1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Copyright (C) 2013 Olivier Goffart <ogoffart@woboq.com> |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #ifndef QOBJECTDEFS_H |
42 | #error Do not include qobjectdefs_impl.h directly |
43 | #include <QtCore/qnamespace.h> |
44 | #endif |
45 | |
46 | #if 0 |
47 | #pragma qt_sync_skip_header_check |
48 | #pragma qt_sync_stop_processing |
49 | #endif |
50 | |
51 | QT_BEGIN_NAMESPACE |
52 | class QObject; |
53 | |
54 | namespace QtPrivate { |
55 | template <typename T> struct RemoveRef { typedef T Type; }; |
56 | template <typename T> struct RemoveRef<T&> { typedef T Type; }; |
57 | template <typename T> struct RemoveConstRef { typedef T Type; }; |
58 | template <typename T> struct RemoveConstRef<const T&> { typedef T Type; }; |
59 | |
60 | /* |
61 | The following List classes are used to help to handle the list of arguments. |
62 | It follow the same principles as the lisp lists. |
63 | List_Left<L,N> take a list and a number as a parameter and returns (via the Value typedef, |
64 | the list composed of the first N element of the list |
65 | */ |
66 | // With variadic template, lists are represented using a variadic template argument instead of the lisp way |
67 | template <typename...> struct List {}; |
68 | template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; }; |
69 | template <typename, typename> struct List_Append; |
70 | template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; }; |
71 | template <typename L, int N> struct List_Left { |
72 | typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value; |
73 | }; |
74 | template <typename L> struct List_Left<L, 0> { typedef List<> Value; }; |
75 | // List_Select<L,N> returns (via typedef Value) the Nth element of the list L |
76 | template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; }; |
77 | template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; }; |
78 | |
79 | /* |
80 | trick to set the return value of a slot that works even if the signal or the slot returns void |
81 | to be used like function(), ApplyReturnValue<ReturnType>(&return_value) |
82 | if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it |
83 | returns void, the builtin one is used without an error. |
84 | */ |
85 | template <typename T> |
86 | struct ApplyReturnValue { |
87 | void *data; |
88 | explicit ApplyReturnValue(void *data_) : data(data_) {} |
89 | }; |
90 | template<typename T, typename U> |
91 | void operator,(T &&value, const ApplyReturnValue<U> &container) { |
92 | if (container.data) |
93 | *reinterpret_cast<U *>(container.data) = std::forward<T>(value); |
94 | } |
95 | template<typename T> |
96 | void operator,(T, const ApplyReturnValue<void> &) {} |
97 | |
98 | |
99 | /* |
100 | The FunctionPointer<Func> struct is a type trait for function pointer. |
101 | - ArgumentCount is the number of argument, or -1 if it is unknown |
102 | - the Object typedef is the Object of a pointer to member function |
103 | - the Arguments typedef is the list of argument (in a QtPrivate::List) |
104 | - the Function typedef is an alias to the template parameter Func |
105 | - the call<Args, R>(f,o,args) method is used to call that slot |
106 | Args is the list of argument of the signal |
107 | R is the return type of the signal |
108 | f is the function pointer |
109 | o is the receiver object |
110 | and args is the array of pointer to arguments, as used in qt_metacall |
111 | |
112 | The Functor<Func,N> struct is the helper to call a functor of N argument. |
113 | its call function is the same as the FunctionPointer::call function. |
114 | */ |
115 | template<class T> using InvokeGenSeq = typename T::Type; |
116 | |
117 | template<int...> struct IndexesList { using Type = IndexesList; }; |
118 | |
119 | template<int N, class S1, class S2> struct ConcatSeqImpl; |
120 | |
121 | template<int N, int... I1, int... I2> |
122 | struct ConcatSeqImpl<N, IndexesList<I1...>, IndexesList<I2...>> |
123 | : IndexesList<I1..., (N + I2)...>{}; |
124 | |
125 | template<int N, class S1, class S2> |
126 | using ConcatSeq = InvokeGenSeq<ConcatSeqImpl<N, S1, S2>>; |
127 | |
128 | template<int N> struct GenSeq; |
129 | template<int N> using makeIndexSequence = InvokeGenSeq<GenSeq<N>>; |
130 | |
131 | template<int N> |
132 | struct GenSeq : ConcatSeq<N/2, makeIndexSequence<N/2>, makeIndexSequence<N - N/2>>{}; |
133 | |
134 | template<> struct GenSeq<0> : IndexesList<>{}; |
135 | template<> struct GenSeq<1> : IndexesList<0>{}; |
136 | |
137 | template<int N> |
138 | struct Indexes { using Value = makeIndexSequence<N>; }; |
139 | |
140 | template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1, IsPointerToMemberFunction = false}; }; |
141 | |
142 | template <typename, typename, typename, typename> struct FunctorCall; |
143 | template <int... II, typename... SignalArgs, typename R, typename Function> |
144 | struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, Function> { |
145 | static void call(Function &f, void **arg) { |
146 | f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]); |
147 | } |
148 | }; |
149 | template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj> |
150 | struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> { |
151 | static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) { |
152 | (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]); |
153 | } |
154 | }; |
155 | template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj> |
156 | struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const> { |
157 | static void call(SlotRet (Obj::*f)(SlotArgs...) const, Obj *o, void **arg) { |
158 | (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]); |
159 | } |
160 | }; |
161 | #if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510 |
162 | template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj> |
163 | struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) noexcept> { |
164 | static void call(SlotRet (Obj::*f)(SlotArgs...) noexcept, Obj *o, void **arg) { |
165 | (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]); |
166 | } |
167 | }; |
168 | template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj> |
169 | struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const noexcept> { |
170 | static void call(SlotRet (Obj::*f)(SlotArgs...) const noexcept, Obj *o, void **arg) { |
171 | (o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]); |
172 | } |
173 | }; |
174 | #endif |
175 | |
176 | template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)> |
177 | { |
178 | typedef Obj Object; |
179 | typedef List<Args...> Arguments; |
180 | typedef Ret ReturnType; |
181 | typedef Ret (Obj::*Function) (Args...); |
182 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true}; |
183 | template <typename SignalArgs, typename R> |
184 | static void call(Function f, Obj *o, void **arg) { |
185 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg); |
186 | } |
187 | }; |
188 | template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const> |
189 | { |
190 | typedef Obj Object; |
191 | typedef List<Args...> Arguments; |
192 | typedef Ret ReturnType; |
193 | typedef Ret (Obj::*Function) (Args...) const; |
194 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true}; |
195 | template <typename SignalArgs, typename R> |
196 | static void call(Function f, Obj *o, void **arg) { |
197 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg); |
198 | } |
199 | }; |
200 | |
201 | template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)> |
202 | { |
203 | typedef List<Args...> Arguments; |
204 | typedef Ret ReturnType; |
205 | typedef Ret (*Function) (Args...); |
206 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false}; |
207 | template <typename SignalArgs, typename R> |
208 | static void call(Function f, void *, void **arg) { |
209 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg); |
210 | } |
211 | }; |
212 | |
213 | #if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510 |
214 | template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) noexcept> |
215 | { |
216 | typedef Obj Object; |
217 | typedef List<Args...> Arguments; |
218 | typedef Ret ReturnType; |
219 | typedef Ret (Obj::*Function) (Args...) noexcept; |
220 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true}; |
221 | template <typename SignalArgs, typename R> |
222 | static void call(Function f, Obj *o, void **arg) { |
223 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg); |
224 | } |
225 | }; |
226 | template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const noexcept> |
227 | { |
228 | typedef Obj Object; |
229 | typedef List<Args...> Arguments; |
230 | typedef Ret ReturnType; |
231 | typedef Ret (Obj::*Function) (Args...) const noexcept; |
232 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true}; |
233 | template <typename SignalArgs, typename R> |
234 | static void call(Function f, Obj *o, void **arg) { |
235 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg); |
236 | } |
237 | }; |
238 | |
239 | template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...) noexcept> |
240 | { |
241 | typedef List<Args...> Arguments; |
242 | typedef Ret ReturnType; |
243 | typedef Ret (*Function) (Args...) noexcept; |
244 | enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false}; |
245 | template <typename SignalArgs, typename R> |
246 | static void call(Function f, void *, void **arg) { |
247 | FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg); |
248 | } |
249 | }; |
250 | #endif |
251 | |
252 | template<typename Function, int N> struct Functor |
253 | { |
254 | template <typename SignalArgs, typename R> |
255 | static void call(Function &f, void *, void **arg) { |
256 | FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg); |
257 | } |
258 | }; |
259 | |
260 | // Traits to detect if there is a conversion between two types, |
261 | // and that conversion does not include a narrowing conversion. |
262 | template <typename T> |
263 | struct NarrowingDetector { T t[1]; }; // from P0608 |
264 | |
265 | template <typename From, typename To, typename Enable = void> |
266 | struct IsConvertibleWithoutNarrowing : std::false_type {}; |
267 | |
268 | template <typename From, typename To> |
269 | struct IsConvertibleWithoutNarrowing<From, To, |
270 | std::void_t< decltype( NarrowingDetector<To>{ {std::declval<From>()} } ) > |
271 | > : std::true_type {}; |
272 | |
273 | // Check for the actual arguments. If they are exactly the same, |
274 | // then don't bother checking for narrowing; as a by-product, |
275 | // this solves the problem of incomplete types (which must be supported, |
276 | // or they would error out in the trait above). |
277 | template <typename From, typename To, typename Enable = void> |
278 | struct AreArgumentsConvertibleWithoutNarrowingBase : std::false_type {}; |
279 | |
280 | template <typename From, typename To> |
281 | struct AreArgumentsConvertibleWithoutNarrowingBase<From, To, |
282 | std::enable_if_t< |
283 | std::disjunction_v<std::is_same<From, To>, IsConvertibleWithoutNarrowing<From, To>> |
284 | > |
285 | > : std::true_type {}; |
286 | |
287 | /* |
288 | Logic that check if the arguments of the slot matches the argument of the signal. |
289 | To be used like this: |
290 | static_assert(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value) |
291 | */ |
292 | template<typename A1, typename A2> struct AreArgumentsCompatible { |
293 | static int test(const typename RemoveRef<A2>::Type&); |
294 | static char test(...); |
295 | static const typename RemoveRef<A1>::Type &dummy(); |
296 | enum { value = sizeof(test(dummy())) == sizeof(int) }; |
297 | #ifdef QT_NO_NARROWING_CONVERSIONS_IN_CONNECT |
298 | using AreArgumentsConvertibleWithoutNarrowing = AreArgumentsConvertibleWithoutNarrowingBase<std::decay_t<A1>, std::decay_t<A2>>; |
299 | static_assert(AreArgumentsConvertibleWithoutNarrowing::value, "Signal and slot arguments are not compatible (narrowing)" ); |
300 | #endif |
301 | }; |
302 | template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; }; |
303 | template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; }; |
304 | // void as a return value |
305 | template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; }; |
306 | template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; }; |
307 | template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; }; |
308 | |
309 | template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; }; |
310 | template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; }; |
311 | template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; }; |
312 | template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2> |
313 | struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>> |
314 | { |
315 | enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value |
316 | && CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value }; |
317 | }; |
318 | |
319 | /* |
320 | Find the maximum number of arguments a functor object can take and be still compatible with |
321 | the arguments from the signal. |
322 | Value is the number of arguments, or -1 if nothing matches. |
323 | */ |
324 | template <typename Functor, typename ArgList> struct ComputeFunctorArgumentCount; |
325 | |
326 | template <typename Functor, typename ArgList, bool Done> struct ComputeFunctorArgumentCountHelper |
327 | { enum { Value = -1 }; }; |
328 | template <typename Functor, typename First, typename... ArgList> |
329 | struct ComputeFunctorArgumentCountHelper<Functor, List<First, ArgList...>, false> |
330 | : ComputeFunctorArgumentCount<Functor, |
331 | typename List_Left<List<First, ArgList...>, sizeof...(ArgList)>::Value> {}; |
332 | |
333 | template <typename Functor, typename... ArgList> struct ComputeFunctorArgumentCount<Functor, List<ArgList...>> |
334 | { |
335 | template <typename D> static D dummy(); |
336 | template <typename F> static auto test(F f) -> decltype(((f.operator()((dummy<ArgList>())...)), int())); |
337 | static char test(...); |
338 | enum { |
339 | Ok = sizeof(test(dummy<Functor>())) == sizeof(int), |
340 | Value = Ok ? int(sizeof...(ArgList)) : int(ComputeFunctorArgumentCountHelper<Functor, List<ArgList...>, Ok>::Value) |
341 | }; |
342 | }; |
343 | |
344 | /* get the return type of a functor, given the signal argument list */ |
345 | template <typename Functor, typename ArgList> struct FunctorReturnType; |
346 | template <typename Functor, typename ... ArgList> struct FunctorReturnType<Functor, List<ArgList...>> { |
347 | template <typename D> static D dummy(); |
348 | typedef decltype(dummy<Functor>().operator()((dummy<ArgList>())...)) Value; |
349 | }; |
350 | |
351 | // internal base class (interface) containing functions required to call a slot managed by a pointer to function. |
352 | class QSlotObjectBase { |
353 | QAtomicInt m_ref; |
354 | // don't use virtual functions here; we don't want the |
355 | // compiler to create tons of per-polymorphic-class stuff that |
356 | // we'll never need. We just use one function pointer. |
357 | typedef void (*ImplFn)(int which, QSlotObjectBase* this_, QObject *receiver, void **args, bool *ret); |
358 | const ImplFn m_impl; |
359 | protected: |
360 | enum Operation { |
361 | Destroy, |
362 | Call, |
363 | Compare, |
364 | |
365 | NumOperations |
366 | }; |
367 | public: |
368 | explicit QSlotObjectBase(ImplFn fn) : m_ref(1), m_impl(fn) {} |
369 | |
370 | inline int ref() noexcept { return m_ref.ref(); } |
371 | inline void destroyIfLastRef() noexcept |
372 | { if (!m_ref.deref()) m_impl(Destroy, this, nullptr, nullptr, nullptr); } |
373 | |
374 | inline bool compare(void **a) { bool ret = false; m_impl(Compare, this, nullptr, a, &ret); return ret; } |
375 | inline void call(QObject *r, void **a) { m_impl(Call, this, r, a, nullptr); } |
376 | protected: |
377 | ~QSlotObjectBase() {} |
378 | private: |
379 | Q_DISABLE_COPY_MOVE(QSlotObjectBase) |
380 | }; |
381 | |
382 | // implementation of QSlotObjectBase for which the slot is a pointer to member function of a QObject |
383 | // Args and R are the List of arguments and the return type of the signal to which the slot is connected. |
384 | template<typename Func, typename Args, typename R> class QSlotObject : public QSlotObjectBase |
385 | { |
386 | typedef QtPrivate::FunctionPointer<Func> FuncType; |
387 | Func function; |
388 | static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret) |
389 | { |
390 | switch (which) { |
391 | case Destroy: |
392 | delete static_cast<QSlotObject*>(this_); |
393 | break; |
394 | case Call: |
395 | FuncType::template call<Args, R>(static_cast<QSlotObject*>(this_)->function, static_cast<typename FuncType::Object *>(r), a); |
396 | break; |
397 | case Compare: |
398 | *ret = *reinterpret_cast<Func *>(a) == static_cast<QSlotObject*>(this_)->function; |
399 | break; |
400 | case NumOperations: ; |
401 | } |
402 | } |
403 | public: |
404 | explicit QSlotObject(Func f) : QSlotObjectBase(&impl), function(f) {} |
405 | }; |
406 | // implementation of QSlotObjectBase for which the slot is a functor (or lambda) |
407 | // N is the number of arguments |
408 | // Args and R are the List of arguments and the return type of the signal to which the slot is connected. |
409 | template<typename Func, int N, typename Args, typename R> class QFunctorSlotObject : public QSlotObjectBase |
410 | { |
411 | typedef QtPrivate::Functor<Func, N> FuncType; |
412 | Func function; |
413 | static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret) |
414 | { |
415 | switch (which) { |
416 | case Destroy: |
417 | delete static_cast<QFunctorSlotObject*>(this_); |
418 | break; |
419 | case Call: |
420 | FuncType::template call<Args, R>(static_cast<QFunctorSlotObject*>(this_)->function, r, a); |
421 | break; |
422 | case Compare: // not implemented |
423 | case NumOperations: |
424 | Q_UNUSED(ret); |
425 | } |
426 | } |
427 | public: |
428 | explicit QFunctorSlotObject(Func f) : QSlotObjectBase(&impl), function(std::move(f)) {} |
429 | }; |
430 | |
431 | // typedefs for readability for when there are no parameters |
432 | template <typename Func> |
433 | using QSlotObjectWithNoArgs = QSlotObject<Func, |
434 | QtPrivate::List<>, |
435 | typename QtPrivate::FunctionPointer<Func>::ReturnType>; |
436 | |
437 | template <typename Func, typename R> |
438 | using QFunctorSlotObjectWithNoArgs = QFunctorSlotObject<Func, 0, QtPrivate::List<>, R>; |
439 | |
440 | template <typename Func> |
441 | using QFunctorSlotObjectWithNoArgsImplicitReturn = QFunctorSlotObjectWithNoArgs<Func, typename QtPrivate::FunctionPointer<Func>::ReturnType>; |
442 | } |
443 | |
444 | QT_END_NAMESPACE |
445 | |
446 | |