1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2020 The Qt Company Ltd. |
4 | ** Copyright (C) 2020 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #ifndef QNUMERIC_P_H |
42 | #define QNUMERIC_P_H |
43 | |
44 | // |
45 | // W A R N I N G |
46 | // ------------- |
47 | // |
48 | // This file is not part of the Qt API. It exists purely as an |
49 | // implementation detail. This header file may change from version to |
50 | // version without notice, or even be removed. |
51 | // |
52 | // We mean it. |
53 | // |
54 | |
55 | #include "QtCore/private/qglobal_p.h" |
56 | #include <cmath> |
57 | #include <limits> |
58 | #include <type_traits> |
59 | |
60 | #if defined(Q_CC_MSVC) |
61 | # include <intrin.h> |
62 | # include <float.h> |
63 | # if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64) |
64 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
65 | # define Q_UMULH(v1, v2) __umulh(v1, v2); |
66 | # define Q_SMULH(v1, v2) __mulh(v1, v2); |
67 | # pragma intrinsic(__umulh) |
68 | # pragma intrinsic(__mulh) |
69 | # endif |
70 | #endif |
71 | |
72 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
73 | #include <arm64_ghs.h> |
74 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
75 | # define Q_UMULH(v1, v2) __MULUH64(v1, v2); |
76 | # define Q_SMULH(v1, v2) __MULSH64(v1, v2); |
77 | #endif |
78 | |
79 | #if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL)) |
80 | # include <math.h> |
81 | # ifdef isnan |
82 | # define QT_MATH_H_DEFINES_MACROS |
83 | QT_BEGIN_NAMESPACE |
84 | namespace qnumeric_std_wrapper { |
85 | // the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros. |
86 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); } |
87 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); } |
88 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); } |
89 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); } |
90 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); } |
91 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); } |
92 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); } |
93 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); } |
94 | } |
95 | QT_END_NAMESPACE |
96 | // These macros from math.h conflict with the real functions in the std namespace. |
97 | # undef signbit |
98 | # undef isnan |
99 | # undef isinf |
100 | # undef isfinite |
101 | # undef fpclassify |
102 | # endif // defined(isnan) |
103 | #endif |
104 | |
105 | QT_BEGIN_NAMESPACE |
106 | |
107 | namespace qnumeric_std_wrapper { |
108 | #if defined(QT_MATH_H_DEFINES_MACROS) |
109 | # undef QT_MATH_H_DEFINES_MACROS |
110 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); } |
111 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); } |
112 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); } |
113 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); } |
114 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); } |
115 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); } |
116 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); } |
117 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); } |
118 | #else |
119 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(d); } |
120 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(d); } |
121 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(d); } |
122 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(d); } |
123 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(f); } |
124 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(f); } |
125 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(f); } |
126 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(f); } |
127 | #endif |
128 | } |
129 | |
130 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept |
131 | { |
132 | static_assert(std::numeric_limits<double>::has_infinity, |
133 | "platform has no definition for infinity for type double" ); |
134 | return std::numeric_limits<double>::infinity(); |
135 | } |
136 | |
137 | #if QT_CONFIG(signaling_nan) |
138 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept |
139 | { |
140 | static_assert(std::numeric_limits<double>::has_signaling_NaN, |
141 | "platform has no definition for signaling NaN for type double" ); |
142 | return std::numeric_limits<double>::signaling_NaN(); |
143 | } |
144 | #endif |
145 | |
146 | // Quiet NaN |
147 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept |
148 | { |
149 | static_assert(std::numeric_limits<double>::has_quiet_NaN, |
150 | "platform has no definition for quiet NaN for type double" ); |
151 | return std::numeric_limits<double>::quiet_NaN(); |
152 | } |
153 | |
154 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d) |
155 | { |
156 | return qnumeric_std_wrapper::isinf(d); |
157 | } |
158 | |
159 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d) |
160 | { |
161 | return qnumeric_std_wrapper::isnan(d); |
162 | } |
163 | |
164 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d) |
165 | { |
166 | return qnumeric_std_wrapper::isfinite(d); |
167 | } |
168 | |
169 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d) |
170 | { |
171 | return qnumeric_std_wrapper::fpclassify(d); |
172 | } |
173 | |
174 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f) |
175 | { |
176 | return qnumeric_std_wrapper::isinf(f); |
177 | } |
178 | |
179 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f) |
180 | { |
181 | return qnumeric_std_wrapper::isnan(f); |
182 | } |
183 | |
184 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f) |
185 | { |
186 | return qnumeric_std_wrapper::isfinite(f); |
187 | } |
188 | |
189 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f) |
190 | { |
191 | return qnumeric_std_wrapper::fpclassify(f); |
192 | } |
193 | |
194 | #ifndef Q_CLANG_QDOC |
195 | namespace { |
196 | /*! |
197 | Returns true if the double \a v can be converted to type \c T, false if |
198 | it's out of range. If the conversion is successful, the converted value is |
199 | stored in \a value; if it was not successful, \a value will contain the |
200 | minimum or maximum of T, depending on the sign of \a d. If \c T is |
201 | unsigned, then \a value contains the absolute value of \a v. |
202 | |
203 | This function works for v containing infinities, but not NaN. It's the |
204 | caller's responsibility to exclude that possibility before calling it. |
205 | */ |
206 | template<typename T> |
207 | static inline bool convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true) |
208 | { |
209 | static_assert(std::numeric_limits<T>::is_integer); |
210 | |
211 | // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++ |
212 | // standard says only exact conversions are guaranteed. Converting |
213 | // integrals to floating-point with loss of precision has implementation- |
214 | // defined behavior whether the next higher or next lower is returned; |
215 | // converting FP to integral is UB if it can't be represented. |
216 | // |
217 | // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be |
218 | // correct, but Clang, ICC and MSVC don't realize that it's a constant and |
219 | // the math call stays in the compiled code. |
220 | |
221 | double supremum; |
222 | if (std::numeric_limits<T>::is_signed) { |
223 | supremum = -1.0 * std::numeric_limits<T>::min(); // -1 * (-2^63) = 2^63, exact (for T = qint64) |
224 | *value = std::numeric_limits<T>::min(); |
225 | if (v < std::numeric_limits<T>::min()) |
226 | return false; |
227 | } else { |
228 | using ST = typename std::make_signed<T>::type; |
229 | supremum = -2.0 * std::numeric_limits<ST>::min(); // -2 * (-2^63) = 2^64, exact (for T = quint64) |
230 | v = fabs(v); |
231 | } |
232 | if (std::is_integral<T>::value && sizeof(T) > 4 && !allow_precision_upgrade) { |
233 | if (v > double(Q_INT64_C(1)<<53) || v < double(-((Q_INT64_C(1)<<53) + 1))) |
234 | return false; |
235 | } |
236 | |
237 | *value = std::numeric_limits<T>::max(); |
238 | if (v >= supremum) |
239 | return false; |
240 | |
241 | // Now we can convert, these two conversions cannot be UB |
242 | *value = T(v); |
243 | |
244 | QT_WARNING_PUSH |
245 | QT_WARNING_DISABLE_FLOAT_COMPARE |
246 | |
247 | return *value == v; |
248 | |
249 | QT_WARNING_POP |
250 | } |
251 | |
252 | // Overflow math. |
253 | // This provides efficient implementations for int, unsigned, qsizetype and |
254 | // size_t. Implementations for 8- and 16-bit types will work but may not be as |
255 | // efficient. Implementations for 64-bit may be missing on 32-bit platforms. |
256 | |
257 | #if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \ |
258 | && Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow) |
259 | // GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows |
260 | #define Q_INTRINSIC_MUL_OVERFLOW64 |
261 | |
262 | template <typename T> inline |
263 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
264 | add_overflow(T v1, T v2, T *r) |
265 | { return __builtin_add_overflow(v1, v2, r); } |
266 | |
267 | template <typename T> inline |
268 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
269 | sub_overflow(T v1, T v2, T *r) |
270 | { return __builtin_sub_overflow(v1, v2, r); } |
271 | |
272 | template <typename T> inline |
273 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
274 | mul_overflow(T v1, T v2, T *r) |
275 | { return __builtin_mul_overflow(v1, v2, r); } |
276 | |
277 | #else |
278 | // Generic implementations |
279 | |
280 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
281 | add_overflow(T v1, T v2, T *r) |
282 | { |
283 | // unsigned additions are well-defined |
284 | *r = v1 + v2; |
285 | return v1 > T(v1 + v2); |
286 | } |
287 | |
288 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
289 | add_overflow(T v1, T v2, T *r) |
290 | { |
291 | // Here's how we calculate the overflow: |
292 | // 1) unsigned addition is well-defined, so we can always execute it |
293 | // 2) conversion from unsigned back to signed is implementation- |
294 | // defined and in the implementations we use, it's a no-op. |
295 | // 3) signed integer overflow happens if the sign of the two input operands |
296 | // is the same but the sign of the result is different. In other words, |
297 | // the sign of the result must be the same as the sign of either |
298 | // operand. |
299 | |
300 | using U = typename std::make_unsigned<T>::type; |
301 | *r = T(U(v1) + U(v2)); |
302 | |
303 | // If int is two's complement, assume all integer types are too. |
304 | if (std::is_same<int32_t, int>::value) { |
305 | // Two's complement equivalent (generates slightly shorter code): |
306 | // x ^ y is negative if x and y have different signs |
307 | // x & y is negative if x and y are negative |
308 | // (x ^ z) & (y ^ z) is negative if x and z have different signs |
309 | // AND y and z have different signs |
310 | return ((v1 ^ *r) & (v2 ^ *r)) < 0; |
311 | } |
312 | |
313 | bool s1 = (v1 < 0); |
314 | bool s2 = (v2 < 0); |
315 | bool sr = (*r < 0); |
316 | return s1 != sr && s2 != sr; |
317 | // also: return s1 == s2 && s1 != sr; |
318 | } |
319 | |
320 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
321 | sub_overflow(T v1, T v2, T *r) |
322 | { |
323 | // unsigned subtractions are well-defined |
324 | *r = v1 - v2; |
325 | return v1 < v2; |
326 | } |
327 | |
328 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
329 | sub_overflow(T v1, T v2, T *r) |
330 | { |
331 | // See above for explanation. This is the same with some signs reversed. |
332 | // We can't use add_overflow(v1, -v2, r) because it would be UB if |
333 | // v2 == std::numeric_limits<T>::min(). |
334 | |
335 | using U = typename std::make_unsigned<T>::type; |
336 | *r = T(U(v1) - U(v2)); |
337 | |
338 | if (std::is_same<int32_t, int>::value) |
339 | return ((v1 ^ *r) & (~v2 ^ *r)) < 0; |
340 | |
341 | bool s1 = (v1 < 0); |
342 | bool s2 = !(v2 < 0); |
343 | bool sr = (*r < 0); |
344 | return s1 != sr && s2 != sr; |
345 | // also: return s1 == s2 && s1 != sr; |
346 | } |
347 | |
348 | template <typename T> inline |
349 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
350 | mul_overflow(T v1, T v2, T *r) |
351 | { |
352 | // use the next biggest type |
353 | // Note: for 64-bit systems where __int128 isn't supported, this will cause an error. |
354 | using LargerInt = QIntegerForSize<sizeof(T) * 2>; |
355 | using Larger = typename std::conditional<std::is_signed<T>::value, |
356 | typename LargerInt::Signed, typename LargerInt::Unsigned>::type; |
357 | Larger lr = Larger(v1) * Larger(v2); |
358 | *r = T(lr); |
359 | return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min(); |
360 | } |
361 | |
362 | # if defined(Q_INTRINSIC_MUL_OVERFLOW64) |
363 | template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r) |
364 | { |
365 | *r = v1 * v2; |
366 | return Q_UMULH(v1, v2); |
367 | } |
368 | template <> inline bool mul_overflow(qint64 v1, qint64 v2, qint64 *r) |
369 | { |
370 | // This is slightly more complex than the unsigned case above: the sign bit |
371 | // of 'low' must be replicated as the entire 'high', so the only valid |
372 | // values for 'high' are 0 and -1. Use unsigned multiply since it's the same |
373 | // as signed for the low bits and use a signed right shift to verify that |
374 | // 'high' is nothing but sign bits that match the sign of 'low'. |
375 | |
376 | qint64 high = Q_SMULH(v1, v2); |
377 | *r = qint64(quint64(v1) * quint64(v2)); |
378 | return (*r >> 63) != high; |
379 | } |
380 | |
381 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
382 | template <> inline bool mul_overflow(uint64_t v1, uint64_t v2, uint64_t *r) |
383 | { |
384 | return mul_overflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r)); |
385 | } |
386 | |
387 | template <> inline bool mul_overflow(int64_t v1, int64_t v2, int64_t *r) |
388 | { |
389 | return mul_overflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r)); |
390 | } |
391 | # endif // OS_INTEGRITY ARM64 |
392 | # endif // Q_INTRINSIC_MUL_OVERFLOW64 |
393 | |
394 | # if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86) |
395 | // We can use intrinsics for the unsigned operations with MSVC |
396 | template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r) |
397 | { return _addcarry_u32(0, v1, v2, r); } |
398 | |
399 | // 32-bit mul_overflow is fine with the generic code above |
400 | |
401 | template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r) |
402 | { |
403 | # if defined(Q_PROCESSOR_X86_64) |
404 | return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r)); |
405 | # else |
406 | uint low, high; |
407 | uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low); |
408 | carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high); |
409 | *r = (quint64(high) << 32) | low; |
410 | return carry; |
411 | # endif // !x86-64 |
412 | } |
413 | # endif // MSVC X86 |
414 | #endif // !GCC |
415 | |
416 | // Implementations for addition, subtraction or multiplication by a |
417 | // compile-time constant. For addition and subtraction, we simply call the code |
418 | // that detects overflow at runtime. For multiplication, we compare to the |
419 | // maximum possible values before multiplying to ensure no overflow happens. |
420 | |
421 | template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r) |
422 | { |
423 | return add_overflow(v1, V2, r); |
424 | } |
425 | |
426 | template <auto V2, typename T> bool add_overflow(T v1, T *r) |
427 | { |
428 | return add_overflow(v1, std::integral_constant<T, V2>{}, r); |
429 | } |
430 | |
431 | template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r) |
432 | { |
433 | return sub_overflow(v1, V2, r); |
434 | } |
435 | |
436 | template <auto V2, typename T> bool sub_overflow(T v1, T *r) |
437 | { |
438 | return sub_overflow(v1, std::integral_constant<T, V2>{}, r); |
439 | } |
440 | |
441 | template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r) |
442 | { |
443 | // Runtime detection for anything smaller than or equal to a register |
444 | // width, as most architectures' multiplication instructions actually |
445 | // produce a result twice as wide as the input registers, allowing us to |
446 | // efficiently detect the overflow. |
447 | if constexpr (sizeof(T) <= sizeof(qregisteruint)) { |
448 | return mul_overflow(v1, V2, r); |
449 | |
450 | #ifdef Q_INTRINSIC_MUL_OVERFLOW64 |
451 | } else if constexpr (sizeof(T) <= sizeof(quint64)) { |
452 | // If we have intrinsics detecting overflow of 64-bit multiplications, |
453 | // then detect overflows through them up to 64 bits. |
454 | return mul_overflow(v1, V2, r); |
455 | #endif |
456 | |
457 | } else if constexpr (V2 == 0 || V2 == 1) { |
458 | // trivial cases (and simplify logic below due to division by zero) |
459 | *r = v1 * V2; |
460 | return false; |
461 | } else if constexpr (V2 == -1) { |
462 | // multiplication by -1 is valid *except* for signed minimum values |
463 | // (necessary to avoid diving min() by -1, which is an overflow) |
464 | if (v1 < 0 && v1 == std::numeric_limits<T>::min()) |
465 | return true; |
466 | *r = -v1; |
467 | return false; |
468 | } else { |
469 | // For 64-bit multiplications on 32-bit platforms, let's instead compare v1 |
470 | // against the bounds that would overflow. |
471 | constexpr T Highest = std::numeric_limits<T>::max() / V2; |
472 | constexpr T Lowest = std::numeric_limits<T>::min() / V2; |
473 | if constexpr (Highest > Lowest) { |
474 | if (v1 > Highest || v1 < Lowest) |
475 | return true; |
476 | } else { |
477 | // this can only happen if V2 < 0 |
478 | static_assert(V2 < 0); |
479 | if (v1 > Lowest || v1 < Highest) |
480 | return true; |
481 | } |
482 | |
483 | *r = v1 * V2; |
484 | return false; |
485 | } |
486 | } |
487 | |
488 | template <auto V2, typename T> bool mul_overflow(T v1, T *r) |
489 | { |
490 | return mul_overflow(v1, std::integral_constant<T, V2>{}, r); |
491 | } |
492 | } |
493 | #endif // Q_CLANG_QDOC |
494 | |
495 | QT_END_NAMESPACE |
496 | |
497 | #endif // QNUMERIC_P_H |
498 | |