| 7816 | |
| 7817 | bool VmaBlockMetadata_Generic::CreateAllocationRequest( |
| 7818 | uint32_t currentFrameIndex, |
| 7819 | uint32_t frameInUseCount, |
| 7820 | VkDeviceSize bufferImageGranularity, |
| 7821 | VkDeviceSize allocSize, |
| 7822 | VkDeviceSize allocAlignment, |
| 7823 | bool upperAddress, |
| 7824 | VmaSuballocationType allocType, |
| 7825 | bool canMakeOtherLost, |
| 7826 | uint32_t strategy, |
| 7827 | VmaAllocationRequest* pAllocationRequest) |
| 7828 | { |
| 7829 | VMA_ASSERT(allocSize > 0); |
| 7830 | VMA_ASSERT(!upperAddress); |
| 7831 | (void) upperAddress; |
| 7832 | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); |
| 7833 | VMA_ASSERT(pAllocationRequest != VMA_NULL); |
| 7834 | VMA_HEAVY_ASSERT(Validate()); |
| 7835 | |
| 7836 | // There is not enough total free space in this block to fullfill the request: Early return. |
| 7837 | if(canMakeOtherLost == false && |
| 7838 | m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) |
| 7839 | { |
| 7840 | return false; |
| 7841 | } |
| 7842 | |
| 7843 | // New algorithm, efficiently searching freeSuballocationsBySize. |
| 7844 | const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); |
| 7845 | if(freeSuballocCount > 0) |
| 7846 | { |
| 7847 | if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) |
| 7848 | { |
| 7849 | // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. |
| 7850 | VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( |
| 7851 | m_FreeSuballocationsBySize.data(), |
| 7852 | m_FreeSuballocationsBySize.data() + freeSuballocCount, |
| 7853 | allocSize + 2 * VMA_DEBUG_MARGIN, |
| 7854 | VmaSuballocationItemSizeLess()); |
| 7855 | size_t index = it - m_FreeSuballocationsBySize.data(); |
| 7856 | for(; index < freeSuballocCount; ++index) |
| 7857 | { |
| 7858 | if(CheckAllocation( |
| 7859 | currentFrameIndex, |
| 7860 | frameInUseCount, |
| 7861 | bufferImageGranularity, |
| 7862 | allocSize, |
| 7863 | allocAlignment, |
| 7864 | allocType, |
| 7865 | m_FreeSuballocationsBySize[index], |
| 7866 | false, // canMakeOtherLost |
| 7867 | &pAllocationRequest->offset, |
| 7868 | &pAllocationRequest->itemsToMakeLostCount, |
| 7869 | &pAllocationRequest->sumFreeSize, |
| 7870 | &pAllocationRequest->sumItemSize)) |
| 7871 | { |
| 7872 | pAllocationRequest->item = m_FreeSuballocationsBySize[index]; |
| 7873 | return true; |
| 7874 | } |
| 7875 | } |
| 7876 | } |
| 7877 | else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) |
| 7878 | { |
| 7879 | for(VmaSuballocationList::iterator it = m_Suballocations.begin(); |
| 7880 | it != m_Suballocations.end(); |
| 7881 | ++it) |
| 7882 | { |
| 7883 | if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( |
| 7884 | currentFrameIndex, |
| 7885 | frameInUseCount, |
| 7886 | bufferImageGranularity, |
| 7887 | allocSize, |
| 7888 | allocAlignment, |
| 7889 | allocType, |
| 7890 | it, |
| 7891 | false, // canMakeOtherLost |
| 7892 | &pAllocationRequest->offset, |
| 7893 | &pAllocationRequest->itemsToMakeLostCount, |
| 7894 | &pAllocationRequest->sumFreeSize, |
| 7895 | &pAllocationRequest->sumItemSize)) |
| 7896 | { |
| 7897 | pAllocationRequest->item = it; |
| 7898 | return true; |
| 7899 | } |
| 7900 | } |
| 7901 | } |
| 7902 | else // WORST_FIT, FIRST_FIT |
| 7903 | { |
| 7904 | // Search staring from biggest suballocations. |
| 7905 | for(size_t index = freeSuballocCount; index--; ) |
| 7906 | { |
| 7907 | if(CheckAllocation( |
| 7908 | currentFrameIndex, |
| 7909 | frameInUseCount, |
| 7910 | bufferImageGranularity, |
| 7911 | allocSize, |
| 7912 | allocAlignment, |
| 7913 | allocType, |
| 7914 | m_FreeSuballocationsBySize[index], |
| 7915 | false, // canMakeOtherLost |
| 7916 | &pAllocationRequest->offset, |
| 7917 | &pAllocationRequest->itemsToMakeLostCount, |
| 7918 | &pAllocationRequest->sumFreeSize, |
| 7919 | &pAllocationRequest->sumItemSize)) |
| 7920 | { |
| 7921 | pAllocationRequest->item = m_FreeSuballocationsBySize[index]; |
| 7922 | return true; |
| 7923 | } |
| 7924 | } |
| 7925 | } |
| 7926 | } |
| 7927 | |
| 7928 | if(canMakeOtherLost) |
| 7929 | { |
| 7930 | // Brute-force algorithm. TODO: Come up with something better. |
| 7931 | |
| 7932 | pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE; |
| 7933 | pAllocationRequest->sumItemSize = VK_WHOLE_SIZE; |
| 7934 | |
| 7935 | VmaAllocationRequest tmpAllocRequest = {}; |
| 7936 | for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); |
| 7937 | suballocIt != m_Suballocations.end(); |
| 7938 | ++suballocIt) |
| 7939 | { |
| 7940 | if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || |
| 7941 | suballocIt->hAllocation->CanBecomeLost()) |
| 7942 | { |
| 7943 | if(CheckAllocation( |
| 7944 | currentFrameIndex, |
| 7945 | frameInUseCount, |
| 7946 | bufferImageGranularity, |
| 7947 | allocSize, |
| 7948 | allocAlignment, |
| 7949 | allocType, |
| 7950 | suballocIt, |
| 7951 | canMakeOtherLost, |
| 7952 | &tmpAllocRequest.offset, |
| 7953 | &tmpAllocRequest.itemsToMakeLostCount, |
| 7954 | &tmpAllocRequest.sumFreeSize, |
| 7955 | &tmpAllocRequest.sumItemSize)) |
| 7956 | { |
| 7957 | tmpAllocRequest.item = suballocIt; |
| 7958 | |
| 7959 | if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost() || |
| 7960 | strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) |
| 7961 | { |
| 7962 | *pAllocationRequest = tmpAllocRequest; |
| 7963 | } |
| 7964 | } |
| 7965 | } |
| 7966 | } |
| 7967 | |
| 7968 | if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE) |
| 7969 | { |
| 7970 | return true; |
| 7971 | } |
| 7972 | } |
| 7973 | |
| 7974 | return false; |
| 7975 | } |
| 7976 | |
| 7977 | bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( |
| 7978 | uint32_t currentFrameIndex, |
| 7979 | uint32_t frameInUseCount, |
| 7980 | VmaAllocationRequest* pAllocationRequest) |
| 7981 | { |
| 7982 | while(pAllocationRequest->itemsToMakeLostCount > 0) |
| 7983 | { |
| 7984 | if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 7985 | { |
| 7986 | ++pAllocationRequest->item; |
| 7987 | } |
| 7988 | VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); |
| 7989 | VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); |
| 7990 | VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); |
| 7991 | if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) |
| 7992 | { |
| 7993 | pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); |
| 7994 | --pAllocationRequest->itemsToMakeLostCount; |
| 7995 | } |
| 7996 | else |
| 7997 | { |
| 7998 | return false; |
| 7999 | } |
| 8000 | } |
| 8001 | |
| 8002 | VMA_HEAVY_ASSERT(Validate()); |
| 8003 | VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); |
| 8004 | VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8005 | |
| 8006 | return true; |
| 8007 | } |
| 8008 | |
| 8009 | uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) |
| 8010 | { |
| 8011 | uint32_t lostAllocationCount = 0; |
| 8012 | for(VmaSuballocationList::iterator it = m_Suballocations.begin(); |
| 8013 | it != m_Suballocations.end(); |
| 8014 | ++it) |
| 8015 | { |
| 8016 | if(it->type != VMA_SUBALLOCATION_TYPE_FREE && |
| 8017 | it->hAllocation->CanBecomeLost() && |
| 8018 | it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) |
| 8019 | { |
| 8020 | it = FreeSuballocation(it); |
| 8021 | ++lostAllocationCount; |
| 8022 | } |
| 8023 | } |
| 8024 | return lostAllocationCount; |
| 8025 | } |
| 8026 | |
| 8027 | VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) |
| 8028 | { |
| 8029 | for(VmaSuballocationList::iterator it = m_Suballocations.begin(); |
| 8030 | it != m_Suballocations.end(); |
| 8031 | ++it) |
| 8032 | { |
| 8033 | if(it->type != VMA_SUBALLOCATION_TYPE_FREE) |
| 8034 | { |
| 8035 | if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) |
| 8036 | { |
| 8037 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!" ); |
| 8038 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 8039 | } |
| 8040 | if(!VmaValidateMagicValue(pBlockData, it->offset + it->size)) |
| 8041 | { |
| 8042 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!" ); |
| 8043 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 8044 | } |
| 8045 | } |
| 8046 | } |
| 8047 | |
| 8048 | return VK_SUCCESS; |
| 8049 | } |
| 8050 | |
| 8051 | void VmaBlockMetadata_Generic::Alloc( |
| 8052 | const VmaAllocationRequest& request, |
| 8053 | VmaSuballocationType type, |
| 8054 | VkDeviceSize allocSize, |
| 8055 | bool upperAddress, |
| 8056 | VmaAllocation hAllocation) |
| 8057 | { |
| 8058 | VMA_ASSERT(!upperAddress); |
| 8059 | (void) upperAddress; |
| 8060 | VMA_ASSERT(request.item != m_Suballocations.end()); |
| 8061 | VmaSuballocation& suballoc = *request.item; |
| 8062 | // Given suballocation is a free block. |
| 8063 | VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8064 | // Given offset is inside this suballocation. |
| 8065 | VMA_ASSERT(request.offset >= suballoc.offset); |
| 8066 | const VkDeviceSize paddingBegin = request.offset - suballoc.offset; |
| 8067 | VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); |
| 8068 | const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; |
| 8069 | |
| 8070 | // Unregister this free suballocation from m_FreeSuballocationsBySize and update |
| 8071 | // it to become used. |
| 8072 | UnregisterFreeSuballocation(request.item); |
| 8073 | |
| 8074 | suballoc.offset = request.offset; |
| 8075 | suballoc.size = allocSize; |
| 8076 | suballoc.type = type; |
| 8077 | suballoc.hAllocation = hAllocation; |
| 8078 | |
| 8079 | // If there are any free bytes remaining at the end, insert new free suballocation after current one. |
| 8080 | if(paddingEnd) |
| 8081 | { |
| 8082 | VmaSuballocation paddingSuballoc = {}; |
| 8083 | paddingSuballoc.offset = request.offset + allocSize; |
| 8084 | paddingSuballoc.size = paddingEnd; |
| 8085 | paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 8086 | VmaSuballocationList::iterator next = request.item; |
| 8087 | ++next; |
| 8088 | const VmaSuballocationList::iterator paddingEndItem = |
| 8089 | m_Suballocations.insert(next, paddingSuballoc); |
| 8090 | RegisterFreeSuballocation(paddingEndItem); |
| 8091 | } |
| 8092 | |
| 8093 | // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. |
| 8094 | if(paddingBegin) |
| 8095 | { |
| 8096 | VmaSuballocation paddingSuballoc = {}; |
| 8097 | paddingSuballoc.offset = request.offset - paddingBegin; |
| 8098 | paddingSuballoc.size = paddingBegin; |
| 8099 | paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 8100 | const VmaSuballocationList::iterator paddingBeginItem = |
| 8101 | m_Suballocations.insert(request.item, paddingSuballoc); |
| 8102 | RegisterFreeSuballocation(paddingBeginItem); |
| 8103 | } |
| 8104 | |
| 8105 | // Update totals. |
| 8106 | m_FreeCount = m_FreeCount - 1; |
| 8107 | if(paddingBegin > 0) |
| 8108 | { |
| 8109 | ++m_FreeCount; |
| 8110 | } |
| 8111 | if(paddingEnd > 0) |
| 8112 | { |
| 8113 | ++m_FreeCount; |
| 8114 | } |
| 8115 | m_SumFreeSize -= allocSize; |
| 8116 | } |
| 8117 | |
| 8118 | void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) |
| 8119 | { |
| 8120 | for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); |
| 8121 | suballocItem != m_Suballocations.end(); |
| 8122 | ++suballocItem) |
| 8123 | { |
| 8124 | VmaSuballocation& suballoc = *suballocItem; |
| 8125 | if(suballoc.hAllocation == allocation) |
| 8126 | { |
| 8127 | FreeSuballocation(suballocItem); |
| 8128 | VMA_HEAVY_ASSERT(Validate()); |
| 8129 | return; |
| 8130 | } |
| 8131 | } |
| 8132 | VMA_ASSERT(0 && "Not found!" ); |
| 8133 | } |
| 8134 | |
| 8135 | void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) |
| 8136 | { |
| 8137 | for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); |
| 8138 | suballocItem != m_Suballocations.end(); |
| 8139 | ++suballocItem) |
| 8140 | { |
| 8141 | VmaSuballocation& suballoc = *suballocItem; |
| 8142 | if(suballoc.offset == offset) |
| 8143 | { |
| 8144 | FreeSuballocation(suballocItem); |
| 8145 | return; |
| 8146 | } |
| 8147 | } |
| 8148 | VMA_ASSERT(0 && "Not found!" ); |
| 8149 | } |
| 8150 | |
| 8151 | bool VmaBlockMetadata_Generic::ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize) |
| 8152 | { |
| 8153 | typedef VmaSuballocationList::iterator iter_type; |
| 8154 | for(iter_type suballocItem = m_Suballocations.begin(); |
| 8155 | suballocItem != m_Suballocations.end(); |
| 8156 | ++suballocItem) |
| 8157 | { |
| 8158 | VmaSuballocation& suballoc = *suballocItem; |
| 8159 | if(suballoc.hAllocation == alloc) |
| 8160 | { |
| 8161 | iter_type nextItem = suballocItem; |
| 8162 | ++nextItem; |
| 8163 | |
| 8164 | // Should have been ensured on higher level. |
| 8165 | VMA_ASSERT(newSize != alloc->GetSize() && newSize > 0); |
| 8166 | |
| 8167 | // Shrinking. |
| 8168 | if(newSize < alloc->GetSize()) |
| 8169 | { |
| 8170 | const VkDeviceSize sizeDiff = suballoc.size - newSize; |
| 8171 | |
| 8172 | // There is next item. |
| 8173 | if(nextItem != m_Suballocations.end()) |
| 8174 | { |
| 8175 | // Next item is free. |
| 8176 | if(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 8177 | { |
| 8178 | // Grow this next item backward. |
| 8179 | UnregisterFreeSuballocation(nextItem); |
| 8180 | nextItem->offset -= sizeDiff; |
| 8181 | nextItem->size += sizeDiff; |
| 8182 | RegisterFreeSuballocation(nextItem); |
| 8183 | } |
| 8184 | // Next item is not free. |
| 8185 | else |
| 8186 | { |
| 8187 | // Create free item after current one. |
| 8188 | VmaSuballocation newFreeSuballoc; |
| 8189 | newFreeSuballoc.hAllocation = VK_NULL_HANDLE; |
| 8190 | newFreeSuballoc.offset = suballoc.offset + newSize; |
| 8191 | newFreeSuballoc.size = sizeDiff; |
| 8192 | newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 8193 | iter_type newFreeSuballocIt = m_Suballocations.insert(nextItem, newFreeSuballoc); |
| 8194 | RegisterFreeSuballocation(newFreeSuballocIt); |
| 8195 | |
| 8196 | ++m_FreeCount; |
| 8197 | } |
| 8198 | } |
| 8199 | // This is the last item. |
| 8200 | else |
| 8201 | { |
| 8202 | // Create free item at the end. |
| 8203 | VmaSuballocation newFreeSuballoc; |
| 8204 | newFreeSuballoc.hAllocation = VK_NULL_HANDLE; |
| 8205 | newFreeSuballoc.offset = suballoc.offset + newSize; |
| 8206 | newFreeSuballoc.size = sizeDiff; |
| 8207 | newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 8208 | m_Suballocations.push_back(newFreeSuballoc); |
| 8209 | |
| 8210 | iter_type newFreeSuballocIt = m_Suballocations.end(); |
| 8211 | RegisterFreeSuballocation(--newFreeSuballocIt); |
| 8212 | |
| 8213 | ++m_FreeCount; |
| 8214 | } |
| 8215 | |
| 8216 | suballoc.size = newSize; |
| 8217 | m_SumFreeSize += sizeDiff; |
| 8218 | } |
| 8219 | // Growing. |
| 8220 | else |
| 8221 | { |
| 8222 | const VkDeviceSize sizeDiff = newSize - suballoc.size; |
| 8223 | |
| 8224 | // There is next item. |
| 8225 | if(nextItem != m_Suballocations.end()) |
| 8226 | { |
| 8227 | // Next item is free. |
| 8228 | if(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 8229 | { |
| 8230 | // There is not enough free space, including margin. |
| 8231 | if(nextItem->size < sizeDiff + VMA_DEBUG_MARGIN) |
| 8232 | { |
| 8233 | return false; |
| 8234 | } |
| 8235 | |
| 8236 | // There is more free space than required. |
| 8237 | if(nextItem->size > sizeDiff) |
| 8238 | { |
| 8239 | // Move and shrink this next item. |
| 8240 | UnregisterFreeSuballocation(nextItem); |
| 8241 | nextItem->offset += sizeDiff; |
| 8242 | nextItem->size -= sizeDiff; |
| 8243 | RegisterFreeSuballocation(nextItem); |
| 8244 | } |
| 8245 | // There is exactly the amount of free space required. |
| 8246 | else |
| 8247 | { |
| 8248 | // Remove this next free item. |
| 8249 | UnregisterFreeSuballocation(nextItem); |
| 8250 | m_Suballocations.erase(nextItem); |
| 8251 | --m_FreeCount; |
| 8252 | } |
| 8253 | } |
| 8254 | // Next item is not free - there is no space to grow. |
| 8255 | else |
| 8256 | { |
| 8257 | return false; |
| 8258 | } |
| 8259 | } |
| 8260 | // This is the last item - there is no space to grow. |
| 8261 | else |
| 8262 | { |
| 8263 | return false; |
| 8264 | } |
| 8265 | |
| 8266 | suballoc.size = newSize; |
| 8267 | m_SumFreeSize -= sizeDiff; |
| 8268 | } |
| 8269 | |
| 8270 | // We cannot call Validate() here because alloc object is updated to new size outside of this call. |
| 8271 | return true; |
| 8272 | } |
| 8273 | } |
| 8274 | VMA_ASSERT(0 && "Not found!" ); |
| 8275 | return false; |
| 8276 | } |
| 8277 | |
| 8278 | bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const |
| 8279 | { |
| 8280 | VkDeviceSize lastSize = 0; |
| 8281 | for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) |
| 8282 | { |
| 8283 | const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; |
| 8284 | |
| 8285 | VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8286 | VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); |
| 8287 | VMA_VALIDATE(it->size >= lastSize); |
| 8288 | lastSize = it->size; |
| 8289 | } |
| 8290 | return true; |
| 8291 | } |
| 8292 | |
| 8293 | bool VmaBlockMetadata_Generic::CheckAllocation( |
| 8294 | uint32_t currentFrameIndex, |
| 8295 | uint32_t frameInUseCount, |
| 8296 | VkDeviceSize bufferImageGranularity, |
| 8297 | VkDeviceSize allocSize, |
| 8298 | VkDeviceSize allocAlignment, |
| 8299 | VmaSuballocationType allocType, |
| 8300 | VmaSuballocationList::const_iterator suballocItem, |
| 8301 | bool canMakeOtherLost, |
| 8302 | VkDeviceSize* pOffset, |
| 8303 | size_t* itemsToMakeLostCount, |
| 8304 | VkDeviceSize* pSumFreeSize, |
| 8305 | VkDeviceSize* pSumItemSize) const |
| 8306 | { |
| 8307 | VMA_ASSERT(allocSize > 0); |
| 8308 | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); |
| 8309 | VMA_ASSERT(suballocItem != m_Suballocations.cend()); |
| 8310 | VMA_ASSERT(pOffset != VMA_NULL); |
| 8311 | |
| 8312 | *itemsToMakeLostCount = 0; |
| 8313 | *pSumFreeSize = 0; |
| 8314 | *pSumItemSize = 0; |
| 8315 | |
| 8316 | if(canMakeOtherLost) |
| 8317 | { |
| 8318 | if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 8319 | { |
| 8320 | *pSumFreeSize = suballocItem->size; |
| 8321 | } |
| 8322 | else |
| 8323 | { |
| 8324 | if(suballocItem->hAllocation->CanBecomeLost() && |
| 8325 | suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) |
| 8326 | { |
| 8327 | ++*itemsToMakeLostCount; |
| 8328 | *pSumItemSize = suballocItem->size; |
| 8329 | } |
| 8330 | else |
| 8331 | { |
| 8332 | return false; |
| 8333 | } |
| 8334 | } |
| 8335 | |
| 8336 | // Remaining size is too small for this request: Early return. |
| 8337 | if(GetSize() - suballocItem->offset < allocSize) |
| 8338 | { |
| 8339 | return false; |
| 8340 | } |
| 8341 | |
| 8342 | // Start from offset equal to beginning of this suballocation. |
| 8343 | *pOffset = suballocItem->offset; |
| 8344 | |
| 8345 | // Apply VMA_DEBUG_MARGIN at the beginning. |
| 8346 | if(VMA_DEBUG_MARGIN > 0) |
| 8347 | { |
| 8348 | *pOffset += VMA_DEBUG_MARGIN; |
| 8349 | } |
| 8350 | |
| 8351 | // Apply alignment. |
| 8352 | *pOffset = VmaAlignUp(*pOffset, allocAlignment); |
| 8353 | |
| 8354 | // Check previous suballocations for BufferImageGranularity conflicts. |
| 8355 | // Make bigger alignment if necessary. |
| 8356 | if(bufferImageGranularity > 1) |
| 8357 | { |
| 8358 | bool bufferImageGranularityConflict = false; |
| 8359 | VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; |
| 8360 | while(prevSuballocItem != m_Suballocations.cbegin()) |
| 8361 | { |
| 8362 | --prevSuballocItem; |
| 8363 | const VmaSuballocation& prevSuballoc = *prevSuballocItem; |
| 8364 | if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) |
| 8365 | { |
| 8366 | if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) |
| 8367 | { |
| 8368 | bufferImageGranularityConflict = true; |
| 8369 | break; |
| 8370 | } |
| 8371 | } |
| 8372 | else |
| 8373 | // Already on previous page. |
| 8374 | break; |
| 8375 | } |
| 8376 | if(bufferImageGranularityConflict) |
| 8377 | { |
| 8378 | *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); |
| 8379 | } |
| 8380 | } |
| 8381 | |
| 8382 | // Now that we have final *pOffset, check if we are past suballocItem. |
| 8383 | // If yes, return false - this function should be called for another suballocItem as starting point. |
| 8384 | if(*pOffset >= suballocItem->offset + suballocItem->size) |
| 8385 | { |
| 8386 | return false; |
| 8387 | } |
| 8388 | |
| 8389 | // Calculate padding at the beginning based on current offset. |
| 8390 | const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; |
| 8391 | |
| 8392 | // Calculate required margin at the end. |
| 8393 | const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; |
| 8394 | |
| 8395 | const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; |
| 8396 | // Another early return check. |
| 8397 | if(suballocItem->offset + totalSize > GetSize()) |
| 8398 | { |
| 8399 | return false; |
| 8400 | } |
| 8401 | |
| 8402 | // Advance lastSuballocItem until desired size is reached. |
| 8403 | // Update itemsToMakeLostCount. |
| 8404 | VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; |
| 8405 | if(totalSize > suballocItem->size) |
| 8406 | { |
| 8407 | VkDeviceSize remainingSize = totalSize - suballocItem->size; |
| 8408 | while(remainingSize > 0) |
| 8409 | { |
| 8410 | ++lastSuballocItem; |
| 8411 | if(lastSuballocItem == m_Suballocations.cend()) |
| 8412 | { |
| 8413 | return false; |
| 8414 | } |
| 8415 | if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 8416 | { |
| 8417 | *pSumFreeSize += lastSuballocItem->size; |
| 8418 | } |
| 8419 | else |
| 8420 | { |
| 8421 | VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); |
| 8422 | if(lastSuballocItem->hAllocation->CanBecomeLost() && |
| 8423 | lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) |
| 8424 | { |
| 8425 | ++*itemsToMakeLostCount; |
| 8426 | *pSumItemSize += lastSuballocItem->size; |
| 8427 | } |
| 8428 | else |
| 8429 | { |
| 8430 | return false; |
| 8431 | } |
| 8432 | } |
| 8433 | remainingSize = (lastSuballocItem->size < remainingSize) ? |
| 8434 | remainingSize - lastSuballocItem->size : 0; |
| 8435 | } |
| 8436 | } |
| 8437 | |
| 8438 | // Check next suballocations for BufferImageGranularity conflicts. |
| 8439 | // If conflict exists, we must mark more allocations lost or fail. |
| 8440 | if(bufferImageGranularity > 1) |
| 8441 | { |
| 8442 | VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; |
| 8443 | ++nextSuballocItem; |
| 8444 | while(nextSuballocItem != m_Suballocations.cend()) |
| 8445 | { |
| 8446 | const VmaSuballocation& nextSuballoc = *nextSuballocItem; |
| 8447 | if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) |
| 8448 | { |
| 8449 | if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) |
| 8450 | { |
| 8451 | VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); |
| 8452 | if(nextSuballoc.hAllocation->CanBecomeLost() && |
| 8453 | nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) |
| 8454 | { |
| 8455 | ++*itemsToMakeLostCount; |
| 8456 | } |
| 8457 | else |
| 8458 | { |
| 8459 | return false; |
| 8460 | } |
| 8461 | } |
| 8462 | } |
| 8463 | else |
| 8464 | { |
| 8465 | // Already on next page. |
| 8466 | break; |
| 8467 | } |
| 8468 | ++nextSuballocItem; |
| 8469 | } |
| 8470 | } |
| 8471 | } |
| 8472 | else |
| 8473 | { |
| 8474 | const VmaSuballocation& suballoc = *suballocItem; |
| 8475 | VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8476 | |
| 8477 | *pSumFreeSize = suballoc.size; |
| 8478 | |
| 8479 | // Size of this suballocation is too small for this request: Early return. |
| 8480 | if(suballoc.size < allocSize) |
| 8481 | { |
| 8482 | return false; |
| 8483 | } |
| 8484 | |
| 8485 | // Start from offset equal to beginning of this suballocation. |
| 8486 | *pOffset = suballoc.offset; |
| 8487 | |
| 8488 | // Apply VMA_DEBUG_MARGIN at the beginning. |
| 8489 | if(VMA_DEBUG_MARGIN > 0) |
| 8490 | { |
| 8491 | *pOffset += VMA_DEBUG_MARGIN; |
| 8492 | } |
| 8493 | |
| 8494 | // Apply alignment. |
| 8495 | *pOffset = VmaAlignUp(*pOffset, allocAlignment); |
| 8496 | |
| 8497 | // Check previous suballocations for BufferImageGranularity conflicts. |
| 8498 | // Make bigger alignment if necessary. |
| 8499 | if(bufferImageGranularity > 1) |
| 8500 | { |
| 8501 | bool bufferImageGranularityConflict = false; |
| 8502 | VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; |
| 8503 | while(prevSuballocItem != m_Suballocations.cbegin()) |
| 8504 | { |
| 8505 | --prevSuballocItem; |
| 8506 | const VmaSuballocation& prevSuballoc = *prevSuballocItem; |
| 8507 | if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) |
| 8508 | { |
| 8509 | if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) |
| 8510 | { |
| 8511 | bufferImageGranularityConflict = true; |
| 8512 | break; |
| 8513 | } |
| 8514 | } |
| 8515 | else |
| 8516 | // Already on previous page. |
| 8517 | break; |
| 8518 | } |
| 8519 | if(bufferImageGranularityConflict) |
| 8520 | { |
| 8521 | *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); |
| 8522 | } |
| 8523 | } |
| 8524 | |
| 8525 | // Calculate padding at the beginning based on current offset. |
| 8526 | const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; |
| 8527 | |
| 8528 | // Calculate required margin at the end. |
| 8529 | const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; |
| 8530 | |
| 8531 | // Fail if requested size plus margin before and after is bigger than size of this suballocation. |
| 8532 | if(paddingBegin + allocSize + requiredEndMargin > suballoc.size) |
| 8533 | { |
| 8534 | return false; |
| 8535 | } |
| 8536 | |
| 8537 | // Check next suballocations for BufferImageGranularity conflicts. |
| 8538 | // If conflict exists, allocation cannot be made here. |
| 8539 | if(bufferImageGranularity > 1) |
| 8540 | { |
| 8541 | VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; |
| 8542 | ++nextSuballocItem; |
| 8543 | while(nextSuballocItem != m_Suballocations.cend()) |
| 8544 | { |
| 8545 | const VmaSuballocation& nextSuballoc = *nextSuballocItem; |
| 8546 | if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) |
| 8547 | { |
| 8548 | if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) |
| 8549 | { |
| 8550 | return false; |
| 8551 | } |
| 8552 | } |
| 8553 | else |
| 8554 | { |
| 8555 | // Already on next page. |
| 8556 | break; |
| 8557 | } |
| 8558 | ++nextSuballocItem; |
| 8559 | } |
| 8560 | } |
| 8561 | } |
| 8562 | |
| 8563 | // All tests passed: Success. pOffset is already filled. |
| 8564 | return true; |
| 8565 | } |
| 8566 | |
| 8567 | void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) |
| 8568 | { |
| 8569 | VMA_ASSERT(item != m_Suballocations.end()); |
| 8570 | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8571 | |
| 8572 | VmaSuballocationList::iterator nextItem = item; |
| 8573 | ++nextItem; |
| 8574 | VMA_ASSERT(nextItem != m_Suballocations.end()); |
| 8575 | VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8576 | |
| 8577 | item->size += nextItem->size; |
| 8578 | --m_FreeCount; |
| 8579 | m_Suballocations.erase(nextItem); |
| 8580 | } |
| 8581 | |
| 8582 | VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) |
| 8583 | { |
| 8584 | // Change this suballocation to be marked as free. |
| 8585 | VmaSuballocation& suballoc = *suballocItem; |
| 8586 | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 8587 | suballoc.hAllocation = VK_NULL_HANDLE; |
| 8588 | |
| 8589 | // Update totals. |
| 8590 | ++m_FreeCount; |
| 8591 | m_SumFreeSize += suballoc.size; |
| 8592 | |
| 8593 | // Merge with previous and/or next suballocation if it's also free. |
| 8594 | bool mergeWithNext = false; |
| 8595 | bool mergeWithPrev = false; |
| 8596 | |
| 8597 | VmaSuballocationList::iterator nextItem = suballocItem; |
| 8598 | ++nextItem; |
| 8599 | if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) |
| 8600 | { |
| 8601 | mergeWithNext = true; |
| 8602 | } |
| 8603 | |
| 8604 | VmaSuballocationList::iterator prevItem = suballocItem; |
| 8605 | if(suballocItem != m_Suballocations.begin()) |
| 8606 | { |
| 8607 | --prevItem; |
| 8608 | if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 8609 | { |
| 8610 | mergeWithPrev = true; |
| 8611 | } |
| 8612 | } |
| 8613 | |
| 8614 | if(mergeWithNext) |
| 8615 | { |
| 8616 | UnregisterFreeSuballocation(nextItem); |
| 8617 | MergeFreeWithNext(suballocItem); |
| 8618 | } |
| 8619 | |
| 8620 | if(mergeWithPrev) |
| 8621 | { |
| 8622 | UnregisterFreeSuballocation(prevItem); |
| 8623 | MergeFreeWithNext(prevItem); |
| 8624 | RegisterFreeSuballocation(prevItem); |
| 8625 | return prevItem; |
| 8626 | } |
| 8627 | else |
| 8628 | { |
| 8629 | RegisterFreeSuballocation(suballocItem); |
| 8630 | return suballocItem; |
| 8631 | } |
| 8632 | } |
| 8633 | |
| 8634 | void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) |
| 8635 | { |
| 8636 | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8637 | VMA_ASSERT(item->size > 0); |
| 8638 | |
| 8639 | // You may want to enable this validation at the beginning or at the end of |
| 8640 | // this function, depending on what do you want to check. |
| 8641 | VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); |
| 8642 | |
| 8643 | if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 8644 | { |
| 8645 | if(m_FreeSuballocationsBySize.empty()) |
| 8646 | { |
| 8647 | m_FreeSuballocationsBySize.push_back(item); |
| 8648 | } |
| 8649 | else |
| 8650 | { |
| 8651 | VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item); |
| 8652 | } |
| 8653 | } |
| 8654 | |
| 8655 | //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); |
| 8656 | } |
| 8657 | |
| 8658 | |
| 8659 | void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) |
| 8660 | { |
| 8661 | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8662 | VMA_ASSERT(item->size > 0); |
| 8663 | |
| 8664 | // You may want to enable this validation at the beginning or at the end of |
| 8665 | // this function, depending on what do you want to check. |
| 8666 | VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); |
| 8667 | |
| 8668 | if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 8669 | { |
| 8670 | VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( |
| 8671 | m_FreeSuballocationsBySize.data(), |
| 8672 | m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), |
| 8673 | item, |
| 8674 | VmaSuballocationItemSizeLess()); |
| 8675 | for(size_t index = it - m_FreeSuballocationsBySize.data(); |
| 8676 | index < m_FreeSuballocationsBySize.size(); |
| 8677 | ++index) |
| 8678 | { |
| 8679 | if(m_FreeSuballocationsBySize[index] == item) |
| 8680 | { |
| 8681 | VmaVectorRemove(m_FreeSuballocationsBySize, index); |
| 8682 | return; |
| 8683 | } |
| 8684 | VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found." ); |
| 8685 | } |
| 8686 | VMA_ASSERT(0 && "Not found." ); |
| 8687 | } |
| 8688 | |
| 8689 | //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); |
| 8690 | } |
| 8691 | |
| 8692 | bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( |
| 8693 | VkDeviceSize bufferImageGranularity, |
| 8694 | VmaSuballocationType& inOutPrevSuballocType) const |
| 8695 | { |
| 8696 | if(bufferImageGranularity == 1 || IsEmpty()) |
| 8697 | { |
| 8698 | return false; |
| 8699 | } |
| 8700 | |
| 8701 | VkDeviceSize minAlignment = VK_WHOLE_SIZE; |
| 8702 | bool typeConflictFound = false; |
| 8703 | for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin(); |
| 8704 | it != m_Suballocations.cend(); |
| 8705 | ++it) |
| 8706 | { |
| 8707 | const VmaSuballocationType suballocType = it->type; |
| 8708 | if(suballocType != VMA_SUBALLOCATION_TYPE_FREE) |
| 8709 | { |
| 8710 | minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment()); |
| 8711 | if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) |
| 8712 | { |
| 8713 | typeConflictFound = true; |
| 8714 | } |
| 8715 | inOutPrevSuballocType = suballocType; |
| 8716 | } |
| 8717 | } |
| 8718 | |
| 8719 | return typeConflictFound || minAlignment >= bufferImageGranularity; |
| 8720 | } |
| 8721 | |
| 8722 | //////////////////////////////////////////////////////////////////////////////// |
| 8723 | // class VmaBlockMetadata_Linear |
| 8724 | |
| 8725 | VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : |
| 8726 | VmaBlockMetadata(hAllocator), |
| 8727 | m_SumFreeSize(0), |
| 8728 | m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), |
| 8729 | m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), |
| 8730 | m_1stVectorIndex(0), |
| 8731 | m_2ndVectorMode(SECOND_VECTOR_EMPTY), |
| 8732 | m_1stNullItemsBeginCount(0), |
| 8733 | m_1stNullItemsMiddleCount(0), |
| 8734 | m_2ndNullItemsCount(0) |
| 8735 | { |
| 8736 | } |
| 8737 | |
| 8738 | VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() |
| 8739 | { |
| 8740 | } |
| 8741 | |
| 8742 | void VmaBlockMetadata_Linear::Init(VkDeviceSize size) |
| 8743 | { |
| 8744 | VmaBlockMetadata::Init(size); |
| 8745 | m_SumFreeSize = size; |
| 8746 | } |
| 8747 | |
| 8748 | bool VmaBlockMetadata_Linear::Validate() const |
| 8749 | { |
| 8750 | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 8751 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 8752 | |
| 8753 | VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); |
| 8754 | VMA_VALIDATE(!suballocations1st.empty() || |
| 8755 | suballocations2nd.empty() || |
| 8756 | m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); |
| 8757 | |
| 8758 | if(!suballocations1st.empty()) |
| 8759 | { |
| 8760 | // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. |
| 8761 | VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); |
| 8762 | // Null item at the end should be just pop_back(). |
| 8763 | VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); |
| 8764 | } |
| 8765 | if(!suballocations2nd.empty()) |
| 8766 | { |
| 8767 | // Null item at the end should be just pop_back(). |
| 8768 | VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); |
| 8769 | } |
| 8770 | |
| 8771 | VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); |
| 8772 | VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); |
| 8773 | |
| 8774 | VkDeviceSize sumUsedSize = 0; |
| 8775 | const size_t suballoc1stCount = suballocations1st.size(); |
| 8776 | VkDeviceSize offset = VMA_DEBUG_MARGIN; |
| 8777 | |
| 8778 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 8779 | { |
| 8780 | const size_t suballoc2ndCount = suballocations2nd.size(); |
| 8781 | size_t nullItem2ndCount = 0; |
| 8782 | for(size_t i = 0; i < suballoc2ndCount; ++i) |
| 8783 | { |
| 8784 | const VmaSuballocation& suballoc = suballocations2nd[i]; |
| 8785 | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8786 | |
| 8787 | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); |
| 8788 | VMA_VALIDATE(suballoc.offset >= offset); |
| 8789 | |
| 8790 | if(!currFree) |
| 8791 | { |
| 8792 | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); |
| 8793 | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); |
| 8794 | sumUsedSize += suballoc.size; |
| 8795 | } |
| 8796 | else |
| 8797 | { |
| 8798 | ++nullItem2ndCount; |
| 8799 | } |
| 8800 | |
| 8801 | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; |
| 8802 | } |
| 8803 | |
| 8804 | VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); |
| 8805 | } |
| 8806 | |
| 8807 | for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i) |
| 8808 | { |
| 8809 | const VmaSuballocation& suballoc = suballocations1st[i]; |
| 8810 | VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && |
| 8811 | suballoc.hAllocation == VK_NULL_HANDLE); |
| 8812 | } |
| 8813 | |
| 8814 | size_t nullItem1stCount = m_1stNullItemsBeginCount; |
| 8815 | |
| 8816 | for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) |
| 8817 | { |
| 8818 | const VmaSuballocation& suballoc = suballocations1st[i]; |
| 8819 | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8820 | |
| 8821 | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); |
| 8822 | VMA_VALIDATE(suballoc.offset >= offset); |
| 8823 | VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); |
| 8824 | |
| 8825 | if(!currFree) |
| 8826 | { |
| 8827 | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); |
| 8828 | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); |
| 8829 | sumUsedSize += suballoc.size; |
| 8830 | } |
| 8831 | else |
| 8832 | { |
| 8833 | ++nullItem1stCount; |
| 8834 | } |
| 8835 | |
| 8836 | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; |
| 8837 | } |
| 8838 | VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); |
| 8839 | |
| 8840 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 8841 | { |
| 8842 | const size_t suballoc2ndCount = suballocations2nd.size(); |
| 8843 | size_t nullItem2ndCount = 0; |
| 8844 | for(size_t i = suballoc2ndCount; i--; ) |
| 8845 | { |
| 8846 | const VmaSuballocation& suballoc = suballocations2nd[i]; |
| 8847 | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); |
| 8848 | |
| 8849 | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); |
| 8850 | VMA_VALIDATE(suballoc.offset >= offset); |
| 8851 | |
| 8852 | if(!currFree) |
| 8853 | { |
| 8854 | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); |
| 8855 | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); |
| 8856 | sumUsedSize += suballoc.size; |
| 8857 | } |
| 8858 | else |
| 8859 | { |
| 8860 | ++nullItem2ndCount; |
| 8861 | } |
| 8862 | |
| 8863 | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; |
| 8864 | } |
| 8865 | |
| 8866 | VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); |
| 8867 | } |
| 8868 | |
| 8869 | VMA_VALIDATE(offset <= GetSize()); |
| 8870 | VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); |
| 8871 | |
| 8872 | return true; |
| 8873 | } |
| 8874 | |
| 8875 | size_t VmaBlockMetadata_Linear::GetAllocationCount() const |
| 8876 | { |
| 8877 | return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + |
| 8878 | AccessSuballocations2nd().size() - m_2ndNullItemsCount; |
| 8879 | } |
| 8880 | |
| 8881 | VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const |
| 8882 | { |
| 8883 | const VkDeviceSize size = GetSize(); |
| 8884 | |
| 8885 | /* |
| 8886 | We don't consider gaps inside allocation vectors with freed allocations because |
| 8887 | they are not suitable for reuse in linear allocator. We consider only space that |
| 8888 | is available for new allocations. |
| 8889 | */ |
| 8890 | if(IsEmpty()) |
| 8891 | { |
| 8892 | return size; |
| 8893 | } |
| 8894 | |
| 8895 | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 8896 | |
| 8897 | switch(m_2ndVectorMode) |
| 8898 | { |
| 8899 | case SECOND_VECTOR_EMPTY: |
| 8900 | /* |
| 8901 | Available space is after end of 1st, as well as before beginning of 1st (which |
| 8902 | whould make it a ring buffer). |
| 8903 | */ |
| 8904 | { |
| 8905 | const size_t suballocations1stCount = suballocations1st.size(); |
| 8906 | VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); |
| 8907 | const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; |
| 8908 | const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1]; |
| 8909 | return VMA_MAX( |
| 8910 | firstSuballoc.offset, |
| 8911 | size - (lastSuballoc.offset + lastSuballoc.size)); |
| 8912 | } |
| 8913 | break; |
| 8914 | |
| 8915 | case SECOND_VECTOR_RING_BUFFER: |
| 8916 | /* |
| 8917 | Available space is only between end of 2nd and beginning of 1st. |
| 8918 | */ |
| 8919 | { |
| 8920 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 8921 | const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back(); |
| 8922 | const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; |
| 8923 | return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); |
| 8924 | } |
| 8925 | break; |
| 8926 | |
| 8927 | case SECOND_VECTOR_DOUBLE_STACK: |
| 8928 | /* |
| 8929 | Available space is only between end of 1st and top of 2nd. |
| 8930 | */ |
| 8931 | { |
| 8932 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 8933 | const VmaSuballocation& topSuballoc2nd = suballocations2nd.back(); |
| 8934 | const VmaSuballocation& lastSuballoc1st = suballocations1st.back(); |
| 8935 | return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); |
| 8936 | } |
| 8937 | break; |
| 8938 | |
| 8939 | default: |
| 8940 | VMA_ASSERT(0); |
| 8941 | return 0; |
| 8942 | } |
| 8943 | } |
| 8944 | |
| 8945 | void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const |
| 8946 | { |
| 8947 | const VkDeviceSize size = GetSize(); |
| 8948 | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 8949 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 8950 | const size_t suballoc1stCount = suballocations1st.size(); |
| 8951 | const size_t suballoc2ndCount = suballocations2nd.size(); |
| 8952 | |
| 8953 | outInfo.blockCount = 1; |
| 8954 | outInfo.allocationCount = (uint32_t)GetAllocationCount(); |
| 8955 | outInfo.unusedRangeCount = 0; |
| 8956 | outInfo.usedBytes = 0; |
| 8957 | outInfo.allocationSizeMin = UINT64_MAX; |
| 8958 | outInfo.allocationSizeMax = 0; |
| 8959 | outInfo.unusedRangeSizeMin = UINT64_MAX; |
| 8960 | outInfo.unusedRangeSizeMax = 0; |
| 8961 | |
| 8962 | VkDeviceSize lastOffset = 0; |
| 8963 | |
| 8964 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 8965 | { |
| 8966 | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; |
| 8967 | size_t nextAlloc2ndIndex = 0; |
| 8968 | while(lastOffset < freeSpace2ndTo1stEnd) |
| 8969 | { |
| 8970 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 8971 | while(nextAlloc2ndIndex < suballoc2ndCount && |
| 8972 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 8973 | { |
| 8974 | ++nextAlloc2ndIndex; |
| 8975 | } |
| 8976 | |
| 8977 | // Found non-null allocation. |
| 8978 | if(nextAlloc2ndIndex < suballoc2ndCount) |
| 8979 | { |
| 8980 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 8981 | |
| 8982 | // 1. Process free space before this allocation. |
| 8983 | if(lastOffset < suballoc.offset) |
| 8984 | { |
| 8985 | // There is free space from lastOffset to suballoc.offset. |
| 8986 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 8987 | ++outInfo.unusedRangeCount; |
| 8988 | outInfo.unusedBytes += unusedRangeSize; |
| 8989 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 8990 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 8991 | } |
| 8992 | |
| 8993 | // 2. Process this allocation. |
| 8994 | // There is allocation with suballoc.offset, suballoc.size. |
| 8995 | outInfo.usedBytes += suballoc.size; |
| 8996 | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); |
| 8997 | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); |
| 8998 | |
| 8999 | // 3. Prepare for next iteration. |
| 9000 | lastOffset = suballoc.offset + suballoc.size; |
| 9001 | ++nextAlloc2ndIndex; |
| 9002 | } |
| 9003 | // We are at the end. |
| 9004 | else |
| 9005 | { |
| 9006 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. |
| 9007 | if(lastOffset < freeSpace2ndTo1stEnd) |
| 9008 | { |
| 9009 | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; |
| 9010 | ++outInfo.unusedRangeCount; |
| 9011 | outInfo.unusedBytes += unusedRangeSize; |
| 9012 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 9013 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 9014 | } |
| 9015 | |
| 9016 | // End of loop. |
| 9017 | lastOffset = freeSpace2ndTo1stEnd; |
| 9018 | } |
| 9019 | } |
| 9020 | } |
| 9021 | |
| 9022 | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; |
| 9023 | const VkDeviceSize freeSpace1stTo2ndEnd = |
| 9024 | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; |
| 9025 | while(lastOffset < freeSpace1stTo2ndEnd) |
| 9026 | { |
| 9027 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 9028 | while(nextAlloc1stIndex < suballoc1stCount && |
| 9029 | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) |
| 9030 | { |
| 9031 | ++nextAlloc1stIndex; |
| 9032 | } |
| 9033 | |
| 9034 | // Found non-null allocation. |
| 9035 | if(nextAlloc1stIndex < suballoc1stCount) |
| 9036 | { |
| 9037 | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; |
| 9038 | |
| 9039 | // 1. Process free space before this allocation. |
| 9040 | if(lastOffset < suballoc.offset) |
| 9041 | { |
| 9042 | // There is free space from lastOffset to suballoc.offset. |
| 9043 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9044 | ++outInfo.unusedRangeCount; |
| 9045 | outInfo.unusedBytes += unusedRangeSize; |
| 9046 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 9047 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 9048 | } |
| 9049 | |
| 9050 | // 2. Process this allocation. |
| 9051 | // There is allocation with suballoc.offset, suballoc.size. |
| 9052 | outInfo.usedBytes += suballoc.size; |
| 9053 | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); |
| 9054 | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); |
| 9055 | |
| 9056 | // 3. Prepare for next iteration. |
| 9057 | lastOffset = suballoc.offset + suballoc.size; |
| 9058 | ++nextAlloc1stIndex; |
| 9059 | } |
| 9060 | // We are at the end. |
| 9061 | else |
| 9062 | { |
| 9063 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. |
| 9064 | if(lastOffset < freeSpace1stTo2ndEnd) |
| 9065 | { |
| 9066 | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; |
| 9067 | ++outInfo.unusedRangeCount; |
| 9068 | outInfo.unusedBytes += unusedRangeSize; |
| 9069 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 9070 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 9071 | } |
| 9072 | |
| 9073 | // End of loop. |
| 9074 | lastOffset = freeSpace1stTo2ndEnd; |
| 9075 | } |
| 9076 | } |
| 9077 | |
| 9078 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9079 | { |
| 9080 | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; |
| 9081 | while(lastOffset < size) |
| 9082 | { |
| 9083 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 9084 | while(nextAlloc2ndIndex != SIZE_MAX && |
| 9085 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9086 | { |
| 9087 | --nextAlloc2ndIndex; |
| 9088 | } |
| 9089 | |
| 9090 | // Found non-null allocation. |
| 9091 | if(nextAlloc2ndIndex != SIZE_MAX) |
| 9092 | { |
| 9093 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9094 | |
| 9095 | // 1. Process free space before this allocation. |
| 9096 | if(lastOffset < suballoc.offset) |
| 9097 | { |
| 9098 | // There is free space from lastOffset to suballoc.offset. |
| 9099 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9100 | ++outInfo.unusedRangeCount; |
| 9101 | outInfo.unusedBytes += unusedRangeSize; |
| 9102 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 9103 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 9104 | } |
| 9105 | |
| 9106 | // 2. Process this allocation. |
| 9107 | // There is allocation with suballoc.offset, suballoc.size. |
| 9108 | outInfo.usedBytes += suballoc.size; |
| 9109 | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); |
| 9110 | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); |
| 9111 | |
| 9112 | // 3. Prepare for next iteration. |
| 9113 | lastOffset = suballoc.offset + suballoc.size; |
| 9114 | --nextAlloc2ndIndex; |
| 9115 | } |
| 9116 | // We are at the end. |
| 9117 | else |
| 9118 | { |
| 9119 | // There is free space from lastOffset to size. |
| 9120 | if(lastOffset < size) |
| 9121 | { |
| 9122 | const VkDeviceSize unusedRangeSize = size - lastOffset; |
| 9123 | ++outInfo.unusedRangeCount; |
| 9124 | outInfo.unusedBytes += unusedRangeSize; |
| 9125 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 9126 | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 9127 | } |
| 9128 | |
| 9129 | // End of loop. |
| 9130 | lastOffset = size; |
| 9131 | } |
| 9132 | } |
| 9133 | } |
| 9134 | |
| 9135 | outInfo.unusedBytes = size - outInfo.usedBytes; |
| 9136 | } |
| 9137 | |
| 9138 | void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const |
| 9139 | { |
| 9140 | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 9141 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 9142 | const VkDeviceSize size = GetSize(); |
| 9143 | const size_t suballoc1stCount = suballocations1st.size(); |
| 9144 | const size_t suballoc2ndCount = suballocations2nd.size(); |
| 9145 | |
| 9146 | inoutStats.size += size; |
| 9147 | |
| 9148 | VkDeviceSize lastOffset = 0; |
| 9149 | |
| 9150 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 9151 | { |
| 9152 | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; |
| 9153 | size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; |
| 9154 | while(lastOffset < freeSpace2ndTo1stEnd) |
| 9155 | { |
| 9156 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9157 | while(nextAlloc2ndIndex < suballoc2ndCount && |
| 9158 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9159 | { |
| 9160 | ++nextAlloc2ndIndex; |
| 9161 | } |
| 9162 | |
| 9163 | // Found non-null allocation. |
| 9164 | if(nextAlloc2ndIndex < suballoc2ndCount) |
| 9165 | { |
| 9166 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9167 | |
| 9168 | // 1. Process free space before this allocation. |
| 9169 | if(lastOffset < suballoc.offset) |
| 9170 | { |
| 9171 | // There is free space from lastOffset to suballoc.offset. |
| 9172 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9173 | inoutStats.unusedSize += unusedRangeSize; |
| 9174 | ++inoutStats.unusedRangeCount; |
| 9175 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9176 | } |
| 9177 | |
| 9178 | // 2. Process this allocation. |
| 9179 | // There is allocation with suballoc.offset, suballoc.size. |
| 9180 | ++inoutStats.allocationCount; |
| 9181 | |
| 9182 | // 3. Prepare for next iteration. |
| 9183 | lastOffset = suballoc.offset + suballoc.size; |
| 9184 | ++nextAlloc2ndIndex; |
| 9185 | } |
| 9186 | // We are at the end. |
| 9187 | else |
| 9188 | { |
| 9189 | if(lastOffset < freeSpace2ndTo1stEnd) |
| 9190 | { |
| 9191 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. |
| 9192 | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; |
| 9193 | inoutStats.unusedSize += unusedRangeSize; |
| 9194 | ++inoutStats.unusedRangeCount; |
| 9195 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9196 | } |
| 9197 | |
| 9198 | // End of loop. |
| 9199 | lastOffset = freeSpace2ndTo1stEnd; |
| 9200 | } |
| 9201 | } |
| 9202 | } |
| 9203 | |
| 9204 | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; |
| 9205 | const VkDeviceSize freeSpace1stTo2ndEnd = |
| 9206 | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; |
| 9207 | while(lastOffset < freeSpace1stTo2ndEnd) |
| 9208 | { |
| 9209 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 9210 | while(nextAlloc1stIndex < suballoc1stCount && |
| 9211 | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) |
| 9212 | { |
| 9213 | ++nextAlloc1stIndex; |
| 9214 | } |
| 9215 | |
| 9216 | // Found non-null allocation. |
| 9217 | if(nextAlloc1stIndex < suballoc1stCount) |
| 9218 | { |
| 9219 | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; |
| 9220 | |
| 9221 | // 1. Process free space before this allocation. |
| 9222 | if(lastOffset < suballoc.offset) |
| 9223 | { |
| 9224 | // There is free space from lastOffset to suballoc.offset. |
| 9225 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9226 | inoutStats.unusedSize += unusedRangeSize; |
| 9227 | ++inoutStats.unusedRangeCount; |
| 9228 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9229 | } |
| 9230 | |
| 9231 | // 2. Process this allocation. |
| 9232 | // There is allocation with suballoc.offset, suballoc.size. |
| 9233 | ++inoutStats.allocationCount; |
| 9234 | |
| 9235 | // 3. Prepare for next iteration. |
| 9236 | lastOffset = suballoc.offset + suballoc.size; |
| 9237 | ++nextAlloc1stIndex; |
| 9238 | } |
| 9239 | // We are at the end. |
| 9240 | else |
| 9241 | { |
| 9242 | if(lastOffset < freeSpace1stTo2ndEnd) |
| 9243 | { |
| 9244 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. |
| 9245 | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; |
| 9246 | inoutStats.unusedSize += unusedRangeSize; |
| 9247 | ++inoutStats.unusedRangeCount; |
| 9248 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9249 | } |
| 9250 | |
| 9251 | // End of loop. |
| 9252 | lastOffset = freeSpace1stTo2ndEnd; |
| 9253 | } |
| 9254 | } |
| 9255 | |
| 9256 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9257 | { |
| 9258 | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; |
| 9259 | while(lastOffset < size) |
| 9260 | { |
| 9261 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9262 | while(nextAlloc2ndIndex != SIZE_MAX && |
| 9263 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9264 | { |
| 9265 | --nextAlloc2ndIndex; |
| 9266 | } |
| 9267 | |
| 9268 | // Found non-null allocation. |
| 9269 | if(nextAlloc2ndIndex != SIZE_MAX) |
| 9270 | { |
| 9271 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9272 | |
| 9273 | // 1. Process free space before this allocation. |
| 9274 | if(lastOffset < suballoc.offset) |
| 9275 | { |
| 9276 | // There is free space from lastOffset to suballoc.offset. |
| 9277 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9278 | inoutStats.unusedSize += unusedRangeSize; |
| 9279 | ++inoutStats.unusedRangeCount; |
| 9280 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9281 | } |
| 9282 | |
| 9283 | // 2. Process this allocation. |
| 9284 | // There is allocation with suballoc.offset, suballoc.size. |
| 9285 | ++inoutStats.allocationCount; |
| 9286 | |
| 9287 | // 3. Prepare for next iteration. |
| 9288 | lastOffset = suballoc.offset + suballoc.size; |
| 9289 | --nextAlloc2ndIndex; |
| 9290 | } |
| 9291 | // We are at the end. |
| 9292 | else |
| 9293 | { |
| 9294 | if(lastOffset < size) |
| 9295 | { |
| 9296 | // There is free space from lastOffset to size. |
| 9297 | const VkDeviceSize unusedRangeSize = size - lastOffset; |
| 9298 | inoutStats.unusedSize += unusedRangeSize; |
| 9299 | ++inoutStats.unusedRangeCount; |
| 9300 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); |
| 9301 | } |
| 9302 | |
| 9303 | // End of loop. |
| 9304 | lastOffset = size; |
| 9305 | } |
| 9306 | } |
| 9307 | } |
| 9308 | } |
| 9309 | |
| 9310 | #if VMA_STATS_STRING_ENABLED |
| 9311 | void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const |
| 9312 | { |
| 9313 | const VkDeviceSize size = GetSize(); |
| 9314 | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 9315 | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 9316 | const size_t suballoc1stCount = suballocations1st.size(); |
| 9317 | const size_t suballoc2ndCount = suballocations2nd.size(); |
| 9318 | |
| 9319 | // FIRST PASS |
| 9320 | |
| 9321 | size_t unusedRangeCount = 0; |
| 9322 | VkDeviceSize usedBytes = 0; |
| 9323 | |
| 9324 | VkDeviceSize lastOffset = 0; |
| 9325 | |
| 9326 | size_t alloc2ndCount = 0; |
| 9327 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 9328 | { |
| 9329 | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; |
| 9330 | size_t nextAlloc2ndIndex = 0; |
| 9331 | while(lastOffset < freeSpace2ndTo1stEnd) |
| 9332 | { |
| 9333 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9334 | while(nextAlloc2ndIndex < suballoc2ndCount && |
| 9335 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9336 | { |
| 9337 | ++nextAlloc2ndIndex; |
| 9338 | } |
| 9339 | |
| 9340 | // Found non-null allocation. |
| 9341 | if(nextAlloc2ndIndex < suballoc2ndCount) |
| 9342 | { |
| 9343 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9344 | |
| 9345 | // 1. Process free space before this allocation. |
| 9346 | if(lastOffset < suballoc.offset) |
| 9347 | { |
| 9348 | // There is free space from lastOffset to suballoc.offset. |
| 9349 | ++unusedRangeCount; |
| 9350 | } |
| 9351 | |
| 9352 | // 2. Process this allocation. |
| 9353 | // There is allocation with suballoc.offset, suballoc.size. |
| 9354 | ++alloc2ndCount; |
| 9355 | usedBytes += suballoc.size; |
| 9356 | |
| 9357 | // 3. Prepare for next iteration. |
| 9358 | lastOffset = suballoc.offset + suballoc.size; |
| 9359 | ++nextAlloc2ndIndex; |
| 9360 | } |
| 9361 | // We are at the end. |
| 9362 | else |
| 9363 | { |
| 9364 | if(lastOffset < freeSpace2ndTo1stEnd) |
| 9365 | { |
| 9366 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. |
| 9367 | ++unusedRangeCount; |
| 9368 | } |
| 9369 | |
| 9370 | // End of loop. |
| 9371 | lastOffset = freeSpace2ndTo1stEnd; |
| 9372 | } |
| 9373 | } |
| 9374 | } |
| 9375 | |
| 9376 | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; |
| 9377 | size_t alloc1stCount = 0; |
| 9378 | const VkDeviceSize freeSpace1stTo2ndEnd = |
| 9379 | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; |
| 9380 | while(lastOffset < freeSpace1stTo2ndEnd) |
| 9381 | { |
| 9382 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 9383 | while(nextAlloc1stIndex < suballoc1stCount && |
| 9384 | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) |
| 9385 | { |
| 9386 | ++nextAlloc1stIndex; |
| 9387 | } |
| 9388 | |
| 9389 | // Found non-null allocation. |
| 9390 | if(nextAlloc1stIndex < suballoc1stCount) |
| 9391 | { |
| 9392 | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; |
| 9393 | |
| 9394 | // 1. Process free space before this allocation. |
| 9395 | if(lastOffset < suballoc.offset) |
| 9396 | { |
| 9397 | // There is free space from lastOffset to suballoc.offset. |
| 9398 | ++unusedRangeCount; |
| 9399 | } |
| 9400 | |
| 9401 | // 2. Process this allocation. |
| 9402 | // There is allocation with suballoc.offset, suballoc.size. |
| 9403 | ++alloc1stCount; |
| 9404 | usedBytes += suballoc.size; |
| 9405 | |
| 9406 | // 3. Prepare for next iteration. |
| 9407 | lastOffset = suballoc.offset + suballoc.size; |
| 9408 | ++nextAlloc1stIndex; |
| 9409 | } |
| 9410 | // We are at the end. |
| 9411 | else |
| 9412 | { |
| 9413 | if(lastOffset < size) |
| 9414 | { |
| 9415 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. |
| 9416 | ++unusedRangeCount; |
| 9417 | } |
| 9418 | |
| 9419 | // End of loop. |
| 9420 | lastOffset = freeSpace1stTo2ndEnd; |
| 9421 | } |
| 9422 | } |
| 9423 | |
| 9424 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9425 | { |
| 9426 | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; |
| 9427 | while(lastOffset < size) |
| 9428 | { |
| 9429 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9430 | while(nextAlloc2ndIndex != SIZE_MAX && |
| 9431 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9432 | { |
| 9433 | --nextAlloc2ndIndex; |
| 9434 | } |
| 9435 | |
| 9436 | // Found non-null allocation. |
| 9437 | if(nextAlloc2ndIndex != SIZE_MAX) |
| 9438 | { |
| 9439 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9440 | |
| 9441 | // 1. Process free space before this allocation. |
| 9442 | if(lastOffset < suballoc.offset) |
| 9443 | { |
| 9444 | // There is free space from lastOffset to suballoc.offset. |
| 9445 | ++unusedRangeCount; |
| 9446 | } |
| 9447 | |
| 9448 | // 2. Process this allocation. |
| 9449 | // There is allocation with suballoc.offset, suballoc.size. |
| 9450 | ++alloc2ndCount; |
| 9451 | usedBytes += suballoc.size; |
| 9452 | |
| 9453 | // 3. Prepare for next iteration. |
| 9454 | lastOffset = suballoc.offset + suballoc.size; |
| 9455 | --nextAlloc2ndIndex; |
| 9456 | } |
| 9457 | // We are at the end. |
| 9458 | else |
| 9459 | { |
| 9460 | if(lastOffset < size) |
| 9461 | { |
| 9462 | // There is free space from lastOffset to size. |
| 9463 | ++unusedRangeCount; |
| 9464 | } |
| 9465 | |
| 9466 | // End of loop. |
| 9467 | lastOffset = size; |
| 9468 | } |
| 9469 | } |
| 9470 | } |
| 9471 | |
| 9472 | const VkDeviceSize unusedBytes = size - usedBytes; |
| 9473 | PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); |
| 9474 | |
| 9475 | // SECOND PASS |
| 9476 | lastOffset = 0; |
| 9477 | |
| 9478 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 9479 | { |
| 9480 | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; |
| 9481 | size_t nextAlloc2ndIndex = 0; |
| 9482 | while(lastOffset < freeSpace2ndTo1stEnd) |
| 9483 | { |
| 9484 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9485 | while(nextAlloc2ndIndex < suballoc2ndCount && |
| 9486 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9487 | { |
| 9488 | ++nextAlloc2ndIndex; |
| 9489 | } |
| 9490 | |
| 9491 | // Found non-null allocation. |
| 9492 | if(nextAlloc2ndIndex < suballoc2ndCount) |
| 9493 | { |
| 9494 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9495 | |
| 9496 | // 1. Process free space before this allocation. |
| 9497 | if(lastOffset < suballoc.offset) |
| 9498 | { |
| 9499 | // There is free space from lastOffset to suballoc.offset. |
| 9500 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9501 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9502 | } |
| 9503 | |
| 9504 | // 2. Process this allocation. |
| 9505 | // There is allocation with suballoc.offset, suballoc.size. |
| 9506 | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); |
| 9507 | |
| 9508 | // 3. Prepare for next iteration. |
| 9509 | lastOffset = suballoc.offset + suballoc.size; |
| 9510 | ++nextAlloc2ndIndex; |
| 9511 | } |
| 9512 | // We are at the end. |
| 9513 | else |
| 9514 | { |
| 9515 | if(lastOffset < freeSpace2ndTo1stEnd) |
| 9516 | { |
| 9517 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. |
| 9518 | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; |
| 9519 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9520 | } |
| 9521 | |
| 9522 | // End of loop. |
| 9523 | lastOffset = freeSpace2ndTo1stEnd; |
| 9524 | } |
| 9525 | } |
| 9526 | } |
| 9527 | |
| 9528 | nextAlloc1stIndex = m_1stNullItemsBeginCount; |
| 9529 | while(lastOffset < freeSpace1stTo2ndEnd) |
| 9530 | { |
| 9531 | // Find next non-null allocation or move nextAllocIndex to the end. |
| 9532 | while(nextAlloc1stIndex < suballoc1stCount && |
| 9533 | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) |
| 9534 | { |
| 9535 | ++nextAlloc1stIndex; |
| 9536 | } |
| 9537 | |
| 9538 | // Found non-null allocation. |
| 9539 | if(nextAlloc1stIndex < suballoc1stCount) |
| 9540 | { |
| 9541 | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; |
| 9542 | |
| 9543 | // 1. Process free space before this allocation. |
| 9544 | if(lastOffset < suballoc.offset) |
| 9545 | { |
| 9546 | // There is free space from lastOffset to suballoc.offset. |
| 9547 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9548 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9549 | } |
| 9550 | |
| 9551 | // 2. Process this allocation. |
| 9552 | // There is allocation with suballoc.offset, suballoc.size. |
| 9553 | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); |
| 9554 | |
| 9555 | // 3. Prepare for next iteration. |
| 9556 | lastOffset = suballoc.offset + suballoc.size; |
| 9557 | ++nextAlloc1stIndex; |
| 9558 | } |
| 9559 | // We are at the end. |
| 9560 | else |
| 9561 | { |
| 9562 | if(lastOffset < freeSpace1stTo2ndEnd) |
| 9563 | { |
| 9564 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. |
| 9565 | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; |
| 9566 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9567 | } |
| 9568 | |
| 9569 | // End of loop. |
| 9570 | lastOffset = freeSpace1stTo2ndEnd; |
| 9571 | } |
| 9572 | } |
| 9573 | |
| 9574 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9575 | { |
| 9576 | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; |
| 9577 | while(lastOffset < size) |
| 9578 | { |
| 9579 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. |
| 9580 | while(nextAlloc2ndIndex != SIZE_MAX && |
| 9581 | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) |
| 9582 | { |
| 9583 | --nextAlloc2ndIndex; |
| 9584 | } |
| 9585 | |
| 9586 | // Found non-null allocation. |
| 9587 | if(nextAlloc2ndIndex != SIZE_MAX) |
| 9588 | { |
| 9589 | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; |
| 9590 | |
| 9591 | // 1. Process free space before this allocation. |
| 9592 | if(lastOffset < suballoc.offset) |
| 9593 | { |
| 9594 | // There is free space from lastOffset to suballoc.offset. |
| 9595 | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; |
| 9596 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9597 | } |
| 9598 | |
| 9599 | // 2. Process this allocation. |
| 9600 | // There is allocation with suballoc.offset, suballoc.size. |
| 9601 | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); |
| 9602 | |
| 9603 | // 3. Prepare for next iteration. |
| 9604 | lastOffset = suballoc.offset + suballoc.size; |
| 9605 | --nextAlloc2ndIndex; |
| 9606 | } |
| 9607 | // We are at the end. |
| 9608 | else |
| 9609 | { |
| 9610 | if(lastOffset < size) |
| 9611 | { |
| 9612 | // There is free space from lastOffset to size. |
| 9613 | const VkDeviceSize unusedRangeSize = size - lastOffset; |
| 9614 | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); |
| 9615 | } |
| 9616 | |
| 9617 | // End of loop. |
| 9618 | lastOffset = size; |
| 9619 | } |
| 9620 | } |
| 9621 | } |
| 9622 | |
| 9623 | PrintDetailedMap_End(json); |
| 9624 | } |
| 9625 | #endif // #if VMA_STATS_STRING_ENABLED |
| 9626 | |
| 9627 | bool VmaBlockMetadata_Linear::CreateAllocationRequest( |
| 9628 | uint32_t currentFrameIndex, |
| 9629 | uint32_t frameInUseCount, |
| 9630 | VkDeviceSize bufferImageGranularity, |
| 9631 | VkDeviceSize allocSize, |
| 9632 | VkDeviceSize allocAlignment, |
| 9633 | bool upperAddress, |
| 9634 | VmaSuballocationType allocType, |
| 9635 | bool canMakeOtherLost, |
| 9636 | uint32_t /*strategy*/, |
| 9637 | VmaAllocationRequest* pAllocationRequest) |
| 9638 | { |
| 9639 | VMA_ASSERT(allocSize > 0); |
| 9640 | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); |
| 9641 | VMA_ASSERT(pAllocationRequest != VMA_NULL); |
| 9642 | VMA_HEAVY_ASSERT(Validate()); |
| 9643 | |
| 9644 | const VkDeviceSize size = GetSize(); |
| 9645 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 9646 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 9647 | |
| 9648 | if(upperAddress) |
| 9649 | { |
| 9650 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 9651 | { |
| 9652 | VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer." ); |
| 9653 | return false; |
| 9654 | } |
| 9655 | |
| 9656 | // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). |
| 9657 | if(allocSize > size) |
| 9658 | { |
| 9659 | return false; |
| 9660 | } |
| 9661 | VkDeviceSize resultBaseOffset = size - allocSize; |
| 9662 | if(!suballocations2nd.empty()) |
| 9663 | { |
| 9664 | const VmaSuballocation& lastSuballoc = suballocations2nd.back(); |
| 9665 | resultBaseOffset = lastSuballoc.offset - allocSize; |
| 9666 | if(allocSize > lastSuballoc.offset) |
| 9667 | { |
| 9668 | return false; |
| 9669 | } |
| 9670 | } |
| 9671 | |
| 9672 | // Start from offset equal to end of free space. |
| 9673 | VkDeviceSize resultOffset = resultBaseOffset; |
| 9674 | |
| 9675 | // Apply VMA_DEBUG_MARGIN at the end. |
| 9676 | if(VMA_DEBUG_MARGIN > 0) |
| 9677 | { |
| 9678 | #if VMA_DEBUG_MARGIN |
| 9679 | if(resultOffset < VMA_DEBUG_MARGIN) |
| 9680 | { |
| 9681 | return false; |
| 9682 | } |
| 9683 | #endif |
| 9684 | resultOffset -= VMA_DEBUG_MARGIN; |
| 9685 | } |
| 9686 | |
| 9687 | // Apply alignment. |
| 9688 | resultOffset = VmaAlignDown(resultOffset, allocAlignment); |
| 9689 | |
| 9690 | // Check next suballocations from 2nd for BufferImageGranularity conflicts. |
| 9691 | // Make bigger alignment if necessary. |
| 9692 | if(bufferImageGranularity > 1 && !suballocations2nd.empty()) |
| 9693 | { |
| 9694 | bool bufferImageGranularityConflict = false; |
| 9695 | for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) |
| 9696 | { |
| 9697 | const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; |
| 9698 | if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) |
| 9699 | { |
| 9700 | if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) |
| 9701 | { |
| 9702 | bufferImageGranularityConflict = true; |
| 9703 | break; |
| 9704 | } |
| 9705 | } |
| 9706 | else |
| 9707 | // Already on previous page. |
| 9708 | break; |
| 9709 | } |
| 9710 | if(bufferImageGranularityConflict) |
| 9711 | { |
| 9712 | resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); |
| 9713 | } |
| 9714 | } |
| 9715 | |
| 9716 | // There is enough free space. |
| 9717 | const VkDeviceSize endOf1st = !suballocations1st.empty() ? |
| 9718 | suballocations1st.back().offset + suballocations1st.back().size : |
| 9719 | 0; |
| 9720 | if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset) |
| 9721 | { |
| 9722 | // Check previous suballocations for BufferImageGranularity conflicts. |
| 9723 | // If conflict exists, allocation cannot be made here. |
| 9724 | if(bufferImageGranularity > 1) |
| 9725 | { |
| 9726 | for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) |
| 9727 | { |
| 9728 | const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; |
| 9729 | if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) |
| 9730 | { |
| 9731 | if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) |
| 9732 | { |
| 9733 | return false; |
| 9734 | } |
| 9735 | } |
| 9736 | else |
| 9737 | { |
| 9738 | // Already on next page. |
| 9739 | break; |
| 9740 | } |
| 9741 | } |
| 9742 | } |
| 9743 | |
| 9744 | // All tests passed: Success. |
| 9745 | pAllocationRequest->offset = resultOffset; |
| 9746 | pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; |
| 9747 | pAllocationRequest->sumItemSize = 0; |
| 9748 | // pAllocationRequest->item unused. |
| 9749 | pAllocationRequest->itemsToMakeLostCount = 0; |
| 9750 | return true; |
| 9751 | } |
| 9752 | } |
| 9753 | else // !upperAddress |
| 9754 | { |
| 9755 | if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9756 | { |
| 9757 | // Try to allocate at the end of 1st vector. |
| 9758 | |
| 9759 | VkDeviceSize resultBaseOffset = 0; |
| 9760 | if(!suballocations1st.empty()) |
| 9761 | { |
| 9762 | const VmaSuballocation& lastSuballoc = suballocations1st.back(); |
| 9763 | resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; |
| 9764 | } |
| 9765 | |
| 9766 | // Start from offset equal to beginning of free space. |
| 9767 | VkDeviceSize resultOffset = resultBaseOffset; |
| 9768 | |
| 9769 | // Apply VMA_DEBUG_MARGIN at the beginning. |
| 9770 | if(VMA_DEBUG_MARGIN > 0) |
| 9771 | { |
| 9772 | resultOffset += VMA_DEBUG_MARGIN; |
| 9773 | } |
| 9774 | |
| 9775 | // Apply alignment. |
| 9776 | resultOffset = VmaAlignUp(resultOffset, allocAlignment); |
| 9777 | |
| 9778 | // Check previous suballocations for BufferImageGranularity conflicts. |
| 9779 | // Make bigger alignment if necessary. |
| 9780 | if(bufferImageGranularity > 1 && !suballocations1st.empty()) |
| 9781 | { |
| 9782 | bool bufferImageGranularityConflict = false; |
| 9783 | for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) |
| 9784 | { |
| 9785 | const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; |
| 9786 | if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) |
| 9787 | { |
| 9788 | if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) |
| 9789 | { |
| 9790 | bufferImageGranularityConflict = true; |
| 9791 | break; |
| 9792 | } |
| 9793 | } |
| 9794 | else |
| 9795 | // Already on previous page. |
| 9796 | break; |
| 9797 | } |
| 9798 | if(bufferImageGranularityConflict) |
| 9799 | { |
| 9800 | resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); |
| 9801 | } |
| 9802 | } |
| 9803 | |
| 9804 | const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? |
| 9805 | suballocations2nd.back().offset : size; |
| 9806 | |
| 9807 | // There is enough free space at the end after alignment. |
| 9808 | if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) |
| 9809 | { |
| 9810 | // Check next suballocations for BufferImageGranularity conflicts. |
| 9811 | // If conflict exists, allocation cannot be made here. |
| 9812 | if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 9813 | { |
| 9814 | for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) |
| 9815 | { |
| 9816 | const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; |
| 9817 | if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) |
| 9818 | { |
| 9819 | if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) |
| 9820 | { |
| 9821 | return false; |
| 9822 | } |
| 9823 | } |
| 9824 | else |
| 9825 | { |
| 9826 | // Already on previous page. |
| 9827 | break; |
| 9828 | } |
| 9829 | } |
| 9830 | } |
| 9831 | |
| 9832 | // All tests passed: Success. |
| 9833 | pAllocationRequest->offset = resultOffset; |
| 9834 | pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; |
| 9835 | pAllocationRequest->sumItemSize = 0; |
| 9836 | // pAllocationRequest->item unused. |
| 9837 | pAllocationRequest->itemsToMakeLostCount = 0; |
| 9838 | return true; |
| 9839 | } |
| 9840 | } |
| 9841 | |
| 9842 | // Wrap-around to end of 2nd vector. Try to allocate there, watching for the |
| 9843 | // beginning of 1st vector as the end of free space. |
| 9844 | if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 9845 | { |
| 9846 | VMA_ASSERT(!suballocations1st.empty()); |
| 9847 | |
| 9848 | VkDeviceSize resultBaseOffset = 0; |
| 9849 | if(!suballocations2nd.empty()) |
| 9850 | { |
| 9851 | const VmaSuballocation& lastSuballoc = suballocations2nd.back(); |
| 9852 | resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; |
| 9853 | } |
| 9854 | |
| 9855 | // Start from offset equal to beginning of free space. |
| 9856 | VkDeviceSize resultOffset = resultBaseOffset; |
| 9857 | |
| 9858 | // Apply VMA_DEBUG_MARGIN at the beginning. |
| 9859 | if(VMA_DEBUG_MARGIN > 0) |
| 9860 | { |
| 9861 | resultOffset += VMA_DEBUG_MARGIN; |
| 9862 | } |
| 9863 | |
| 9864 | // Apply alignment. |
| 9865 | resultOffset = VmaAlignUp(resultOffset, allocAlignment); |
| 9866 | |
| 9867 | // Check previous suballocations for BufferImageGranularity conflicts. |
| 9868 | // Make bigger alignment if necessary. |
| 9869 | if(bufferImageGranularity > 1 && !suballocations2nd.empty()) |
| 9870 | { |
| 9871 | bool bufferImageGranularityConflict = false; |
| 9872 | for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) |
| 9873 | { |
| 9874 | const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; |
| 9875 | if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) |
| 9876 | { |
| 9877 | if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) |
| 9878 | { |
| 9879 | bufferImageGranularityConflict = true; |
| 9880 | break; |
| 9881 | } |
| 9882 | } |
| 9883 | else |
| 9884 | // Already on previous page. |
| 9885 | break; |
| 9886 | } |
| 9887 | if(bufferImageGranularityConflict) |
| 9888 | { |
| 9889 | resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); |
| 9890 | } |
| 9891 | } |
| 9892 | |
| 9893 | pAllocationRequest->itemsToMakeLostCount = 0; |
| 9894 | pAllocationRequest->sumItemSize = 0; |
| 9895 | size_t index1st = m_1stNullItemsBeginCount; |
| 9896 | |
| 9897 | if(canMakeOtherLost) |
| 9898 | { |
| 9899 | while(index1st < suballocations1st.size() && |
| 9900 | resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) |
| 9901 | { |
| 9902 | // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. |
| 9903 | const VmaSuballocation& suballoc = suballocations1st[index1st]; |
| 9904 | if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) |
| 9905 | { |
| 9906 | // No problem. |
| 9907 | } |
| 9908 | else |
| 9909 | { |
| 9910 | VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); |
| 9911 | if(suballoc.hAllocation->CanBecomeLost() && |
| 9912 | suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) |
| 9913 | { |
| 9914 | ++pAllocationRequest->itemsToMakeLostCount; |
| 9915 | pAllocationRequest->sumItemSize += suballoc.size; |
| 9916 | } |
| 9917 | else |
| 9918 | { |
| 9919 | return false; |
| 9920 | } |
| 9921 | } |
| 9922 | ++index1st; |
| 9923 | } |
| 9924 | |
| 9925 | // Check next suballocations for BufferImageGranularity conflicts. |
| 9926 | // If conflict exists, we must mark more allocations lost or fail. |
| 9927 | if(bufferImageGranularity > 1) |
| 9928 | { |
| 9929 | while(index1st < suballocations1st.size()) |
| 9930 | { |
| 9931 | const VmaSuballocation& suballoc = suballocations1st[index1st]; |
| 9932 | if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) |
| 9933 | { |
| 9934 | if(suballoc.hAllocation != VK_NULL_HANDLE) |
| 9935 | { |
| 9936 | // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). |
| 9937 | if(suballoc.hAllocation->CanBecomeLost() && |
| 9938 | suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) |
| 9939 | { |
| 9940 | ++pAllocationRequest->itemsToMakeLostCount; |
| 9941 | pAllocationRequest->sumItemSize += suballoc.size; |
| 9942 | } |
| 9943 | else |
| 9944 | { |
| 9945 | return false; |
| 9946 | } |
| 9947 | } |
| 9948 | } |
| 9949 | else |
| 9950 | { |
| 9951 | // Already on next page. |
| 9952 | break; |
| 9953 | } |
| 9954 | ++index1st; |
| 9955 | } |
| 9956 | } |
| 9957 | } |
| 9958 | |
| 9959 | // There is enough free space at the end after alignment. |
| 9960 | if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN < size) || |
| 9961 | (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) |
| 9962 | { |
| 9963 | // Check next suballocations for BufferImageGranularity conflicts. |
| 9964 | // If conflict exists, allocation cannot be made here. |
| 9965 | if(bufferImageGranularity > 1) |
| 9966 | { |
| 9967 | for(size_t nextSuballocIndex = index1st; |
| 9968 | nextSuballocIndex < suballocations1st.size(); |
| 9969 | nextSuballocIndex++) |
| 9970 | { |
| 9971 | const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; |
| 9972 | if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) |
| 9973 | { |
| 9974 | if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) |
| 9975 | { |
| 9976 | return false; |
| 9977 | } |
| 9978 | } |
| 9979 | else |
| 9980 | { |
| 9981 | // Already on next page. |
| 9982 | break; |
| 9983 | } |
| 9984 | } |
| 9985 | } |
| 9986 | |
| 9987 | // All tests passed: Success. |
| 9988 | pAllocationRequest->offset = resultOffset; |
| 9989 | pAllocationRequest->sumFreeSize = |
| 9990 | (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) |
| 9991 | - resultBaseOffset |
| 9992 | - pAllocationRequest->sumItemSize; |
| 9993 | // pAllocationRequest->item unused. |
| 9994 | return true; |
| 9995 | } |
| 9996 | } |
| 9997 | } |
| 9998 | |
| 9999 | return false; |
| 10000 | } |
| 10001 | |
| 10002 | bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( |
| 10003 | uint32_t currentFrameIndex, |
| 10004 | uint32_t frameInUseCount, |
| 10005 | VmaAllocationRequest* pAllocationRequest) |
| 10006 | { |
| 10007 | if(pAllocationRequest->itemsToMakeLostCount == 0) |
| 10008 | { |
| 10009 | return true; |
| 10010 | } |
| 10011 | |
| 10012 | VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); |
| 10013 | |
| 10014 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10015 | size_t index1st = m_1stNullItemsBeginCount; |
| 10016 | size_t madeLostCount = 0; |
| 10017 | while(madeLostCount < pAllocationRequest->itemsToMakeLostCount) |
| 10018 | { |
| 10019 | VMA_ASSERT(index1st < suballocations1st.size()); |
| 10020 | VmaSuballocation& suballoc = suballocations1st[index1st]; |
| 10021 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) |
| 10022 | { |
| 10023 | VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); |
| 10024 | VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); |
| 10025 | if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) |
| 10026 | { |
| 10027 | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10028 | suballoc.hAllocation = VK_NULL_HANDLE; |
| 10029 | m_SumFreeSize += suballoc.size; |
| 10030 | ++m_1stNullItemsMiddleCount; |
| 10031 | ++madeLostCount; |
| 10032 | } |
| 10033 | else |
| 10034 | { |
| 10035 | return false; |
| 10036 | } |
| 10037 | } |
| 10038 | ++index1st; |
| 10039 | } |
| 10040 | |
| 10041 | CleanupAfterFree(); |
| 10042 | //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree(). |
| 10043 | |
| 10044 | return true; |
| 10045 | } |
| 10046 | |
| 10047 | uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) |
| 10048 | { |
| 10049 | uint32_t lostAllocationCount = 0; |
| 10050 | |
| 10051 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10052 | for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) |
| 10053 | { |
| 10054 | VmaSuballocation& suballoc = suballocations1st[i]; |
| 10055 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && |
| 10056 | suballoc.hAllocation->CanBecomeLost() && |
| 10057 | suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) |
| 10058 | { |
| 10059 | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10060 | suballoc.hAllocation = VK_NULL_HANDLE; |
| 10061 | ++m_1stNullItemsMiddleCount; |
| 10062 | m_SumFreeSize += suballoc.size; |
| 10063 | ++lostAllocationCount; |
| 10064 | } |
| 10065 | } |
| 10066 | |
| 10067 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10068 | for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) |
| 10069 | { |
| 10070 | VmaSuballocation& suballoc = suballocations2nd[i]; |
| 10071 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && |
| 10072 | suballoc.hAllocation->CanBecomeLost() && |
| 10073 | suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) |
| 10074 | { |
| 10075 | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10076 | suballoc.hAllocation = VK_NULL_HANDLE; |
| 10077 | ++m_2ndNullItemsCount; |
| 10078 | ++lostAllocationCount; |
| 10079 | } |
| 10080 | } |
| 10081 | |
| 10082 | if(lostAllocationCount) |
| 10083 | { |
| 10084 | CleanupAfterFree(); |
| 10085 | } |
| 10086 | |
| 10087 | return lostAllocationCount; |
| 10088 | } |
| 10089 | |
| 10090 | VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) |
| 10091 | { |
| 10092 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10093 | for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) |
| 10094 | { |
| 10095 | const VmaSuballocation& suballoc = suballocations1st[i]; |
| 10096 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) |
| 10097 | { |
| 10098 | if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) |
| 10099 | { |
| 10100 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!" ); |
| 10101 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 10102 | } |
| 10103 | if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) |
| 10104 | { |
| 10105 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!" ); |
| 10106 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 10107 | } |
| 10108 | } |
| 10109 | } |
| 10110 | |
| 10111 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10112 | for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) |
| 10113 | { |
| 10114 | const VmaSuballocation& suballoc = suballocations2nd[i]; |
| 10115 | if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) |
| 10116 | { |
| 10117 | if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) |
| 10118 | { |
| 10119 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!" ); |
| 10120 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 10121 | } |
| 10122 | if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) |
| 10123 | { |
| 10124 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!" ); |
| 10125 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 10126 | } |
| 10127 | } |
| 10128 | } |
| 10129 | |
| 10130 | return VK_SUCCESS; |
| 10131 | } |
| 10132 | |
| 10133 | void VmaBlockMetadata_Linear::Alloc( |
| 10134 | const VmaAllocationRequest& request, |
| 10135 | VmaSuballocationType type, |
| 10136 | VkDeviceSize allocSize, |
| 10137 | bool upperAddress, |
| 10138 | VmaAllocation hAllocation) |
| 10139 | { |
| 10140 | const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; |
| 10141 | |
| 10142 | if(upperAddress) |
| 10143 | { |
| 10144 | VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && |
| 10145 | "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer." ); |
| 10146 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10147 | suballocations2nd.push_back(newSuballoc); |
| 10148 | m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; |
| 10149 | } |
| 10150 | else |
| 10151 | { |
| 10152 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10153 | |
| 10154 | // First allocation. |
| 10155 | if(suballocations1st.empty()) |
| 10156 | { |
| 10157 | suballocations1st.push_back(newSuballoc); |
| 10158 | } |
| 10159 | else |
| 10160 | { |
| 10161 | // New allocation at the end of 1st vector. |
| 10162 | if(request.offset >= suballocations1st.back().offset + suballocations1st.back().size) |
| 10163 | { |
| 10164 | // Check if it fits before the end of the block. |
| 10165 | VMA_ASSERT(request.offset + allocSize <= GetSize()); |
| 10166 | suballocations1st.push_back(newSuballoc); |
| 10167 | } |
| 10168 | // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. |
| 10169 | else if(request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset) |
| 10170 | { |
| 10171 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10172 | |
| 10173 | switch(m_2ndVectorMode) |
| 10174 | { |
| 10175 | case SECOND_VECTOR_EMPTY: |
| 10176 | // First allocation from second part ring buffer. |
| 10177 | VMA_ASSERT(suballocations2nd.empty()); |
| 10178 | m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; |
| 10179 | break; |
| 10180 | case SECOND_VECTOR_RING_BUFFER: |
| 10181 | // 2-part ring buffer is already started. |
| 10182 | VMA_ASSERT(!suballocations2nd.empty()); |
| 10183 | break; |
| 10184 | case SECOND_VECTOR_DOUBLE_STACK: |
| 10185 | VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack." ); |
| 10186 | break; |
| 10187 | default: |
| 10188 | VMA_ASSERT(0); |
| 10189 | } |
| 10190 | |
| 10191 | suballocations2nd.push_back(newSuballoc); |
| 10192 | } |
| 10193 | else |
| 10194 | { |
| 10195 | VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR." ); |
| 10196 | } |
| 10197 | } |
| 10198 | } |
| 10199 | |
| 10200 | m_SumFreeSize -= newSuballoc.size; |
| 10201 | } |
| 10202 | |
| 10203 | void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) |
| 10204 | { |
| 10205 | FreeAtOffset(allocation->GetOffset()); |
| 10206 | } |
| 10207 | |
| 10208 | void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) |
| 10209 | { |
| 10210 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10211 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10212 | |
| 10213 | if(!suballocations1st.empty()) |
| 10214 | { |
| 10215 | // First allocation: Mark it as next empty at the beginning. |
| 10216 | VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; |
| 10217 | if(firstSuballoc.offset == offset) |
| 10218 | { |
| 10219 | firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10220 | firstSuballoc.hAllocation = VK_NULL_HANDLE; |
| 10221 | m_SumFreeSize += firstSuballoc.size; |
| 10222 | ++m_1stNullItemsBeginCount; |
| 10223 | CleanupAfterFree(); |
| 10224 | return; |
| 10225 | } |
| 10226 | } |
| 10227 | |
| 10228 | // Last allocation in 2-part ring buffer or top of upper stack (same logic). |
| 10229 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || |
| 10230 | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) |
| 10231 | { |
| 10232 | VmaSuballocation& lastSuballoc = suballocations2nd.back(); |
| 10233 | if(lastSuballoc.offset == offset) |
| 10234 | { |
| 10235 | m_SumFreeSize += lastSuballoc.size; |
| 10236 | suballocations2nd.pop_back(); |
| 10237 | CleanupAfterFree(); |
| 10238 | return; |
| 10239 | } |
| 10240 | } |
| 10241 | // Last allocation in 1st vector. |
| 10242 | else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY) |
| 10243 | { |
| 10244 | VmaSuballocation& lastSuballoc = suballocations1st.back(); |
| 10245 | if(lastSuballoc.offset == offset) |
| 10246 | { |
| 10247 | m_SumFreeSize += lastSuballoc.size; |
| 10248 | suballocations1st.pop_back(); |
| 10249 | CleanupAfterFree(); |
| 10250 | return; |
| 10251 | } |
| 10252 | } |
| 10253 | |
| 10254 | // Item from the middle of 1st vector. |
| 10255 | { |
| 10256 | VmaSuballocation refSuballoc; |
| 10257 | refSuballoc.offset = offset; |
| 10258 | // Rest of members stays uninitialized intentionally for better performance. |
| 10259 | SuballocationVectorType::iterator it = VmaVectorFindSorted<VmaSuballocationOffsetLess>( |
| 10260 | suballocations1st.begin() + m_1stNullItemsBeginCount, |
| 10261 | suballocations1st.end(), |
| 10262 | refSuballoc); |
| 10263 | if(it != suballocations1st.end()) |
| 10264 | { |
| 10265 | it->type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10266 | it->hAllocation = VK_NULL_HANDLE; |
| 10267 | ++m_1stNullItemsMiddleCount; |
| 10268 | m_SumFreeSize += it->size; |
| 10269 | CleanupAfterFree(); |
| 10270 | return; |
| 10271 | } |
| 10272 | } |
| 10273 | |
| 10274 | if(m_2ndVectorMode != SECOND_VECTOR_EMPTY) |
| 10275 | { |
| 10276 | // Item from the middle of 2nd vector. |
| 10277 | VmaSuballocation refSuballoc; |
| 10278 | refSuballoc.offset = offset; |
| 10279 | // Rest of members stays uninitialized intentionally for better performance. |
| 10280 | SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? |
| 10281 | VmaVectorFindSorted<VmaSuballocationOffsetLess>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc) : |
| 10282 | VmaVectorFindSorted<VmaSuballocationOffsetGreater>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc); |
| 10283 | if(it != suballocations2nd.end()) |
| 10284 | { |
| 10285 | it->type = VMA_SUBALLOCATION_TYPE_FREE; |
| 10286 | it->hAllocation = VK_NULL_HANDLE; |
| 10287 | ++m_2ndNullItemsCount; |
| 10288 | m_SumFreeSize += it->size; |
| 10289 | CleanupAfterFree(); |
| 10290 | return; |
| 10291 | } |
| 10292 | } |
| 10293 | |
| 10294 | VMA_ASSERT(0 && "Allocation to free not found in linear allocator!" ); |
| 10295 | } |
| 10296 | |
| 10297 | bool VmaBlockMetadata_Linear::ShouldCompact1st() const |
| 10298 | { |
| 10299 | const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; |
| 10300 | const size_t suballocCount = AccessSuballocations1st().size(); |
| 10301 | return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; |
| 10302 | } |
| 10303 | |
| 10304 | void VmaBlockMetadata_Linear::CleanupAfterFree() |
| 10305 | { |
| 10306 | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); |
| 10307 | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); |
| 10308 | |
| 10309 | if(IsEmpty()) |
| 10310 | { |
| 10311 | suballocations1st.clear(); |
| 10312 | suballocations2nd.clear(); |
| 10313 | m_1stNullItemsBeginCount = 0; |
| 10314 | m_1stNullItemsMiddleCount = 0; |
| 10315 | m_2ndNullItemsCount = 0; |
| 10316 | m_2ndVectorMode = SECOND_VECTOR_EMPTY; |
| 10317 | } |
| 10318 | else |
| 10319 | { |
| 10320 | const size_t suballoc1stCount = suballocations1st.size(); |
| 10321 | const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; |
| 10322 | VMA_ASSERT(nullItem1stCount <= suballoc1stCount); |
| 10323 | |
| 10324 | // Find more null items at the beginning of 1st vector. |
| 10325 | while(m_1stNullItemsBeginCount < suballoc1stCount && |
| 10326 | suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) |
| 10327 | { |
| 10328 | ++m_1stNullItemsBeginCount; |
| 10329 | --m_1stNullItemsMiddleCount; |
| 10330 | } |
| 10331 | |
| 10332 | // Find more null items at the end of 1st vector. |
| 10333 | while(m_1stNullItemsMiddleCount > 0 && |
| 10334 | suballocations1st.back().hAllocation == VK_NULL_HANDLE) |
| 10335 | { |
| 10336 | --m_1stNullItemsMiddleCount; |
| 10337 | suballocations1st.pop_back(); |
| 10338 | } |
| 10339 | |
| 10340 | // Find more null items at the end of 2nd vector. |
| 10341 | while(m_2ndNullItemsCount > 0 && |
| 10342 | suballocations2nd.back().hAllocation == VK_NULL_HANDLE) |
| 10343 | { |
| 10344 | --m_2ndNullItemsCount; |
| 10345 | suballocations2nd.pop_back(); |
| 10346 | } |
| 10347 | |
| 10348 | if(ShouldCompact1st()) |
| 10349 | { |
| 10350 | const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; |
| 10351 | size_t srcIndex = m_1stNullItemsBeginCount; |
| 10352 | for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) |
| 10353 | { |
| 10354 | while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) |
| 10355 | { |
| 10356 | ++srcIndex; |
| 10357 | } |
| 10358 | if(dstIndex != srcIndex) |
| 10359 | { |
| 10360 | suballocations1st[dstIndex] = suballocations1st[srcIndex]; |
| 10361 | } |
| 10362 | ++srcIndex; |
| 10363 | } |
| 10364 | suballocations1st.resize(nonNullItemCount); |
| 10365 | m_1stNullItemsBeginCount = 0; |
| 10366 | m_1stNullItemsMiddleCount = 0; |
| 10367 | } |
| 10368 | |
| 10369 | // 2nd vector became empty. |
| 10370 | if(suballocations2nd.empty()) |
| 10371 | { |
| 10372 | m_2ndVectorMode = SECOND_VECTOR_EMPTY; |
| 10373 | } |
| 10374 | |
| 10375 | // 1st vector became empty. |
| 10376 | if(suballocations1st.size() - m_1stNullItemsBeginCount == 0) |
| 10377 | { |
| 10378 | suballocations1st.clear(); |
| 10379 | m_1stNullItemsBeginCount = 0; |
| 10380 | |
| 10381 | if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) |
| 10382 | { |
| 10383 | // Swap 1st with 2nd. Now 2nd is empty. |
| 10384 | m_2ndVectorMode = SECOND_VECTOR_EMPTY; |
| 10385 | m_1stNullItemsMiddleCount = m_2ndNullItemsCount; |
| 10386 | while(m_1stNullItemsBeginCount < suballocations2nd.size() && |
| 10387 | suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) |
| 10388 | { |
| 10389 | ++m_1stNullItemsBeginCount; |
| 10390 | --m_1stNullItemsMiddleCount; |
| 10391 | } |
| 10392 | m_2ndNullItemsCount = 0; |
| 10393 | m_1stVectorIndex ^= 1; |
| 10394 | } |
| 10395 | } |
| 10396 | } |
| 10397 | |
| 10398 | VMA_HEAVY_ASSERT(Validate()); |
| 10399 | } |
| 10400 | |
| 10401 | |
| 10402 | //////////////////////////////////////////////////////////////////////////////// |
| 10403 | // class VmaBlockMetadata_Buddy |
| 10404 | |
| 10405 | VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : |
| 10406 | VmaBlockMetadata(hAllocator), |
| 10407 | m_Root(VMA_NULL), |
| 10408 | m_AllocationCount(0), |
| 10409 | m_FreeCount(1), |
| 10410 | m_SumFreeSize(0) |
| 10411 | { |
| 10412 | memset(m_FreeList, 0, sizeof(m_FreeList)); |
| 10413 | } |
| 10414 | |
| 10415 | VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() |
| 10416 | { |
| 10417 | DeleteNode(m_Root); |
| 10418 | } |
| 10419 | |
| 10420 | void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) |
| 10421 | { |
| 10422 | VmaBlockMetadata::Init(size); |
| 10423 | |
| 10424 | m_UsableSize = VmaPrevPow2(size); |
| 10425 | m_SumFreeSize = m_UsableSize; |
| 10426 | |
| 10427 | // Calculate m_LevelCount. |
| 10428 | m_LevelCount = 1; |
| 10429 | while(m_LevelCount < MAX_LEVELS && |
| 10430 | LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) |
| 10431 | { |
| 10432 | ++m_LevelCount; |
| 10433 | } |
| 10434 | |
| 10435 | Node* rootNode = vma_new(GetAllocationCallbacks(), Node)(); |
| 10436 | rootNode->offset = 0; |
| 10437 | rootNode->type = Node::TYPE_FREE; |
| 10438 | rootNode->parent = VMA_NULL; |
| 10439 | rootNode->buddy = VMA_NULL; |
| 10440 | |
| 10441 | m_Root = rootNode; |
| 10442 | AddToFreeListFront(0, rootNode); |
| 10443 | } |
| 10444 | |
| 10445 | bool VmaBlockMetadata_Buddy::Validate() const |
| 10446 | { |
| 10447 | // Validate tree. |
| 10448 | ValidationContext ctx; |
| 10449 | if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) |
| 10450 | { |
| 10451 | VMA_VALIDATE(false && "ValidateNode failed." ); |
| 10452 | } |
| 10453 | VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); |
| 10454 | VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); |
| 10455 | |
| 10456 | // Validate free node lists. |
| 10457 | for(uint32_t level = 0; level < m_LevelCount; ++level) |
| 10458 | { |
| 10459 | VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || |
| 10460 | m_FreeList[level].front->free.prev == VMA_NULL); |
| 10461 | |
| 10462 | for(Node* node = m_FreeList[level].front; |
| 10463 | node != VMA_NULL; |
| 10464 | node = node->free.next) |
| 10465 | { |
| 10466 | VMA_VALIDATE(node->type == Node::TYPE_FREE); |
| 10467 | |
| 10468 | if(node->free.next == VMA_NULL) |
| 10469 | { |
| 10470 | VMA_VALIDATE(m_FreeList[level].back == node); |
| 10471 | } |
| 10472 | else |
| 10473 | { |
| 10474 | VMA_VALIDATE(node->free.next->free.prev == node); |
| 10475 | } |
| 10476 | } |
| 10477 | } |
| 10478 | |
| 10479 | // Validate that free lists ar higher levels are empty. |
| 10480 | for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) |
| 10481 | { |
| 10482 | VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); |
| 10483 | } |
| 10484 | |
| 10485 | return true; |
| 10486 | } |
| 10487 | |
| 10488 | VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const |
| 10489 | { |
| 10490 | for(uint32_t level = 0; level < m_LevelCount; ++level) |
| 10491 | { |
| 10492 | if(m_FreeList[level].front != VMA_NULL) |
| 10493 | { |
| 10494 | return LevelToNodeSize(level); |
| 10495 | } |
| 10496 | } |
| 10497 | return 0; |
| 10498 | } |
| 10499 | |
| 10500 | void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const |
| 10501 | { |
| 10502 | const VkDeviceSize unusableSize = GetUnusableSize(); |
| 10503 | |
| 10504 | outInfo.blockCount = 1; |
| 10505 | |
| 10506 | outInfo.allocationCount = outInfo.unusedRangeCount = 0; |
| 10507 | outInfo.usedBytes = outInfo.unusedBytes = 0; |
| 10508 | |
| 10509 | outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; |
| 10510 | outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; |
| 10511 | outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. |
| 10512 | |
| 10513 | CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); |
| 10514 | |
| 10515 | if(unusableSize > 0) |
| 10516 | { |
| 10517 | ++outInfo.unusedRangeCount; |
| 10518 | outInfo.unusedBytes += unusableSize; |
| 10519 | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); |
| 10520 | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); |
| 10521 | } |
| 10522 | } |
| 10523 | |
| 10524 | void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const |
| 10525 | { |
| 10526 | const VkDeviceSize unusableSize = GetUnusableSize(); |
| 10527 | |
| 10528 | inoutStats.size += GetSize(); |
| 10529 | inoutStats.unusedSize += m_SumFreeSize + unusableSize; |
| 10530 | inoutStats.allocationCount += m_AllocationCount; |
| 10531 | inoutStats.unusedRangeCount += m_FreeCount; |
| 10532 | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); |
| 10533 | |
| 10534 | if(unusableSize > 0) |
| 10535 | { |
| 10536 | ++inoutStats.unusedRangeCount; |
| 10537 | // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. |
| 10538 | } |
| 10539 | } |
| 10540 | |
| 10541 | #if VMA_STATS_STRING_ENABLED |
| 10542 | |
| 10543 | void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const |
| 10544 | { |
| 10545 | // TODO optimize |
| 10546 | VmaStatInfo stat; |
| 10547 | CalcAllocationStatInfo(stat); |
| 10548 | |
| 10549 | PrintDetailedMap_Begin( |
| 10550 | json, |
| 10551 | stat.unusedBytes, |
| 10552 | stat.allocationCount, |
| 10553 | stat.unusedRangeCount); |
| 10554 | |
| 10555 | PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); |
| 10556 | |
| 10557 | const VkDeviceSize unusableSize = GetUnusableSize(); |
| 10558 | if(unusableSize > 0) |
| 10559 | { |
| 10560 | PrintDetailedMap_UnusedRange(json, |
| 10561 | m_UsableSize, // offset |
| 10562 | unusableSize); // size |
| 10563 | } |
| 10564 | |
| 10565 | PrintDetailedMap_End(json); |
| 10566 | } |
| 10567 | |
| 10568 | #endif // #if VMA_STATS_STRING_ENABLED |
| 10569 | |
| 10570 | bool VmaBlockMetadata_Buddy::CreateAllocationRequest( |
| 10571 | uint32_t /*currentFrameIndex*/, |
| 10572 | uint32_t /*frameInUseCount*/, |
| 10573 | VkDeviceSize bufferImageGranularity, |
| 10574 | VkDeviceSize allocSize, |
| 10575 | VkDeviceSize allocAlignment, |
| 10576 | bool upperAddress, |
| 10577 | VmaSuballocationType allocType, |
| 10578 | bool /*canMakeOtherLost*/, |
| 10579 | uint32_t /*strategy*/, |
| 10580 | VmaAllocationRequest* pAllocationRequest) |
| 10581 | { |
| 10582 | VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm." ); |
| 10583 | (void) upperAddress; |
| 10584 | |
| 10585 | // Simple way to respect bufferImageGranularity. May be optimized some day. |
| 10586 | // Whenever it might be an OPTIMAL image... |
| 10587 | if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || |
| 10588 | allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || |
| 10589 | allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) |
| 10590 | { |
| 10591 | allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); |
| 10592 | allocSize = VMA_MAX(allocSize, bufferImageGranularity); |
| 10593 | } |
| 10594 | |
| 10595 | if(allocSize > m_UsableSize) |
| 10596 | { |
| 10597 | return false; |
| 10598 | } |
| 10599 | |
| 10600 | const uint32_t targetLevel = AllocSizeToLevel(allocSize); |
| 10601 | for(uint32_t level = targetLevel + 1; level--; ) |
| 10602 | { |
| 10603 | for(Node* freeNode = m_FreeList[level].front; |
| 10604 | freeNode != VMA_NULL; |
| 10605 | freeNode = freeNode->free.next) |
| 10606 | { |
| 10607 | if(freeNode->offset % allocAlignment == 0) |
| 10608 | { |
| 10609 | pAllocationRequest->offset = freeNode->offset; |
| 10610 | pAllocationRequest->sumFreeSize = LevelToNodeSize(level); |
| 10611 | pAllocationRequest->sumItemSize = 0; |
| 10612 | pAllocationRequest->itemsToMakeLostCount = 0; |
| 10613 | pAllocationRequest->customData = (void*)(uintptr_t)level; |
| 10614 | return true; |
| 10615 | } |
| 10616 | } |
| 10617 | } |
| 10618 | |
| 10619 | return false; |
| 10620 | } |
| 10621 | |
| 10622 | bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( |
| 10623 | uint32_t /*currentFrameIndex*/, |
| 10624 | uint32_t /*frameInUseCount*/, |
| 10625 | VmaAllocationRequest* pAllocationRequest) |
| 10626 | { |
| 10627 | /* |
| 10628 | Lost allocations are not supported in buddy allocator at the moment. |
| 10629 | Support might be added in the future. |
| 10630 | */ |
| 10631 | return pAllocationRequest->itemsToMakeLostCount == 0; |
| 10632 | } |
| 10633 | |
| 10634 | uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t /*currentFrameIndex*/, uint32_t /*frameInUseCount*/) |
| 10635 | { |
| 10636 | /* |
| 10637 | Lost allocations are not supported in buddy allocator at the moment. |
| 10638 | Support might be added in the future. |
| 10639 | */ |
| 10640 | return 0; |
| 10641 | } |
| 10642 | |
| 10643 | void VmaBlockMetadata_Buddy::Alloc( |
| 10644 | const VmaAllocationRequest& request, |
| 10645 | VmaSuballocationType /*type*/, |
| 10646 | VkDeviceSize allocSize, |
| 10647 | bool /*upperAddress*/, |
| 10648 | VmaAllocation hAllocation) |
| 10649 | { |
| 10650 | const uint32_t targetLevel = AllocSizeToLevel(allocSize); |
| 10651 | uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; |
| 10652 | |
| 10653 | Node* currNode = m_FreeList[currLevel].front; |
| 10654 | VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); |
| 10655 | while(currNode->offset != request.offset) |
| 10656 | { |
| 10657 | currNode = currNode->free.next; |
| 10658 | VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); |
| 10659 | } |
| 10660 | |
| 10661 | // Go down, splitting free nodes. |
| 10662 | while(currLevel < targetLevel) |
| 10663 | { |
| 10664 | // currNode is already first free node at currLevel. |
| 10665 | // Remove it from list of free nodes at this currLevel. |
| 10666 | RemoveFromFreeList(currLevel, currNode); |
| 10667 | |
| 10668 | const uint32_t childrenLevel = currLevel + 1; |
| 10669 | |
| 10670 | // Create two free sub-nodes. |
| 10671 | Node* leftChild = vma_new(GetAllocationCallbacks(), Node)(); |
| 10672 | Node* rightChild = vma_new(GetAllocationCallbacks(), Node)(); |
| 10673 | |
| 10674 | leftChild->offset = currNode->offset; |
| 10675 | leftChild->type = Node::TYPE_FREE; |
| 10676 | leftChild->parent = currNode; |
| 10677 | leftChild->buddy = rightChild; |
| 10678 | |
| 10679 | rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); |
| 10680 | rightChild->type = Node::TYPE_FREE; |
| 10681 | rightChild->parent = currNode; |
| 10682 | rightChild->buddy = leftChild; |
| 10683 | |
| 10684 | // Convert current currNode to split type. |
| 10685 | currNode->type = Node::TYPE_SPLIT; |
| 10686 | currNode->split.leftChild = leftChild; |
| 10687 | |
| 10688 | // Add child nodes to free list. Order is important! |
| 10689 | AddToFreeListFront(childrenLevel, rightChild); |
| 10690 | AddToFreeListFront(childrenLevel, leftChild); |
| 10691 | |
| 10692 | ++m_FreeCount; |
| 10693 | //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. |
| 10694 | ++currLevel; |
| 10695 | currNode = m_FreeList[currLevel].front; |
| 10696 | |
| 10697 | /* |
| 10698 | We can be sure that currNode, as left child of node previously split, |
| 10699 | also fullfills the alignment requirement. |
| 10700 | */ |
| 10701 | } |
| 10702 | |
| 10703 | // Remove from free list. |
| 10704 | VMA_ASSERT(currLevel == targetLevel && |
| 10705 | currNode != VMA_NULL && |
| 10706 | currNode->type == Node::TYPE_FREE); |
| 10707 | RemoveFromFreeList(currLevel, currNode); |
| 10708 | |
| 10709 | // Convert to allocation node. |
| 10710 | currNode->type = Node::TYPE_ALLOCATION; |
| 10711 | currNode->allocation.alloc = hAllocation; |
| 10712 | |
| 10713 | ++m_AllocationCount; |
| 10714 | --m_FreeCount; |
| 10715 | m_SumFreeSize -= allocSize; |
| 10716 | } |
| 10717 | |
| 10718 | void VmaBlockMetadata_Buddy::DeleteNode(Node* node) |
| 10719 | { |
| 10720 | if(node->type == Node::TYPE_SPLIT) |
| 10721 | { |
| 10722 | DeleteNode(node->split.leftChild->buddy); |
| 10723 | DeleteNode(node->split.leftChild); |
| 10724 | } |
| 10725 | |
| 10726 | vma_delete(GetAllocationCallbacks(), node); |
| 10727 | } |
| 10728 | |
| 10729 | bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const |
| 10730 | { |
| 10731 | VMA_VALIDATE(level < m_LevelCount); |
| 10732 | VMA_VALIDATE(curr->parent == parent); |
| 10733 | VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); |
| 10734 | VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); |
| 10735 | switch(curr->type) |
| 10736 | { |
| 10737 | case Node::TYPE_FREE: |
| 10738 | // curr->free.prev, next are validated separately. |
| 10739 | ctx.calculatedSumFreeSize += levelNodeSize; |
| 10740 | ++ctx.calculatedFreeCount; |
| 10741 | break; |
| 10742 | case Node::TYPE_ALLOCATION: |
| 10743 | ++ctx.calculatedAllocationCount; |
| 10744 | ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); |
| 10745 | VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); |
| 10746 | break; |
| 10747 | case Node::TYPE_SPLIT: |
| 10748 | { |
| 10749 | const uint32_t childrenLevel = level + 1; |
| 10750 | const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; |
| 10751 | const Node* const leftChild = curr->split.leftChild; |
| 10752 | VMA_VALIDATE(leftChild != VMA_NULL); |
| 10753 | VMA_VALIDATE(leftChild->offset == curr->offset); |
| 10754 | if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) |
| 10755 | { |
| 10756 | VMA_VALIDATE(false && "ValidateNode for left child failed." ); |
| 10757 | } |
| 10758 | const Node* const rightChild = leftChild->buddy; |
| 10759 | VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); |
| 10760 | if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) |
| 10761 | { |
| 10762 | VMA_VALIDATE(false && "ValidateNode for right child failed." ); |
| 10763 | } |
| 10764 | } |
| 10765 | break; |
| 10766 | default: |
| 10767 | return false; |
| 10768 | } |
| 10769 | |
| 10770 | return true; |
| 10771 | } |
| 10772 | |
| 10773 | uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const |
| 10774 | { |
| 10775 | // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. |
| 10776 | uint32_t level = 0; |
| 10777 | VkDeviceSize currLevelNodeSize = m_UsableSize; |
| 10778 | VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; |
| 10779 | while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) |
| 10780 | { |
| 10781 | ++level; |
| 10782 | currLevelNodeSize = nextLevelNodeSize; |
| 10783 | nextLevelNodeSize = currLevelNodeSize >> 1; |
| 10784 | } |
| 10785 | return level; |
| 10786 | } |
| 10787 | |
| 10788 | void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) |
| 10789 | { |
| 10790 | // Find node and level. |
| 10791 | Node* node = m_Root; |
| 10792 | VkDeviceSize nodeOffset = 0; |
| 10793 | uint32_t level = 0; |
| 10794 | VkDeviceSize levelNodeSize = LevelToNodeSize(0); |
| 10795 | while(node->type == Node::TYPE_SPLIT) |
| 10796 | { |
| 10797 | const VkDeviceSize nextLevelSize = levelNodeSize >> 1; |
| 10798 | if(offset < nodeOffset + nextLevelSize) |
| 10799 | { |
| 10800 | node = node->split.leftChild; |
| 10801 | } |
| 10802 | else |
| 10803 | { |
| 10804 | node = node->split.leftChild->buddy; |
| 10805 | nodeOffset += nextLevelSize; |
| 10806 | } |
| 10807 | ++level; |
| 10808 | levelNodeSize = nextLevelSize; |
| 10809 | } |
| 10810 | |
| 10811 | VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); |
| 10812 | VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); |
| 10813 | |
| 10814 | ++m_FreeCount; |
| 10815 | --m_AllocationCount; |
| 10816 | m_SumFreeSize += alloc->GetSize(); |
| 10817 | |
| 10818 | node->type = Node::TYPE_FREE; |
| 10819 | |
| 10820 | // Join free nodes if possible. |
| 10821 | while(level > 0 && node->buddy->type == Node::TYPE_FREE) |
| 10822 | { |
| 10823 | RemoveFromFreeList(level, node->buddy); |
| 10824 | Node* const parent = node->parent; |
| 10825 | |
| 10826 | vma_delete(GetAllocationCallbacks(), node->buddy); |
| 10827 | vma_delete(GetAllocationCallbacks(), node); |
| 10828 | parent->type = Node::TYPE_FREE; |
| 10829 | |
| 10830 | node = parent; |
| 10831 | --level; |
| 10832 | //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. |
| 10833 | --m_FreeCount; |
| 10834 | } |
| 10835 | |
| 10836 | AddToFreeListFront(level, node); |
| 10837 | } |
| 10838 | |
| 10839 | void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const |
| 10840 | { |
| 10841 | switch(node->type) |
| 10842 | { |
| 10843 | case Node::TYPE_FREE: |
| 10844 | ++outInfo.unusedRangeCount; |
| 10845 | outInfo.unusedBytes += levelNodeSize; |
| 10846 | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); |
| 10847 | outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); |
| 10848 | break; |
| 10849 | case Node::TYPE_ALLOCATION: |
| 10850 | { |
| 10851 | const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); |
| 10852 | ++outInfo.allocationCount; |
| 10853 | outInfo.usedBytes += allocSize; |
| 10854 | outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); |
| 10855 | outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); |
| 10856 | |
| 10857 | const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; |
| 10858 | if(unusedRangeSize > 0) |
| 10859 | { |
| 10860 | ++outInfo.unusedRangeCount; |
| 10861 | outInfo.unusedBytes += unusedRangeSize; |
| 10862 | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); |
| 10863 | outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); |
| 10864 | } |
| 10865 | } |
| 10866 | break; |
| 10867 | case Node::TYPE_SPLIT: |
| 10868 | { |
| 10869 | const VkDeviceSize childrenNodeSize = levelNodeSize / 2; |
| 10870 | const Node* const leftChild = node->split.leftChild; |
| 10871 | CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); |
| 10872 | const Node* const rightChild = leftChild->buddy; |
| 10873 | CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); |
| 10874 | } |
| 10875 | break; |
| 10876 | default: |
| 10877 | VMA_ASSERT(0); |
| 10878 | } |
| 10879 | } |
| 10880 | |
| 10881 | void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) |
| 10882 | { |
| 10883 | VMA_ASSERT(node->type == Node::TYPE_FREE); |
| 10884 | |
| 10885 | // List is empty. |
| 10886 | Node* const frontNode = m_FreeList[level].front; |
| 10887 | if(frontNode == VMA_NULL) |
| 10888 | { |
| 10889 | VMA_ASSERT(m_FreeList[level].back == VMA_NULL); |
| 10890 | node->free.prev = node->free.next = VMA_NULL; |
| 10891 | m_FreeList[level].front = m_FreeList[level].back = node; |
| 10892 | } |
| 10893 | else |
| 10894 | { |
| 10895 | VMA_ASSERT(frontNode->free.prev == VMA_NULL); |
| 10896 | node->free.prev = VMA_NULL; |
| 10897 | node->free.next = frontNode; |
| 10898 | frontNode->free.prev = node; |
| 10899 | m_FreeList[level].front = node; |
| 10900 | } |
| 10901 | } |
| 10902 | |
| 10903 | void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) |
| 10904 | { |
| 10905 | VMA_ASSERT(m_FreeList[level].front != VMA_NULL); |
| 10906 | |
| 10907 | // It is at the front. |
| 10908 | if(node->free.prev == VMA_NULL) |
| 10909 | { |
| 10910 | VMA_ASSERT(m_FreeList[level].front == node); |
| 10911 | m_FreeList[level].front = node->free.next; |
| 10912 | } |
| 10913 | else |
| 10914 | { |
| 10915 | Node* const prevFreeNode = node->free.prev; |
| 10916 | VMA_ASSERT(prevFreeNode->free.next == node); |
| 10917 | prevFreeNode->free.next = node->free.next; |
| 10918 | } |
| 10919 | |
| 10920 | // It is at the back. |
| 10921 | if(node->free.next == VMA_NULL) |
| 10922 | { |
| 10923 | VMA_ASSERT(m_FreeList[level].back == node); |
| 10924 | m_FreeList[level].back = node->free.prev; |
| 10925 | } |
| 10926 | else |
| 10927 | { |
| 10928 | Node* const nextFreeNode = node->free.next; |
| 10929 | VMA_ASSERT(nextFreeNode->free.prev == node); |
| 10930 | nextFreeNode->free.prev = node->free.prev; |
| 10931 | } |
| 10932 | } |
| 10933 | |
| 10934 | #if VMA_STATS_STRING_ENABLED |
| 10935 | void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const |
| 10936 | { |
| 10937 | switch(node->type) |
| 10938 | { |
| 10939 | case Node::TYPE_FREE: |
| 10940 | PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); |
| 10941 | break; |
| 10942 | case Node::TYPE_ALLOCATION: |
| 10943 | { |
| 10944 | PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); |
| 10945 | const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); |
| 10946 | if(allocSize < levelNodeSize) |
| 10947 | { |
| 10948 | PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); |
| 10949 | } |
| 10950 | } |
| 10951 | break; |
| 10952 | case Node::TYPE_SPLIT: |
| 10953 | { |
| 10954 | const VkDeviceSize childrenNodeSize = levelNodeSize / 2; |
| 10955 | const Node* const leftChild = node->split.leftChild; |
| 10956 | PrintDetailedMapNode(json, leftChild, childrenNodeSize); |
| 10957 | const Node* const rightChild = leftChild->buddy; |
| 10958 | PrintDetailedMapNode(json, rightChild, childrenNodeSize); |
| 10959 | } |
| 10960 | break; |
| 10961 | default: |
| 10962 | VMA_ASSERT(0); |
| 10963 | } |
| 10964 | } |
| 10965 | #endif // #if VMA_STATS_STRING_ENABLED |
| 10966 | |
| 10967 | |
| 10968 | //////////////////////////////////////////////////////////////////////////////// |
| 10969 | // class VmaDeviceMemoryBlock |
| 10970 | |
| 10971 | VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator /*hAllocator*/) : |
| 10972 | m_pMetadata(VMA_NULL), |
| 10973 | m_MemoryTypeIndex(UINT32_MAX), |
| 10974 | m_Id(0), |
| 10975 | m_hMemory(VK_NULL_HANDLE), |
| 10976 | m_MapCount(0), |
| 10977 | m_pMappedData(VMA_NULL) |
| 10978 | { |
| 10979 | } |
| 10980 | |
| 10981 | void VmaDeviceMemoryBlock::Init( |
| 10982 | VmaAllocator hAllocator, |
| 10983 | uint32_t newMemoryTypeIndex, |
| 10984 | VkDeviceMemory newMemory, |
| 10985 | VkDeviceSize newSize, |
| 10986 | uint32_t id, |
| 10987 | uint32_t algorithm) |
| 10988 | { |
| 10989 | VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); |
| 10990 | |
| 10991 | m_MemoryTypeIndex = newMemoryTypeIndex; |
| 10992 | m_Id = id; |
| 10993 | m_hMemory = newMemory; |
| 10994 | |
| 10995 | switch(algorithm) |
| 10996 | { |
| 10997 | case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: |
| 10998 | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); |
| 10999 | break; |
| 11000 | case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: |
| 11001 | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); |
| 11002 | break; |
| 11003 | default: |
| 11004 | VMA_ASSERT(0); |
| 11005 | // Fall-through. |
| 11006 | case 0: |
| 11007 | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); |
| 11008 | } |
| 11009 | m_pMetadata->Init(newSize); |
| 11010 | } |
| 11011 | |
| 11012 | void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) |
| 11013 | { |
| 11014 | // This is the most important assert in the entire library. |
| 11015 | // Hitting it means you have some memory leak - unreleased VmaAllocation objects. |
| 11016 | VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!" ); |
| 11017 | |
| 11018 | VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); |
| 11019 | allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); |
| 11020 | m_hMemory = VK_NULL_HANDLE; |
| 11021 | |
| 11022 | vma_delete(allocator, m_pMetadata); |
| 11023 | m_pMetadata = VMA_NULL; |
| 11024 | } |
| 11025 | |
| 11026 | bool VmaDeviceMemoryBlock::Validate() const |
| 11027 | { |
| 11028 | VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && |
| 11029 | (m_pMetadata->GetSize() != 0)); |
| 11030 | |
| 11031 | return m_pMetadata->Validate(); |
| 11032 | } |
| 11033 | |
| 11034 | VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) |
| 11035 | { |
| 11036 | void* pData = nullptr; |
| 11037 | VkResult res = Map(hAllocator, 1, &pData); |
| 11038 | if(res != VK_SUCCESS) |
| 11039 | { |
| 11040 | return res; |
| 11041 | } |
| 11042 | |
| 11043 | res = m_pMetadata->CheckCorruption(pData); |
| 11044 | |
| 11045 | Unmap(hAllocator, 1); |
| 11046 | |
| 11047 | return res; |
| 11048 | } |
| 11049 | |
| 11050 | VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) |
| 11051 | { |
| 11052 | if(count == 0) |
| 11053 | { |
| 11054 | return VK_SUCCESS; |
| 11055 | } |
| 11056 | |
| 11057 | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); |
| 11058 | if(m_MapCount != 0) |
| 11059 | { |
| 11060 | m_MapCount += count; |
| 11061 | VMA_ASSERT(m_pMappedData != VMA_NULL); |
| 11062 | if(ppData != VMA_NULL) |
| 11063 | { |
| 11064 | *ppData = m_pMappedData; |
| 11065 | } |
| 11066 | return VK_SUCCESS; |
| 11067 | } |
| 11068 | else |
| 11069 | { |
| 11070 | VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( |
| 11071 | hAllocator->m_hDevice, |
| 11072 | m_hMemory, |
| 11073 | 0, // offset |
| 11074 | VK_WHOLE_SIZE, |
| 11075 | 0, // flags |
| 11076 | &m_pMappedData); |
| 11077 | if(result == VK_SUCCESS) |
| 11078 | { |
| 11079 | if(ppData != VMA_NULL) |
| 11080 | { |
| 11081 | *ppData = m_pMappedData; |
| 11082 | } |
| 11083 | m_MapCount = count; |
| 11084 | } |
| 11085 | return result; |
| 11086 | } |
| 11087 | } |
| 11088 | |
| 11089 | void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) |
| 11090 | { |
| 11091 | if(count == 0) |
| 11092 | { |
| 11093 | return; |
| 11094 | } |
| 11095 | |
| 11096 | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); |
| 11097 | if(m_MapCount >= count) |
| 11098 | { |
| 11099 | m_MapCount -= count; |
| 11100 | if(m_MapCount == 0) |
| 11101 | { |
| 11102 | m_pMappedData = VMA_NULL; |
| 11103 | (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); |
| 11104 | } |
| 11105 | } |
| 11106 | else |
| 11107 | { |
| 11108 | VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped." ); |
| 11109 | } |
| 11110 | } |
| 11111 | |
| 11112 | VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) |
| 11113 | { |
| 11114 | VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); |
| 11115 | VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); |
| 11116 | |
| 11117 | void* pData; |
| 11118 | VkResult res = Map(hAllocator, 1, &pData); |
| 11119 | if(res != VK_SUCCESS) |
| 11120 | { |
| 11121 | return res; |
| 11122 | } |
| 11123 | |
| 11124 | VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); |
| 11125 | VmaWriteMagicValue(pData, allocOffset + allocSize); |
| 11126 | |
| 11127 | Unmap(hAllocator, 1); |
| 11128 | |
| 11129 | return VK_SUCCESS; |
| 11130 | } |
| 11131 | |
| 11132 | VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) |
| 11133 | { |
| 11134 | VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); |
| 11135 | VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); |
| 11136 | |
| 11137 | void* pData; |
| 11138 | VkResult res = Map(hAllocator, 1, &pData); |
| 11139 | if(res != VK_SUCCESS) |
| 11140 | { |
| 11141 | return res; |
| 11142 | } |
| 11143 | |
| 11144 | if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) |
| 11145 | { |
| 11146 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!" ); |
| 11147 | } |
| 11148 | else if(!VmaValidateMagicValue(pData, allocOffset + allocSize)) |
| 11149 | { |
| 11150 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!" ); |
| 11151 | } |
| 11152 | |
| 11153 | Unmap(hAllocator, 1); |
| 11154 | |
| 11155 | return VK_SUCCESS; |
| 11156 | } |
| 11157 | |
| 11158 | VkResult VmaDeviceMemoryBlock::BindBufferMemory( |
| 11159 | const VmaAllocator hAllocator, |
| 11160 | const VmaAllocation hAllocation, |
| 11161 | VkBuffer hBuffer) |
| 11162 | { |
| 11163 | VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && |
| 11164 | hAllocation->GetBlock() == this); |
| 11165 | // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. |
| 11166 | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); |
| 11167 | return hAllocator->GetVulkanFunctions().vkBindBufferMemory( |
| 11168 | hAllocator->m_hDevice, |
| 11169 | hBuffer, |
| 11170 | m_hMemory, |
| 11171 | hAllocation->GetOffset()); |
| 11172 | } |
| 11173 | |
| 11174 | VkResult VmaDeviceMemoryBlock::BindImageMemory( |
| 11175 | const VmaAllocator hAllocator, |
| 11176 | const VmaAllocation hAllocation, |
| 11177 | VkImage hImage) |
| 11178 | { |
| 11179 | VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && |
| 11180 | hAllocation->GetBlock() == this); |
| 11181 | // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. |
| 11182 | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); |
| 11183 | return hAllocator->GetVulkanFunctions().vkBindImageMemory( |
| 11184 | hAllocator->m_hDevice, |
| 11185 | hImage, |
| 11186 | m_hMemory, |
| 11187 | hAllocation->GetOffset()); |
| 11188 | } |
| 11189 | |
| 11190 | static void InitStatInfo(VmaStatInfo& outInfo) |
| 11191 | { |
| 11192 | memset(&outInfo, 0, sizeof(outInfo)); |
| 11193 | outInfo.allocationSizeMin = UINT64_MAX; |
| 11194 | outInfo.unusedRangeSizeMin = UINT64_MAX; |
| 11195 | } |
| 11196 | |
| 11197 | // Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. |
| 11198 | static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) |
| 11199 | { |
| 11200 | inoutInfo.blockCount += srcInfo.blockCount; |
| 11201 | inoutInfo.allocationCount += srcInfo.allocationCount; |
| 11202 | inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; |
| 11203 | inoutInfo.usedBytes += srcInfo.usedBytes; |
| 11204 | inoutInfo.unusedBytes += srcInfo.unusedBytes; |
| 11205 | inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); |
| 11206 | inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); |
| 11207 | inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); |
| 11208 | inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); |
| 11209 | } |
| 11210 | |
| 11211 | static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) |
| 11212 | { |
| 11213 | inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? |
| 11214 | VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; |
| 11215 | inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? |
| 11216 | VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; |
| 11217 | } |
| 11218 | |
| 11219 | VmaPool_T::VmaPool_T( |
| 11220 | VmaAllocator hAllocator, |
| 11221 | const VmaPoolCreateInfo& createInfo, |
| 11222 | VkDeviceSize preferredBlockSize) : |
| 11223 | m_BlockVector( |
| 11224 | hAllocator, |
| 11225 | createInfo.memoryTypeIndex, |
| 11226 | createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, |
| 11227 | createInfo.minBlockCount, |
| 11228 | createInfo.maxBlockCount, |
| 11229 | (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), |
| 11230 | createInfo.frameInUseCount, |
| 11231 | true, // isCustomPool |
| 11232 | createInfo.blockSize != 0, // explicitBlockSize |
| 11233 | createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm |
| 11234 | m_Id(0) |
| 11235 | { |
| 11236 | } |
| 11237 | |
| 11238 | VmaPool_T::~VmaPool_T() |
| 11239 | { |
| 11240 | } |
| 11241 | |
| 11242 | #if VMA_STATS_STRING_ENABLED |
| 11243 | |
| 11244 | #endif // #if VMA_STATS_STRING_ENABLED |
| 11245 | |
| 11246 | VmaBlockVector::VmaBlockVector( |
| 11247 | VmaAllocator hAllocator, |
| 11248 | uint32_t memoryTypeIndex, |
| 11249 | VkDeviceSize preferredBlockSize, |
| 11250 | size_t minBlockCount, |
| 11251 | size_t maxBlockCount, |
| 11252 | VkDeviceSize bufferImageGranularity, |
| 11253 | uint32_t frameInUseCount, |
| 11254 | bool isCustomPool, |
| 11255 | bool explicitBlockSize, |
| 11256 | uint32_t algorithm) : |
| 11257 | m_hAllocator(hAllocator), |
| 11258 | m_MemoryTypeIndex(memoryTypeIndex), |
| 11259 | m_PreferredBlockSize(preferredBlockSize), |
| 11260 | m_MinBlockCount(minBlockCount), |
| 11261 | m_MaxBlockCount(maxBlockCount), |
| 11262 | m_BufferImageGranularity(bufferImageGranularity), |
| 11263 | m_FrameInUseCount(frameInUseCount), |
| 11264 | m_IsCustomPool(isCustomPool), |
| 11265 | m_ExplicitBlockSize(explicitBlockSize), |
| 11266 | m_Algorithm(algorithm), |
| 11267 | m_HasEmptyBlock(false), |
| 11268 | m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())), |
| 11269 | m_NextBlockId(0) |
| 11270 | { |
| 11271 | } |
| 11272 | |
| 11273 | VmaBlockVector::~VmaBlockVector() |
| 11274 | { |
| 11275 | for(size_t i = m_Blocks.size(); i--; ) |
| 11276 | { |
| 11277 | m_Blocks[i]->Destroy(m_hAllocator); |
| 11278 | vma_delete(m_hAllocator, m_Blocks[i]); |
| 11279 | } |
| 11280 | } |
| 11281 | |
| 11282 | VkResult VmaBlockVector::CreateMinBlocks() |
| 11283 | { |
| 11284 | for(size_t i = 0; i < m_MinBlockCount; ++i) |
| 11285 | { |
| 11286 | VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); |
| 11287 | if(res != VK_SUCCESS) |
| 11288 | { |
| 11289 | return res; |
| 11290 | } |
| 11291 | } |
| 11292 | return VK_SUCCESS; |
| 11293 | } |
| 11294 | |
| 11295 | void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats) |
| 11296 | { |
| 11297 | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 11298 | |
| 11299 | const size_t blockCount = m_Blocks.size(); |
| 11300 | |
| 11301 | pStats->size = 0; |
| 11302 | pStats->unusedSize = 0; |
| 11303 | pStats->allocationCount = 0; |
| 11304 | pStats->unusedRangeCount = 0; |
| 11305 | pStats->unusedRangeSizeMax = 0; |
| 11306 | pStats->blockCount = blockCount; |
| 11307 | |
| 11308 | for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| 11309 | { |
| 11310 | const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; |
| 11311 | VMA_ASSERT(pBlock); |
| 11312 | VMA_HEAVY_ASSERT(pBlock->Validate()); |
| 11313 | pBlock->m_pMetadata->AddPoolStats(*pStats); |
| 11314 | } |
| 11315 | } |
| 11316 | |
| 11317 | bool VmaBlockVector::IsCorruptionDetectionEnabled() const |
| 11318 | { |
| 11319 | const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| 11320 | return (VMA_DEBUG_DETECT_CORRUPTION != 0) && |
| 11321 | (VMA_DEBUG_MARGIN > 0) && |
| 11322 | (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; |
| 11323 | } |
| 11324 | |
| 11325 | static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; |
| 11326 | |
| 11327 | VkResult VmaBlockVector::Allocate( |
| 11328 | VmaPool hCurrentPool, |
| 11329 | uint32_t currentFrameIndex, |
| 11330 | VkDeviceSize size, |
| 11331 | VkDeviceSize alignment, |
| 11332 | const VmaAllocationCreateInfo& createInfo, |
| 11333 | VmaSuballocationType suballocType, |
| 11334 | size_t allocationCount, |
| 11335 | VmaAllocation* pAllocations) |
| 11336 | { |
| 11337 | size_t allocIndex; |
| 11338 | VkResult res = VK_SUCCESS; |
| 11339 | |
| 11340 | { |
| 11341 | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 11342 | for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) |
| 11343 | { |
| 11344 | res = AllocatePage( |
| 11345 | hCurrentPool, |
| 11346 | currentFrameIndex, |
| 11347 | size, |
| 11348 | alignment, |
| 11349 | createInfo, |
| 11350 | suballocType, |
| 11351 | pAllocations + allocIndex); |
| 11352 | if(res != VK_SUCCESS) |
| 11353 | { |
| 11354 | break; |
| 11355 | } |
| 11356 | } |
| 11357 | } |
| 11358 | |
| 11359 | if(res != VK_SUCCESS) |
| 11360 | { |
| 11361 | // Free all already created allocations. |
| 11362 | while(allocIndex--) |
| 11363 | { |
| 11364 | Free(pAllocations[allocIndex]); |
| 11365 | } |
| 11366 | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); |
| 11367 | } |
| 11368 | |
| 11369 | return res; |
| 11370 | } |
| 11371 | |
| 11372 | VkResult VmaBlockVector::AllocatePage( |
| 11373 | VmaPool hCurrentPool, |
| 11374 | uint32_t currentFrameIndex, |
| 11375 | VkDeviceSize size, |
| 11376 | VkDeviceSize alignment, |
| 11377 | const VmaAllocationCreateInfo& createInfo, |
| 11378 | VmaSuballocationType suballocType, |
| 11379 | VmaAllocation* pAllocation) |
| 11380 | { |
| 11381 | const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; |
| 11382 | bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; |
| 11383 | const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; |
| 11384 | const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; |
| 11385 | const bool canCreateNewBlock = |
| 11386 | ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && |
| 11387 | (m_Blocks.size() < m_MaxBlockCount); |
| 11388 | uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; |
| 11389 | |
| 11390 | // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. |
| 11391 | // Which in turn is available only when maxBlockCount = 1. |
| 11392 | if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) |
| 11393 | { |
| 11394 | canMakeOtherLost = false; |
| 11395 | } |
| 11396 | |
| 11397 | // Upper address can only be used with linear allocator and within single memory block. |
| 11398 | if(isUpperAddress && |
| 11399 | (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) |
| 11400 | { |
| 11401 | return VK_ERROR_FEATURE_NOT_PRESENT; |
| 11402 | } |
| 11403 | |
| 11404 | // Validate strategy. |
| 11405 | switch(strategy) |
| 11406 | { |
| 11407 | case 0: |
| 11408 | strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; |
| 11409 | break; |
| 11410 | case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: |
| 11411 | case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: |
| 11412 | case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: |
| 11413 | break; |
| 11414 | default: |
| 11415 | return VK_ERROR_FEATURE_NOT_PRESENT; |
| 11416 | } |
| 11417 | |
| 11418 | // Early reject: requested allocation size is larger that maximum block size for this block vector. |
| 11419 | if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) |
| 11420 | { |
| 11421 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 11422 | } |
| 11423 | |
| 11424 | /* |
| 11425 | Under certain condition, this whole section can be skipped for optimization, so |
| 11426 | we move on directly to trying to allocate with canMakeOtherLost. That's the case |
| 11427 | e.g. for custom pools with linear algorithm. |
| 11428 | */ |
| 11429 | if(!canMakeOtherLost || canCreateNewBlock) |
| 11430 | { |
| 11431 | // 1. Search existing allocations. Try to allocate without making other allocations lost. |
| 11432 | VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; |
| 11433 | allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; |
| 11434 | |
| 11435 | if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) |
| 11436 | { |
| 11437 | // Use only last block. |
| 11438 | if(!m_Blocks.empty()) |
| 11439 | { |
| 11440 | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); |
| 11441 | VMA_ASSERT(pCurrBlock); |
| 11442 | VkResult res = AllocateFromBlock( |
| 11443 | pCurrBlock, |
| 11444 | hCurrentPool, |
| 11445 | currentFrameIndex, |
| 11446 | size, |
| 11447 | alignment, |
| 11448 | allocFlagsCopy, |
| 11449 | createInfo.pUserData, |
| 11450 | suballocType, |
| 11451 | strategy, |
| 11452 | pAllocation); |
| 11453 | if(res == VK_SUCCESS) |
| 11454 | { |
| 11455 | VMA_DEBUG_LOG(" Returned from last block #%u" , (uint32_t)(m_Blocks.size() - 1)); |
| 11456 | return VK_SUCCESS; |
| 11457 | } |
| 11458 | } |
| 11459 | } |
| 11460 | else |
| 11461 | { |
| 11462 | if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) |
| 11463 | { |
| 11464 | // Forward order in m_Blocks - prefer blocks with smallest amount of free space. |
| 11465 | for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) |
| 11466 | { |
| 11467 | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; |
| 11468 | VMA_ASSERT(pCurrBlock); |
| 11469 | VkResult res = AllocateFromBlock( |
| 11470 | pCurrBlock, |
| 11471 | hCurrentPool, |
| 11472 | currentFrameIndex, |
| 11473 | size, |
| 11474 | alignment, |
| 11475 | allocFlagsCopy, |
| 11476 | createInfo.pUserData, |
| 11477 | suballocType, |
| 11478 | strategy, |
| 11479 | pAllocation); |
| 11480 | if(res == VK_SUCCESS) |
| 11481 | { |
| 11482 | VMA_DEBUG_LOG(" Returned from existing block #%u" , (uint32_t)blockIndex); |
| 11483 | return VK_SUCCESS; |
| 11484 | } |
| 11485 | } |
| 11486 | } |
| 11487 | else // WORST_FIT, FIRST_FIT |
| 11488 | { |
| 11489 | // Backward order in m_Blocks - prefer blocks with largest amount of free space. |
| 11490 | for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) |
| 11491 | { |
| 11492 | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; |
| 11493 | VMA_ASSERT(pCurrBlock); |
| 11494 | VkResult res = AllocateFromBlock( |
| 11495 | pCurrBlock, |
| 11496 | hCurrentPool, |
| 11497 | currentFrameIndex, |
| 11498 | size, |
| 11499 | alignment, |
| 11500 | allocFlagsCopy, |
| 11501 | createInfo.pUserData, |
| 11502 | suballocType, |
| 11503 | strategy, |
| 11504 | pAllocation); |
| 11505 | if(res == VK_SUCCESS) |
| 11506 | { |
| 11507 | VMA_DEBUG_LOG(" Returned from existing block #%u" , (uint32_t)blockIndex); |
| 11508 | return VK_SUCCESS; |
| 11509 | } |
| 11510 | } |
| 11511 | } |
| 11512 | } |
| 11513 | |
| 11514 | // 2. Try to create new block. |
| 11515 | if(canCreateNewBlock) |
| 11516 | { |
| 11517 | // Calculate optimal size for new block. |
| 11518 | VkDeviceSize newBlockSize = m_PreferredBlockSize; |
| 11519 | uint32_t newBlockSizeShift = 0; |
| 11520 | const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; |
| 11521 | |
| 11522 | if(!m_ExplicitBlockSize) |
| 11523 | { |
| 11524 | // Allocate 1/8, 1/4, 1/2 as first blocks. |
| 11525 | const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); |
| 11526 | for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) |
| 11527 | { |
| 11528 | const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; |
| 11529 | if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) |
| 11530 | { |
| 11531 | newBlockSize = smallerNewBlockSize; |
| 11532 | ++newBlockSizeShift; |
| 11533 | } |
| 11534 | else |
| 11535 | { |
| 11536 | break; |
| 11537 | } |
| 11538 | } |
| 11539 | } |
| 11540 | |
| 11541 | size_t newBlockIndex = 0; |
| 11542 | VkResult res = CreateBlock(newBlockSize, &newBlockIndex); |
| 11543 | // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. |
| 11544 | if(!m_ExplicitBlockSize) |
| 11545 | { |
| 11546 | while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) |
| 11547 | { |
| 11548 | const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; |
| 11549 | if(smallerNewBlockSize >= size) |
| 11550 | { |
| 11551 | newBlockSize = smallerNewBlockSize; |
| 11552 | ++newBlockSizeShift; |
| 11553 | res = CreateBlock(newBlockSize, &newBlockIndex); |
| 11554 | } |
| 11555 | else |
| 11556 | { |
| 11557 | break; |
| 11558 | } |
| 11559 | } |
| 11560 | } |
| 11561 | |
| 11562 | if(res == VK_SUCCESS) |
| 11563 | { |
| 11564 | VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; |
| 11565 | VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); |
| 11566 | |
| 11567 | res = AllocateFromBlock( |
| 11568 | pBlock, |
| 11569 | hCurrentPool, |
| 11570 | currentFrameIndex, |
| 11571 | size, |
| 11572 | alignment, |
| 11573 | allocFlagsCopy, |
| 11574 | createInfo.pUserData, |
| 11575 | suballocType, |
| 11576 | strategy, |
| 11577 | pAllocation); |
| 11578 | if(res == VK_SUCCESS) |
| 11579 | { |
| 11580 | VMA_DEBUG_LOG(" Created new block Size=%llu" , newBlockSize); |
| 11581 | return VK_SUCCESS; |
| 11582 | } |
| 11583 | else |
| 11584 | { |
| 11585 | // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. |
| 11586 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 11587 | } |
| 11588 | } |
| 11589 | } |
| 11590 | } |
| 11591 | |
| 11592 | // 3. Try to allocate from existing blocks with making other allocations lost. |
| 11593 | if(canMakeOtherLost) |
| 11594 | { |
| 11595 | uint32_t tryIndex = 0; |
| 11596 | for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) |
| 11597 | { |
| 11598 | VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL; |
| 11599 | VmaAllocationRequest bestRequest = {}; |
| 11600 | VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; |
| 11601 | |
| 11602 | // 1. Search existing allocations. |
| 11603 | if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) |
| 11604 | { |
| 11605 | // Forward order in m_Blocks - prefer blocks with smallest amount of free space. |
| 11606 | for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) |
| 11607 | { |
| 11608 | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; |
| 11609 | VMA_ASSERT(pCurrBlock); |
| 11610 | VmaAllocationRequest currRequest = {}; |
| 11611 | if(pCurrBlock->m_pMetadata->CreateAllocationRequest( |
| 11612 | currentFrameIndex, |
| 11613 | m_FrameInUseCount, |
| 11614 | m_BufferImageGranularity, |
| 11615 | size, |
| 11616 | alignment, |
| 11617 | (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, |
| 11618 | suballocType, |
| 11619 | canMakeOtherLost, |
| 11620 | strategy, |
| 11621 | &currRequest)) |
| 11622 | { |
| 11623 | const VkDeviceSize currRequestCost = currRequest.CalcCost(); |
| 11624 | if(pBestRequestBlock == VMA_NULL || |
| 11625 | currRequestCost < bestRequestCost) |
| 11626 | { |
| 11627 | pBestRequestBlock = pCurrBlock; |
| 11628 | bestRequest = currRequest; |
| 11629 | bestRequestCost = currRequestCost; |
| 11630 | |
| 11631 | if(bestRequestCost == 0) |
| 11632 | { |
| 11633 | break; |
| 11634 | } |
| 11635 | } |
| 11636 | } |
| 11637 | } |
| 11638 | } |
| 11639 | else // WORST_FIT, FIRST_FIT |
| 11640 | { |
| 11641 | // Backward order in m_Blocks - prefer blocks with largest amount of free space. |
| 11642 | for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) |
| 11643 | { |
| 11644 | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; |
| 11645 | VMA_ASSERT(pCurrBlock); |
| 11646 | VmaAllocationRequest currRequest = {}; |
| 11647 | if(pCurrBlock->m_pMetadata->CreateAllocationRequest( |
| 11648 | currentFrameIndex, |
| 11649 | m_FrameInUseCount, |
| 11650 | m_BufferImageGranularity, |
| 11651 | size, |
| 11652 | alignment, |
| 11653 | (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, |
| 11654 | suballocType, |
| 11655 | canMakeOtherLost, |
| 11656 | strategy, |
| 11657 | &currRequest)) |
| 11658 | { |
| 11659 | const VkDeviceSize currRequestCost = currRequest.CalcCost(); |
| 11660 | if(pBestRequestBlock == VMA_NULL || |
| 11661 | currRequestCost < bestRequestCost || |
| 11662 | strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) |
| 11663 | { |
| 11664 | pBestRequestBlock = pCurrBlock; |
| 11665 | bestRequest = currRequest; |
| 11666 | bestRequestCost = currRequestCost; |
| 11667 | |
| 11668 | if(bestRequestCost == 0 || |
| 11669 | strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) |
| 11670 | { |
| 11671 | break; |
| 11672 | } |
| 11673 | } |
| 11674 | } |
| 11675 | } |
| 11676 | } |
| 11677 | |
| 11678 | if(pBestRequestBlock != VMA_NULL) |
| 11679 | { |
| 11680 | if(mapped) |
| 11681 | { |
| 11682 | VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); |
| 11683 | if(res != VK_SUCCESS) |
| 11684 | { |
| 11685 | return res; |
| 11686 | } |
| 11687 | } |
| 11688 | |
| 11689 | if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( |
| 11690 | currentFrameIndex, |
| 11691 | m_FrameInUseCount, |
| 11692 | &bestRequest)) |
| 11693 | { |
| 11694 | // We no longer have an empty Allocation. |
| 11695 | if(pBestRequestBlock->m_pMetadata->IsEmpty()) |
| 11696 | { |
| 11697 | m_HasEmptyBlock = false; |
| 11698 | } |
| 11699 | // Allocate from this pBlock. |
| 11700 | *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString); |
| 11701 | pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, isUpperAddress, *pAllocation); |
| 11702 | (*pAllocation)->InitBlockAllocation( |
| 11703 | hCurrentPool, |
| 11704 | pBestRequestBlock, |
| 11705 | bestRequest.offset, |
| 11706 | alignment, |
| 11707 | size, |
| 11708 | suballocType, |
| 11709 | mapped, |
| 11710 | (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); |
| 11711 | VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); |
| 11712 | VMA_DEBUG_LOG(" Returned from existing allocation #%u" , (uint32_t)blockIndex); |
| 11713 | (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); |
| 11714 | if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) |
| 11715 | { |
| 11716 | m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); |
| 11717 | } |
| 11718 | if(IsCorruptionDetectionEnabled()) |
| 11719 | { |
| 11720 | VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); |
| 11721 | (void) res; |
| 11722 | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value." ); |
| 11723 | } |
| 11724 | return VK_SUCCESS; |
| 11725 | } |
| 11726 | // else: Some allocations must have been touched while we are here. Next try. |
| 11727 | } |
| 11728 | else |
| 11729 | { |
| 11730 | // Could not find place in any of the blocks - break outer loop. |
| 11731 | break; |
| 11732 | } |
| 11733 | } |
| 11734 | /* Maximum number of tries exceeded - a very unlike event when many other |
| 11735 | threads are simultaneously touching allocations making it impossible to make |
| 11736 | lost at the same time as we try to allocate. */ |
| 11737 | if(tryIndex == VMA_ALLOCATION_TRY_COUNT) |
| 11738 | { |
| 11739 | return VK_ERROR_TOO_MANY_OBJECTS; |
| 11740 | } |
| 11741 | } |
| 11742 | |
| 11743 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 11744 | } |
| 11745 | |
| 11746 | void VmaBlockVector::Free( |
| 11747 | VmaAllocation hAllocation) |
| 11748 | { |
| 11749 | VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; |
| 11750 | |
| 11751 | // Scope for lock. |
| 11752 | { |
| 11753 | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 11754 | |
| 11755 | VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); |
| 11756 | |
| 11757 | if(IsCorruptionDetectionEnabled()) |
| 11758 | { |
| 11759 | VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); |
| 11760 | (void) res; |
| 11761 | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value." ); |
| 11762 | } |
| 11763 | |
| 11764 | if(hAllocation->IsPersistentMap()) |
| 11765 | { |
| 11766 | pBlock->Unmap(m_hAllocator, 1); |
| 11767 | } |
| 11768 | |
| 11769 | pBlock->m_pMetadata->Free(hAllocation); |
| 11770 | VMA_HEAVY_ASSERT(pBlock->Validate()); |
| 11771 | |
| 11772 | VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u" , memTypeIndex); |
| 11773 | |
| 11774 | // pBlock became empty after this deallocation. |
| 11775 | if(pBlock->m_pMetadata->IsEmpty()) |
| 11776 | { |
| 11777 | // Already has empty Allocation. We don't want to have two, so delete this one. |
| 11778 | if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount) |
| 11779 | { |
| 11780 | pBlockToDelete = pBlock; |
| 11781 | Remove(pBlock); |
| 11782 | } |
| 11783 | // We now have first empty block. |
| 11784 | else |
| 11785 | { |
| 11786 | m_HasEmptyBlock = true; |
| 11787 | } |
| 11788 | } |
| 11789 | // pBlock didn't become empty, but we have another empty block - find and free that one. |
| 11790 | // (This is optional, heuristics.) |
| 11791 | else if(m_HasEmptyBlock) |
| 11792 | { |
| 11793 | VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); |
| 11794 | if(pLastBlock->m_pMetadata->IsEmpty() && m_Blocks.size() > m_MinBlockCount) |
| 11795 | { |
| 11796 | pBlockToDelete = pLastBlock; |
| 11797 | m_Blocks.pop_back(); |
| 11798 | m_HasEmptyBlock = false; |
| 11799 | } |
| 11800 | } |
| 11801 | |
| 11802 | IncrementallySortBlocks(); |
| 11803 | } |
| 11804 | |
| 11805 | // Destruction of a free Allocation. Deferred until this point, outside of mutex |
| 11806 | // lock, for performance reason. |
| 11807 | if(pBlockToDelete != VMA_NULL) |
| 11808 | { |
| 11809 | VMA_DEBUG_LOG(" Deleted empty allocation" ); |
| 11810 | pBlockToDelete->Destroy(m_hAllocator); |
| 11811 | vma_delete(m_hAllocator, pBlockToDelete); |
| 11812 | } |
| 11813 | } |
| 11814 | |
| 11815 | VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const |
| 11816 | { |
| 11817 | VkDeviceSize result = 0; |
| 11818 | for(size_t i = m_Blocks.size(); i--; ) |
| 11819 | { |
| 11820 | result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); |
| 11821 | if(result >= m_PreferredBlockSize) |
| 11822 | { |
| 11823 | break; |
| 11824 | } |
| 11825 | } |
| 11826 | return result; |
| 11827 | } |
| 11828 | |
| 11829 | void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) |
| 11830 | { |
| 11831 | for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) |
| 11832 | { |
| 11833 | if(m_Blocks[blockIndex] == pBlock) |
| 11834 | { |
| 11835 | VmaVectorRemove(m_Blocks, blockIndex); |
| 11836 | return; |
| 11837 | } |
| 11838 | } |
| 11839 | VMA_ASSERT(0); |
| 11840 | } |
| 11841 | |
| 11842 | void VmaBlockVector::IncrementallySortBlocks() |
| 11843 | { |
| 11844 | if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) |
| 11845 | { |
| 11846 | // Bubble sort only until first swap. |
| 11847 | for(size_t i = 1; i < m_Blocks.size(); ++i) |
| 11848 | { |
| 11849 | if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) |
| 11850 | { |
| 11851 | VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); |
| 11852 | return; |
| 11853 | } |
| 11854 | } |
| 11855 | } |
| 11856 | } |
| 11857 | |
| 11858 | VkResult VmaBlockVector::AllocateFromBlock( |
| 11859 | VmaDeviceMemoryBlock* pBlock, |
| 11860 | VmaPool hCurrentPool, |
| 11861 | uint32_t currentFrameIndex, |
| 11862 | VkDeviceSize size, |
| 11863 | VkDeviceSize alignment, |
| 11864 | VmaAllocationCreateFlags allocFlags, |
| 11865 | void* pUserData, |
| 11866 | VmaSuballocationType suballocType, |
| 11867 | uint32_t strategy, |
| 11868 | VmaAllocation* pAllocation) |
| 11869 | { |
| 11870 | VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); |
| 11871 | const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; |
| 11872 | const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; |
| 11873 | const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; |
| 11874 | |
| 11875 | VmaAllocationRequest currRequest = {}; |
| 11876 | if(pBlock->m_pMetadata->CreateAllocationRequest( |
| 11877 | currentFrameIndex, |
| 11878 | m_FrameInUseCount, |
| 11879 | m_BufferImageGranularity, |
| 11880 | size, |
| 11881 | alignment, |
| 11882 | isUpperAddress, |
| 11883 | suballocType, |
| 11884 | false, // canMakeOtherLost |
| 11885 | strategy, |
| 11886 | &currRequest)) |
| 11887 | { |
| 11888 | // Allocate from pCurrBlock. |
| 11889 | VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); |
| 11890 | |
| 11891 | if(mapped) |
| 11892 | { |
| 11893 | VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); |
| 11894 | if(res != VK_SUCCESS) |
| 11895 | { |
| 11896 | return res; |
| 11897 | } |
| 11898 | } |
| 11899 | |
| 11900 | // We no longer have an empty Allocation. |
| 11901 | if(pBlock->m_pMetadata->IsEmpty()) |
| 11902 | { |
| 11903 | m_HasEmptyBlock = false; |
| 11904 | } |
| 11905 | |
| 11906 | *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString); |
| 11907 | pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, isUpperAddress, *pAllocation); |
| 11908 | (*pAllocation)->InitBlockAllocation( |
| 11909 | hCurrentPool, |
| 11910 | pBlock, |
| 11911 | currRequest.offset, |
| 11912 | alignment, |
| 11913 | size, |
| 11914 | suballocType, |
| 11915 | mapped, |
| 11916 | (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); |
| 11917 | VMA_HEAVY_ASSERT(pBlock->Validate()); |
| 11918 | (*pAllocation)->SetUserData(m_hAllocator, pUserData); |
| 11919 | if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) |
| 11920 | { |
| 11921 | m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); |
| 11922 | } |
| 11923 | if(IsCorruptionDetectionEnabled()) |
| 11924 | { |
| 11925 | VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); |
| 11926 | (void) res; |
| 11927 | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value." ); |
| 11928 | } |
| 11929 | return VK_SUCCESS; |
| 11930 | } |
| 11931 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 11932 | } |
| 11933 | |
| 11934 | VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) |
| 11935 | { |
| 11936 | VkMemoryAllocateInfo allocInfo = {}; |
| 11937 | allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| 11938 | allocInfo.memoryTypeIndex = m_MemoryTypeIndex; |
| 11939 | allocInfo.allocationSize = blockSize; |
| 11940 | VkDeviceMemory mem = VK_NULL_HANDLE; |
| 11941 | VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); |
| 11942 | if(res < 0) |
| 11943 | { |
| 11944 | return res; |
| 11945 | } |
| 11946 | |
| 11947 | // New VkDeviceMemory successfully created. |
| 11948 | |
| 11949 | // Create new Allocation for it. |
| 11950 | VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); |
| 11951 | pBlock->Init( |
| 11952 | m_hAllocator, |
| 11953 | m_MemoryTypeIndex, |
| 11954 | mem, |
| 11955 | allocInfo.allocationSize, |
| 11956 | m_NextBlockId++, |
| 11957 | m_Algorithm); |
| 11958 | |
| 11959 | m_Blocks.push_back(pBlock); |
| 11960 | if(pNewBlockIndex != VMA_NULL) |
| 11961 | { |
| 11962 | *pNewBlockIndex = m_Blocks.size() - 1; |
| 11963 | } |
| 11964 | |
| 11965 | return VK_SUCCESS; |
| 11966 | } |
| 11967 | |
| 11968 | void VmaBlockVector::ApplyDefragmentationMovesCpu( |
| 11969 | class VmaBlockVectorDefragmentationContext* pDefragCtx, |
| 11970 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves) |
| 11971 | { |
| 11972 | const size_t blockCount = m_Blocks.size(); |
| 11973 | const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); |
| 11974 | |
| 11975 | enum BLOCK_FLAG |
| 11976 | { |
| 11977 | BLOCK_FLAG_USED = 0x00000001, |
| 11978 | BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, |
| 11979 | }; |
| 11980 | |
| 11981 | struct BlockInfo |
| 11982 | { |
| 11983 | uint32_t flags; |
| 11984 | void* pMappedData; |
| 11985 | }; |
| 11986 | VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > |
| 11987 | blockInfo(blockCount, VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks())); |
| 11988 | memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); |
| 11989 | |
| 11990 | // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. |
| 11991 | const size_t moveCount = moves.size(); |
| 11992 | for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) |
| 11993 | { |
| 11994 | const VmaDefragmentationMove& move = moves[moveIndex]; |
| 11995 | blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; |
| 11996 | blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; |
| 11997 | } |
| 11998 | |
| 11999 | VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); |
| 12000 | |
| 12001 | // Go over all blocks. Get mapped pointer or map if necessary. |
| 12002 | for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) |
| 12003 | { |
| 12004 | BlockInfo& currBlockInfo = blockInfo[blockIndex]; |
| 12005 | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; |
| 12006 | if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) |
| 12007 | { |
| 12008 | currBlockInfo.pMappedData = pBlock->GetMappedData(); |
| 12009 | // It is not originally mapped - map it. |
| 12010 | if(currBlockInfo.pMappedData == VMA_NULL) |
| 12011 | { |
| 12012 | pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); |
| 12013 | if(pDefragCtx->res == VK_SUCCESS) |
| 12014 | { |
| 12015 | currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; |
| 12016 | } |
| 12017 | } |
| 12018 | } |
| 12019 | } |
| 12020 | |
| 12021 | // Go over all moves. Do actual data transfer. |
| 12022 | if(pDefragCtx->res == VK_SUCCESS) |
| 12023 | { |
| 12024 | const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; |
| 12025 | VkMappedMemoryRange memRange = {}; |
| 12026 | memRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; |
| 12027 | |
| 12028 | for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) |
| 12029 | { |
| 12030 | const VmaDefragmentationMove& move = moves[moveIndex]; |
| 12031 | |
| 12032 | const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; |
| 12033 | const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; |
| 12034 | |
| 12035 | VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); |
| 12036 | |
| 12037 | // Invalidate source. |
| 12038 | if(isNonCoherent) |
| 12039 | { |
| 12040 | VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; |
| 12041 | memRange.memory = pSrcBlock->GetDeviceMemory(); |
| 12042 | memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); |
| 12043 | memRange.size = VMA_MIN( |
| 12044 | VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), |
| 12045 | pSrcBlock->m_pMetadata->GetSize() - memRange.offset); |
| 12046 | (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); |
| 12047 | } |
| 12048 | |
| 12049 | // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. |
| 12050 | memmove( |
| 12051 | reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset, |
| 12052 | reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset, |
| 12053 | static_cast<size_t>(move.size)); |
| 12054 | |
| 12055 | if(IsCorruptionDetectionEnabled()) |
| 12056 | { |
| 12057 | VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); |
| 12058 | VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); |
| 12059 | } |
| 12060 | |
| 12061 | // Flush destination. |
| 12062 | if(isNonCoherent) |
| 12063 | { |
| 12064 | VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; |
| 12065 | memRange.memory = pDstBlock->GetDeviceMemory(); |
| 12066 | memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); |
| 12067 | memRange.size = VMA_MIN( |
| 12068 | VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), |
| 12069 | pDstBlock->m_pMetadata->GetSize() - memRange.offset); |
| 12070 | (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); |
| 12071 | } |
| 12072 | } |
| 12073 | } |
| 12074 | |
| 12075 | // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. |
| 12076 | // Regardless of pCtx->res == VK_SUCCESS. |
| 12077 | for(size_t blockIndex = blockCount; blockIndex--; ) |
| 12078 | { |
| 12079 | const BlockInfo& currBlockInfo = blockInfo[blockIndex]; |
| 12080 | if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) |
| 12081 | { |
| 12082 | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; |
| 12083 | pBlock->Unmap(m_hAllocator, 1); |
| 12084 | } |
| 12085 | } |
| 12086 | } |
| 12087 | |
| 12088 | void VmaBlockVector::ApplyDefragmentationMovesGpu( |
| 12089 | class VmaBlockVectorDefragmentationContext* pDefragCtx, |
| 12090 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 12091 | VkCommandBuffer commandBuffer) |
| 12092 | { |
| 12093 | const size_t blockCount = m_Blocks.size(); |
| 12094 | |
| 12095 | pDefragCtx->blockContexts.resize(blockCount); |
| 12096 | for (size_t i = 0; i < blockCount; ++i) |
| 12097 | pDefragCtx->blockContexts[i] = VmaBlockDefragmentationContext(); |
| 12098 | |
| 12099 | // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. |
| 12100 | const size_t moveCount = moves.size(); |
| 12101 | for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) |
| 12102 | { |
| 12103 | const VmaDefragmentationMove& move = moves[moveIndex]; |
| 12104 | pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; |
| 12105 | pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; |
| 12106 | } |
| 12107 | |
| 12108 | VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); |
| 12109 | |
| 12110 | // Go over all blocks. Create and bind buffer for whole block if necessary. |
| 12111 | { |
| 12112 | VkBufferCreateInfo bufCreateInfo = {}; |
| 12113 | bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
| 12114 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | |
| 12115 | VK_BUFFER_USAGE_TRANSFER_DST_BIT; |
| 12116 | |
| 12117 | for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) |
| 12118 | { |
| 12119 | VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; |
| 12120 | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; |
| 12121 | if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) |
| 12122 | { |
| 12123 | bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); |
| 12124 | pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( |
| 12125 | m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); |
| 12126 | if(pDefragCtx->res == VK_SUCCESS) |
| 12127 | { |
| 12128 | pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( |
| 12129 | m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); |
| 12130 | } |
| 12131 | } |
| 12132 | } |
| 12133 | } |
| 12134 | |
| 12135 | // Go over all moves. Post data transfer commands to command buffer. |
| 12136 | if(pDefragCtx->res == VK_SUCCESS) |
| 12137 | { |
| 12138 | /*const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; |
| 12139 | VkMappedMemoryRange memRange = {}; |
| 12140 | memRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;*/ |
| 12141 | |
| 12142 | for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) |
| 12143 | { |
| 12144 | const VmaDefragmentationMove& move = moves[moveIndex]; |
| 12145 | |
| 12146 | const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; |
| 12147 | const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; |
| 12148 | |
| 12149 | VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); |
| 12150 | |
| 12151 | VkBufferCopy region = { |
| 12152 | move.srcOffset, |
| 12153 | move.dstOffset, |
| 12154 | move.size }; |
| 12155 | (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( |
| 12156 | commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); |
| 12157 | } |
| 12158 | } |
| 12159 | |
| 12160 | // Save buffers to defrag context for later destruction. |
| 12161 | if(pDefragCtx->res == VK_SUCCESS && moveCount > 0) |
| 12162 | { |
| 12163 | pDefragCtx->res = VK_NOT_READY; |
| 12164 | } |
| 12165 | } |
| 12166 | |
| 12167 | void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) |
| 12168 | { |
| 12169 | m_HasEmptyBlock = false; |
| 12170 | for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) |
| 12171 | { |
| 12172 | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; |
| 12173 | if(pBlock->m_pMetadata->IsEmpty()) |
| 12174 | { |
| 12175 | if(m_Blocks.size() > m_MinBlockCount) |
| 12176 | { |
| 12177 | if(pDefragmentationStats != VMA_NULL) |
| 12178 | { |
| 12179 | ++pDefragmentationStats->deviceMemoryBlocksFreed; |
| 12180 | pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); |
| 12181 | } |
| 12182 | |
| 12183 | VmaVectorRemove(m_Blocks, blockIndex); |
| 12184 | pBlock->Destroy(m_hAllocator); |
| 12185 | vma_delete(m_hAllocator, pBlock); |
| 12186 | } |
| 12187 | else |
| 12188 | { |
| 12189 | m_HasEmptyBlock = true; |
| 12190 | } |
| 12191 | } |
| 12192 | } |
| 12193 | } |
| 12194 | |
| 12195 | #if VMA_STATS_STRING_ENABLED |
| 12196 | |
| 12197 | void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) |
| 12198 | { |
| 12199 | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 12200 | |
| 12201 | json.BeginObject(); |
| 12202 | |
| 12203 | if(m_IsCustomPool) |
| 12204 | { |
| 12205 | json.WriteString("MemoryTypeIndex" ); |
| 12206 | json.WriteNumber(m_MemoryTypeIndex); |
| 12207 | |
| 12208 | json.WriteString("BlockSize" ); |
| 12209 | json.WriteNumber(m_PreferredBlockSize); |
| 12210 | |
| 12211 | json.WriteString("BlockCount" ); |
| 12212 | json.BeginObject(true); |
| 12213 | if(m_MinBlockCount > 0) |
| 12214 | { |
| 12215 | json.WriteString("Min" ); |
| 12216 | json.WriteNumber((uint64_t)m_MinBlockCount); |
| 12217 | } |
| 12218 | if(m_MaxBlockCount < SIZE_MAX) |
| 12219 | { |
| 12220 | json.WriteString("Max" ); |
| 12221 | json.WriteNumber((uint64_t)m_MaxBlockCount); |
| 12222 | } |
| 12223 | json.WriteString("Cur" ); |
| 12224 | json.WriteNumber((uint64_t)m_Blocks.size()); |
| 12225 | json.EndObject(); |
| 12226 | |
| 12227 | if(m_FrameInUseCount > 0) |
| 12228 | { |
| 12229 | json.WriteString("FrameInUseCount" ); |
| 12230 | json.WriteNumber(m_FrameInUseCount); |
| 12231 | } |
| 12232 | |
| 12233 | if(m_Algorithm != 0) |
| 12234 | { |
| 12235 | json.WriteString("Algorithm" ); |
| 12236 | json.WriteString(VmaAlgorithmToStr(m_Algorithm)); |
| 12237 | } |
| 12238 | } |
| 12239 | else |
| 12240 | { |
| 12241 | json.WriteString("PreferredBlockSize" ); |
| 12242 | json.WriteNumber(m_PreferredBlockSize); |
| 12243 | } |
| 12244 | |
| 12245 | json.WriteString("Blocks" ); |
| 12246 | json.BeginObject(); |
| 12247 | for(size_t i = 0; i < m_Blocks.size(); ++i) |
| 12248 | { |
| 12249 | json.BeginString(); |
| 12250 | json.ContinueString(m_Blocks[i]->GetId()); |
| 12251 | json.EndString(); |
| 12252 | |
| 12253 | m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); |
| 12254 | } |
| 12255 | json.EndObject(); |
| 12256 | |
| 12257 | json.EndObject(); |
| 12258 | } |
| 12259 | |
| 12260 | #endif // #if VMA_STATS_STRING_ENABLED |
| 12261 | |
| 12262 | void VmaBlockVector::Defragment( |
| 12263 | class VmaBlockVectorDefragmentationContext* pCtx, |
| 12264 | VmaDefragmentationStats* pStats, |
| 12265 | VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, |
| 12266 | VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, |
| 12267 | VkCommandBuffer commandBuffer) |
| 12268 | { |
| 12269 | pCtx->res = VK_SUCCESS; |
| 12270 | |
| 12271 | const VkMemoryPropertyFlags memPropFlags = |
| 12272 | m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; |
| 12273 | const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; |
| 12274 | const bool isHostCoherent = (memPropFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0; |
| 12275 | |
| 12276 | const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && |
| 12277 | isHostVisible; |
| 12278 | const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && |
| 12279 | (VMA_DEBUG_DETECT_CORRUPTION == 0 || !(isHostVisible && isHostCoherent)); |
| 12280 | |
| 12281 | // There are options to defragment this memory type. |
| 12282 | if(canDefragmentOnCpu || canDefragmentOnGpu) |
| 12283 | { |
| 12284 | bool defragmentOnGpu; |
| 12285 | // There is only one option to defragment this memory type. |
| 12286 | if(canDefragmentOnGpu != canDefragmentOnCpu) |
| 12287 | { |
| 12288 | defragmentOnGpu = canDefragmentOnGpu; |
| 12289 | } |
| 12290 | // Both options are available: Heuristics to choose the best one. |
| 12291 | else |
| 12292 | { |
| 12293 | defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || |
| 12294 | m_hAllocator->IsIntegratedGpu(); |
| 12295 | } |
| 12296 | |
| 12297 | bool overlappingMoveSupported = !defragmentOnGpu; |
| 12298 | |
| 12299 | if(m_hAllocator->m_UseMutex) |
| 12300 | { |
| 12301 | m_Mutex.LockWrite(); |
| 12302 | pCtx->mutexLocked = true; |
| 12303 | } |
| 12304 | |
| 12305 | pCtx->Begin(overlappingMoveSupported); |
| 12306 | |
| 12307 | // Defragment. |
| 12308 | |
| 12309 | const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; |
| 12310 | const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; |
| 12311 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves = |
| 12312 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks())); |
| 12313 | pCtx->res = pCtx->GetAlgorithm()->Defragment(moves, maxBytesToMove, maxAllocationsToMove); |
| 12314 | |
| 12315 | // Accumulate statistics. |
| 12316 | if(pStats != VMA_NULL) |
| 12317 | { |
| 12318 | const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); |
| 12319 | const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); |
| 12320 | pStats->bytesMoved += bytesMoved; |
| 12321 | pStats->allocationsMoved += allocationsMoved; |
| 12322 | VMA_ASSERT(bytesMoved <= maxBytesToMove); |
| 12323 | VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); |
| 12324 | if(defragmentOnGpu) |
| 12325 | { |
| 12326 | maxGpuBytesToMove -= bytesMoved; |
| 12327 | maxGpuAllocationsToMove -= allocationsMoved; |
| 12328 | } |
| 12329 | else |
| 12330 | { |
| 12331 | maxCpuBytesToMove -= bytesMoved; |
| 12332 | maxCpuAllocationsToMove -= allocationsMoved; |
| 12333 | } |
| 12334 | } |
| 12335 | |
| 12336 | if(pCtx->res >= VK_SUCCESS) |
| 12337 | { |
| 12338 | if(defragmentOnGpu) |
| 12339 | { |
| 12340 | ApplyDefragmentationMovesGpu(pCtx, moves, commandBuffer); |
| 12341 | } |
| 12342 | else |
| 12343 | { |
| 12344 | ApplyDefragmentationMovesCpu(pCtx, moves); |
| 12345 | } |
| 12346 | } |
| 12347 | } |
| 12348 | } |
| 12349 | |
| 12350 | void VmaBlockVector::DefragmentationEnd( |
| 12351 | class VmaBlockVectorDefragmentationContext* pCtx, |
| 12352 | VmaDefragmentationStats* pStats) |
| 12353 | { |
| 12354 | // Destroy buffers. |
| 12355 | for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--; ) |
| 12356 | { |
| 12357 | VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; |
| 12358 | if(blockCtx.hBuffer) |
| 12359 | { |
| 12360 | (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)( |
| 12361 | m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); |
| 12362 | } |
| 12363 | } |
| 12364 | |
| 12365 | if(pCtx->res >= VK_SUCCESS) |
| 12366 | { |
| 12367 | FreeEmptyBlocks(pStats); |
| 12368 | } |
| 12369 | |
| 12370 | if(pCtx->mutexLocked) |
| 12371 | { |
| 12372 | VMA_ASSERT(m_hAllocator->m_UseMutex); |
| 12373 | m_Mutex.UnlockWrite(); |
| 12374 | } |
| 12375 | } |
| 12376 | |
| 12377 | size_t VmaBlockVector::CalcAllocationCount() const |
| 12378 | { |
| 12379 | size_t result = 0; |
| 12380 | for(size_t i = 0; i < m_Blocks.size(); ++i) |
| 12381 | { |
| 12382 | result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); |
| 12383 | } |
| 12384 | return result; |
| 12385 | } |
| 12386 | |
| 12387 | bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const |
| 12388 | { |
| 12389 | if(m_BufferImageGranularity == 1) |
| 12390 | { |
| 12391 | return false; |
| 12392 | } |
| 12393 | VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; |
| 12394 | for(size_t i = 0, count = m_Blocks.size(); i < count; ++i) |
| 12395 | { |
| 12396 | VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; |
| 12397 | VMA_ASSERT(m_Algorithm == 0); |
| 12398 | VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; |
| 12399 | if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) |
| 12400 | { |
| 12401 | return true; |
| 12402 | } |
| 12403 | } |
| 12404 | return false; |
| 12405 | } |
| 12406 | |
| 12407 | void VmaBlockVector::MakePoolAllocationsLost( |
| 12408 | uint32_t currentFrameIndex, |
| 12409 | size_t* pLostAllocationCount) |
| 12410 | { |
| 12411 | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 12412 | size_t lostAllocationCount = 0; |
| 12413 | for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) |
| 12414 | { |
| 12415 | VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; |
| 12416 | VMA_ASSERT(pBlock); |
| 12417 | lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); |
| 12418 | } |
| 12419 | if(pLostAllocationCount != VMA_NULL) |
| 12420 | { |
| 12421 | *pLostAllocationCount = lostAllocationCount; |
| 12422 | } |
| 12423 | } |
| 12424 | |
| 12425 | VkResult VmaBlockVector::CheckCorruption() |
| 12426 | { |
| 12427 | if(!IsCorruptionDetectionEnabled()) |
| 12428 | { |
| 12429 | return VK_ERROR_FEATURE_NOT_PRESENT; |
| 12430 | } |
| 12431 | |
| 12432 | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 12433 | for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) |
| 12434 | { |
| 12435 | VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; |
| 12436 | VMA_ASSERT(pBlock); |
| 12437 | VkResult res = pBlock->CheckCorruption(m_hAllocator); |
| 12438 | if(res != VK_SUCCESS) |
| 12439 | { |
| 12440 | return res; |
| 12441 | } |
| 12442 | } |
| 12443 | return VK_SUCCESS; |
| 12444 | } |
| 12445 | |
| 12446 | void VmaBlockVector::AddStats(VmaStats* pStats) |
| 12447 | { |
| 12448 | const uint32_t memTypeIndex = m_MemoryTypeIndex; |
| 12449 | const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); |
| 12450 | |
| 12451 | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); |
| 12452 | |
| 12453 | for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) |
| 12454 | { |
| 12455 | const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; |
| 12456 | VMA_ASSERT(pBlock); |
| 12457 | VMA_HEAVY_ASSERT(pBlock->Validate()); |
| 12458 | VmaStatInfo allocationStatInfo; |
| 12459 | pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); |
| 12460 | VmaAddStatInfo(pStats->total, allocationStatInfo); |
| 12461 | VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); |
| 12462 | VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); |
| 12463 | } |
| 12464 | } |
| 12465 | |
| 12466 | //////////////////////////////////////////////////////////////////////////////// |
| 12467 | // VmaDefragmentationAlgorithm_Generic members definition |
| 12468 | |
| 12469 | VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( |
| 12470 | VmaAllocator hAllocator, |
| 12471 | VmaBlockVector* pBlockVector, |
| 12472 | uint32_t currentFrameIndex, |
| 12473 | bool /*overlappingMoveSupported*/) : |
| 12474 | VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), |
| 12475 | m_AllocationCount(0), |
| 12476 | m_AllAllocations(false), |
| 12477 | m_BytesMoved(0), |
| 12478 | m_AllocationsMoved(0), |
| 12479 | m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks())) |
| 12480 | { |
| 12481 | // Create block info for each block. |
| 12482 | const size_t blockCount = m_pBlockVector->m_Blocks.size(); |
| 12483 | for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| 12484 | { |
| 12485 | BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); |
| 12486 | pBlockInfo->m_OriginalBlockIndex = blockIndex; |
| 12487 | pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; |
| 12488 | m_Blocks.push_back(pBlockInfo); |
| 12489 | } |
| 12490 | |
| 12491 | // Sort them by m_pBlock pointer value. |
| 12492 | VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); |
| 12493 | } |
| 12494 | |
| 12495 | VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() |
| 12496 | { |
| 12497 | for(size_t i = m_Blocks.size(); i--; ) |
| 12498 | { |
| 12499 | vma_delete(m_hAllocator, m_Blocks[i]); |
| 12500 | } |
| 12501 | } |
| 12502 | |
| 12503 | void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) |
| 12504 | { |
| 12505 | // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. |
| 12506 | if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) |
| 12507 | { |
| 12508 | VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); |
| 12509 | BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); |
| 12510 | if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock) |
| 12511 | { |
| 12512 | AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); |
| 12513 | (*it)->m_Allocations.push_back(allocInfo); |
| 12514 | } |
| 12515 | else |
| 12516 | { |
| 12517 | VMA_ASSERT(0); |
| 12518 | } |
| 12519 | |
| 12520 | ++m_AllocationCount; |
| 12521 | } |
| 12522 | } |
| 12523 | |
| 12524 | VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( |
| 12525 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 12526 | VkDeviceSize maxBytesToMove, |
| 12527 | uint32_t maxAllocationsToMove) |
| 12528 | { |
| 12529 | if(m_Blocks.empty()) |
| 12530 | { |
| 12531 | return VK_SUCCESS; |
| 12532 | } |
| 12533 | |
| 12534 | // This is a choice based on research. |
| 12535 | // Option 1: |
| 12536 | uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; |
| 12537 | // Option 2: |
| 12538 | //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; |
| 12539 | // Option 3: |
| 12540 | //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; |
| 12541 | |
| 12542 | size_t srcBlockMinIndex = 0; |
| 12543 | // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. |
| 12544 | /* |
| 12545 | if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) |
| 12546 | { |
| 12547 | const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); |
| 12548 | if(blocksWithNonMovableCount > 0) |
| 12549 | { |
| 12550 | srcBlockMinIndex = blocksWithNonMovableCount - 1; |
| 12551 | } |
| 12552 | } |
| 12553 | */ |
| 12554 | |
| 12555 | size_t srcBlockIndex = m_Blocks.size() - 1; |
| 12556 | size_t srcAllocIndex = SIZE_MAX; |
| 12557 | for(;;) |
| 12558 | { |
| 12559 | // 1. Find next allocation to move. |
| 12560 | // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". |
| 12561 | // 1.2. Then start from last to first m_Allocations. |
| 12562 | while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) |
| 12563 | { |
| 12564 | if(m_Blocks[srcBlockIndex]->m_Allocations.empty()) |
| 12565 | { |
| 12566 | // Finished: no more allocations to process. |
| 12567 | if(srcBlockIndex == srcBlockMinIndex) |
| 12568 | { |
| 12569 | return VK_SUCCESS; |
| 12570 | } |
| 12571 | else |
| 12572 | { |
| 12573 | --srcBlockIndex; |
| 12574 | srcAllocIndex = SIZE_MAX; |
| 12575 | } |
| 12576 | } |
| 12577 | else |
| 12578 | { |
| 12579 | srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; |
| 12580 | } |
| 12581 | } |
| 12582 | |
| 12583 | BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; |
| 12584 | AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; |
| 12585 | |
| 12586 | const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); |
| 12587 | const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); |
| 12588 | const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); |
| 12589 | const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); |
| 12590 | |
| 12591 | // 2. Try to find new place for this allocation in preceding or current block. |
| 12592 | for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) |
| 12593 | { |
| 12594 | BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; |
| 12595 | VmaAllocationRequest dstAllocRequest; |
| 12596 | if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( |
| 12597 | m_CurrentFrameIndex, |
| 12598 | m_pBlockVector->GetFrameInUseCount(), |
| 12599 | m_pBlockVector->GetBufferImageGranularity(), |
| 12600 | size, |
| 12601 | alignment, |
| 12602 | false, // upperAddress |
| 12603 | suballocType, |
| 12604 | false, // canMakeOtherLost |
| 12605 | strategy, |
| 12606 | &dstAllocRequest) && |
| 12607 | MoveMakesSense( |
| 12608 | dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) |
| 12609 | { |
| 12610 | VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); |
| 12611 | |
| 12612 | // Reached limit on number of allocations or bytes to move. |
| 12613 | if((m_AllocationsMoved + 1 > maxAllocationsToMove) || |
| 12614 | (m_BytesMoved + size > maxBytesToMove)) |
| 12615 | { |
| 12616 | return VK_SUCCESS; |
| 12617 | } |
| 12618 | |
| 12619 | VmaDefragmentationMove move; |
| 12620 | move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; |
| 12621 | move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; |
| 12622 | move.srcOffset = srcOffset; |
| 12623 | move.dstOffset = dstAllocRequest.offset; |
| 12624 | move.size = size; |
| 12625 | moves.push_back(move); |
| 12626 | |
| 12627 | pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( |
| 12628 | dstAllocRequest, |
| 12629 | suballocType, |
| 12630 | size, |
| 12631 | false, // upperAddress |
| 12632 | allocInfo.m_hAllocation); |
| 12633 | pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); |
| 12634 | |
| 12635 | allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); |
| 12636 | |
| 12637 | if(allocInfo.m_pChanged != VMA_NULL) |
| 12638 | { |
| 12639 | *allocInfo.m_pChanged = VK_TRUE; |
| 12640 | } |
| 12641 | |
| 12642 | ++m_AllocationsMoved; |
| 12643 | m_BytesMoved += size; |
| 12644 | |
| 12645 | VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); |
| 12646 | |
| 12647 | break; |
| 12648 | } |
| 12649 | } |
| 12650 | |
| 12651 | // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. |
| 12652 | |
| 12653 | if(srcAllocIndex > 0) |
| 12654 | { |
| 12655 | --srcAllocIndex; |
| 12656 | } |
| 12657 | else |
| 12658 | { |
| 12659 | if(srcBlockIndex > 0) |
| 12660 | { |
| 12661 | --srcBlockIndex; |
| 12662 | srcAllocIndex = SIZE_MAX; |
| 12663 | } |
| 12664 | else |
| 12665 | { |
| 12666 | return VK_SUCCESS; |
| 12667 | } |
| 12668 | } |
| 12669 | } |
| 12670 | } |
| 12671 | |
| 12672 | size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const |
| 12673 | { |
| 12674 | size_t result = 0; |
| 12675 | for(size_t i = 0; i < m_Blocks.size(); ++i) |
| 12676 | { |
| 12677 | if(m_Blocks[i]->m_HasNonMovableAllocations) |
| 12678 | { |
| 12679 | ++result; |
| 12680 | } |
| 12681 | } |
| 12682 | return result; |
| 12683 | } |
| 12684 | |
| 12685 | VkResult VmaDefragmentationAlgorithm_Generic::Defragment( |
| 12686 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 12687 | VkDeviceSize maxBytesToMove, |
| 12688 | uint32_t maxAllocationsToMove) |
| 12689 | { |
| 12690 | if(!m_AllAllocations && m_AllocationCount == 0) |
| 12691 | { |
| 12692 | return VK_SUCCESS; |
| 12693 | } |
| 12694 | |
| 12695 | const size_t blockCount = m_Blocks.size(); |
| 12696 | for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| 12697 | { |
| 12698 | BlockInfo* pBlockInfo = m_Blocks[blockIndex]; |
| 12699 | |
| 12700 | if(m_AllAllocations) |
| 12701 | { |
| 12702 | VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; |
| 12703 | for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); |
| 12704 | it != pMetadata->m_Suballocations.end(); |
| 12705 | ++it) |
| 12706 | { |
| 12707 | if(it->type != VMA_SUBALLOCATION_TYPE_FREE) |
| 12708 | { |
| 12709 | AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); |
| 12710 | pBlockInfo->m_Allocations.push_back(allocInfo); |
| 12711 | } |
| 12712 | } |
| 12713 | } |
| 12714 | |
| 12715 | pBlockInfo->CalcHasNonMovableAllocations(); |
| 12716 | |
| 12717 | // This is a choice based on research. |
| 12718 | // Option 1: |
| 12719 | pBlockInfo->SortAllocationsByOffsetDescending(); |
| 12720 | // Option 2: |
| 12721 | //pBlockInfo->SortAllocationsBySizeDescending(); |
| 12722 | } |
| 12723 | |
| 12724 | // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. |
| 12725 | VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); |
| 12726 | |
| 12727 | // This is a choice based on research. |
| 12728 | const uint32_t roundCount = 2; |
| 12729 | |
| 12730 | // Execute defragmentation rounds (the main part). |
| 12731 | VkResult result = VK_SUCCESS; |
| 12732 | for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) |
| 12733 | { |
| 12734 | result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove); |
| 12735 | } |
| 12736 | |
| 12737 | return result; |
| 12738 | } |
| 12739 | |
| 12740 | bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( |
| 12741 | size_t dstBlockIndex, VkDeviceSize dstOffset, |
| 12742 | size_t srcBlockIndex, VkDeviceSize srcOffset) |
| 12743 | { |
| 12744 | if(dstBlockIndex < srcBlockIndex) |
| 12745 | { |
| 12746 | return true; |
| 12747 | } |
| 12748 | if(dstBlockIndex > srcBlockIndex) |
| 12749 | { |
| 12750 | return false; |
| 12751 | } |
| 12752 | if(dstOffset < srcOffset) |
| 12753 | { |
| 12754 | return true; |
| 12755 | } |
| 12756 | return false; |
| 12757 | } |
| 12758 | |
| 12759 | //////////////////////////////////////////////////////////////////////////////// |
| 12760 | // VmaDefragmentationAlgorithm_Fast |
| 12761 | |
| 12762 | VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( |
| 12763 | VmaAllocator hAllocator, |
| 12764 | VmaBlockVector* pBlockVector, |
| 12765 | uint32_t currentFrameIndex, |
| 12766 | bool overlappingMoveSupported) : |
| 12767 | VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), |
| 12768 | m_OverlappingMoveSupported(overlappingMoveSupported), |
| 12769 | m_AllocationCount(0), |
| 12770 | m_AllAllocations(false), |
| 12771 | m_BytesMoved(0), |
| 12772 | m_AllocationsMoved(0), |
| 12773 | m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks())) |
| 12774 | { |
| 12775 | VMA_ASSERT(VMA_DEBUG_MARGIN == 0); |
| 12776 | |
| 12777 | } |
| 12778 | |
| 12779 | VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() |
| 12780 | { |
| 12781 | } |
| 12782 | |
| 12783 | VkResult VmaDefragmentationAlgorithm_Fast::Defragment( |
| 12784 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, |
| 12785 | VkDeviceSize maxBytesToMove, |
| 12786 | uint32_t maxAllocationsToMove) |
| 12787 | { |
| 12788 | VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); |
| 12789 | |
| 12790 | const size_t blockCount = m_pBlockVector->GetBlockCount(); |
| 12791 | if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) |
| 12792 | { |
| 12793 | return VK_SUCCESS; |
| 12794 | } |
| 12795 | |
| 12796 | PreprocessMetadata(); |
| 12797 | |
| 12798 | // Sort blocks in order from most destination. |
| 12799 | |
| 12800 | m_BlockInfos.resize(blockCount); |
| 12801 | for(size_t i = 0; i < blockCount; ++i) |
| 12802 | { |
| 12803 | m_BlockInfos[i].origBlockIndex = i; |
| 12804 | } |
| 12805 | |
| 12806 | VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { |
| 12807 | return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < |
| 12808 | m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); |
| 12809 | }); |
| 12810 | |
| 12811 | // THE MAIN ALGORITHM |
| 12812 | |
| 12813 | FreeSpaceDatabase freeSpaceDb; |
| 12814 | |
| 12815 | size_t dstBlockInfoIndex = 0; |
| 12816 | size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; |
| 12817 | VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); |
| 12818 | VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; |
| 12819 | VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); |
| 12820 | VkDeviceSize dstOffset = 0; |
| 12821 | |
| 12822 | bool end = false; |
| 12823 | for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) |
| 12824 | { |
| 12825 | const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; |
| 12826 | VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); |
| 12827 | VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; |
| 12828 | for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); |
| 12829 | !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) |
| 12830 | { |
| 12831 | VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation; |
| 12832 | const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); |
| 12833 | const VkDeviceSize srcAllocSize = srcSuballocIt->size; |
| 12834 | if(m_AllocationsMoved == maxAllocationsToMove || |
| 12835 | m_BytesMoved + srcAllocSize > maxBytesToMove) |
| 12836 | { |
| 12837 | end = true; |
| 12838 | break; |
| 12839 | } |
| 12840 | const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; |
| 12841 | |
| 12842 | // Try to place it in one of free spaces from the database. |
| 12843 | size_t freeSpaceInfoIndex; |
| 12844 | VkDeviceSize dstAllocOffset; |
| 12845 | if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, |
| 12846 | freeSpaceInfoIndex, dstAllocOffset)) |
| 12847 | { |
| 12848 | size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; |
| 12849 | VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); |
| 12850 | VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; |
| 12851 | /*VkDeviceSize freeSpaceBlockSize = pFreeSpaceMetadata->GetSize();*/ |
| 12852 | |
| 12853 | // Same block |
| 12854 | if(freeSpaceInfoIndex == srcBlockInfoIndex) |
| 12855 | { |
| 12856 | VMA_ASSERT(dstAllocOffset <= srcAllocOffset); |
| 12857 | |
| 12858 | // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. |
| 12859 | |
| 12860 | VmaSuballocation suballoc = *srcSuballocIt; |
| 12861 | suballoc.offset = dstAllocOffset; |
| 12862 | suballoc.hAllocation->ChangeOffset(dstAllocOffset); |
| 12863 | m_BytesMoved += srcAllocSize; |
| 12864 | ++m_AllocationsMoved; |
| 12865 | |
| 12866 | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; |
| 12867 | ++nextSuballocIt; |
| 12868 | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); |
| 12869 | srcSuballocIt = nextSuballocIt; |
| 12870 | |
| 12871 | InsertSuballoc(pFreeSpaceMetadata, suballoc); |
| 12872 | |
| 12873 | VmaDefragmentationMove move = { |
| 12874 | srcOrigBlockIndex, freeSpaceOrigBlockIndex, |
| 12875 | srcAllocOffset, dstAllocOffset, |
| 12876 | srcAllocSize }; |
| 12877 | moves.push_back(move); |
| 12878 | } |
| 12879 | // Different block |
| 12880 | else |
| 12881 | { |
| 12882 | // MOVE OPTION 2: Move the allocation to a different block. |
| 12883 | |
| 12884 | VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); |
| 12885 | |
| 12886 | VmaSuballocation suballoc = *srcSuballocIt; |
| 12887 | suballoc.offset = dstAllocOffset; |
| 12888 | suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); |
| 12889 | m_BytesMoved += srcAllocSize; |
| 12890 | ++m_AllocationsMoved; |
| 12891 | |
| 12892 | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; |
| 12893 | ++nextSuballocIt; |
| 12894 | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); |
| 12895 | srcSuballocIt = nextSuballocIt; |
| 12896 | |
| 12897 | InsertSuballoc(pFreeSpaceMetadata, suballoc); |
| 12898 | |
| 12899 | VmaDefragmentationMove move = { |
| 12900 | srcOrigBlockIndex, freeSpaceOrigBlockIndex, |
| 12901 | srcAllocOffset, dstAllocOffset, |
| 12902 | srcAllocSize }; |
| 12903 | moves.push_back(move); |
| 12904 | } |
| 12905 | } |
| 12906 | else |
| 12907 | { |
| 12908 | dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); |
| 12909 | |
| 12910 | // If the allocation doesn't fit before the end of dstBlock, forward to next block. |
| 12911 | while(dstBlockInfoIndex < srcBlockInfoIndex && |
| 12912 | dstAllocOffset + srcAllocSize > dstBlockSize) |
| 12913 | { |
| 12914 | // But before that, register remaining free space at the end of dst block. |
| 12915 | freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); |
| 12916 | |
| 12917 | ++dstBlockInfoIndex; |
| 12918 | dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; |
| 12919 | pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); |
| 12920 | pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; |
| 12921 | dstBlockSize = pDstMetadata->GetSize(); |
| 12922 | dstOffset = 0; |
| 12923 | dstAllocOffset = 0; |
| 12924 | } |
| 12925 | |
| 12926 | // Same block |
| 12927 | if(dstBlockInfoIndex == srcBlockInfoIndex) |
| 12928 | { |
| 12929 | VMA_ASSERT(dstAllocOffset <= srcAllocOffset); |
| 12930 | |
| 12931 | const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; |
| 12932 | |
| 12933 | bool skipOver = overlap; |
| 12934 | if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) |
| 12935 | { |
| 12936 | // If destination and source place overlap, skip if it would move it |
| 12937 | // by only < 1/64 of its size. |
| 12938 | skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; |
| 12939 | } |
| 12940 | |
| 12941 | if(skipOver) |
| 12942 | { |
| 12943 | freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); |
| 12944 | |
| 12945 | dstOffset = srcAllocOffset + srcAllocSize; |
| 12946 | ++srcSuballocIt; |
| 12947 | } |
| 12948 | // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. |
| 12949 | else |
| 12950 | { |
| 12951 | srcSuballocIt->offset = dstAllocOffset; |
| 12952 | srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); |
| 12953 | dstOffset = dstAllocOffset + srcAllocSize; |
| 12954 | m_BytesMoved += srcAllocSize; |
| 12955 | ++m_AllocationsMoved; |
| 12956 | ++srcSuballocIt; |
| 12957 | VmaDefragmentationMove move = { |
| 12958 | srcOrigBlockIndex, dstOrigBlockIndex, |
| 12959 | srcAllocOffset, dstAllocOffset, |
| 12960 | srcAllocSize }; |
| 12961 | moves.push_back(move); |
| 12962 | } |
| 12963 | } |
| 12964 | // Different block |
| 12965 | else |
| 12966 | { |
| 12967 | // MOVE OPTION 2: Move the allocation to a different block. |
| 12968 | |
| 12969 | VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); |
| 12970 | VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); |
| 12971 | |
| 12972 | VmaSuballocation suballoc = *srcSuballocIt; |
| 12973 | suballoc.offset = dstAllocOffset; |
| 12974 | suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); |
| 12975 | dstOffset = dstAllocOffset + srcAllocSize; |
| 12976 | m_BytesMoved += srcAllocSize; |
| 12977 | ++m_AllocationsMoved; |
| 12978 | |
| 12979 | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; |
| 12980 | ++nextSuballocIt; |
| 12981 | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); |
| 12982 | srcSuballocIt = nextSuballocIt; |
| 12983 | |
| 12984 | pDstMetadata->m_Suballocations.push_back(suballoc); |
| 12985 | |
| 12986 | VmaDefragmentationMove move = { |
| 12987 | srcOrigBlockIndex, dstOrigBlockIndex, |
| 12988 | srcAllocOffset, dstAllocOffset, |
| 12989 | srcAllocSize }; |
| 12990 | moves.push_back(move); |
| 12991 | } |
| 12992 | } |
| 12993 | } |
| 12994 | } |
| 12995 | |
| 12996 | m_BlockInfos.clear(); |
| 12997 | |
| 12998 | PostprocessMetadata(); |
| 12999 | |
| 13000 | return VK_SUCCESS; |
| 13001 | } |
| 13002 | |
| 13003 | void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() |
| 13004 | { |
| 13005 | const size_t blockCount = m_pBlockVector->GetBlockCount(); |
| 13006 | for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| 13007 | { |
| 13008 | VmaBlockMetadata_Generic* const pMetadata = |
| 13009 | (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; |
| 13010 | pMetadata->m_FreeCount = 0; |
| 13011 | pMetadata->m_SumFreeSize = pMetadata->GetSize(); |
| 13012 | pMetadata->m_FreeSuballocationsBySize.clear(); |
| 13013 | for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); |
| 13014 | it != pMetadata->m_Suballocations.end(); ) |
| 13015 | { |
| 13016 | if(it->type == VMA_SUBALLOCATION_TYPE_FREE) |
| 13017 | { |
| 13018 | VmaSuballocationList::iterator nextIt = it; |
| 13019 | ++nextIt; |
| 13020 | pMetadata->m_Suballocations.erase(it); |
| 13021 | it = nextIt; |
| 13022 | } |
| 13023 | else |
| 13024 | { |
| 13025 | ++it; |
| 13026 | } |
| 13027 | } |
| 13028 | } |
| 13029 | } |
| 13030 | |
| 13031 | void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() |
| 13032 | { |
| 13033 | const size_t blockCount = m_pBlockVector->GetBlockCount(); |
| 13034 | for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| 13035 | { |
| 13036 | VmaBlockMetadata_Generic* const pMetadata = |
| 13037 | (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; |
| 13038 | const VkDeviceSize blockSize = pMetadata->GetSize(); |
| 13039 | |
| 13040 | // No allocations in this block - entire area is free. |
| 13041 | if(pMetadata->m_Suballocations.empty()) |
| 13042 | { |
| 13043 | pMetadata->m_FreeCount = 1; |
| 13044 | //pMetadata->m_SumFreeSize is already set to blockSize. |
| 13045 | VmaSuballocation suballoc = { |
| 13046 | 0, // offset |
| 13047 | blockSize, // size |
| 13048 | VMA_NULL, // hAllocation |
| 13049 | VMA_SUBALLOCATION_TYPE_FREE }; |
| 13050 | pMetadata->m_Suballocations.push_back(suballoc); |
| 13051 | pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); |
| 13052 | } |
| 13053 | // There are some allocations in this block. |
| 13054 | else |
| 13055 | { |
| 13056 | VkDeviceSize offset = 0; |
| 13057 | VmaSuballocationList::iterator it; |
| 13058 | for(it = pMetadata->m_Suballocations.begin(); |
| 13059 | it != pMetadata->m_Suballocations.end(); |
| 13060 | ++it) |
| 13061 | { |
| 13062 | VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); |
| 13063 | VMA_ASSERT(it->offset >= offset); |
| 13064 | |
| 13065 | // Need to insert preceding free space. |
| 13066 | if(it->offset > offset) |
| 13067 | { |
| 13068 | ++pMetadata->m_FreeCount; |
| 13069 | const VkDeviceSize freeSize = it->offset - offset; |
| 13070 | VmaSuballocation suballoc = { |
| 13071 | offset, // offset |
| 13072 | freeSize, // size |
| 13073 | VMA_NULL, // hAllocation |
| 13074 | VMA_SUBALLOCATION_TYPE_FREE }; |
| 13075 | VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); |
| 13076 | if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 13077 | { |
| 13078 | pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); |
| 13079 | } |
| 13080 | } |
| 13081 | |
| 13082 | pMetadata->m_SumFreeSize -= it->size; |
| 13083 | offset = it->offset + it->size; |
| 13084 | } |
| 13085 | |
| 13086 | // Need to insert trailing free space. |
| 13087 | if(offset < blockSize) |
| 13088 | { |
| 13089 | ++pMetadata->m_FreeCount; |
| 13090 | const VkDeviceSize freeSize = blockSize - offset; |
| 13091 | VmaSuballocation suballoc = { |
| 13092 | offset, // offset |
| 13093 | freeSize, // size |
| 13094 | VMA_NULL, // hAllocation |
| 13095 | VMA_SUBALLOCATION_TYPE_FREE }; |
| 13096 | VMA_ASSERT(it == pMetadata->m_Suballocations.end()); |
| 13097 | VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); |
| 13098 | if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) |
| 13099 | { |
| 13100 | pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); |
| 13101 | } |
| 13102 | } |
| 13103 | |
| 13104 | VMA_SORT( |
| 13105 | pMetadata->m_FreeSuballocationsBySize.begin(), |
| 13106 | pMetadata->m_FreeSuballocationsBySize.end(), |
| 13107 | VmaSuballocationItemSizeLess()); |
| 13108 | } |
| 13109 | |
| 13110 | VMA_HEAVY_ASSERT(pMetadata->Validate()); |
| 13111 | } |
| 13112 | } |
| 13113 | |
| 13114 | void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) |
| 13115 | { |
| 13116 | // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. |
| 13117 | VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); |
| 13118 | while(it != pMetadata->m_Suballocations.end()) |
| 13119 | { |
| 13120 | if(it->offset < suballoc.offset) |
| 13121 | { |
| 13122 | ++it; |
| 13123 | } |
| 13124 | } |
| 13125 | pMetadata->m_Suballocations.insert(it, suballoc); |
| 13126 | } |
| 13127 | |
| 13128 | //////////////////////////////////////////////////////////////////////////////// |
| 13129 | // VmaBlockVectorDefragmentationContext |
| 13130 | |
| 13131 | VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( |
| 13132 | VmaAllocator hAllocator, |
| 13133 | VmaPool hCustomPool, |
| 13134 | VmaBlockVector* pBlockVector, |
| 13135 | uint32_t currFrameIndex, |
| 13136 | uint32_t /*algorithmFlags*/) : |
| 13137 | res(VK_SUCCESS), |
| 13138 | mutexLocked(false), |
| 13139 | blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())), |
| 13140 | m_hAllocator(hAllocator), |
| 13141 | m_hCustomPool(hCustomPool), |
| 13142 | m_pBlockVector(pBlockVector), |
| 13143 | m_CurrFrameIndex(currFrameIndex), |
| 13144 | /*m_AlgorithmFlags(algorithmFlags),*/ |
| 13145 | m_pAlgorithm(VMA_NULL), |
| 13146 | m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())), |
| 13147 | m_AllAllocations(false) |
| 13148 | { |
| 13149 | } |
| 13150 | |
| 13151 | VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() |
| 13152 | { |
| 13153 | vma_delete(m_hAllocator, m_pAlgorithm); |
| 13154 | } |
| 13155 | |
| 13156 | void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) |
| 13157 | { |
| 13158 | AllocInfo info = { hAlloc, pChanged }; |
| 13159 | m_Allocations.push_back(info); |
| 13160 | } |
| 13161 | |
| 13162 | void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported) |
| 13163 | { |
| 13164 | const bool allAllocations = m_AllAllocations || |
| 13165 | m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); |
| 13166 | |
| 13167 | /******************************** |
| 13168 | HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. |
| 13169 | ********************************/ |
| 13170 | |
| 13171 | /* |
| 13172 | Fast algorithm is supported only when certain criteria are met: |
| 13173 | - VMA_DEBUG_MARGIN is 0. |
| 13174 | - All allocations in this block vector are moveable. |
| 13175 | - There is no possibility of image/buffer granularity conflict. |
| 13176 | */ |
| 13177 | if(VMA_DEBUG_MARGIN == 0 && |
| 13178 | allAllocations && |
| 13179 | !m_pBlockVector->IsBufferImageGranularityConflictPossible()) |
| 13180 | { |
| 13181 | m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( |
| 13182 | m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); |
| 13183 | } |
| 13184 | else |
| 13185 | { |
| 13186 | m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( |
| 13187 | m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); |
| 13188 | } |
| 13189 | |
| 13190 | if(allAllocations) |
| 13191 | { |
| 13192 | m_pAlgorithm->AddAll(); |
| 13193 | } |
| 13194 | else |
| 13195 | { |
| 13196 | for(size_t i = 0, count = m_Allocations.size(); i < count; ++i) |
| 13197 | { |
| 13198 | m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); |
| 13199 | } |
| 13200 | } |
| 13201 | } |
| 13202 | |
| 13203 | //////////////////////////////////////////////////////////////////////////////// |
| 13204 | // VmaDefragmentationContext |
| 13205 | |
| 13206 | VmaDefragmentationContext_T::VmaDefragmentationContext_T( |
| 13207 | VmaAllocator hAllocator, |
| 13208 | uint32_t currFrameIndex, |
| 13209 | uint32_t flags, |
| 13210 | VmaDefragmentationStats* pStats) : |
| 13211 | m_hAllocator(hAllocator), |
| 13212 | m_CurrFrameIndex(currFrameIndex), |
| 13213 | m_Flags(flags), |
| 13214 | m_pStats(pStats), |
| 13215 | m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks())) |
| 13216 | { |
| 13217 | memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); |
| 13218 | } |
| 13219 | |
| 13220 | VmaDefragmentationContext_T::~VmaDefragmentationContext_T() |
| 13221 | { |
| 13222 | for(size_t i = m_CustomPoolContexts.size(); i--; ) |
| 13223 | { |
| 13224 | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; |
| 13225 | pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); |
| 13226 | vma_delete(m_hAllocator, pBlockVectorCtx); |
| 13227 | } |
| 13228 | for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) |
| 13229 | { |
| 13230 | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; |
| 13231 | if(pBlockVectorCtx) |
| 13232 | { |
| 13233 | pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); |
| 13234 | vma_delete(m_hAllocator, pBlockVectorCtx); |
| 13235 | } |
| 13236 | } |
| 13237 | } |
| 13238 | |
| 13239 | void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool* pPools) |
| 13240 | { |
| 13241 | for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) |
| 13242 | { |
| 13243 | VmaPool pool = pPools[poolIndex]; |
| 13244 | VMA_ASSERT(pool); |
| 13245 | // Pools with algorithm other than default are not defragmented. |
| 13246 | if(pool->m_BlockVector.GetAlgorithm() == 0) |
| 13247 | { |
| 13248 | VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; |
| 13249 | |
| 13250 | for(size_t i = m_CustomPoolContexts.size(); i--; ) |
| 13251 | { |
| 13252 | if(m_CustomPoolContexts[i]->GetCustomPool() == pool) |
| 13253 | { |
| 13254 | pBlockVectorDefragCtx = m_CustomPoolContexts[i]; |
| 13255 | break; |
| 13256 | } |
| 13257 | } |
| 13258 | |
| 13259 | if(!pBlockVectorDefragCtx) |
| 13260 | { |
| 13261 | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( |
| 13262 | m_hAllocator, |
| 13263 | pool, |
| 13264 | &pool->m_BlockVector, |
| 13265 | m_CurrFrameIndex, |
| 13266 | m_Flags); |
| 13267 | m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); |
| 13268 | } |
| 13269 | |
| 13270 | pBlockVectorDefragCtx->AddAll(); |
| 13271 | } |
| 13272 | } |
| 13273 | } |
| 13274 | |
| 13275 | void VmaDefragmentationContext_T::AddAllocations( |
| 13276 | uint32_t allocationCount, |
| 13277 | VmaAllocation* pAllocations, |
| 13278 | VkBool32* pAllocationsChanged) |
| 13279 | { |
| 13280 | // Dispatch pAllocations among defragmentators. Create them when necessary. |
| 13281 | for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) |
| 13282 | { |
| 13283 | const VmaAllocation hAlloc = pAllocations[allocIndex]; |
| 13284 | VMA_ASSERT(hAlloc); |
| 13285 | // DedicatedAlloc cannot be defragmented. |
| 13286 | if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && |
| 13287 | // Lost allocation cannot be defragmented. |
| 13288 | (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) |
| 13289 | { |
| 13290 | VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; |
| 13291 | |
| 13292 | const VmaPool hAllocPool = hAlloc->GetPool(); |
| 13293 | // This allocation belongs to custom pool. |
| 13294 | if(hAllocPool != VK_NULL_HANDLE) |
| 13295 | { |
| 13296 | // Pools with algorithm other than default are not defragmented. |
| 13297 | if(hAllocPool->m_BlockVector.GetAlgorithm() == 0) |
| 13298 | { |
| 13299 | for(size_t i = m_CustomPoolContexts.size(); i--; ) |
| 13300 | { |
| 13301 | if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) |
| 13302 | { |
| 13303 | pBlockVectorDefragCtx = m_CustomPoolContexts[i]; |
| 13304 | break; |
| 13305 | } |
| 13306 | } |
| 13307 | if(!pBlockVectorDefragCtx) |
| 13308 | { |
| 13309 | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( |
| 13310 | m_hAllocator, |
| 13311 | hAllocPool, |
| 13312 | &hAllocPool->m_BlockVector, |
| 13313 | m_CurrFrameIndex, |
| 13314 | m_Flags); |
| 13315 | m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); |
| 13316 | } |
| 13317 | } |
| 13318 | } |
| 13319 | // This allocation belongs to default pool. |
| 13320 | else |
| 13321 | { |
| 13322 | const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); |
| 13323 | pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; |
| 13324 | if(!pBlockVectorDefragCtx) |
| 13325 | { |
| 13326 | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( |
| 13327 | m_hAllocator, |
| 13328 | VMA_NULL, // hCustomPool |
| 13329 | m_hAllocator->m_pBlockVectors[memTypeIndex], |
| 13330 | m_CurrFrameIndex, |
| 13331 | m_Flags); |
| 13332 | m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; |
| 13333 | } |
| 13334 | } |
| 13335 | |
| 13336 | if(pBlockVectorDefragCtx) |
| 13337 | { |
| 13338 | VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? |
| 13339 | &pAllocationsChanged[allocIndex] : VMA_NULL; |
| 13340 | pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); |
| 13341 | } |
| 13342 | } |
| 13343 | } |
| 13344 | } |
| 13345 | |
| 13346 | VkResult VmaDefragmentationContext_T::Defragment( |
| 13347 | VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, |
| 13348 | VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, |
| 13349 | VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats) |
| 13350 | { |
| 13351 | if(pStats) |
| 13352 | { |
| 13353 | memset(pStats, 0, sizeof(VmaDefragmentationStats)); |
| 13354 | } |
| 13355 | |
| 13356 | if(commandBuffer == VK_NULL_HANDLE) |
| 13357 | { |
| 13358 | maxGpuBytesToMove = 0; |
| 13359 | maxGpuAllocationsToMove = 0; |
| 13360 | } |
| 13361 | |
| 13362 | VkResult res = VK_SUCCESS; |
| 13363 | |
| 13364 | // Process default pools. |
| 13365 | for(uint32_t memTypeIndex = 0; |
| 13366 | memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; |
| 13367 | ++memTypeIndex) |
| 13368 | { |
| 13369 | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; |
| 13370 | if(pBlockVectorCtx) |
| 13371 | { |
| 13372 | VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); |
| 13373 | pBlockVectorCtx->GetBlockVector()->Defragment( |
| 13374 | pBlockVectorCtx, |
| 13375 | pStats, |
| 13376 | maxCpuBytesToMove, maxCpuAllocationsToMove, |
| 13377 | maxGpuBytesToMove, maxGpuAllocationsToMove, |
| 13378 | commandBuffer); |
| 13379 | if(pBlockVectorCtx->res != VK_SUCCESS) |
| 13380 | { |
| 13381 | res = pBlockVectorCtx->res; |
| 13382 | } |
| 13383 | } |
| 13384 | } |
| 13385 | |
| 13386 | // Process custom pools. |
| 13387 | for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); |
| 13388 | customCtxIndex < customCtxCount && res >= VK_SUCCESS; |
| 13389 | ++customCtxIndex) |
| 13390 | { |
| 13391 | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; |
| 13392 | VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); |
| 13393 | pBlockVectorCtx->GetBlockVector()->Defragment( |
| 13394 | pBlockVectorCtx, |
| 13395 | pStats, |
| 13396 | maxCpuBytesToMove, maxCpuAllocationsToMove, |
| 13397 | maxGpuBytesToMove, maxGpuAllocationsToMove, |
| 13398 | commandBuffer); |
| 13399 | if(pBlockVectorCtx->res != VK_SUCCESS) |
| 13400 | { |
| 13401 | res = pBlockVectorCtx->res; |
| 13402 | } |
| 13403 | } |
| 13404 | |
| 13405 | return res; |
| 13406 | } |
| 13407 | |
| 13408 | //////////////////////////////////////////////////////////////////////////////// |
| 13409 | // VmaRecorder |
| 13410 | |
| 13411 | #if VMA_RECORDING_ENABLED |
| 13412 | |
| 13413 | VmaRecorder::VmaRecorder() : |
| 13414 | m_UseMutex(true), |
| 13415 | m_Flags(0), |
| 13416 | m_File(VMA_NULL), |
| 13417 | m_Freq(INT64_MAX), |
| 13418 | m_StartCounter(INT64_MAX) |
| 13419 | { |
| 13420 | } |
| 13421 | |
| 13422 | VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex) |
| 13423 | { |
| 13424 | m_UseMutex = useMutex; |
| 13425 | m_Flags = settings.flags; |
| 13426 | |
| 13427 | QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq); |
| 13428 | QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter); |
| 13429 | |
| 13430 | // Open file for writing. |
| 13431 | errno_t err = fopen_s(&m_File, settings.pFilePath, "wb" ); |
| 13432 | if(err != 0) |
| 13433 | { |
| 13434 | return VK_ERROR_INITIALIZATION_FAILED; |
| 13435 | } |
| 13436 | |
| 13437 | // Write header. |
| 13438 | fprintf(m_File, "%s\n" , "Vulkan Memory Allocator,Calls recording" ); |
| 13439 | fprintf(m_File, "%s\n" , "1,5" ); |
| 13440 | |
| 13441 | return VK_SUCCESS; |
| 13442 | } |
| 13443 | |
| 13444 | VmaRecorder::~VmaRecorder() |
| 13445 | { |
| 13446 | if(m_File != VMA_NULL) |
| 13447 | { |
| 13448 | fclose(m_File); |
| 13449 | } |
| 13450 | } |
| 13451 | |
| 13452 | void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) |
| 13453 | { |
| 13454 | CallParams callParams; |
| 13455 | GetBasicParams(callParams); |
| 13456 | |
| 13457 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13458 | fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n" , callParams.threadId, callParams.time, frameIndex); |
| 13459 | Flush(); |
| 13460 | } |
| 13461 | |
| 13462 | void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) |
| 13463 | { |
| 13464 | CallParams callParams; |
| 13465 | GetBasicParams(callParams); |
| 13466 | |
| 13467 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13468 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n" , callParams.threadId, callParams.time, frameIndex); |
| 13469 | Flush(); |
| 13470 | } |
| 13471 | |
| 13472 | void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool) |
| 13473 | { |
| 13474 | CallParams callParams; |
| 13475 | GetBasicParams(callParams); |
| 13476 | |
| 13477 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13478 | fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13479 | createInfo.memoryTypeIndex, |
| 13480 | createInfo.flags, |
| 13481 | createInfo.blockSize, |
| 13482 | (uint64_t)createInfo.minBlockCount, |
| 13483 | (uint64_t)createInfo.maxBlockCount, |
| 13484 | createInfo.frameInUseCount, |
| 13485 | pool); |
| 13486 | Flush(); |
| 13487 | } |
| 13488 | |
| 13489 | void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) |
| 13490 | { |
| 13491 | CallParams callParams; |
| 13492 | GetBasicParams(callParams); |
| 13493 | |
| 13494 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13495 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13496 | pool); |
| 13497 | Flush(); |
| 13498 | } |
| 13499 | |
| 13500 | void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, |
| 13501 | const VkMemoryRequirements& vkMemReq, |
| 13502 | const VmaAllocationCreateInfo& createInfo, |
| 13503 | VmaAllocation allocation) |
| 13504 | { |
| 13505 | CallParams callParams; |
| 13506 | GetBasicParams(callParams); |
| 13507 | |
| 13508 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13509 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); |
| 13510 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13511 | vkMemReq.size, |
| 13512 | vkMemReq.alignment, |
| 13513 | vkMemReq.memoryTypeBits, |
| 13514 | createInfo.flags, |
| 13515 | createInfo.usage, |
| 13516 | createInfo.requiredFlags, |
| 13517 | createInfo.preferredFlags, |
| 13518 | createInfo.memoryTypeBits, |
| 13519 | createInfo.pool, |
| 13520 | allocation, |
| 13521 | userDataStr.GetString()); |
| 13522 | Flush(); |
| 13523 | } |
| 13524 | |
| 13525 | void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, |
| 13526 | const VkMemoryRequirements& vkMemReq, |
| 13527 | const VmaAllocationCreateInfo& createInfo, |
| 13528 | uint64_t allocationCount, |
| 13529 | const VmaAllocation* pAllocations) |
| 13530 | { |
| 13531 | CallParams callParams; |
| 13532 | GetBasicParams(callParams); |
| 13533 | |
| 13534 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13535 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); |
| 13536 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p," , callParams.threadId, callParams.time, frameIndex, |
| 13537 | vkMemReq.size, |
| 13538 | vkMemReq.alignment, |
| 13539 | vkMemReq.memoryTypeBits, |
| 13540 | createInfo.flags, |
| 13541 | createInfo.usage, |
| 13542 | createInfo.requiredFlags, |
| 13543 | createInfo.preferredFlags, |
| 13544 | createInfo.memoryTypeBits, |
| 13545 | createInfo.pool); |
| 13546 | PrintPointerList(allocationCount, pAllocations); |
| 13547 | fprintf(m_File, ",%s\n" , userDataStr.GetString()); |
| 13548 | Flush(); |
| 13549 | } |
| 13550 | |
| 13551 | void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, |
| 13552 | const VkMemoryRequirements& vkMemReq, |
| 13553 | bool requiresDedicatedAllocation, |
| 13554 | bool prefersDedicatedAllocation, |
| 13555 | const VmaAllocationCreateInfo& createInfo, |
| 13556 | VmaAllocation allocation) |
| 13557 | { |
| 13558 | CallParams callParams; |
| 13559 | GetBasicParams(callParams); |
| 13560 | |
| 13561 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13562 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); |
| 13563 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13564 | vkMemReq.size, |
| 13565 | vkMemReq.alignment, |
| 13566 | vkMemReq.memoryTypeBits, |
| 13567 | requiresDedicatedAllocation ? 1 : 0, |
| 13568 | prefersDedicatedAllocation ? 1 : 0, |
| 13569 | createInfo.flags, |
| 13570 | createInfo.usage, |
| 13571 | createInfo.requiredFlags, |
| 13572 | createInfo.preferredFlags, |
| 13573 | createInfo.memoryTypeBits, |
| 13574 | createInfo.pool, |
| 13575 | allocation, |
| 13576 | userDataStr.GetString()); |
| 13577 | Flush(); |
| 13578 | } |
| 13579 | |
| 13580 | void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, |
| 13581 | const VkMemoryRequirements& vkMemReq, |
| 13582 | bool requiresDedicatedAllocation, |
| 13583 | bool prefersDedicatedAllocation, |
| 13584 | const VmaAllocationCreateInfo& createInfo, |
| 13585 | VmaAllocation allocation) |
| 13586 | { |
| 13587 | CallParams callParams; |
| 13588 | GetBasicParams(callParams); |
| 13589 | |
| 13590 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13591 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); |
| 13592 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13593 | vkMemReq.size, |
| 13594 | vkMemReq.alignment, |
| 13595 | vkMemReq.memoryTypeBits, |
| 13596 | requiresDedicatedAllocation ? 1 : 0, |
| 13597 | prefersDedicatedAllocation ? 1 : 0, |
| 13598 | createInfo.flags, |
| 13599 | createInfo.usage, |
| 13600 | createInfo.requiredFlags, |
| 13601 | createInfo.preferredFlags, |
| 13602 | createInfo.memoryTypeBits, |
| 13603 | createInfo.pool, |
| 13604 | allocation, |
| 13605 | userDataStr.GetString()); |
| 13606 | Flush(); |
| 13607 | } |
| 13608 | |
| 13609 | void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, |
| 13610 | VmaAllocation allocation) |
| 13611 | { |
| 13612 | CallParams callParams; |
| 13613 | GetBasicParams(callParams); |
| 13614 | |
| 13615 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13616 | fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13617 | allocation); |
| 13618 | Flush(); |
| 13619 | } |
| 13620 | |
| 13621 | void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, |
| 13622 | uint64_t allocationCount, |
| 13623 | const VmaAllocation* pAllocations) |
| 13624 | { |
| 13625 | CallParams callParams; |
| 13626 | GetBasicParams(callParams); |
| 13627 | |
| 13628 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13629 | fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages," , callParams.threadId, callParams.time, frameIndex); |
| 13630 | PrintPointerList(allocationCount, pAllocations); |
| 13631 | fprintf(m_File, "\n" ); |
| 13632 | Flush(); |
| 13633 | } |
| 13634 | |
| 13635 | void VmaRecorder::RecordResizeAllocation( |
| 13636 | uint32_t frameIndex, |
| 13637 | VmaAllocation allocation, |
| 13638 | VkDeviceSize newSize) |
| 13639 | { |
| 13640 | CallParams callParams; |
| 13641 | GetBasicParams(callParams); |
| 13642 | |
| 13643 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13644 | fprintf(m_File, "%u,%.3f,%u,vmaResizeAllocation,%p,%llu\n" , callParams.threadId, callParams.time, frameIndex, |
| 13645 | allocation, newSize); |
| 13646 | Flush(); |
| 13647 | } |
| 13648 | |
| 13649 | void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, |
| 13650 | VmaAllocation allocation, |
| 13651 | const void* pUserData) |
| 13652 | { |
| 13653 | CallParams callParams; |
| 13654 | GetBasicParams(callParams); |
| 13655 | |
| 13656 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13657 | UserDataString userDataStr( |
| 13658 | allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, |
| 13659 | pUserData); |
| 13660 | fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13661 | allocation, |
| 13662 | userDataStr.GetString()); |
| 13663 | Flush(); |
| 13664 | } |
| 13665 | |
| 13666 | void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, |
| 13667 | VmaAllocation allocation) |
| 13668 | { |
| 13669 | CallParams callParams; |
| 13670 | GetBasicParams(callParams); |
| 13671 | |
| 13672 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13673 | fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13674 | allocation); |
| 13675 | Flush(); |
| 13676 | } |
| 13677 | |
| 13678 | void VmaRecorder::RecordMapMemory(uint32_t frameIndex, |
| 13679 | VmaAllocation allocation) |
| 13680 | { |
| 13681 | CallParams callParams; |
| 13682 | GetBasicParams(callParams); |
| 13683 | |
| 13684 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13685 | fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13686 | allocation); |
| 13687 | Flush(); |
| 13688 | } |
| 13689 | |
| 13690 | void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, |
| 13691 | VmaAllocation allocation) |
| 13692 | { |
| 13693 | CallParams callParams; |
| 13694 | GetBasicParams(callParams); |
| 13695 | |
| 13696 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13697 | fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13698 | allocation); |
| 13699 | Flush(); |
| 13700 | } |
| 13701 | |
| 13702 | void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, |
| 13703 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) |
| 13704 | { |
| 13705 | CallParams callParams; |
| 13706 | GetBasicParams(callParams); |
| 13707 | |
| 13708 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13709 | fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n" , callParams.threadId, callParams.time, frameIndex, |
| 13710 | allocation, |
| 13711 | offset, |
| 13712 | size); |
| 13713 | Flush(); |
| 13714 | } |
| 13715 | |
| 13716 | void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, |
| 13717 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) |
| 13718 | { |
| 13719 | CallParams callParams; |
| 13720 | GetBasicParams(callParams); |
| 13721 | |
| 13722 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13723 | fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n" , callParams.threadId, callParams.time, frameIndex, |
| 13724 | allocation, |
| 13725 | offset, |
| 13726 | size); |
| 13727 | Flush(); |
| 13728 | } |
| 13729 | |
| 13730 | void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, |
| 13731 | const VkBufferCreateInfo& bufCreateInfo, |
| 13732 | const VmaAllocationCreateInfo& allocCreateInfo, |
| 13733 | VmaAllocation allocation) |
| 13734 | { |
| 13735 | CallParams callParams; |
| 13736 | GetBasicParams(callParams); |
| 13737 | |
| 13738 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13739 | UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); |
| 13740 | fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13741 | bufCreateInfo.flags, |
| 13742 | bufCreateInfo.size, |
| 13743 | bufCreateInfo.usage, |
| 13744 | bufCreateInfo.sharingMode, |
| 13745 | allocCreateInfo.flags, |
| 13746 | allocCreateInfo.usage, |
| 13747 | allocCreateInfo.requiredFlags, |
| 13748 | allocCreateInfo.preferredFlags, |
| 13749 | allocCreateInfo.memoryTypeBits, |
| 13750 | allocCreateInfo.pool, |
| 13751 | allocation, |
| 13752 | userDataStr.GetString()); |
| 13753 | Flush(); |
| 13754 | } |
| 13755 | |
| 13756 | void VmaRecorder::RecordCreateImage(uint32_t frameIndex, |
| 13757 | const VkImageCreateInfo& imageCreateInfo, |
| 13758 | const VmaAllocationCreateInfo& allocCreateInfo, |
| 13759 | VmaAllocation allocation) |
| 13760 | { |
| 13761 | CallParams callParams; |
| 13762 | GetBasicParams(callParams); |
| 13763 | |
| 13764 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13765 | UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); |
| 13766 | fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n" , callParams.threadId, callParams.time, frameIndex, |
| 13767 | imageCreateInfo.flags, |
| 13768 | imageCreateInfo.imageType, |
| 13769 | imageCreateInfo.format, |
| 13770 | imageCreateInfo.extent.width, |
| 13771 | imageCreateInfo.extent.height, |
| 13772 | imageCreateInfo.extent.depth, |
| 13773 | imageCreateInfo.mipLevels, |
| 13774 | imageCreateInfo.arrayLayers, |
| 13775 | imageCreateInfo.samples, |
| 13776 | imageCreateInfo.tiling, |
| 13777 | imageCreateInfo.usage, |
| 13778 | imageCreateInfo.sharingMode, |
| 13779 | imageCreateInfo.initialLayout, |
| 13780 | allocCreateInfo.flags, |
| 13781 | allocCreateInfo.usage, |
| 13782 | allocCreateInfo.requiredFlags, |
| 13783 | allocCreateInfo.preferredFlags, |
| 13784 | allocCreateInfo.memoryTypeBits, |
| 13785 | allocCreateInfo.pool, |
| 13786 | allocation, |
| 13787 | userDataStr.GetString()); |
| 13788 | Flush(); |
| 13789 | } |
| 13790 | |
| 13791 | void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, |
| 13792 | VmaAllocation allocation) |
| 13793 | { |
| 13794 | CallParams callParams; |
| 13795 | GetBasicParams(callParams); |
| 13796 | |
| 13797 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13798 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13799 | allocation); |
| 13800 | Flush(); |
| 13801 | } |
| 13802 | |
| 13803 | void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, |
| 13804 | VmaAllocation allocation) |
| 13805 | { |
| 13806 | CallParams callParams; |
| 13807 | GetBasicParams(callParams); |
| 13808 | |
| 13809 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13810 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13811 | allocation); |
| 13812 | Flush(); |
| 13813 | } |
| 13814 | |
| 13815 | void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, |
| 13816 | VmaAllocation allocation) |
| 13817 | { |
| 13818 | CallParams callParams; |
| 13819 | GetBasicParams(callParams); |
| 13820 | |
| 13821 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13822 | fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13823 | allocation); |
| 13824 | Flush(); |
| 13825 | } |
| 13826 | |
| 13827 | void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, |
| 13828 | VmaAllocation allocation) |
| 13829 | { |
| 13830 | CallParams callParams; |
| 13831 | GetBasicParams(callParams); |
| 13832 | |
| 13833 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13834 | fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13835 | allocation); |
| 13836 | Flush(); |
| 13837 | } |
| 13838 | |
| 13839 | void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, |
| 13840 | VmaPool pool) |
| 13841 | { |
| 13842 | CallParams callParams; |
| 13843 | GetBasicParams(callParams); |
| 13844 | |
| 13845 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13846 | fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13847 | pool); |
| 13848 | Flush(); |
| 13849 | } |
| 13850 | |
| 13851 | void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, |
| 13852 | const VmaDefragmentationInfo2& info, |
| 13853 | VmaDefragmentationContext ctx) |
| 13854 | { |
| 13855 | CallParams callParams; |
| 13856 | GetBasicParams(callParams); |
| 13857 | |
| 13858 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13859 | fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u," , callParams.threadId, callParams.time, frameIndex, |
| 13860 | info.flags); |
| 13861 | PrintPointerList(info.allocationCount, info.pAllocations); |
| 13862 | fprintf(m_File, "," ); |
| 13863 | PrintPointerList(info.poolCount, info.pPools); |
| 13864 | fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n" , |
| 13865 | info.maxCpuBytesToMove, |
| 13866 | info.maxCpuAllocationsToMove, |
| 13867 | info.maxGpuBytesToMove, |
| 13868 | info.maxGpuAllocationsToMove, |
| 13869 | info.commandBuffer, |
| 13870 | ctx); |
| 13871 | Flush(); |
| 13872 | } |
| 13873 | |
| 13874 | void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, |
| 13875 | VmaDefragmentationContext ctx) |
| 13876 | { |
| 13877 | CallParams callParams; |
| 13878 | GetBasicParams(callParams); |
| 13879 | |
| 13880 | VmaMutexLock lock(m_FileMutex, m_UseMutex); |
| 13881 | fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n" , callParams.threadId, callParams.time, frameIndex, |
| 13882 | ctx); |
| 13883 | Flush(); |
| 13884 | } |
| 13885 | |
| 13886 | VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData) |
| 13887 | { |
| 13888 | if(pUserData != VMA_NULL) |
| 13889 | { |
| 13890 | if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) |
| 13891 | { |
| 13892 | m_Str = (const char*)pUserData; |
| 13893 | } |
| 13894 | else |
| 13895 | { |
| 13896 | sprintf_s(m_PtrStr, "%p" , pUserData); |
| 13897 | m_Str = m_PtrStr; |
| 13898 | } |
| 13899 | } |
| 13900 | else |
| 13901 | { |
| 13902 | m_Str = "" ; |
| 13903 | } |
| 13904 | } |
| 13905 | |
| 13906 | void VmaRecorder::WriteConfiguration( |
| 13907 | const VkPhysicalDeviceProperties& devProps, |
| 13908 | const VkPhysicalDeviceMemoryProperties& memProps, |
| 13909 | bool dedicatedAllocationExtensionEnabled) |
| 13910 | { |
| 13911 | fprintf(m_File, "Config,Begin\n" ); |
| 13912 | |
| 13913 | fprintf(m_File, "PhysicalDevice,apiVersion,%u\n" , devProps.apiVersion); |
| 13914 | fprintf(m_File, "PhysicalDevice,driverVersion,%u\n" , devProps.driverVersion); |
| 13915 | fprintf(m_File, "PhysicalDevice,vendorID,%u\n" , devProps.vendorID); |
| 13916 | fprintf(m_File, "PhysicalDevice,deviceID,%u\n" , devProps.deviceID); |
| 13917 | fprintf(m_File, "PhysicalDevice,deviceType,%u\n" , devProps.deviceType); |
| 13918 | fprintf(m_File, "PhysicalDevice,deviceName,%s\n" , devProps.deviceName); |
| 13919 | |
| 13920 | fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n" , devProps.limits.maxMemoryAllocationCount); |
| 13921 | fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n" , devProps.limits.bufferImageGranularity); |
| 13922 | fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n" , devProps.limits.nonCoherentAtomSize); |
| 13923 | |
| 13924 | fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n" , memProps.memoryHeapCount); |
| 13925 | for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i) |
| 13926 | { |
| 13927 | fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n" , i, memProps.memoryHeaps[i].size); |
| 13928 | fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n" , i, memProps.memoryHeaps[i].flags); |
| 13929 | } |
| 13930 | fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n" , memProps.memoryTypeCount); |
| 13931 | for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i) |
| 13932 | { |
| 13933 | fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n" , i, memProps.memoryTypes[i].heapIndex); |
| 13934 | fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n" , i, memProps.memoryTypes[i].propertyFlags); |
| 13935 | } |
| 13936 | |
| 13937 | fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n" , dedicatedAllocationExtensionEnabled ? 1 : 0); |
| 13938 | |
| 13939 | fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n" , VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); |
| 13940 | fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n" , (VkDeviceSize)VMA_DEBUG_ALIGNMENT); |
| 13941 | fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n" , (VkDeviceSize)VMA_DEBUG_MARGIN); |
| 13942 | fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n" , VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); |
| 13943 | fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n" , VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); |
| 13944 | fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n" , VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); |
| 13945 | fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n" , (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); |
| 13946 | fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n" , (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); |
| 13947 | fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n" , (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); |
| 13948 | |
| 13949 | fprintf(m_File, "Config,End\n" ); |
| 13950 | } |
| 13951 | |
| 13952 | void VmaRecorder::GetBasicParams(CallParams& outParams) |
| 13953 | { |
| 13954 | outParams.threadId = GetCurrentThreadId(); |
| 13955 | |
| 13956 | LARGE_INTEGER counter; |
| 13957 | QueryPerformanceCounter(&counter); |
| 13958 | outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq; |
| 13959 | } |
| 13960 | |
| 13961 | void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems) |
| 13962 | { |
| 13963 | if(count) |
| 13964 | { |
| 13965 | fprintf(m_File, "%p" , pItems[0]); |
| 13966 | for(uint64_t i = 1; i < count; ++i) |
| 13967 | { |
| 13968 | fprintf(m_File, " %p" , pItems[i]); |
| 13969 | } |
| 13970 | } |
| 13971 | } |
| 13972 | |
| 13973 | void VmaRecorder::Flush() |
| 13974 | { |
| 13975 | if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) |
| 13976 | { |
| 13977 | fflush(m_File); |
| 13978 | } |
| 13979 | } |
| 13980 | |
| 13981 | #endif // #if VMA_RECORDING_ENABLED |
| 13982 | |
| 13983 | //////////////////////////////////////////////////////////////////////////////// |
| 13984 | // VmaAllocator_T |
| 13985 | |
| 13986 | VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : |
| 13987 | m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), |
| 13988 | m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), |
| 13989 | m_hDevice(pCreateInfo->device), |
| 13990 | m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), |
| 13991 | m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? |
| 13992 | *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), |
| 13993 | m_PreferredLargeHeapBlockSize(0), |
| 13994 | m_PhysicalDevice(pCreateInfo->physicalDevice), |
| 13995 | m_CurrentFrameIndex(0), |
| 13996 | m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())), |
| 13997 | m_NextPoolId(0) |
| 13998 | #if VMA_RECORDING_ENABLED |
| 13999 | ,m_pRecorder(VMA_NULL) |
| 14000 | #endif |
| 14001 | { |
| 14002 | if(VMA_DEBUG_DETECT_CORRUPTION) |
| 14003 | { |
| 14004 | // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. |
| 14005 | VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); |
| 14006 | } |
| 14007 | |
| 14008 | VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device); |
| 14009 | |
| 14010 | #if !(VMA_DEDICATED_ALLOCATION) |
| 14011 | if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) |
| 14012 | { |
| 14013 | VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros." ); |
| 14014 | } |
| 14015 | #endif |
| 14016 | |
| 14017 | memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); |
| 14018 | memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); |
| 14019 | memset(&m_MemProps, 0, sizeof(m_MemProps)); |
| 14020 | |
| 14021 | memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); |
| 14022 | memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations)); |
| 14023 | |
| 14024 | for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) |
| 14025 | { |
| 14026 | m_HeapSizeLimit[i] = VK_WHOLE_SIZE; |
| 14027 | } |
| 14028 | |
| 14029 | if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) |
| 14030 | { |
| 14031 | m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; |
| 14032 | m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; |
| 14033 | } |
| 14034 | |
| 14035 | ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); |
| 14036 | |
| 14037 | (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); |
| 14038 | (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); |
| 14039 | |
| 14040 | VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT)); |
| 14041 | VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); |
| 14042 | VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); |
| 14043 | VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); |
| 14044 | |
| 14045 | m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? |
| 14046 | pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); |
| 14047 | |
| 14048 | if(pCreateInfo->pHeapSizeLimit != VMA_NULL) |
| 14049 | { |
| 14050 | for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) |
| 14051 | { |
| 14052 | const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; |
| 14053 | if(limit != VK_WHOLE_SIZE) |
| 14054 | { |
| 14055 | m_HeapSizeLimit[heapIndex] = limit; |
| 14056 | if(limit < m_MemProps.memoryHeaps[heapIndex].size) |
| 14057 | { |
| 14058 | m_MemProps.memoryHeaps[heapIndex].size = limit; |
| 14059 | } |
| 14060 | } |
| 14061 | } |
| 14062 | } |
| 14063 | |
| 14064 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 14065 | { |
| 14066 | const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); |
| 14067 | |
| 14068 | m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( |
| 14069 | this, |
| 14070 | memTypeIndex, |
| 14071 | preferredBlockSize, |
| 14072 | 0, |
| 14073 | SIZE_MAX, |
| 14074 | GetBufferImageGranularity(), |
| 14075 | pCreateInfo->frameInUseCount, |
| 14076 | false, // isCustomPool |
| 14077 | false, // explicitBlockSize |
| 14078 | false); // linearAlgorithm |
| 14079 | // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, |
| 14080 | // becase minBlockCount is 0. |
| 14081 | m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks())); |
| 14082 | |
| 14083 | } |
| 14084 | } |
| 14085 | |
| 14086 | VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) |
| 14087 | { |
| 14088 | VkResult res = VK_SUCCESS; |
| 14089 | |
| 14090 | if(pCreateInfo->pRecordSettings != VMA_NULL && |
| 14091 | !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) |
| 14092 | { |
| 14093 | #if VMA_RECORDING_ENABLED |
| 14094 | m_pRecorder = vma_new(this, VmaRecorder)(); |
| 14095 | res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); |
| 14096 | if(res != VK_SUCCESS) |
| 14097 | { |
| 14098 | return res; |
| 14099 | } |
| 14100 | m_pRecorder->WriteConfiguration( |
| 14101 | m_PhysicalDeviceProperties, |
| 14102 | m_MemProps, |
| 14103 | m_UseKhrDedicatedAllocation); |
| 14104 | m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); |
| 14105 | #else |
| 14106 | VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1." ); |
| 14107 | return VK_ERROR_FEATURE_NOT_PRESENT; |
| 14108 | #endif |
| 14109 | } |
| 14110 | |
| 14111 | return res; |
| 14112 | } |
| 14113 | |
| 14114 | VmaAllocator_T::~VmaAllocator_T() |
| 14115 | { |
| 14116 | #if VMA_RECORDING_ENABLED |
| 14117 | if(m_pRecorder != VMA_NULL) |
| 14118 | { |
| 14119 | m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); |
| 14120 | vma_delete(this, m_pRecorder); |
| 14121 | } |
| 14122 | #endif |
| 14123 | |
| 14124 | VMA_ASSERT(m_Pools.empty()); |
| 14125 | |
| 14126 | for(size_t i = GetMemoryTypeCount(); i--; ) |
| 14127 | { |
| 14128 | vma_delete(this, m_pDedicatedAllocations[i]); |
| 14129 | vma_delete(this, m_pBlockVectors[i]); |
| 14130 | } |
| 14131 | } |
| 14132 | |
| 14133 | void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) |
| 14134 | { |
| 14135 | #if VMA_STATIC_VULKAN_FUNCTIONS == 1 |
| 14136 | m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties; |
| 14137 | m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties; |
| 14138 | m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory; |
| 14139 | m_VulkanFunctions.vkFreeMemory = &vkFreeMemory; |
| 14140 | m_VulkanFunctions.vkMapMemory = &vkMapMemory; |
| 14141 | m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory; |
| 14142 | m_VulkanFunctions.vkFlushMappedMemoryRanges = &vkFlushMappedMemoryRanges; |
| 14143 | m_VulkanFunctions.vkInvalidateMappedMemoryRanges = &vkInvalidateMappedMemoryRanges; |
| 14144 | m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory; |
| 14145 | m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory; |
| 14146 | m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements; |
| 14147 | m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements; |
| 14148 | m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer; |
| 14149 | m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer; |
| 14150 | m_VulkanFunctions.vkCreateImage = &vkCreateImage; |
| 14151 | m_VulkanFunctions.vkDestroyImage = &vkDestroyImage; |
| 14152 | m_VulkanFunctions.vkCmdCopyBuffer = &vkCmdCopyBuffer; |
| 14153 | #if VMA_DEDICATED_ALLOCATION |
| 14154 | if(m_UseKhrDedicatedAllocation) |
| 14155 | { |
| 14156 | m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = |
| 14157 | (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR" ); |
| 14158 | m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = |
| 14159 | (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR" ); |
| 14160 | } |
| 14161 | #endif // #if VMA_DEDICATED_ALLOCATION |
| 14162 | #endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 |
| 14163 | |
| 14164 | #define VMA_COPY_IF_NOT_NULL(funcName) \ |
| 14165 | if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; |
| 14166 | |
| 14167 | if(pVulkanFunctions != VMA_NULL) |
| 14168 | { |
| 14169 | VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); |
| 14170 | VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); |
| 14171 | VMA_COPY_IF_NOT_NULL(vkAllocateMemory); |
| 14172 | VMA_COPY_IF_NOT_NULL(vkFreeMemory); |
| 14173 | VMA_COPY_IF_NOT_NULL(vkMapMemory); |
| 14174 | VMA_COPY_IF_NOT_NULL(vkUnmapMemory); |
| 14175 | VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); |
| 14176 | VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); |
| 14177 | VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); |
| 14178 | VMA_COPY_IF_NOT_NULL(vkBindImageMemory); |
| 14179 | VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); |
| 14180 | VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); |
| 14181 | VMA_COPY_IF_NOT_NULL(vkCreateBuffer); |
| 14182 | VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); |
| 14183 | VMA_COPY_IF_NOT_NULL(vkCreateImage); |
| 14184 | VMA_COPY_IF_NOT_NULL(vkDestroyImage); |
| 14185 | VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); |
| 14186 | #if VMA_DEDICATED_ALLOCATION |
| 14187 | VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); |
| 14188 | VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); |
| 14189 | #endif |
| 14190 | } |
| 14191 | |
| 14192 | #undef VMA_COPY_IF_NOT_NULL |
| 14193 | |
| 14194 | // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1 |
| 14195 | // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions. |
| 14196 | VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); |
| 14197 | VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); |
| 14198 | VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); |
| 14199 | VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); |
| 14200 | VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); |
| 14201 | VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); |
| 14202 | VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); |
| 14203 | VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); |
| 14204 | VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); |
| 14205 | VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); |
| 14206 | VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); |
| 14207 | VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); |
| 14208 | VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); |
| 14209 | VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); |
| 14210 | VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); |
| 14211 | VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); |
| 14212 | VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); |
| 14213 | #if VMA_DEDICATED_ALLOCATION |
| 14214 | if(m_UseKhrDedicatedAllocation) |
| 14215 | { |
| 14216 | VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); |
| 14217 | VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); |
| 14218 | } |
| 14219 | #endif |
| 14220 | } |
| 14221 | |
| 14222 | VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) |
| 14223 | { |
| 14224 | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); |
| 14225 | const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; |
| 14226 | const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; |
| 14227 | return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize; |
| 14228 | } |
| 14229 | |
| 14230 | VkResult VmaAllocator_T::AllocateMemoryOfType( |
| 14231 | VkDeviceSize size, |
| 14232 | VkDeviceSize alignment, |
| 14233 | bool dedicatedAllocation, |
| 14234 | VkBuffer dedicatedBuffer, |
| 14235 | VkImage dedicatedImage, |
| 14236 | const VmaAllocationCreateInfo& createInfo, |
| 14237 | uint32_t memTypeIndex, |
| 14238 | VmaSuballocationType suballocType, |
| 14239 | size_t allocationCount, |
| 14240 | VmaAllocation* pAllocations) |
| 14241 | { |
| 14242 | VMA_ASSERT(pAllocations != VMA_NULL); |
| 14243 | VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu" , memTypeIndex, allocationCount, vkMemReq.size); |
| 14244 | |
| 14245 | VmaAllocationCreateInfo finalCreateInfo = createInfo; |
| 14246 | |
| 14247 | // If memory type is not HOST_VISIBLE, disable MAPPED. |
| 14248 | if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && |
| 14249 | (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) |
| 14250 | { |
| 14251 | finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; |
| 14252 | } |
| 14253 | |
| 14254 | VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex]; |
| 14255 | VMA_ASSERT(blockVector); |
| 14256 | |
| 14257 | const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); |
| 14258 | bool preferDedicatedMemory = |
| 14259 | VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || |
| 14260 | dedicatedAllocation || |
| 14261 | // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. |
| 14262 | size > preferredBlockSize / 2; |
| 14263 | |
| 14264 | if(preferDedicatedMemory && |
| 14265 | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && |
| 14266 | finalCreateInfo.pool == VK_NULL_HANDLE) |
| 14267 | { |
| 14268 | finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; |
| 14269 | } |
| 14270 | |
| 14271 | if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) |
| 14272 | { |
| 14273 | if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) |
| 14274 | { |
| 14275 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14276 | } |
| 14277 | else |
| 14278 | { |
| 14279 | return AllocateDedicatedMemory( |
| 14280 | size, |
| 14281 | suballocType, |
| 14282 | memTypeIndex, |
| 14283 | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, |
| 14284 | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, |
| 14285 | finalCreateInfo.pUserData, |
| 14286 | dedicatedBuffer, |
| 14287 | dedicatedImage, |
| 14288 | allocationCount, |
| 14289 | pAllocations); |
| 14290 | } |
| 14291 | } |
| 14292 | else |
| 14293 | { |
| 14294 | VkResult res = blockVector->Allocate( |
| 14295 | VK_NULL_HANDLE, // hCurrentPool |
| 14296 | m_CurrentFrameIndex.load(), |
| 14297 | size, |
| 14298 | alignment, |
| 14299 | finalCreateInfo, |
| 14300 | suballocType, |
| 14301 | allocationCount, |
| 14302 | pAllocations); |
| 14303 | if(res == VK_SUCCESS) |
| 14304 | { |
| 14305 | return res; |
| 14306 | } |
| 14307 | |
| 14308 | // 5. Try dedicated memory. |
| 14309 | if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) |
| 14310 | { |
| 14311 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14312 | } |
| 14313 | else |
| 14314 | { |
| 14315 | res = AllocateDedicatedMemory( |
| 14316 | size, |
| 14317 | suballocType, |
| 14318 | memTypeIndex, |
| 14319 | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, |
| 14320 | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, |
| 14321 | finalCreateInfo.pUserData, |
| 14322 | dedicatedBuffer, |
| 14323 | dedicatedImage, |
| 14324 | allocationCount, |
| 14325 | pAllocations); |
| 14326 | if(res == VK_SUCCESS) |
| 14327 | { |
| 14328 | // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. |
| 14329 | VMA_DEBUG_LOG(" Allocated as DedicatedMemory" ); |
| 14330 | return VK_SUCCESS; |
| 14331 | } |
| 14332 | else |
| 14333 | { |
| 14334 | // Everything failed: Return error code. |
| 14335 | VMA_DEBUG_LOG(" vkAllocateMemory FAILED" ); |
| 14336 | return res; |
| 14337 | } |
| 14338 | } |
| 14339 | } |
| 14340 | } |
| 14341 | |
| 14342 | VkResult VmaAllocator_T::AllocateDedicatedMemory( |
| 14343 | VkDeviceSize size, |
| 14344 | VmaSuballocationType suballocType, |
| 14345 | uint32_t memTypeIndex, |
| 14346 | bool map, |
| 14347 | bool isUserDataString, |
| 14348 | void* pUserData, |
| 14349 | VkBuffer /*dedicatedBuffer*/, |
| 14350 | VkImage /*dedicatedImage*/, |
| 14351 | size_t allocationCount, |
| 14352 | VmaAllocation* pAllocations) |
| 14353 | { |
| 14354 | VMA_ASSERT(allocationCount > 0 && pAllocations); |
| 14355 | |
| 14356 | VkMemoryAllocateInfo allocInfo = {}; |
| 14357 | allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| 14358 | allocInfo.memoryTypeIndex = memTypeIndex; |
| 14359 | allocInfo.allocationSize = size; |
| 14360 | |
| 14361 | #if VMA_DEDICATED_ALLOCATION |
| 14362 | VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = {}; |
| 14363 | dedicatedAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR; |
| 14364 | if(m_UseKhrDedicatedAllocation) |
| 14365 | { |
| 14366 | if(dedicatedBuffer != VK_NULL_HANDLE) |
| 14367 | { |
| 14368 | VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); |
| 14369 | dedicatedAllocInfo.buffer = dedicatedBuffer; |
| 14370 | allocInfo.pNext = &dedicatedAllocInfo; |
| 14371 | } |
| 14372 | else if(dedicatedImage != VK_NULL_HANDLE) |
| 14373 | { |
| 14374 | dedicatedAllocInfo.image = dedicatedImage; |
| 14375 | allocInfo.pNext = &dedicatedAllocInfo; |
| 14376 | } |
| 14377 | } |
| 14378 | #endif // #if VMA_DEDICATED_ALLOCATION |
| 14379 | |
| 14380 | size_t allocIndex; |
| 14381 | VkResult res = VK_SUCCESS; |
| 14382 | for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) |
| 14383 | { |
| 14384 | res = AllocateDedicatedMemoryPage( |
| 14385 | size, |
| 14386 | suballocType, |
| 14387 | memTypeIndex, |
| 14388 | allocInfo, |
| 14389 | map, |
| 14390 | isUserDataString, |
| 14391 | pUserData, |
| 14392 | pAllocations + allocIndex); |
| 14393 | if(res != VK_SUCCESS) |
| 14394 | { |
| 14395 | break; |
| 14396 | } |
| 14397 | } |
| 14398 | |
| 14399 | if(res == VK_SUCCESS) |
| 14400 | { |
| 14401 | // Register them in m_pDedicatedAllocations. |
| 14402 | { |
| 14403 | VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); |
| 14404 | AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; |
| 14405 | VMA_ASSERT(pDedicatedAllocations); |
| 14406 | for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) |
| 14407 | { |
| 14408 | VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]); |
| 14409 | } |
| 14410 | } |
| 14411 | |
| 14412 | VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u" , allocationCount, memTypeIndex); |
| 14413 | } |
| 14414 | else |
| 14415 | { |
| 14416 | // Free all already created allocations. |
| 14417 | while(allocIndex--) |
| 14418 | { |
| 14419 | VmaAllocation currAlloc = pAllocations[allocIndex]; |
| 14420 | VkDeviceMemory hMemory = currAlloc->GetMemory(); |
| 14421 | |
| 14422 | /* |
| 14423 | There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory |
| 14424 | before vkFreeMemory. |
| 14425 | |
| 14426 | if(currAlloc->GetMappedData() != VMA_NULL) |
| 14427 | { |
| 14428 | (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); |
| 14429 | } |
| 14430 | */ |
| 14431 | |
| 14432 | FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); |
| 14433 | |
| 14434 | currAlloc->SetUserData(this, VMA_NULL); |
| 14435 | vma_delete(this, currAlloc); |
| 14436 | } |
| 14437 | |
| 14438 | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); |
| 14439 | } |
| 14440 | |
| 14441 | return res; |
| 14442 | } |
| 14443 | |
| 14444 | VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( |
| 14445 | VkDeviceSize size, |
| 14446 | VmaSuballocationType suballocType, |
| 14447 | uint32_t memTypeIndex, |
| 14448 | const VkMemoryAllocateInfo& allocInfo, |
| 14449 | bool map, |
| 14450 | bool isUserDataString, |
| 14451 | void* pUserData, |
| 14452 | VmaAllocation* pAllocation) |
| 14453 | { |
| 14454 | VkDeviceMemory hMemory = VK_NULL_HANDLE; |
| 14455 | VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); |
| 14456 | if(res < 0) |
| 14457 | { |
| 14458 | VMA_DEBUG_LOG(" vkAllocateMemory FAILED" ); |
| 14459 | return res; |
| 14460 | } |
| 14461 | |
| 14462 | void* pMappedData = VMA_NULL; |
| 14463 | if(map) |
| 14464 | { |
| 14465 | res = (*m_VulkanFunctions.vkMapMemory)( |
| 14466 | m_hDevice, |
| 14467 | hMemory, |
| 14468 | 0, |
| 14469 | VK_WHOLE_SIZE, |
| 14470 | 0, |
| 14471 | &pMappedData); |
| 14472 | if(res < 0) |
| 14473 | { |
| 14474 | VMA_DEBUG_LOG(" vkMapMemory FAILED" ); |
| 14475 | FreeVulkanMemory(memTypeIndex, size, hMemory); |
| 14476 | return res; |
| 14477 | } |
| 14478 | } |
| 14479 | |
| 14480 | *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load(), isUserDataString); |
| 14481 | (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); |
| 14482 | (*pAllocation)->SetUserData(this, pUserData); |
| 14483 | if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) |
| 14484 | { |
| 14485 | FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); |
| 14486 | } |
| 14487 | |
| 14488 | return VK_SUCCESS; |
| 14489 | } |
| 14490 | |
| 14491 | void VmaAllocator_T::GetBufferMemoryRequirements( |
| 14492 | VkBuffer hBuffer, |
| 14493 | VkMemoryRequirements& memReq, |
| 14494 | bool& requiresDedicatedAllocation, |
| 14495 | bool& prefersDedicatedAllocation) const |
| 14496 | { |
| 14497 | #if VMA_DEDICATED_ALLOCATION |
| 14498 | if(m_UseKhrDedicatedAllocation) |
| 14499 | { |
| 14500 | VkBufferMemoryRequirementsInfo2KHR memReqInfo = {}; |
| 14501 | memReqInfo.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR; |
| 14502 | memReqInfo.buffer = hBuffer; |
| 14503 | |
| 14504 | VkMemoryDedicatedRequirementsKHR memDedicatedReq = {}; |
| 14505 | memDedicatedReq.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR; |
| 14506 | |
| 14507 | VkMemoryRequirements2KHR memReq2 = {}; |
| 14508 | memReq2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR; |
| 14509 | memReq2.pNext = &memDedicatedReq; |
| 14510 | |
| 14511 | (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); |
| 14512 | |
| 14513 | memReq = memReq2.memoryRequirements; |
| 14514 | requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); |
| 14515 | prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); |
| 14516 | } |
| 14517 | else |
| 14518 | #endif // #if VMA_DEDICATED_ALLOCATION |
| 14519 | { |
| 14520 | (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); |
| 14521 | requiresDedicatedAllocation = false; |
| 14522 | prefersDedicatedAllocation = false; |
| 14523 | } |
| 14524 | } |
| 14525 | |
| 14526 | void VmaAllocator_T::GetImageMemoryRequirements( |
| 14527 | VkImage hImage, |
| 14528 | VkMemoryRequirements& memReq, |
| 14529 | bool& requiresDedicatedAllocation, |
| 14530 | bool& prefersDedicatedAllocation) const |
| 14531 | { |
| 14532 | #if VMA_DEDICATED_ALLOCATION |
| 14533 | if(m_UseKhrDedicatedAllocation) |
| 14534 | { |
| 14535 | VkImageMemoryRequirementsInfo2KHR memReqInfo = {}; |
| 14536 | memReqInfo.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR; |
| 14537 | memReqInfo.image = hImage; |
| 14538 | |
| 14539 | VkMemoryDedicatedRequirementsKHR memDedicatedReq = {}; |
| 14540 | memDedicatedReq.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR; |
| 14541 | |
| 14542 | VkMemoryRequirements2KHR memReq2 = {}; |
| 14543 | memReq2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR; |
| 14544 | memReq2.pNext = &memDedicatedReq; |
| 14545 | |
| 14546 | (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); |
| 14547 | |
| 14548 | memReq = memReq2.memoryRequirements; |
| 14549 | requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); |
| 14550 | prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); |
| 14551 | } |
| 14552 | else |
| 14553 | #endif // #if VMA_DEDICATED_ALLOCATION |
| 14554 | { |
| 14555 | (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); |
| 14556 | requiresDedicatedAllocation = false; |
| 14557 | prefersDedicatedAllocation = false; |
| 14558 | } |
| 14559 | } |
| 14560 | |
| 14561 | VkResult VmaAllocator_T::AllocateMemory( |
| 14562 | const VkMemoryRequirements& vkMemReq, |
| 14563 | bool requiresDedicatedAllocation, |
| 14564 | bool prefersDedicatedAllocation, |
| 14565 | VkBuffer dedicatedBuffer, |
| 14566 | VkImage dedicatedImage, |
| 14567 | const VmaAllocationCreateInfo& createInfo, |
| 14568 | VmaSuballocationType suballocType, |
| 14569 | size_t allocationCount, |
| 14570 | VmaAllocation* pAllocations) |
| 14571 | { |
| 14572 | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); |
| 14573 | |
| 14574 | VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); |
| 14575 | |
| 14576 | if(vkMemReq.size == 0) |
| 14577 | { |
| 14578 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 14579 | } |
| 14580 | if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && |
| 14581 | (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) |
| 14582 | { |
| 14583 | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense." ); |
| 14584 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14585 | } |
| 14586 | if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && |
| 14587 | (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) |
| 14588 | { |
| 14589 | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid." ); |
| 14590 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14591 | } |
| 14592 | if(requiresDedicatedAllocation) |
| 14593 | { |
| 14594 | if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) |
| 14595 | { |
| 14596 | VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required." ); |
| 14597 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14598 | } |
| 14599 | if(createInfo.pool != VK_NULL_HANDLE) |
| 14600 | { |
| 14601 | VMA_ASSERT(0 && "Pool specified while dedicated allocation is required." ); |
| 14602 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14603 | } |
| 14604 | } |
| 14605 | if((createInfo.pool != VK_NULL_HANDLE) && |
| 14606 | ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) |
| 14607 | { |
| 14608 | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid." ); |
| 14609 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14610 | } |
| 14611 | |
| 14612 | if(createInfo.pool != VK_NULL_HANDLE) |
| 14613 | { |
| 14614 | const VkDeviceSize alignmentForPool = VMA_MAX( |
| 14615 | vkMemReq.alignment, |
| 14616 | GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex())); |
| 14617 | return createInfo.pool->m_BlockVector.Allocate( |
| 14618 | createInfo.pool, |
| 14619 | m_CurrentFrameIndex.load(), |
| 14620 | vkMemReq.size, |
| 14621 | alignmentForPool, |
| 14622 | createInfo, |
| 14623 | suballocType, |
| 14624 | allocationCount, |
| 14625 | pAllocations); |
| 14626 | } |
| 14627 | else |
| 14628 | { |
| 14629 | // Bit mask of memory Vulkan types acceptable for this allocation. |
| 14630 | uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; |
| 14631 | uint32_t memTypeIndex = UINT32_MAX; |
| 14632 | VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); |
| 14633 | if(res == VK_SUCCESS) |
| 14634 | { |
| 14635 | VkDeviceSize alignmentForMemType = VMA_MAX( |
| 14636 | vkMemReq.alignment, |
| 14637 | GetMemoryTypeMinAlignment(memTypeIndex)); |
| 14638 | |
| 14639 | res = AllocateMemoryOfType( |
| 14640 | vkMemReq.size, |
| 14641 | alignmentForMemType, |
| 14642 | requiresDedicatedAllocation || prefersDedicatedAllocation, |
| 14643 | dedicatedBuffer, |
| 14644 | dedicatedImage, |
| 14645 | createInfo, |
| 14646 | memTypeIndex, |
| 14647 | suballocType, |
| 14648 | allocationCount, |
| 14649 | pAllocations); |
| 14650 | // Succeeded on first try. |
| 14651 | if(res == VK_SUCCESS) |
| 14652 | { |
| 14653 | return res; |
| 14654 | } |
| 14655 | // Allocation from this memory type failed. Try other compatible memory types. |
| 14656 | else |
| 14657 | { |
| 14658 | for(;;) |
| 14659 | { |
| 14660 | // Remove old memTypeIndex from list of possibilities. |
| 14661 | memoryTypeBits &= ~(1u << memTypeIndex); |
| 14662 | // Find alternative memTypeIndex. |
| 14663 | res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); |
| 14664 | if(res == VK_SUCCESS) |
| 14665 | { |
| 14666 | alignmentForMemType = VMA_MAX( |
| 14667 | vkMemReq.alignment, |
| 14668 | GetMemoryTypeMinAlignment(memTypeIndex)); |
| 14669 | |
| 14670 | res = AllocateMemoryOfType( |
| 14671 | vkMemReq.size, |
| 14672 | alignmentForMemType, |
| 14673 | requiresDedicatedAllocation || prefersDedicatedAllocation, |
| 14674 | dedicatedBuffer, |
| 14675 | dedicatedImage, |
| 14676 | createInfo, |
| 14677 | memTypeIndex, |
| 14678 | suballocType, |
| 14679 | allocationCount, |
| 14680 | pAllocations); |
| 14681 | // Allocation from this alternative memory type succeeded. |
| 14682 | if(res == VK_SUCCESS) |
| 14683 | { |
| 14684 | return res; |
| 14685 | } |
| 14686 | // else: Allocation from this memory type failed. Try next one - next loop iteration. |
| 14687 | } |
| 14688 | // No other matching memory type index could be found. |
| 14689 | else |
| 14690 | { |
| 14691 | // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. |
| 14692 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 14693 | } |
| 14694 | } |
| 14695 | } |
| 14696 | } |
| 14697 | // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. |
| 14698 | else |
| 14699 | return res; |
| 14700 | } |
| 14701 | } |
| 14702 | |
| 14703 | void VmaAllocator_T::FreeMemory( |
| 14704 | size_t allocationCount, |
| 14705 | const VmaAllocation* pAllocations) |
| 14706 | { |
| 14707 | VMA_ASSERT(pAllocations); |
| 14708 | |
| 14709 | for(size_t allocIndex = allocationCount; allocIndex--; ) |
| 14710 | { |
| 14711 | VmaAllocation allocation = pAllocations[allocIndex]; |
| 14712 | |
| 14713 | if(allocation != VK_NULL_HANDLE) |
| 14714 | { |
| 14715 | if(TouchAllocation(allocation)) |
| 14716 | { |
| 14717 | if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) |
| 14718 | { |
| 14719 | FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); |
| 14720 | } |
| 14721 | |
| 14722 | switch(allocation->GetType()) |
| 14723 | { |
| 14724 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 14725 | { |
| 14726 | VmaBlockVector* pBlockVector = VMA_NULL; |
| 14727 | VmaPool hPool = allocation->GetPool(); |
| 14728 | if(hPool != VK_NULL_HANDLE) |
| 14729 | { |
| 14730 | pBlockVector = &hPool->m_BlockVector; |
| 14731 | } |
| 14732 | else |
| 14733 | { |
| 14734 | const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); |
| 14735 | pBlockVector = m_pBlockVectors[memTypeIndex]; |
| 14736 | } |
| 14737 | pBlockVector->Free(allocation); |
| 14738 | } |
| 14739 | break; |
| 14740 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 14741 | FreeDedicatedMemory(allocation); |
| 14742 | break; |
| 14743 | default: |
| 14744 | VMA_ASSERT(0); |
| 14745 | } |
| 14746 | } |
| 14747 | |
| 14748 | allocation->SetUserData(this, VMA_NULL); |
| 14749 | vma_delete(this, allocation); |
| 14750 | } |
| 14751 | } |
| 14752 | } |
| 14753 | |
| 14754 | VkResult VmaAllocator_T::ResizeAllocation( |
| 14755 | const VmaAllocation alloc, |
| 14756 | VkDeviceSize newSize) |
| 14757 | { |
| 14758 | if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) |
| 14759 | { |
| 14760 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 14761 | } |
| 14762 | if(newSize == alloc->GetSize()) |
| 14763 | { |
| 14764 | return VK_SUCCESS; |
| 14765 | } |
| 14766 | |
| 14767 | switch(alloc->GetType()) |
| 14768 | { |
| 14769 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 14770 | return VK_ERROR_FEATURE_NOT_PRESENT; |
| 14771 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 14772 | if(alloc->GetBlock()->m_pMetadata->ResizeAllocation(alloc, newSize)) |
| 14773 | { |
| 14774 | alloc->ChangeSize(newSize); |
| 14775 | VMA_HEAVY_ASSERT(alloc->GetBlock()->m_pMetadata->Validate()); |
| 14776 | return VK_SUCCESS; |
| 14777 | } |
| 14778 | else |
| 14779 | { |
| 14780 | return VkResult(-1000069000); // VK_ERROR_OUT_OF_POOL_MEMORY |
| 14781 | } |
| 14782 | default: |
| 14783 | VMA_ASSERT(0); |
| 14784 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 14785 | } |
| 14786 | } |
| 14787 | |
| 14788 | void VmaAllocator_T::CalculateStats(VmaStats* pStats) |
| 14789 | { |
| 14790 | // Initialize. |
| 14791 | InitStatInfo(pStats->total); |
| 14792 | for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) |
| 14793 | InitStatInfo(pStats->memoryType[i]); |
| 14794 | for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) |
| 14795 | InitStatInfo(pStats->memoryHeap[i]); |
| 14796 | |
| 14797 | // Process default pools. |
| 14798 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 14799 | { |
| 14800 | VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; |
| 14801 | VMA_ASSERT(pBlockVector); |
| 14802 | pBlockVector->AddStats(pStats); |
| 14803 | } |
| 14804 | |
| 14805 | // Process custom pools. |
| 14806 | { |
| 14807 | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); |
| 14808 | for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) |
| 14809 | { |
| 14810 | m_Pools[poolIndex]->m_BlockVector.AddStats(pStats); |
| 14811 | } |
| 14812 | } |
| 14813 | |
| 14814 | // Process dedicated allocations. |
| 14815 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 14816 | { |
| 14817 | const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); |
| 14818 | VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); |
| 14819 | AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; |
| 14820 | VMA_ASSERT(pDedicatedAllocVector); |
| 14821 | for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) |
| 14822 | { |
| 14823 | VmaStatInfo allocationStatInfo; |
| 14824 | (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo); |
| 14825 | VmaAddStatInfo(pStats->total, allocationStatInfo); |
| 14826 | VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); |
| 14827 | VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); |
| 14828 | } |
| 14829 | } |
| 14830 | |
| 14831 | // Postprocess. |
| 14832 | VmaPostprocessCalcStatInfo(pStats->total); |
| 14833 | for(size_t i = 0; i < GetMemoryTypeCount(); ++i) |
| 14834 | VmaPostprocessCalcStatInfo(pStats->memoryType[i]); |
| 14835 | for(size_t i = 0; i < GetMemoryHeapCount(); ++i) |
| 14836 | VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); |
| 14837 | } |
| 14838 | |
| 14839 | static const uint32_t VMA_VENDOR_ID_AMD = 4098; |
| 14840 | |
| 14841 | VkResult VmaAllocator_T::DefragmentationBegin( |
| 14842 | const VmaDefragmentationInfo2& info, |
| 14843 | VmaDefragmentationStats* pStats, |
| 14844 | VmaDefragmentationContext* pContext) |
| 14845 | { |
| 14846 | if(info.pAllocationsChanged != VMA_NULL) |
| 14847 | { |
| 14848 | memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); |
| 14849 | } |
| 14850 | |
| 14851 | *pContext = vma_new(this, VmaDefragmentationContext_T)( |
| 14852 | this, m_CurrentFrameIndex.load(), info.flags, pStats); |
| 14853 | |
| 14854 | (*pContext)->AddPools(info.poolCount, info.pPools); |
| 14855 | (*pContext)->AddAllocations( |
| 14856 | info.allocationCount, info.pAllocations, info.pAllocationsChanged); |
| 14857 | |
| 14858 | VkResult res = (*pContext)->Defragment( |
| 14859 | info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, |
| 14860 | info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, |
| 14861 | info.commandBuffer, pStats); |
| 14862 | |
| 14863 | if(res != VK_NOT_READY) |
| 14864 | { |
| 14865 | vma_delete(this, *pContext); |
| 14866 | *pContext = VMA_NULL; |
| 14867 | } |
| 14868 | |
| 14869 | return res; |
| 14870 | } |
| 14871 | |
| 14872 | VkResult VmaAllocator_T::DefragmentationEnd( |
| 14873 | VmaDefragmentationContext context) |
| 14874 | { |
| 14875 | vma_delete(this, context); |
| 14876 | return VK_SUCCESS; |
| 14877 | } |
| 14878 | |
| 14879 | void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) |
| 14880 | { |
| 14881 | if(hAllocation->CanBecomeLost()) |
| 14882 | { |
| 14883 | /* |
| 14884 | Warning: This is a carefully designed algorithm. |
| 14885 | Do not modify unless you really know what you're doing :) |
| 14886 | */ |
| 14887 | const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); |
| 14888 | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); |
| 14889 | for(;;) |
| 14890 | { |
| 14891 | if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) |
| 14892 | { |
| 14893 | pAllocationInfo->memoryType = UINT32_MAX; |
| 14894 | pAllocationInfo->deviceMemory = VK_NULL_HANDLE; |
| 14895 | pAllocationInfo->offset = 0; |
| 14896 | pAllocationInfo->size = hAllocation->GetSize(); |
| 14897 | pAllocationInfo->pMappedData = VMA_NULL; |
| 14898 | pAllocationInfo->pUserData = hAllocation->GetUserData(); |
| 14899 | return; |
| 14900 | } |
| 14901 | else if(localLastUseFrameIndex == localCurrFrameIndex) |
| 14902 | { |
| 14903 | pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); |
| 14904 | pAllocationInfo->deviceMemory = hAllocation->GetMemory(); |
| 14905 | pAllocationInfo->offset = hAllocation->GetOffset(); |
| 14906 | pAllocationInfo->size = hAllocation->GetSize(); |
| 14907 | pAllocationInfo->pMappedData = VMA_NULL; |
| 14908 | pAllocationInfo->pUserData = hAllocation->GetUserData(); |
| 14909 | return; |
| 14910 | } |
| 14911 | else // Last use time earlier than current time. |
| 14912 | { |
| 14913 | if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) |
| 14914 | { |
| 14915 | localLastUseFrameIndex = localCurrFrameIndex; |
| 14916 | } |
| 14917 | } |
| 14918 | } |
| 14919 | } |
| 14920 | else |
| 14921 | { |
| 14922 | #if VMA_STATS_STRING_ENABLED |
| 14923 | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); |
| 14924 | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); |
| 14925 | for(;;) |
| 14926 | { |
| 14927 | VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); |
| 14928 | if(localLastUseFrameIndex == localCurrFrameIndex) |
| 14929 | { |
| 14930 | break; |
| 14931 | } |
| 14932 | else // Last use time earlier than current time. |
| 14933 | { |
| 14934 | if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) |
| 14935 | { |
| 14936 | localLastUseFrameIndex = localCurrFrameIndex; |
| 14937 | } |
| 14938 | } |
| 14939 | } |
| 14940 | #endif |
| 14941 | |
| 14942 | pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); |
| 14943 | pAllocationInfo->deviceMemory = hAllocation->GetMemory(); |
| 14944 | pAllocationInfo->offset = hAllocation->GetOffset(); |
| 14945 | pAllocationInfo->size = hAllocation->GetSize(); |
| 14946 | pAllocationInfo->pMappedData = hAllocation->GetMappedData(); |
| 14947 | pAllocationInfo->pUserData = hAllocation->GetUserData(); |
| 14948 | } |
| 14949 | } |
| 14950 | |
| 14951 | bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) |
| 14952 | { |
| 14953 | // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. |
| 14954 | if(hAllocation->CanBecomeLost()) |
| 14955 | { |
| 14956 | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); |
| 14957 | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); |
| 14958 | for(;;) |
| 14959 | { |
| 14960 | if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) |
| 14961 | { |
| 14962 | return false; |
| 14963 | } |
| 14964 | else if(localLastUseFrameIndex == localCurrFrameIndex) |
| 14965 | { |
| 14966 | return true; |
| 14967 | } |
| 14968 | else // Last use time earlier than current time. |
| 14969 | { |
| 14970 | if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) |
| 14971 | { |
| 14972 | localLastUseFrameIndex = localCurrFrameIndex; |
| 14973 | } |
| 14974 | } |
| 14975 | } |
| 14976 | } |
| 14977 | else |
| 14978 | { |
| 14979 | #if VMA_STATS_STRING_ENABLED |
| 14980 | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); |
| 14981 | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); |
| 14982 | for(;;) |
| 14983 | { |
| 14984 | VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); |
| 14985 | if(localLastUseFrameIndex == localCurrFrameIndex) |
| 14986 | { |
| 14987 | break; |
| 14988 | } |
| 14989 | else // Last use time earlier than current time. |
| 14990 | { |
| 14991 | if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) |
| 14992 | { |
| 14993 | localLastUseFrameIndex = localCurrFrameIndex; |
| 14994 | } |
| 14995 | } |
| 14996 | } |
| 14997 | #endif |
| 14998 | |
| 14999 | return true; |
| 15000 | } |
| 15001 | } |
| 15002 | |
| 15003 | VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) |
| 15004 | { |
| 15005 | VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u" , pCreateInfo->memoryTypeIndex, pCreateInfo->flags); |
| 15006 | |
| 15007 | VmaPoolCreateInfo newCreateInfo = *pCreateInfo; |
| 15008 | |
| 15009 | if(newCreateInfo.maxBlockCount == 0) |
| 15010 | { |
| 15011 | newCreateInfo.maxBlockCount = SIZE_MAX; |
| 15012 | } |
| 15013 | if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) |
| 15014 | { |
| 15015 | return VK_ERROR_INITIALIZATION_FAILED; |
| 15016 | } |
| 15017 | |
| 15018 | const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); |
| 15019 | |
| 15020 | *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); |
| 15021 | |
| 15022 | VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); |
| 15023 | if(res != VK_SUCCESS) |
| 15024 | { |
| 15025 | vma_delete(this, *pPool); |
| 15026 | *pPool = VMA_NULL; |
| 15027 | return res; |
| 15028 | } |
| 15029 | |
| 15030 | // Add to m_Pools. |
| 15031 | { |
| 15032 | VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); |
| 15033 | (*pPool)->SetId(m_NextPoolId++); |
| 15034 | VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool); |
| 15035 | } |
| 15036 | |
| 15037 | return VK_SUCCESS; |
| 15038 | } |
| 15039 | |
| 15040 | void VmaAllocator_T::DestroyPool(VmaPool pool) |
| 15041 | { |
| 15042 | // Remove from m_Pools. |
| 15043 | { |
| 15044 | VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); |
| 15045 | bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool); |
| 15046 | (void) success; |
| 15047 | VMA_ASSERT(success && "Pool not found in Allocator." ); |
| 15048 | } |
| 15049 | |
| 15050 | vma_delete(this, pool); |
| 15051 | } |
| 15052 | |
| 15053 | void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) |
| 15054 | { |
| 15055 | pool->m_BlockVector.GetPoolStats(pPoolStats); |
| 15056 | } |
| 15057 | |
| 15058 | void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) |
| 15059 | { |
| 15060 | m_CurrentFrameIndex.store(frameIndex); |
| 15061 | } |
| 15062 | |
| 15063 | void VmaAllocator_T::MakePoolAllocationsLost( |
| 15064 | VmaPool hPool, |
| 15065 | size_t* pLostAllocationCount) |
| 15066 | { |
| 15067 | hPool->m_BlockVector.MakePoolAllocationsLost( |
| 15068 | m_CurrentFrameIndex.load(), |
| 15069 | pLostAllocationCount); |
| 15070 | } |
| 15071 | |
| 15072 | VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) |
| 15073 | { |
| 15074 | return hPool->m_BlockVector.CheckCorruption(); |
| 15075 | } |
| 15076 | |
| 15077 | VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) |
| 15078 | { |
| 15079 | VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; |
| 15080 | |
| 15081 | // Process default pools. |
| 15082 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 15083 | { |
| 15084 | if(((1u << memTypeIndex) & memoryTypeBits) != 0) |
| 15085 | { |
| 15086 | VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; |
| 15087 | VMA_ASSERT(pBlockVector); |
| 15088 | VkResult localRes = pBlockVector->CheckCorruption(); |
| 15089 | switch(localRes) |
| 15090 | { |
| 15091 | case VK_ERROR_FEATURE_NOT_PRESENT: |
| 15092 | break; |
| 15093 | case VK_SUCCESS: |
| 15094 | finalRes = VK_SUCCESS; |
| 15095 | break; |
| 15096 | default: |
| 15097 | return localRes; |
| 15098 | } |
| 15099 | } |
| 15100 | } |
| 15101 | |
| 15102 | // Process custom pools. |
| 15103 | { |
| 15104 | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); |
| 15105 | for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) |
| 15106 | { |
| 15107 | if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) |
| 15108 | { |
| 15109 | VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption(); |
| 15110 | switch(localRes) |
| 15111 | { |
| 15112 | case VK_ERROR_FEATURE_NOT_PRESENT: |
| 15113 | break; |
| 15114 | case VK_SUCCESS: |
| 15115 | finalRes = VK_SUCCESS; |
| 15116 | break; |
| 15117 | default: |
| 15118 | return localRes; |
| 15119 | } |
| 15120 | } |
| 15121 | } |
| 15122 | } |
| 15123 | |
| 15124 | return finalRes; |
| 15125 | } |
| 15126 | |
| 15127 | void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation) |
| 15128 | { |
| 15129 | *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST, false); |
| 15130 | (*pAllocation)->InitLost(); |
| 15131 | } |
| 15132 | |
| 15133 | VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) |
| 15134 | { |
| 15135 | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); |
| 15136 | |
| 15137 | VkResult res; |
| 15138 | if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) |
| 15139 | { |
| 15140 | VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex); |
| 15141 | if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize) |
| 15142 | { |
| 15143 | res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); |
| 15144 | if(res == VK_SUCCESS) |
| 15145 | { |
| 15146 | m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize; |
| 15147 | } |
| 15148 | } |
| 15149 | else |
| 15150 | { |
| 15151 | res = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| 15152 | } |
| 15153 | } |
| 15154 | else |
| 15155 | { |
| 15156 | res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); |
| 15157 | } |
| 15158 | |
| 15159 | if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) |
| 15160 | { |
| 15161 | (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize); |
| 15162 | } |
| 15163 | |
| 15164 | return res; |
| 15165 | } |
| 15166 | |
| 15167 | void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) |
| 15168 | { |
| 15169 | if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) |
| 15170 | { |
| 15171 | (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size); |
| 15172 | } |
| 15173 | |
| 15174 | (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); |
| 15175 | |
| 15176 | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType); |
| 15177 | if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) |
| 15178 | { |
| 15179 | VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex); |
| 15180 | m_HeapSizeLimit[heapIndex] += size; |
| 15181 | } |
| 15182 | } |
| 15183 | |
| 15184 | VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) |
| 15185 | { |
| 15186 | if(hAllocation->CanBecomeLost()) |
| 15187 | { |
| 15188 | return VK_ERROR_MEMORY_MAP_FAILED; |
| 15189 | } |
| 15190 | |
| 15191 | switch(hAllocation->GetType()) |
| 15192 | { |
| 15193 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 15194 | { |
| 15195 | VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); |
| 15196 | char *pBytes = VMA_NULL; |
| 15197 | VkResult res = pBlock->Map(this, 1, (void**)&pBytes); |
| 15198 | if(res == VK_SUCCESS) |
| 15199 | { |
| 15200 | *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); |
| 15201 | hAllocation->BlockAllocMap(); |
| 15202 | } |
| 15203 | return res; |
| 15204 | } |
| 15205 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 15206 | return hAllocation->DedicatedAllocMap(this, ppData); |
| 15207 | default: |
| 15208 | VMA_ASSERT(0); |
| 15209 | return VK_ERROR_MEMORY_MAP_FAILED; |
| 15210 | } |
| 15211 | } |
| 15212 | |
| 15213 | void VmaAllocator_T::Unmap(VmaAllocation hAllocation) |
| 15214 | { |
| 15215 | switch(hAllocation->GetType()) |
| 15216 | { |
| 15217 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 15218 | { |
| 15219 | VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); |
| 15220 | hAllocation->BlockAllocUnmap(); |
| 15221 | pBlock->Unmap(this, 1); |
| 15222 | } |
| 15223 | break; |
| 15224 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 15225 | hAllocation->DedicatedAllocUnmap(this); |
| 15226 | break; |
| 15227 | default: |
| 15228 | VMA_ASSERT(0); |
| 15229 | } |
| 15230 | } |
| 15231 | |
| 15232 | VkResult VmaAllocator_T::BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer) |
| 15233 | { |
| 15234 | VkResult res = VK_SUCCESS; |
| 15235 | switch(hAllocation->GetType()) |
| 15236 | { |
| 15237 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 15238 | res = GetVulkanFunctions().vkBindBufferMemory( |
| 15239 | m_hDevice, |
| 15240 | hBuffer, |
| 15241 | hAllocation->GetMemory(), |
| 15242 | 0); //memoryOffset |
| 15243 | break; |
| 15244 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 15245 | { |
| 15246 | VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); |
| 15247 | VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?" ); |
| 15248 | res = pBlock->BindBufferMemory(this, hAllocation, hBuffer); |
| 15249 | break; |
| 15250 | } |
| 15251 | default: |
| 15252 | VMA_ASSERT(0); |
| 15253 | } |
| 15254 | return res; |
| 15255 | } |
| 15256 | |
| 15257 | VkResult VmaAllocator_T::BindImageMemory(VmaAllocation hAllocation, VkImage hImage) |
| 15258 | { |
| 15259 | VkResult res = VK_SUCCESS; |
| 15260 | switch(hAllocation->GetType()) |
| 15261 | { |
| 15262 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 15263 | res = GetVulkanFunctions().vkBindImageMemory( |
| 15264 | m_hDevice, |
| 15265 | hImage, |
| 15266 | hAllocation->GetMemory(), |
| 15267 | 0); //memoryOffset |
| 15268 | break; |
| 15269 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 15270 | { |
| 15271 | VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); |
| 15272 | VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?" ); |
| 15273 | res = pBlock->BindImageMemory(this, hAllocation, hImage); |
| 15274 | break; |
| 15275 | } |
| 15276 | default: |
| 15277 | VMA_ASSERT(0); |
| 15278 | } |
| 15279 | return res; |
| 15280 | } |
| 15281 | |
| 15282 | void VmaAllocator_T::FlushOrInvalidateAllocation( |
| 15283 | VmaAllocation hAllocation, |
| 15284 | VkDeviceSize offset, VkDeviceSize size, |
| 15285 | VMA_CACHE_OPERATION op) |
| 15286 | { |
| 15287 | const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex(); |
| 15288 | if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) |
| 15289 | { |
| 15290 | const VkDeviceSize allocationSize = hAllocation->GetSize(); |
| 15291 | VMA_ASSERT(offset <= allocationSize); |
| 15292 | |
| 15293 | const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; |
| 15294 | |
| 15295 | VkMappedMemoryRange memRange = {}; |
| 15296 | memRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; |
| 15297 | memRange.memory = hAllocation->GetMemory(); |
| 15298 | |
| 15299 | switch(hAllocation->GetType()) |
| 15300 | { |
| 15301 | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: |
| 15302 | memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); |
| 15303 | if(size == VK_WHOLE_SIZE) |
| 15304 | { |
| 15305 | memRange.size = allocationSize - memRange.offset; |
| 15306 | } |
| 15307 | else |
| 15308 | { |
| 15309 | VMA_ASSERT(offset + size <= allocationSize); |
| 15310 | memRange.size = VMA_MIN( |
| 15311 | VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize), |
| 15312 | allocationSize - memRange.offset); |
| 15313 | } |
| 15314 | break; |
| 15315 | |
| 15316 | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: |
| 15317 | { |
| 15318 | // 1. Still within this allocation. |
| 15319 | memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); |
| 15320 | if(size == VK_WHOLE_SIZE) |
| 15321 | { |
| 15322 | size = allocationSize - offset; |
| 15323 | } |
| 15324 | else |
| 15325 | { |
| 15326 | VMA_ASSERT(offset + size <= allocationSize); |
| 15327 | } |
| 15328 | memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize); |
| 15329 | |
| 15330 | // 2. Adjust to whole block. |
| 15331 | const VkDeviceSize allocationOffset = hAllocation->GetOffset(); |
| 15332 | VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); |
| 15333 | const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); |
| 15334 | memRange.offset += allocationOffset; |
| 15335 | memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset); |
| 15336 | |
| 15337 | break; |
| 15338 | } |
| 15339 | |
| 15340 | default: |
| 15341 | VMA_ASSERT(0); |
| 15342 | } |
| 15343 | |
| 15344 | switch(op) |
| 15345 | { |
| 15346 | case VMA_CACHE_FLUSH: |
| 15347 | (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); |
| 15348 | break; |
| 15349 | case VMA_CACHE_INVALIDATE: |
| 15350 | (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); |
| 15351 | break; |
| 15352 | default: |
| 15353 | VMA_ASSERT(0); |
| 15354 | } |
| 15355 | } |
| 15356 | // else: Just ignore this call. |
| 15357 | } |
| 15358 | |
| 15359 | void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation) |
| 15360 | { |
| 15361 | VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); |
| 15362 | |
| 15363 | const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); |
| 15364 | { |
| 15365 | VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); |
| 15366 | AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; |
| 15367 | VMA_ASSERT(pDedicatedAllocations); |
| 15368 | bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation); |
| 15369 | (void) success; |
| 15370 | VMA_ASSERT(success); |
| 15371 | } |
| 15372 | |
| 15373 | VkDeviceMemory hMemory = allocation->GetMemory(); |
| 15374 | |
| 15375 | /* |
| 15376 | There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory |
| 15377 | before vkFreeMemory. |
| 15378 | |
| 15379 | if(allocation->GetMappedData() != VMA_NULL) |
| 15380 | { |
| 15381 | (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); |
| 15382 | } |
| 15383 | */ |
| 15384 | |
| 15385 | FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); |
| 15386 | |
| 15387 | VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u" , memTypeIndex); |
| 15388 | } |
| 15389 | |
| 15390 | void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) |
| 15391 | { |
| 15392 | if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && |
| 15393 | !hAllocation->CanBecomeLost() && |
| 15394 | (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) |
| 15395 | { |
| 15396 | void* pData = VMA_NULL; |
| 15397 | VkResult res = Map(hAllocation, &pData); |
| 15398 | if(res == VK_SUCCESS) |
| 15399 | { |
| 15400 | memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); |
| 15401 | FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); |
| 15402 | Unmap(hAllocation); |
| 15403 | } |
| 15404 | else |
| 15405 | { |
| 15406 | VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation." ); |
| 15407 | } |
| 15408 | } |
| 15409 | } |
| 15410 | |
| 15411 | #if VMA_STATS_STRING_ENABLED |
| 15412 | |
| 15413 | void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) |
| 15414 | { |
| 15415 | bool dedicatedAllocationsStarted = false; |
| 15416 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 15417 | { |
| 15418 | VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); |
| 15419 | AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; |
| 15420 | VMA_ASSERT(pDedicatedAllocVector); |
| 15421 | if(pDedicatedAllocVector->empty() == false) |
| 15422 | { |
| 15423 | if(dedicatedAllocationsStarted == false) |
| 15424 | { |
| 15425 | dedicatedAllocationsStarted = true; |
| 15426 | json.WriteString("DedicatedAllocations" ); |
| 15427 | json.BeginObject(); |
| 15428 | } |
| 15429 | |
| 15430 | json.BeginString("Type " ); |
| 15431 | json.ContinueString(memTypeIndex); |
| 15432 | json.EndString(); |
| 15433 | |
| 15434 | json.BeginArray(); |
| 15435 | |
| 15436 | for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i) |
| 15437 | { |
| 15438 | json.BeginObject(true); |
| 15439 | const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i]; |
| 15440 | hAlloc->PrintParameters(json); |
| 15441 | json.EndObject(); |
| 15442 | } |
| 15443 | |
| 15444 | json.EndArray(); |
| 15445 | } |
| 15446 | } |
| 15447 | if(dedicatedAllocationsStarted) |
| 15448 | { |
| 15449 | json.EndObject(); |
| 15450 | } |
| 15451 | |
| 15452 | { |
| 15453 | bool allocationsStarted = false; |
| 15454 | for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) |
| 15455 | { |
| 15456 | if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false) |
| 15457 | { |
| 15458 | if(allocationsStarted == false) |
| 15459 | { |
| 15460 | allocationsStarted = true; |
| 15461 | json.WriteString("DefaultPools" ); |
| 15462 | json.BeginObject(); |
| 15463 | } |
| 15464 | |
| 15465 | json.BeginString("Type " ); |
| 15466 | json.ContinueString(memTypeIndex); |
| 15467 | json.EndString(); |
| 15468 | |
| 15469 | m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); |
| 15470 | } |
| 15471 | } |
| 15472 | if(allocationsStarted) |
| 15473 | { |
| 15474 | json.EndObject(); |
| 15475 | } |
| 15476 | } |
| 15477 | |
| 15478 | // Custom pools |
| 15479 | { |
| 15480 | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); |
| 15481 | const size_t poolCount = m_Pools.size(); |
| 15482 | if(poolCount > 0) |
| 15483 | { |
| 15484 | json.WriteString("Pools" ); |
| 15485 | json.BeginObject(); |
| 15486 | for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) |
| 15487 | { |
| 15488 | json.BeginString(); |
| 15489 | json.ContinueString(m_Pools[poolIndex]->GetId()); |
| 15490 | json.EndString(); |
| 15491 | |
| 15492 | m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json); |
| 15493 | } |
| 15494 | json.EndObject(); |
| 15495 | } |
| 15496 | } |
| 15497 | } |
| 15498 | |
| 15499 | #endif // #if VMA_STATS_STRING_ENABLED |
| 15500 | |
| 15501 | //////////////////////////////////////////////////////////////////////////////// |
| 15502 | // Public interface |
| 15503 | |
| 15504 | VkResult vmaCreateAllocator( |
| 15505 | const VmaAllocatorCreateInfo* pCreateInfo, |
| 15506 | VmaAllocator* pAllocator) |
| 15507 | { |
| 15508 | VMA_ASSERT(pCreateInfo && pAllocator); |
| 15509 | VMA_DEBUG_LOG("vmaCreateAllocator" ); |
| 15510 | *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); |
| 15511 | return (*pAllocator)->Init(pCreateInfo); |
| 15512 | } |
| 15513 | |
| 15514 | void vmaDestroyAllocator( |
| 15515 | VmaAllocator allocator) |
| 15516 | { |
| 15517 | if(allocator != VK_NULL_HANDLE) |
| 15518 | { |
| 15519 | VMA_DEBUG_LOG("vmaDestroyAllocator" ); |
| 15520 | VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; |
| 15521 | vma_delete(&allocationCallbacks, allocator); |
| 15522 | } |
| 15523 | } |
| 15524 | |
| 15525 | void vmaGetPhysicalDeviceProperties( |
| 15526 | VmaAllocator allocator, |
| 15527 | const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) |
| 15528 | { |
| 15529 | VMA_ASSERT(allocator && ppPhysicalDeviceProperties); |
| 15530 | *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; |
| 15531 | } |
| 15532 | |
| 15533 | void vmaGetMemoryProperties( |
| 15534 | VmaAllocator allocator, |
| 15535 | const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) |
| 15536 | { |
| 15537 | VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); |
| 15538 | *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; |
| 15539 | } |
| 15540 | |
| 15541 | void vmaGetMemoryTypeProperties( |
| 15542 | VmaAllocator allocator, |
| 15543 | uint32_t memoryTypeIndex, |
| 15544 | VkMemoryPropertyFlags* pFlags) |
| 15545 | { |
| 15546 | VMA_ASSERT(allocator && pFlags); |
| 15547 | VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); |
| 15548 | *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; |
| 15549 | } |
| 15550 | |
| 15551 | void vmaSetCurrentFrameIndex( |
| 15552 | VmaAllocator allocator, |
| 15553 | uint32_t frameIndex) |
| 15554 | { |
| 15555 | VMA_ASSERT(allocator); |
| 15556 | VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); |
| 15557 | |
| 15558 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15559 | |
| 15560 | allocator->SetCurrentFrameIndex(frameIndex); |
| 15561 | } |
| 15562 | |
| 15563 | void vmaCalculateStats( |
| 15564 | VmaAllocator allocator, |
| 15565 | VmaStats* pStats) |
| 15566 | { |
| 15567 | VMA_ASSERT(allocator && pStats); |
| 15568 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15569 | allocator->CalculateStats(pStats); |
| 15570 | } |
| 15571 | |
| 15572 | #if VMA_STATS_STRING_ENABLED |
| 15573 | |
| 15574 | void vmaBuildStatsString( |
| 15575 | VmaAllocator allocator, |
| 15576 | char** ppStatsString, |
| 15577 | VkBool32 detailedMap) |
| 15578 | { |
| 15579 | VMA_ASSERT(allocator && ppStatsString); |
| 15580 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15581 | |
| 15582 | VmaStringBuilder sb(allocator); |
| 15583 | { |
| 15584 | VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); |
| 15585 | json.BeginObject(); |
| 15586 | |
| 15587 | VmaStats stats; |
| 15588 | allocator->CalculateStats(&stats); |
| 15589 | |
| 15590 | json.WriteString("Total" ); |
| 15591 | VmaPrintStatInfo(json, stats.total); |
| 15592 | |
| 15593 | for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) |
| 15594 | { |
| 15595 | json.BeginString("Heap " ); |
| 15596 | json.ContinueString(heapIndex); |
| 15597 | json.EndString(); |
| 15598 | json.BeginObject(); |
| 15599 | |
| 15600 | json.WriteString("Size" ); |
| 15601 | json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); |
| 15602 | |
| 15603 | json.WriteString("Flags" ); |
| 15604 | json.BeginArray(true); |
| 15605 | if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) |
| 15606 | { |
| 15607 | json.WriteString("DEVICE_LOCAL" ); |
| 15608 | } |
| 15609 | json.EndArray(); |
| 15610 | |
| 15611 | if(stats.memoryHeap[heapIndex].blockCount > 0) |
| 15612 | { |
| 15613 | json.WriteString("Stats" ); |
| 15614 | VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); |
| 15615 | } |
| 15616 | |
| 15617 | for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) |
| 15618 | { |
| 15619 | if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) |
| 15620 | { |
| 15621 | json.BeginString("Type " ); |
| 15622 | json.ContinueString(typeIndex); |
| 15623 | json.EndString(); |
| 15624 | |
| 15625 | json.BeginObject(); |
| 15626 | |
| 15627 | json.WriteString("Flags" ); |
| 15628 | json.BeginArray(true); |
| 15629 | VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; |
| 15630 | if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) |
| 15631 | { |
| 15632 | json.WriteString("DEVICE_LOCAL" ); |
| 15633 | } |
| 15634 | if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) |
| 15635 | { |
| 15636 | json.WriteString("HOST_VISIBLE" ); |
| 15637 | } |
| 15638 | if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) |
| 15639 | { |
| 15640 | json.WriteString("HOST_COHERENT" ); |
| 15641 | } |
| 15642 | if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) |
| 15643 | { |
| 15644 | json.WriteString("HOST_CACHED" ); |
| 15645 | } |
| 15646 | if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) |
| 15647 | { |
| 15648 | json.WriteString("LAZILY_ALLOCATED" ); |
| 15649 | } |
| 15650 | json.EndArray(); |
| 15651 | |
| 15652 | if(stats.memoryType[typeIndex].blockCount > 0) |
| 15653 | { |
| 15654 | json.WriteString("Stats" ); |
| 15655 | VmaPrintStatInfo(json, stats.memoryType[typeIndex]); |
| 15656 | } |
| 15657 | |
| 15658 | json.EndObject(); |
| 15659 | } |
| 15660 | } |
| 15661 | |
| 15662 | json.EndObject(); |
| 15663 | } |
| 15664 | if(detailedMap == VK_TRUE) |
| 15665 | { |
| 15666 | allocator->PrintDetailedMap(json); |
| 15667 | } |
| 15668 | |
| 15669 | json.EndObject(); |
| 15670 | } |
| 15671 | |
| 15672 | const size_t len = sb.GetLength(); |
| 15673 | char* const pChars = vma_new_array(allocator, char, len + 1); |
| 15674 | if(len > 0) |
| 15675 | { |
| 15676 | memcpy(pChars, sb.GetData(), len); |
| 15677 | } |
| 15678 | pChars[len] = '\0'; |
| 15679 | *ppStatsString = pChars; |
| 15680 | } |
| 15681 | |
| 15682 | void vmaFreeStatsString( |
| 15683 | VmaAllocator allocator, |
| 15684 | char* pStatsString) |
| 15685 | { |
| 15686 | if(pStatsString != VMA_NULL) |
| 15687 | { |
| 15688 | VMA_ASSERT(allocator); |
| 15689 | size_t len = strlen(pStatsString); |
| 15690 | vma_delete_array(allocator, pStatsString, len + 1); |
| 15691 | } |
| 15692 | } |
| 15693 | |
| 15694 | #endif // #if VMA_STATS_STRING_ENABLED |
| 15695 | |
| 15696 | /* |
| 15697 | This function is not protected by any mutex because it just reads immutable data. |
| 15698 | */ |
| 15699 | VkResult vmaFindMemoryTypeIndex( |
| 15700 | VmaAllocator allocator, |
| 15701 | uint32_t memoryTypeBits, |
| 15702 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 15703 | uint32_t* pMemoryTypeIndex) |
| 15704 | { |
| 15705 | VMA_ASSERT(allocator != VK_NULL_HANDLE); |
| 15706 | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); |
| 15707 | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); |
| 15708 | |
| 15709 | if(pAllocationCreateInfo->memoryTypeBits != 0) |
| 15710 | { |
| 15711 | memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; |
| 15712 | } |
| 15713 | |
| 15714 | uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; |
| 15715 | uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; |
| 15716 | |
| 15717 | const bool mapped = (pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; |
| 15718 | if(mapped) |
| 15719 | { |
| 15720 | preferredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 15721 | } |
| 15722 | |
| 15723 | // Convert usage to requiredFlags and preferredFlags. |
| 15724 | switch(pAllocationCreateInfo->usage) |
| 15725 | { |
| 15726 | case VMA_MEMORY_USAGE_UNKNOWN: |
| 15727 | break; |
| 15728 | case VMA_MEMORY_USAGE_GPU_ONLY: |
| 15729 | if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) |
| 15730 | { |
| 15731 | preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| 15732 | } |
| 15733 | break; |
| 15734 | case VMA_MEMORY_USAGE_CPU_ONLY: |
| 15735 | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| 15736 | break; |
| 15737 | case VMA_MEMORY_USAGE_CPU_TO_GPU: |
| 15738 | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 15739 | if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) |
| 15740 | { |
| 15741 | preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| 15742 | } |
| 15743 | break; |
| 15744 | case VMA_MEMORY_USAGE_GPU_TO_CPU: |
| 15745 | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| 15746 | preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; |
| 15747 | break; |
| 15748 | default: |
| 15749 | break; |
| 15750 | } |
| 15751 | |
| 15752 | *pMemoryTypeIndex = UINT32_MAX; |
| 15753 | uint32_t minCost = UINT32_MAX; |
| 15754 | for(uint32_t memTypeIndex = 0, memTypeBit = 1; |
| 15755 | memTypeIndex < allocator->GetMemoryTypeCount(); |
| 15756 | ++memTypeIndex, memTypeBit <<= 1) |
| 15757 | { |
| 15758 | // This memory type is acceptable according to memoryTypeBits bitmask. |
| 15759 | if((memTypeBit & memoryTypeBits) != 0) |
| 15760 | { |
| 15761 | const VkMemoryPropertyFlags currFlags = |
| 15762 | allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; |
| 15763 | // This memory type contains requiredFlags. |
| 15764 | if((requiredFlags & ~currFlags) == 0) |
| 15765 | { |
| 15766 | // Calculate cost as number of bits from preferredFlags not present in this memory type. |
| 15767 | uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags); |
| 15768 | // Remember memory type with lowest cost. |
| 15769 | if(currCost < minCost) |
| 15770 | { |
| 15771 | *pMemoryTypeIndex = memTypeIndex; |
| 15772 | if(currCost == 0) |
| 15773 | { |
| 15774 | return VK_SUCCESS; |
| 15775 | } |
| 15776 | minCost = currCost; |
| 15777 | } |
| 15778 | } |
| 15779 | } |
| 15780 | } |
| 15781 | return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; |
| 15782 | } |
| 15783 | |
| 15784 | VkResult vmaFindMemoryTypeIndexForBufferInfo( |
| 15785 | VmaAllocator allocator, |
| 15786 | const VkBufferCreateInfo* pBufferCreateInfo, |
| 15787 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 15788 | uint32_t* pMemoryTypeIndex) |
| 15789 | { |
| 15790 | VMA_ASSERT(allocator != VK_NULL_HANDLE); |
| 15791 | VMA_ASSERT(pBufferCreateInfo != VMA_NULL); |
| 15792 | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); |
| 15793 | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); |
| 15794 | |
| 15795 | const VkDevice hDev = allocator->m_hDevice; |
| 15796 | VkBuffer hBuffer = VK_NULL_HANDLE; |
| 15797 | VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( |
| 15798 | hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); |
| 15799 | if(res == VK_SUCCESS) |
| 15800 | { |
| 15801 | VkMemoryRequirements memReq = {}; |
| 15802 | allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( |
| 15803 | hDev, hBuffer, &memReq); |
| 15804 | |
| 15805 | res = vmaFindMemoryTypeIndex( |
| 15806 | allocator, |
| 15807 | memReq.memoryTypeBits, |
| 15808 | pAllocationCreateInfo, |
| 15809 | pMemoryTypeIndex); |
| 15810 | |
| 15811 | allocator->GetVulkanFunctions().vkDestroyBuffer( |
| 15812 | hDev, hBuffer, allocator->GetAllocationCallbacks()); |
| 15813 | } |
| 15814 | return res; |
| 15815 | } |
| 15816 | |
| 15817 | VkResult vmaFindMemoryTypeIndexForImageInfo( |
| 15818 | VmaAllocator allocator, |
| 15819 | const VkImageCreateInfo* pImageCreateInfo, |
| 15820 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 15821 | uint32_t* pMemoryTypeIndex) |
| 15822 | { |
| 15823 | VMA_ASSERT(allocator != VK_NULL_HANDLE); |
| 15824 | VMA_ASSERT(pImageCreateInfo != VMA_NULL); |
| 15825 | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); |
| 15826 | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); |
| 15827 | |
| 15828 | const VkDevice hDev = allocator->m_hDevice; |
| 15829 | VkImage hImage = VK_NULL_HANDLE; |
| 15830 | VkResult res = allocator->GetVulkanFunctions().vkCreateImage( |
| 15831 | hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); |
| 15832 | if(res == VK_SUCCESS) |
| 15833 | { |
| 15834 | VkMemoryRequirements memReq = {}; |
| 15835 | allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( |
| 15836 | hDev, hImage, &memReq); |
| 15837 | |
| 15838 | res = vmaFindMemoryTypeIndex( |
| 15839 | allocator, |
| 15840 | memReq.memoryTypeBits, |
| 15841 | pAllocationCreateInfo, |
| 15842 | pMemoryTypeIndex); |
| 15843 | |
| 15844 | allocator->GetVulkanFunctions().vkDestroyImage( |
| 15845 | hDev, hImage, allocator->GetAllocationCallbacks()); |
| 15846 | } |
| 15847 | return res; |
| 15848 | } |
| 15849 | |
| 15850 | VkResult vmaCreatePool( |
| 15851 | VmaAllocator allocator, |
| 15852 | const VmaPoolCreateInfo* pCreateInfo, |
| 15853 | VmaPool* pPool) |
| 15854 | { |
| 15855 | VMA_ASSERT(allocator && pCreateInfo && pPool); |
| 15856 | |
| 15857 | VMA_DEBUG_LOG("vmaCreatePool" ); |
| 15858 | |
| 15859 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15860 | |
| 15861 | VkResult res = allocator->CreatePool(pCreateInfo, pPool); |
| 15862 | |
| 15863 | #if VMA_RECORDING_ENABLED |
| 15864 | if(allocator->GetRecorder() != VMA_NULL) |
| 15865 | { |
| 15866 | allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); |
| 15867 | } |
| 15868 | #endif |
| 15869 | |
| 15870 | return res; |
| 15871 | } |
| 15872 | |
| 15873 | void vmaDestroyPool( |
| 15874 | VmaAllocator allocator, |
| 15875 | VmaPool pool) |
| 15876 | { |
| 15877 | VMA_ASSERT(allocator); |
| 15878 | |
| 15879 | if(pool == VK_NULL_HANDLE) |
| 15880 | { |
| 15881 | return; |
| 15882 | } |
| 15883 | |
| 15884 | VMA_DEBUG_LOG("vmaDestroyPool" ); |
| 15885 | |
| 15886 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15887 | |
| 15888 | #if VMA_RECORDING_ENABLED |
| 15889 | if(allocator->GetRecorder() != VMA_NULL) |
| 15890 | { |
| 15891 | allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); |
| 15892 | } |
| 15893 | #endif |
| 15894 | |
| 15895 | allocator->DestroyPool(pool); |
| 15896 | } |
| 15897 | |
| 15898 | void vmaGetPoolStats( |
| 15899 | VmaAllocator allocator, |
| 15900 | VmaPool pool, |
| 15901 | VmaPoolStats* pPoolStats) |
| 15902 | { |
| 15903 | VMA_ASSERT(allocator && pool && pPoolStats); |
| 15904 | |
| 15905 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15906 | |
| 15907 | allocator->GetPoolStats(pool, pPoolStats); |
| 15908 | } |
| 15909 | |
| 15910 | void vmaMakePoolAllocationsLost( |
| 15911 | VmaAllocator allocator, |
| 15912 | VmaPool pool, |
| 15913 | size_t* pLostAllocationCount) |
| 15914 | { |
| 15915 | VMA_ASSERT(allocator && pool); |
| 15916 | |
| 15917 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15918 | |
| 15919 | #if VMA_RECORDING_ENABLED |
| 15920 | if(allocator->GetRecorder() != VMA_NULL) |
| 15921 | { |
| 15922 | allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); |
| 15923 | } |
| 15924 | #endif |
| 15925 | |
| 15926 | allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); |
| 15927 | } |
| 15928 | |
| 15929 | VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) |
| 15930 | { |
| 15931 | VMA_ASSERT(allocator && pool); |
| 15932 | |
| 15933 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15934 | |
| 15935 | VMA_DEBUG_LOG("vmaCheckPoolCorruption" ); |
| 15936 | |
| 15937 | return allocator->CheckPoolCorruption(pool); |
| 15938 | } |
| 15939 | |
| 15940 | VkResult vmaAllocateMemory( |
| 15941 | VmaAllocator allocator, |
| 15942 | const VkMemoryRequirements* pVkMemoryRequirements, |
| 15943 | const VmaAllocationCreateInfo* pCreateInfo, |
| 15944 | VmaAllocation* pAllocation, |
| 15945 | VmaAllocationInfo* pAllocationInfo) |
| 15946 | { |
| 15947 | VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); |
| 15948 | |
| 15949 | VMA_DEBUG_LOG("vmaAllocateMemory" ); |
| 15950 | |
| 15951 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 15952 | |
| 15953 | VkResult result = allocator->AllocateMemory( |
| 15954 | *pVkMemoryRequirements, |
| 15955 | false, // requiresDedicatedAllocation |
| 15956 | false, // prefersDedicatedAllocation |
| 15957 | VK_NULL_HANDLE, // dedicatedBuffer |
| 15958 | VK_NULL_HANDLE, // dedicatedImage |
| 15959 | *pCreateInfo, |
| 15960 | VMA_SUBALLOCATION_TYPE_UNKNOWN, |
| 15961 | 1, // allocationCount |
| 15962 | pAllocation); |
| 15963 | |
| 15964 | #if VMA_RECORDING_ENABLED |
| 15965 | if(allocator->GetRecorder() != VMA_NULL) |
| 15966 | { |
| 15967 | allocator->GetRecorder()->RecordAllocateMemory( |
| 15968 | allocator->GetCurrentFrameIndex(), |
| 15969 | *pVkMemoryRequirements, |
| 15970 | *pCreateInfo, |
| 15971 | *pAllocation); |
| 15972 | } |
| 15973 | #endif |
| 15974 | |
| 15975 | if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) |
| 15976 | { |
| 15977 | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); |
| 15978 | } |
| 15979 | |
| 15980 | return result; |
| 15981 | } |
| 15982 | |
| 15983 | VkResult vmaAllocateMemoryPages( |
| 15984 | VmaAllocator allocator, |
| 15985 | const VkMemoryRequirements* pVkMemoryRequirements, |
| 15986 | const VmaAllocationCreateInfo* pCreateInfo, |
| 15987 | size_t allocationCount, |
| 15988 | VmaAllocation* pAllocations, |
| 15989 | VmaAllocationInfo* pAllocationInfo) |
| 15990 | { |
| 15991 | if(allocationCount == 0) |
| 15992 | { |
| 15993 | return VK_SUCCESS; |
| 15994 | } |
| 15995 | |
| 15996 | VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); |
| 15997 | |
| 15998 | VMA_DEBUG_LOG("vmaAllocateMemoryPages" ); |
| 15999 | |
| 16000 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16001 | |
| 16002 | VkResult result = allocator->AllocateMemory( |
| 16003 | *pVkMemoryRequirements, |
| 16004 | false, // requiresDedicatedAllocation |
| 16005 | false, // prefersDedicatedAllocation |
| 16006 | VK_NULL_HANDLE, // dedicatedBuffer |
| 16007 | VK_NULL_HANDLE, // dedicatedImage |
| 16008 | *pCreateInfo, |
| 16009 | VMA_SUBALLOCATION_TYPE_UNKNOWN, |
| 16010 | allocationCount, |
| 16011 | pAllocations); |
| 16012 | |
| 16013 | #if VMA_RECORDING_ENABLED |
| 16014 | if(allocator->GetRecorder() != VMA_NULL) |
| 16015 | { |
| 16016 | allocator->GetRecorder()->RecordAllocateMemoryPages( |
| 16017 | allocator->GetCurrentFrameIndex(), |
| 16018 | *pVkMemoryRequirements, |
| 16019 | *pCreateInfo, |
| 16020 | (uint64_t)allocationCount, |
| 16021 | pAllocations); |
| 16022 | } |
| 16023 | #endif |
| 16024 | |
| 16025 | if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) |
| 16026 | { |
| 16027 | for(size_t i = 0; i < allocationCount; ++i) |
| 16028 | { |
| 16029 | allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); |
| 16030 | } |
| 16031 | } |
| 16032 | |
| 16033 | return result; |
| 16034 | } |
| 16035 | |
| 16036 | VkResult vmaAllocateMemoryForBuffer( |
| 16037 | VmaAllocator allocator, |
| 16038 | VkBuffer buffer, |
| 16039 | const VmaAllocationCreateInfo* pCreateInfo, |
| 16040 | VmaAllocation* pAllocation, |
| 16041 | VmaAllocationInfo* pAllocationInfo) |
| 16042 | { |
| 16043 | VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); |
| 16044 | |
| 16045 | VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer" ); |
| 16046 | |
| 16047 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16048 | |
| 16049 | VkMemoryRequirements vkMemReq = {}; |
| 16050 | bool requiresDedicatedAllocation = false; |
| 16051 | bool prefersDedicatedAllocation = false; |
| 16052 | allocator->GetBufferMemoryRequirements(buffer, vkMemReq, |
| 16053 | requiresDedicatedAllocation, |
| 16054 | prefersDedicatedAllocation); |
| 16055 | |
| 16056 | VkResult result = allocator->AllocateMemory( |
| 16057 | vkMemReq, |
| 16058 | requiresDedicatedAllocation, |
| 16059 | prefersDedicatedAllocation, |
| 16060 | buffer, // dedicatedBuffer |
| 16061 | VK_NULL_HANDLE, // dedicatedImage |
| 16062 | *pCreateInfo, |
| 16063 | VMA_SUBALLOCATION_TYPE_BUFFER, |
| 16064 | 1, // allocationCount |
| 16065 | pAllocation); |
| 16066 | |
| 16067 | #if VMA_RECORDING_ENABLED |
| 16068 | if(allocator->GetRecorder() != VMA_NULL) |
| 16069 | { |
| 16070 | allocator->GetRecorder()->RecordAllocateMemoryForBuffer( |
| 16071 | allocator->GetCurrentFrameIndex(), |
| 16072 | vkMemReq, |
| 16073 | requiresDedicatedAllocation, |
| 16074 | prefersDedicatedAllocation, |
| 16075 | *pCreateInfo, |
| 16076 | *pAllocation); |
| 16077 | } |
| 16078 | #endif |
| 16079 | |
| 16080 | if(pAllocationInfo && result == VK_SUCCESS) |
| 16081 | { |
| 16082 | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); |
| 16083 | } |
| 16084 | |
| 16085 | return result; |
| 16086 | } |
| 16087 | |
| 16088 | VkResult vmaAllocateMemoryForImage( |
| 16089 | VmaAllocator allocator, |
| 16090 | VkImage image, |
| 16091 | const VmaAllocationCreateInfo* pCreateInfo, |
| 16092 | VmaAllocation* pAllocation, |
| 16093 | VmaAllocationInfo* pAllocationInfo) |
| 16094 | { |
| 16095 | VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); |
| 16096 | |
| 16097 | VMA_DEBUG_LOG("vmaAllocateMemoryForImage" ); |
| 16098 | |
| 16099 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16100 | |
| 16101 | VkMemoryRequirements vkMemReq = {}; |
| 16102 | bool requiresDedicatedAllocation = false; |
| 16103 | bool prefersDedicatedAllocation = false; |
| 16104 | allocator->GetImageMemoryRequirements(image, vkMemReq, |
| 16105 | requiresDedicatedAllocation, prefersDedicatedAllocation); |
| 16106 | |
| 16107 | VkResult result = allocator->AllocateMemory( |
| 16108 | vkMemReq, |
| 16109 | requiresDedicatedAllocation, |
| 16110 | prefersDedicatedAllocation, |
| 16111 | VK_NULL_HANDLE, // dedicatedBuffer |
| 16112 | image, // dedicatedImage |
| 16113 | *pCreateInfo, |
| 16114 | VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, |
| 16115 | 1, // allocationCount |
| 16116 | pAllocation); |
| 16117 | |
| 16118 | #if VMA_RECORDING_ENABLED |
| 16119 | if(allocator->GetRecorder() != VMA_NULL) |
| 16120 | { |
| 16121 | allocator->GetRecorder()->RecordAllocateMemoryForImage( |
| 16122 | allocator->GetCurrentFrameIndex(), |
| 16123 | vkMemReq, |
| 16124 | requiresDedicatedAllocation, |
| 16125 | prefersDedicatedAllocation, |
| 16126 | *pCreateInfo, |
| 16127 | *pAllocation); |
| 16128 | } |
| 16129 | #endif |
| 16130 | |
| 16131 | if(pAllocationInfo && result == VK_SUCCESS) |
| 16132 | { |
| 16133 | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); |
| 16134 | } |
| 16135 | |
| 16136 | return result; |
| 16137 | } |
| 16138 | |
| 16139 | void vmaFreeMemory( |
| 16140 | VmaAllocator allocator, |
| 16141 | VmaAllocation allocation) |
| 16142 | { |
| 16143 | VMA_ASSERT(allocator); |
| 16144 | |
| 16145 | if(allocation == VK_NULL_HANDLE) |
| 16146 | { |
| 16147 | return; |
| 16148 | } |
| 16149 | |
| 16150 | VMA_DEBUG_LOG("vmaFreeMemory" ); |
| 16151 | |
| 16152 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16153 | |
| 16154 | #if VMA_RECORDING_ENABLED |
| 16155 | if(allocator->GetRecorder() != VMA_NULL) |
| 16156 | { |
| 16157 | allocator->GetRecorder()->RecordFreeMemory( |
| 16158 | allocator->GetCurrentFrameIndex(), |
| 16159 | allocation); |
| 16160 | } |
| 16161 | #endif |
| 16162 | |
| 16163 | allocator->FreeMemory( |
| 16164 | 1, // allocationCount |
| 16165 | &allocation); |
| 16166 | } |
| 16167 | |
| 16168 | void vmaFreeMemoryPages( |
| 16169 | VmaAllocator allocator, |
| 16170 | size_t allocationCount, |
| 16171 | VmaAllocation* pAllocations) |
| 16172 | { |
| 16173 | if(allocationCount == 0) |
| 16174 | { |
| 16175 | return; |
| 16176 | } |
| 16177 | |
| 16178 | VMA_ASSERT(allocator); |
| 16179 | |
| 16180 | VMA_DEBUG_LOG("vmaFreeMemoryPages" ); |
| 16181 | |
| 16182 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16183 | |
| 16184 | #if VMA_RECORDING_ENABLED |
| 16185 | if(allocator->GetRecorder() != VMA_NULL) |
| 16186 | { |
| 16187 | allocator->GetRecorder()->RecordFreeMemoryPages( |
| 16188 | allocator->GetCurrentFrameIndex(), |
| 16189 | (uint64_t)allocationCount, |
| 16190 | pAllocations); |
| 16191 | } |
| 16192 | #endif |
| 16193 | |
| 16194 | allocator->FreeMemory(allocationCount, pAllocations); |
| 16195 | } |
| 16196 | |
| 16197 | VkResult vmaResizeAllocation( |
| 16198 | VmaAllocator allocator, |
| 16199 | VmaAllocation allocation, |
| 16200 | VkDeviceSize newSize) |
| 16201 | { |
| 16202 | VMA_ASSERT(allocator && allocation); |
| 16203 | |
| 16204 | VMA_DEBUG_LOG("vmaResizeAllocation" ); |
| 16205 | |
| 16206 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16207 | |
| 16208 | #if VMA_RECORDING_ENABLED |
| 16209 | if(allocator->GetRecorder() != VMA_NULL) |
| 16210 | { |
| 16211 | allocator->GetRecorder()->RecordResizeAllocation( |
| 16212 | allocator->GetCurrentFrameIndex(), |
| 16213 | allocation, |
| 16214 | newSize); |
| 16215 | } |
| 16216 | #endif |
| 16217 | |
| 16218 | return allocator->ResizeAllocation(allocation, newSize); |
| 16219 | } |
| 16220 | |
| 16221 | void vmaGetAllocationInfo( |
| 16222 | VmaAllocator allocator, |
| 16223 | VmaAllocation allocation, |
| 16224 | VmaAllocationInfo* pAllocationInfo) |
| 16225 | { |
| 16226 | VMA_ASSERT(allocator && allocation && pAllocationInfo); |
| 16227 | |
| 16228 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16229 | |
| 16230 | #if VMA_RECORDING_ENABLED |
| 16231 | if(allocator->GetRecorder() != VMA_NULL) |
| 16232 | { |
| 16233 | allocator->GetRecorder()->RecordGetAllocationInfo( |
| 16234 | allocator->GetCurrentFrameIndex(), |
| 16235 | allocation); |
| 16236 | } |
| 16237 | #endif |
| 16238 | |
| 16239 | allocator->GetAllocationInfo(allocation, pAllocationInfo); |
| 16240 | } |
| 16241 | |
| 16242 | VkBool32 vmaTouchAllocation( |
| 16243 | VmaAllocator allocator, |
| 16244 | VmaAllocation allocation) |
| 16245 | { |
| 16246 | VMA_ASSERT(allocator && allocation); |
| 16247 | |
| 16248 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16249 | |
| 16250 | #if VMA_RECORDING_ENABLED |
| 16251 | if(allocator->GetRecorder() != VMA_NULL) |
| 16252 | { |
| 16253 | allocator->GetRecorder()->RecordTouchAllocation( |
| 16254 | allocator->GetCurrentFrameIndex(), |
| 16255 | allocation); |
| 16256 | } |
| 16257 | #endif |
| 16258 | |
| 16259 | return allocator->TouchAllocation(allocation); |
| 16260 | } |
| 16261 | |
| 16262 | void vmaSetAllocationUserData( |
| 16263 | VmaAllocator allocator, |
| 16264 | VmaAllocation allocation, |
| 16265 | void* pUserData) |
| 16266 | { |
| 16267 | VMA_ASSERT(allocator && allocation); |
| 16268 | |
| 16269 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16270 | |
| 16271 | allocation->SetUserData(allocator, pUserData); |
| 16272 | |
| 16273 | #if VMA_RECORDING_ENABLED |
| 16274 | if(allocator->GetRecorder() != VMA_NULL) |
| 16275 | { |
| 16276 | allocator->GetRecorder()->RecordSetAllocationUserData( |
| 16277 | allocator->GetCurrentFrameIndex(), |
| 16278 | allocation, |
| 16279 | pUserData); |
| 16280 | } |
| 16281 | #endif |
| 16282 | } |
| 16283 | |
| 16284 | void vmaCreateLostAllocation( |
| 16285 | VmaAllocator allocator, |
| 16286 | VmaAllocation* pAllocation) |
| 16287 | { |
| 16288 | VMA_ASSERT(allocator && pAllocation); |
| 16289 | |
| 16290 | VMA_DEBUG_GLOBAL_MUTEX_LOCK; |
| 16291 | |
| 16292 | allocator->CreateLostAllocation(pAllocation); |
| 16293 | |
| 16294 | #if VMA_RECORDING_ENABLED |
| 16295 | if(allocator->GetRecorder() != VMA_NULL) |
| 16296 | { |
| 16297 | allocator->GetRecorder()->RecordCreateLostAllocation( |
| 16298 | allocator->GetCurrentFrameIndex(), |
| 16299 | *pAllocation); |
| 16300 | } |
| 16301 | #endif |
| 16302 | } |
| 16303 | |
| 16304 | VkResult vmaMapMemory( |
| 16305 | VmaAllocator allocator, |
| 16306 | VmaAllocation allocation, |
| 16307 | void** ppData) |
| 16308 | { |
| 16309 | VMA_ASSERT(allocator && allocation && ppData); |
| 16310 | |
| 16311 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16312 | |
| 16313 | VkResult res = allocator->Map(allocation, ppData); |
| 16314 | |
| 16315 | #if VMA_RECORDING_ENABLED |
| 16316 | if(allocator->GetRecorder() != VMA_NULL) |
| 16317 | { |
| 16318 | allocator->GetRecorder()->RecordMapMemory( |
| 16319 | allocator->GetCurrentFrameIndex(), |
| 16320 | allocation); |
| 16321 | } |
| 16322 | #endif |
| 16323 | |
| 16324 | return res; |
| 16325 | } |
| 16326 | |
| 16327 | void vmaUnmapMemory( |
| 16328 | VmaAllocator allocator, |
| 16329 | VmaAllocation allocation) |
| 16330 | { |
| 16331 | VMA_ASSERT(allocator && allocation); |
| 16332 | |
| 16333 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16334 | |
| 16335 | #if VMA_RECORDING_ENABLED |
| 16336 | if(allocator->GetRecorder() != VMA_NULL) |
| 16337 | { |
| 16338 | allocator->GetRecorder()->RecordUnmapMemory( |
| 16339 | allocator->GetCurrentFrameIndex(), |
| 16340 | allocation); |
| 16341 | } |
| 16342 | #endif |
| 16343 | |
| 16344 | allocator->Unmap(allocation); |
| 16345 | } |
| 16346 | |
| 16347 | void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) |
| 16348 | { |
| 16349 | VMA_ASSERT(allocator && allocation); |
| 16350 | |
| 16351 | VMA_DEBUG_LOG("vmaFlushAllocation" ); |
| 16352 | |
| 16353 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16354 | |
| 16355 | allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); |
| 16356 | |
| 16357 | #if VMA_RECORDING_ENABLED |
| 16358 | if(allocator->GetRecorder() != VMA_NULL) |
| 16359 | { |
| 16360 | allocator->GetRecorder()->RecordFlushAllocation( |
| 16361 | allocator->GetCurrentFrameIndex(), |
| 16362 | allocation, offset, size); |
| 16363 | } |
| 16364 | #endif |
| 16365 | } |
| 16366 | |
| 16367 | void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) |
| 16368 | { |
| 16369 | VMA_ASSERT(allocator && allocation); |
| 16370 | |
| 16371 | VMA_DEBUG_LOG("vmaInvalidateAllocation" ); |
| 16372 | |
| 16373 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16374 | |
| 16375 | allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); |
| 16376 | |
| 16377 | #if VMA_RECORDING_ENABLED |
| 16378 | if(allocator->GetRecorder() != VMA_NULL) |
| 16379 | { |
| 16380 | allocator->GetRecorder()->RecordInvalidateAllocation( |
| 16381 | allocator->GetCurrentFrameIndex(), |
| 16382 | allocation, offset, size); |
| 16383 | } |
| 16384 | #endif |
| 16385 | } |
| 16386 | |
| 16387 | VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) |
| 16388 | { |
| 16389 | VMA_ASSERT(allocator); |
| 16390 | |
| 16391 | VMA_DEBUG_LOG("vmaCheckCorruption" ); |
| 16392 | |
| 16393 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16394 | |
| 16395 | return allocator->CheckCorruption(memoryTypeBits); |
| 16396 | } |
| 16397 | |
| 16398 | VkResult vmaDefragment( |
| 16399 | VmaAllocator allocator, |
| 16400 | VmaAllocation* pAllocations, |
| 16401 | size_t allocationCount, |
| 16402 | VkBool32* pAllocationsChanged, |
| 16403 | const VmaDefragmentationInfo *pDefragmentationInfo, |
| 16404 | VmaDefragmentationStats* pDefragmentationStats) |
| 16405 | { |
| 16406 | // Deprecated interface, reimplemented using new one. |
| 16407 | |
| 16408 | VmaDefragmentationInfo2 info2 = {}; |
| 16409 | info2.allocationCount = (uint32_t)allocationCount; |
| 16410 | info2.pAllocations = pAllocations; |
| 16411 | info2.pAllocationsChanged = pAllocationsChanged; |
| 16412 | if(pDefragmentationInfo != VMA_NULL) |
| 16413 | { |
| 16414 | info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; |
| 16415 | info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; |
| 16416 | } |
| 16417 | else |
| 16418 | { |
| 16419 | info2.maxCpuAllocationsToMove = UINT32_MAX; |
| 16420 | info2.maxCpuBytesToMove = VK_WHOLE_SIZE; |
| 16421 | } |
| 16422 | // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. |
| 16423 | |
| 16424 | VmaDefragmentationContext ctx; |
| 16425 | VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); |
| 16426 | if(res == VK_NOT_READY) |
| 16427 | { |
| 16428 | res = vmaDefragmentationEnd( allocator, ctx); |
| 16429 | } |
| 16430 | return res; |
| 16431 | } |
| 16432 | |
| 16433 | VkResult vmaDefragmentationBegin( |
| 16434 | VmaAllocator allocator, |
| 16435 | const VmaDefragmentationInfo2* pInfo, |
| 16436 | VmaDefragmentationStats* pStats, |
| 16437 | VmaDefragmentationContext *pContext) |
| 16438 | { |
| 16439 | VMA_ASSERT(allocator && pInfo && pContext); |
| 16440 | |
| 16441 | // Degenerate case: Nothing to defragment. |
| 16442 | if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) |
| 16443 | { |
| 16444 | return VK_SUCCESS; |
| 16445 | } |
| 16446 | |
| 16447 | VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); |
| 16448 | VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); |
| 16449 | VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); |
| 16450 | VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); |
| 16451 | |
| 16452 | VMA_DEBUG_LOG("vmaDefragmentationBegin" ); |
| 16453 | |
| 16454 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16455 | |
| 16456 | VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); |
| 16457 | |
| 16458 | #if VMA_RECORDING_ENABLED |
| 16459 | if(allocator->GetRecorder() != VMA_NULL) |
| 16460 | { |
| 16461 | allocator->GetRecorder()->RecordDefragmentationBegin( |
| 16462 | allocator->GetCurrentFrameIndex(), *pInfo, *pContext); |
| 16463 | } |
| 16464 | #endif |
| 16465 | |
| 16466 | return res; |
| 16467 | } |
| 16468 | |
| 16469 | VkResult vmaDefragmentationEnd( |
| 16470 | VmaAllocator allocator, |
| 16471 | VmaDefragmentationContext context) |
| 16472 | { |
| 16473 | VMA_ASSERT(allocator); |
| 16474 | |
| 16475 | VMA_DEBUG_LOG("vmaDefragmentationEnd" ); |
| 16476 | |
| 16477 | if(context != VK_NULL_HANDLE) |
| 16478 | { |
| 16479 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16480 | |
| 16481 | #if VMA_RECORDING_ENABLED |
| 16482 | if(allocator->GetRecorder() != VMA_NULL) |
| 16483 | { |
| 16484 | allocator->GetRecorder()->RecordDefragmentationEnd( |
| 16485 | allocator->GetCurrentFrameIndex(), context); |
| 16486 | } |
| 16487 | #endif |
| 16488 | |
| 16489 | return allocator->DefragmentationEnd(context); |
| 16490 | } |
| 16491 | else |
| 16492 | { |
| 16493 | return VK_SUCCESS; |
| 16494 | } |
| 16495 | } |
| 16496 | |
| 16497 | VkResult vmaBindBufferMemory( |
| 16498 | VmaAllocator allocator, |
| 16499 | VmaAllocation allocation, |
| 16500 | VkBuffer buffer) |
| 16501 | { |
| 16502 | VMA_ASSERT(allocator && allocation && buffer); |
| 16503 | |
| 16504 | VMA_DEBUG_LOG("vmaBindBufferMemory" ); |
| 16505 | |
| 16506 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16507 | |
| 16508 | return allocator->BindBufferMemory(allocation, buffer); |
| 16509 | } |
| 16510 | |
| 16511 | VkResult vmaBindImageMemory( |
| 16512 | VmaAllocator allocator, |
| 16513 | VmaAllocation allocation, |
| 16514 | VkImage image) |
| 16515 | { |
| 16516 | VMA_ASSERT(allocator && allocation && image); |
| 16517 | |
| 16518 | VMA_DEBUG_LOG("vmaBindImageMemory" ); |
| 16519 | |
| 16520 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16521 | |
| 16522 | return allocator->BindImageMemory(allocation, image); |
| 16523 | } |
| 16524 | |
| 16525 | VkResult vmaCreateBuffer( |
| 16526 | VmaAllocator allocator, |
| 16527 | const VkBufferCreateInfo* pBufferCreateInfo, |
| 16528 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 16529 | VkBuffer* pBuffer, |
| 16530 | VmaAllocation* pAllocation, |
| 16531 | VmaAllocationInfo* pAllocationInfo) |
| 16532 | { |
| 16533 | VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); |
| 16534 | |
| 16535 | if(pBufferCreateInfo->size == 0) |
| 16536 | { |
| 16537 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 16538 | } |
| 16539 | |
| 16540 | VMA_DEBUG_LOG("vmaCreateBuffer" ); |
| 16541 | |
| 16542 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16543 | |
| 16544 | *pBuffer = VK_NULL_HANDLE; |
| 16545 | *pAllocation = VK_NULL_HANDLE; |
| 16546 | |
| 16547 | // 1. Create VkBuffer. |
| 16548 | VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( |
| 16549 | allocator->m_hDevice, |
| 16550 | pBufferCreateInfo, |
| 16551 | allocator->GetAllocationCallbacks(), |
| 16552 | pBuffer); |
| 16553 | if(res >= 0) |
| 16554 | { |
| 16555 | // 2. vkGetBufferMemoryRequirements. |
| 16556 | VkMemoryRequirements vkMemReq = {}; |
| 16557 | bool requiresDedicatedAllocation = false; |
| 16558 | bool prefersDedicatedAllocation = false; |
| 16559 | allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, |
| 16560 | requiresDedicatedAllocation, prefersDedicatedAllocation); |
| 16561 | |
| 16562 | // Make sure alignment requirements for specific buffer usages reported |
| 16563 | // in Physical Device Properties are included in alignment reported by memory requirements. |
| 16564 | if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0) |
| 16565 | { |
| 16566 | VMA_ASSERT(vkMemReq.alignment % |
| 16567 | allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0); |
| 16568 | } |
| 16569 | if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0) |
| 16570 | { |
| 16571 | VMA_ASSERT(vkMemReq.alignment % |
| 16572 | allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0); |
| 16573 | } |
| 16574 | if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0) |
| 16575 | { |
| 16576 | VMA_ASSERT(vkMemReq.alignment % |
| 16577 | allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0); |
| 16578 | } |
| 16579 | |
| 16580 | // 3. Allocate memory using allocator. |
| 16581 | res = allocator->AllocateMemory( |
| 16582 | vkMemReq, |
| 16583 | requiresDedicatedAllocation, |
| 16584 | prefersDedicatedAllocation, |
| 16585 | *pBuffer, // dedicatedBuffer |
| 16586 | VK_NULL_HANDLE, // dedicatedImage |
| 16587 | *pAllocationCreateInfo, |
| 16588 | VMA_SUBALLOCATION_TYPE_BUFFER, |
| 16589 | 1, // allocationCount |
| 16590 | pAllocation); |
| 16591 | |
| 16592 | #if VMA_RECORDING_ENABLED |
| 16593 | if(allocator->GetRecorder() != VMA_NULL) |
| 16594 | { |
| 16595 | allocator->GetRecorder()->RecordCreateBuffer( |
| 16596 | allocator->GetCurrentFrameIndex(), |
| 16597 | *pBufferCreateInfo, |
| 16598 | *pAllocationCreateInfo, |
| 16599 | *pAllocation); |
| 16600 | } |
| 16601 | #endif |
| 16602 | |
| 16603 | if(res >= 0) |
| 16604 | { |
| 16605 | // 3. Bind buffer with memory. |
| 16606 | res = allocator->BindBufferMemory(*pAllocation, *pBuffer); |
| 16607 | if(res >= 0) |
| 16608 | { |
| 16609 | // All steps succeeded. |
| 16610 | #if VMA_STATS_STRING_ENABLED |
| 16611 | (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); |
| 16612 | #endif |
| 16613 | if(pAllocationInfo != VMA_NULL) |
| 16614 | { |
| 16615 | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); |
| 16616 | } |
| 16617 | |
| 16618 | return VK_SUCCESS; |
| 16619 | } |
| 16620 | allocator->FreeMemory( |
| 16621 | 1, // allocationCount |
| 16622 | pAllocation); |
| 16623 | *pAllocation = VK_NULL_HANDLE; |
| 16624 | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); |
| 16625 | *pBuffer = VK_NULL_HANDLE; |
| 16626 | return res; |
| 16627 | } |
| 16628 | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); |
| 16629 | *pBuffer = VK_NULL_HANDLE; |
| 16630 | return res; |
| 16631 | } |
| 16632 | return res; |
| 16633 | } |
| 16634 | |
| 16635 | void vmaDestroyBuffer( |
| 16636 | VmaAllocator allocator, |
| 16637 | VkBuffer buffer, |
| 16638 | VmaAllocation allocation) |
| 16639 | { |
| 16640 | VMA_ASSERT(allocator); |
| 16641 | |
| 16642 | if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) |
| 16643 | { |
| 16644 | return; |
| 16645 | } |
| 16646 | |
| 16647 | VMA_DEBUG_LOG("vmaDestroyBuffer" ); |
| 16648 | |
| 16649 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16650 | |
| 16651 | #if VMA_RECORDING_ENABLED |
| 16652 | if(allocator->GetRecorder() != VMA_NULL) |
| 16653 | { |
| 16654 | allocator->GetRecorder()->RecordDestroyBuffer( |
| 16655 | allocator->GetCurrentFrameIndex(), |
| 16656 | allocation); |
| 16657 | } |
| 16658 | #endif |
| 16659 | |
| 16660 | if(buffer != VK_NULL_HANDLE) |
| 16661 | { |
| 16662 | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); |
| 16663 | } |
| 16664 | |
| 16665 | if(allocation != VK_NULL_HANDLE) |
| 16666 | { |
| 16667 | allocator->FreeMemory( |
| 16668 | 1, // allocationCount |
| 16669 | &allocation); |
| 16670 | } |
| 16671 | } |
| 16672 | |
| 16673 | VkResult vmaCreateImage( |
| 16674 | VmaAllocator allocator, |
| 16675 | const VkImageCreateInfo* pImageCreateInfo, |
| 16676 | const VmaAllocationCreateInfo* pAllocationCreateInfo, |
| 16677 | VkImage* pImage, |
| 16678 | VmaAllocation* pAllocation, |
| 16679 | VmaAllocationInfo* pAllocationInfo) |
| 16680 | { |
| 16681 | VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); |
| 16682 | |
| 16683 | if(pImageCreateInfo->extent.width == 0 || |
| 16684 | pImageCreateInfo->extent.height == 0 || |
| 16685 | pImageCreateInfo->extent.depth == 0 || |
| 16686 | pImageCreateInfo->mipLevels == 0 || |
| 16687 | pImageCreateInfo->arrayLayers == 0) |
| 16688 | { |
| 16689 | return VK_ERROR_VALIDATION_FAILED_EXT; |
| 16690 | } |
| 16691 | |
| 16692 | VMA_DEBUG_LOG("vmaCreateImage" ); |
| 16693 | |
| 16694 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16695 | |
| 16696 | *pImage = VK_NULL_HANDLE; |
| 16697 | *pAllocation = VK_NULL_HANDLE; |
| 16698 | |
| 16699 | // 1. Create VkImage. |
| 16700 | VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( |
| 16701 | allocator->m_hDevice, |
| 16702 | pImageCreateInfo, |
| 16703 | allocator->GetAllocationCallbacks(), |
| 16704 | pImage); |
| 16705 | if(res >= 0) |
| 16706 | { |
| 16707 | VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? |
| 16708 | VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : |
| 16709 | VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; |
| 16710 | |
| 16711 | // 2. Allocate memory using allocator. |
| 16712 | VkMemoryRequirements vkMemReq = {}; |
| 16713 | bool requiresDedicatedAllocation = false; |
| 16714 | bool prefersDedicatedAllocation = false; |
| 16715 | allocator->GetImageMemoryRequirements(*pImage, vkMemReq, |
| 16716 | requiresDedicatedAllocation, prefersDedicatedAllocation); |
| 16717 | |
| 16718 | res = allocator->AllocateMemory( |
| 16719 | vkMemReq, |
| 16720 | requiresDedicatedAllocation, |
| 16721 | prefersDedicatedAllocation, |
| 16722 | VK_NULL_HANDLE, // dedicatedBuffer |
| 16723 | *pImage, // dedicatedImage |
| 16724 | *pAllocationCreateInfo, |
| 16725 | suballocType, |
| 16726 | 1, // allocationCount |
| 16727 | pAllocation); |
| 16728 | |
| 16729 | #if VMA_RECORDING_ENABLED |
| 16730 | if(allocator->GetRecorder() != VMA_NULL) |
| 16731 | { |
| 16732 | allocator->GetRecorder()->RecordCreateImage( |
| 16733 | allocator->GetCurrentFrameIndex(), |
| 16734 | *pImageCreateInfo, |
| 16735 | *pAllocationCreateInfo, |
| 16736 | *pAllocation); |
| 16737 | } |
| 16738 | #endif |
| 16739 | |
| 16740 | if(res >= 0) |
| 16741 | { |
| 16742 | // 3. Bind image with memory. |
| 16743 | res = allocator->BindImageMemory(*pAllocation, *pImage); |
| 16744 | if(res >= 0) |
| 16745 | { |
| 16746 | // All steps succeeded. |
| 16747 | #if VMA_STATS_STRING_ENABLED |
| 16748 | (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); |
| 16749 | #endif |
| 16750 | if(pAllocationInfo != VMA_NULL) |
| 16751 | { |
| 16752 | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); |
| 16753 | } |
| 16754 | |
| 16755 | return VK_SUCCESS; |
| 16756 | } |
| 16757 | allocator->FreeMemory( |
| 16758 | 1, // allocationCount |
| 16759 | pAllocation); |
| 16760 | *pAllocation = VK_NULL_HANDLE; |
| 16761 | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); |
| 16762 | *pImage = VK_NULL_HANDLE; |
| 16763 | return res; |
| 16764 | } |
| 16765 | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); |
| 16766 | *pImage = VK_NULL_HANDLE; |
| 16767 | return res; |
| 16768 | } |
| 16769 | return res; |
| 16770 | } |
| 16771 | |
| 16772 | void vmaDestroyImage( |
| 16773 | VmaAllocator allocator, |
| 16774 | VkImage image, |
| 16775 | VmaAllocation allocation) |
| 16776 | { |
| 16777 | VMA_ASSERT(allocator); |
| 16778 | |
| 16779 | if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) |
| 16780 | { |
| 16781 | return; |
| 16782 | } |
| 16783 | |
| 16784 | VMA_DEBUG_LOG("vmaDestroyImage" ); |
| 16785 | |
| 16786 | VMA_DEBUG_GLOBAL_MUTEX_LOCK |
| 16787 | |
| 16788 | #if VMA_RECORDING_ENABLED |
| 16789 | if(allocator->GetRecorder() != VMA_NULL) |
| 16790 | { |
| 16791 | allocator->GetRecorder()->RecordDestroyImage( |
| 16792 | allocator->GetCurrentFrameIndex(), |
| 16793 | allocation); |
| 16794 | } |
| 16795 | #endif |
| 16796 | |
| 16797 | if(image != VK_NULL_HANDLE) |
| 16798 | { |
| 16799 | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); |
| 16800 | } |
| 16801 | if(allocation != VK_NULL_HANDLE) |
| 16802 | { |
| 16803 | allocator->FreeMemory( |
| 16804 | 1, // allocationCount |
| 16805 | &allocation); |
| 16806 | } |
| 16807 | } |
| 16808 | |
| 16809 | #endif // #ifdef VMA_IMPLEMENTATION |
| 16810 | |