1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Copyright (C) 2016 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #include <qelapsedtimer.h> |
42 | #include <qcoreapplication.h> |
43 | |
44 | #include "private/qcore_unix_p.h" |
45 | #include "private/qtimerinfo_unix_p.h" |
46 | #include "private/qobject_p.h" |
47 | #include "private/qabstracteventdispatcher_p.h" |
48 | |
49 | #ifdef QTIMERINFO_DEBUG |
50 | # include <QDebug> |
51 | # include <QThread> |
52 | #endif |
53 | |
54 | #include <sys/times.h> |
55 | |
56 | QT_BEGIN_NAMESPACE |
57 | |
58 | Q_CORE_EXPORT bool qt_disable_lowpriority_timers=false; |
59 | |
60 | /* |
61 | * Internal functions for manipulating timer data structures. The |
62 | * timerBitVec array is used for keeping track of timer identifiers. |
63 | */ |
64 | |
65 | QTimerInfoList::QTimerInfoList() |
66 | { |
67 | #if (_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) |
68 | if (!QElapsedTimer::isMonotonic()) { |
69 | // not using monotonic timers, initialize the timeChanged() machinery |
70 | previousTime = qt_gettime(); |
71 | |
72 | tms unused; |
73 | previousTicks = times(&unused); |
74 | |
75 | ticksPerSecond = sysconf(_SC_CLK_TCK); |
76 | msPerTick = 1000/ticksPerSecond; |
77 | } else { |
78 | // detected monotonic timers |
79 | previousTime.tv_sec = previousTime.tv_nsec = 0; |
80 | previousTicks = 0; |
81 | ticksPerSecond = 0; |
82 | msPerTick = 0; |
83 | } |
84 | #endif |
85 | |
86 | firstTimerInfo = nullptr; |
87 | } |
88 | |
89 | timespec QTimerInfoList::updateCurrentTime() |
90 | { |
91 | return (currentTime = qt_gettime()); |
92 | } |
93 | |
94 | #if ((_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) && !defined(Q_OS_INTEGRITY)) || defined(QT_BOOTSTRAPPED) |
95 | |
96 | timespec qAbsTimespec(const timespec &t) |
97 | { |
98 | timespec tmp = t; |
99 | if (tmp.tv_sec < 0) { |
100 | tmp.tv_sec = -tmp.tv_sec - 1; |
101 | tmp.tv_nsec -= 1000000000; |
102 | } |
103 | if (tmp.tv_sec == 0 && tmp.tv_nsec < 0) { |
104 | tmp.tv_nsec = -tmp.tv_nsec; |
105 | } |
106 | return normalizedTimespec(tmp); |
107 | } |
108 | |
109 | /* |
110 | Returns \c true if the real time clock has changed by more than 10% |
111 | relative to the processor time since the last time this function was |
112 | called. This presumably means that the system time has been changed. |
113 | |
114 | If /a delta is nonzero, delta is set to our best guess at how much the system clock was changed. |
115 | */ |
116 | bool QTimerInfoList::timeChanged(timespec *delta) |
117 | { |
118 | struct tms unused; |
119 | clock_t currentTicks = times(&unused); |
120 | |
121 | clock_t elapsedTicks = currentTicks - previousTicks; |
122 | timespec elapsedTime = currentTime - previousTime; |
123 | |
124 | timespec elapsedTimeTicks; |
125 | elapsedTimeTicks.tv_sec = elapsedTicks / ticksPerSecond; |
126 | elapsedTimeTicks.tv_nsec = (((elapsedTicks * 1000) / ticksPerSecond) % 1000) * 1000 * 1000; |
127 | |
128 | timespec dummy; |
129 | if (!delta) |
130 | delta = &dummy; |
131 | *delta = elapsedTime - elapsedTimeTicks; |
132 | |
133 | previousTicks = currentTicks; |
134 | previousTime = currentTime; |
135 | |
136 | // If tick drift is more than 10% off compared to realtime, we assume that the clock has |
137 | // been set. Of course, we have to allow for the tick granularity as well. |
138 | timespec tickGranularity; |
139 | tickGranularity.tv_sec = 0; |
140 | tickGranularity.tv_nsec = msPerTick * 1000 * 1000; |
141 | return elapsedTimeTicks < ((qAbsTimespec(*delta) - tickGranularity) * 10); |
142 | } |
143 | |
144 | /* |
145 | repair broken timer |
146 | */ |
147 | void QTimerInfoList::timerRepair(const timespec &diff) |
148 | { |
149 | // repair all timers |
150 | for (int i = 0; i < size(); ++i) { |
151 | QTimerInfo *t = at(i); |
152 | t->timeout = t->timeout + diff; |
153 | } |
154 | } |
155 | |
156 | void QTimerInfoList::repairTimersIfNeeded() |
157 | { |
158 | if (QElapsedTimer::isMonotonic()) |
159 | return; |
160 | timespec delta; |
161 | if (timeChanged(&delta)) |
162 | timerRepair(delta); |
163 | } |
164 | |
165 | #else // !(_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(QT_BOOTSTRAPPED) |
166 | |
167 | void QTimerInfoList::repairTimersIfNeeded() |
168 | { |
169 | } |
170 | |
171 | #endif |
172 | |
173 | /* |
174 | insert timer info into list |
175 | */ |
176 | void QTimerInfoList::timerInsert(QTimerInfo *ti) |
177 | { |
178 | int index = size(); |
179 | while (index--) { |
180 | const QTimerInfo * const t = at(index); |
181 | if (!(ti->timeout < t->timeout)) |
182 | break; |
183 | } |
184 | insert(index+1, ti); |
185 | } |
186 | |
187 | inline timespec &operator+=(timespec &t1, int ms) |
188 | { |
189 | t1.tv_sec += ms / 1000; |
190 | t1.tv_nsec += ms % 1000 * 1000 * 1000; |
191 | return normalizedTimespec(t1); |
192 | } |
193 | |
194 | inline timespec operator+(const timespec &t1, int ms) |
195 | { |
196 | timespec t2 = t1; |
197 | return t2 += ms; |
198 | } |
199 | |
200 | static timespec roundToMillisecond(timespec val) |
201 | { |
202 | // always round up |
203 | // worst case scenario is that the first trigger of a 1-ms timer is 0.999 ms late |
204 | |
205 | int ns = val.tv_nsec % (1000 * 1000); |
206 | val.tv_nsec += 1000 * 1000 - ns; |
207 | return normalizedTimespec(val); |
208 | } |
209 | |
210 | #ifdef QTIMERINFO_DEBUG |
211 | QDebug operator<<(QDebug s, timeval tv) |
212 | { |
213 | QDebugStateSaver saver(s); |
214 | s.nospace() << tv.tv_sec << "." << qSetFieldWidth(6) << qSetPadChar(QChar(48)) << tv.tv_usec << Qt::reset; |
215 | return s; |
216 | } |
217 | QDebug operator<<(QDebug s, Qt::TimerType t) |
218 | { |
219 | QDebugStateSaver saver(s); |
220 | s << (t == Qt::PreciseTimer ? "P" : |
221 | t == Qt::CoarseTimer ? "C" : "VC" ); |
222 | return s; |
223 | } |
224 | #endif |
225 | |
226 | static void calculateCoarseTimerTimeout(QTimerInfo *t, timespec currentTime) |
227 | { |
228 | // The coarse timer works like this: |
229 | // - interval under 40 ms: round to even |
230 | // - between 40 and 99 ms: round to multiple of 4 |
231 | // - otherwise: try to wake up at a multiple of 25 ms, with a maximum error of 5% |
232 | // |
233 | // We try to wake up at the following second-fraction, in order of preference: |
234 | // 0 ms |
235 | // 500 ms |
236 | // 250 ms or 750 ms |
237 | // 200, 400, 600, 800 ms |
238 | // other multiples of 100 |
239 | // other multiples of 50 |
240 | // other multiples of 25 |
241 | // |
242 | // The objective is to make most timers wake up at the same time, thereby reducing CPU wakeups. |
243 | |
244 | uint interval = uint(t->interval); |
245 | uint msec = uint(t->timeout.tv_nsec) / 1000 / 1000; |
246 | Q_ASSERT(interval >= 20); |
247 | |
248 | // Calculate how much we can round and still keep within 5% error |
249 | uint absMaxRounding = interval / 20; |
250 | |
251 | if (interval < 100 && interval != 25 && interval != 50 && interval != 75) { |
252 | // special mode for timers of less than 100 ms |
253 | if (interval < 50) { |
254 | // round to even |
255 | // round towards multiples of 50 ms |
256 | bool roundUp = (msec % 50) >= 25; |
257 | msec >>= 1; |
258 | msec |= uint(roundUp); |
259 | msec <<= 1; |
260 | } else { |
261 | // round to multiple of 4 |
262 | // round towards multiples of 100 ms |
263 | bool roundUp = (msec % 100) >= 50; |
264 | msec >>= 2; |
265 | msec |= uint(roundUp); |
266 | msec <<= 2; |
267 | } |
268 | } else { |
269 | uint min = qMax<int>(0, msec - absMaxRounding); |
270 | uint max = qMin(1000u, msec + absMaxRounding); |
271 | |
272 | // find the boundary that we want, according to the rules above |
273 | // extra rules: |
274 | // 1) whatever the interval, we'll take any round-to-the-second timeout |
275 | if (min == 0) { |
276 | msec = 0; |
277 | goto recalculate; |
278 | } else if (max == 1000) { |
279 | msec = 1000; |
280 | goto recalculate; |
281 | } |
282 | |
283 | uint wantedBoundaryMultiple; |
284 | |
285 | // 2) if the interval is a multiple of 500 ms and > 5000 ms, we'll always round |
286 | // towards a round-to-the-second |
287 | // 3) if the interval is a multiple of 500 ms, we'll round towards the nearest |
288 | // multiple of 500 ms |
289 | if ((interval % 500) == 0) { |
290 | if (interval >= 5000) { |
291 | msec = msec >= 500 ? max : min; |
292 | goto recalculate; |
293 | } else { |
294 | wantedBoundaryMultiple = 500; |
295 | } |
296 | } else if ((interval % 50) == 0) { |
297 | // 4) same for multiples of 250, 200, 100, 50 |
298 | uint mult50 = interval / 50; |
299 | if ((mult50 % 4) == 0) { |
300 | // multiple of 200 |
301 | wantedBoundaryMultiple = 200; |
302 | } else if ((mult50 % 2) == 0) { |
303 | // multiple of 100 |
304 | wantedBoundaryMultiple = 100; |
305 | } else if ((mult50 % 5) == 0) { |
306 | // multiple of 250 |
307 | wantedBoundaryMultiple = 250; |
308 | } else { |
309 | // multiple of 50 |
310 | wantedBoundaryMultiple = 50; |
311 | } |
312 | } else { |
313 | wantedBoundaryMultiple = 25; |
314 | } |
315 | |
316 | uint base = msec / wantedBoundaryMultiple * wantedBoundaryMultiple; |
317 | uint middlepoint = base + wantedBoundaryMultiple / 2; |
318 | if (msec < middlepoint) |
319 | msec = qMax(base, min); |
320 | else |
321 | msec = qMin(base + wantedBoundaryMultiple, max); |
322 | } |
323 | |
324 | recalculate: |
325 | if (msec == 1000u) { |
326 | ++t->timeout.tv_sec; |
327 | t->timeout.tv_nsec = 0; |
328 | } else { |
329 | t->timeout.tv_nsec = msec * 1000 * 1000; |
330 | } |
331 | |
332 | if (t->timeout < currentTime) |
333 | t->timeout += interval; |
334 | } |
335 | |
336 | static void calculateNextTimeout(QTimerInfo *t, timespec currentTime) |
337 | { |
338 | switch (t->timerType) { |
339 | case Qt::PreciseTimer: |
340 | case Qt::CoarseTimer: |
341 | t->timeout += t->interval; |
342 | if (t->timeout < currentTime) { |
343 | t->timeout = currentTime; |
344 | t->timeout += t->interval; |
345 | } |
346 | #ifdef QTIMERINFO_DEBUG |
347 | t->expected += t->interval; |
348 | if (t->expected < currentTime) { |
349 | t->expected = currentTime; |
350 | t->expected += t->interval; |
351 | } |
352 | #endif |
353 | if (t->timerType == Qt::CoarseTimer) |
354 | calculateCoarseTimerTimeout(t, currentTime); |
355 | return; |
356 | |
357 | case Qt::VeryCoarseTimer: |
358 | // we don't need to take care of the microsecond component of t->interval |
359 | t->timeout.tv_sec += t->interval; |
360 | if (t->timeout.tv_sec <= currentTime.tv_sec) |
361 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
362 | #ifdef QTIMERINFO_DEBUG |
363 | t->expected.tv_sec += t->interval; |
364 | if (t->expected.tv_sec <= currentTime.tv_sec) |
365 | t->expected.tv_sec = currentTime.tv_sec + t->interval; |
366 | #endif |
367 | return; |
368 | } |
369 | |
370 | #ifdef QTIMERINFO_DEBUG |
371 | if (t->timerType != Qt::PreciseTimer) |
372 | qDebug() << "timer" << t->timerType << Qt::hex << t->id << Qt::dec << "interval" << t->interval |
373 | << "originally expected at" << t->expected << "will fire at" << t->timeout |
374 | << "or" << (t->timeout - t->expected) << "s late" ; |
375 | #endif |
376 | } |
377 | |
378 | /* |
379 | Returns the time to wait for the next timer, or null if no timers |
380 | are waiting. |
381 | */ |
382 | bool QTimerInfoList::timerWait(timespec &tm) |
383 | { |
384 | timespec currentTime = updateCurrentTime(); |
385 | repairTimersIfNeeded(); |
386 | |
387 | // Find first waiting timer not already active |
388 | QTimerInfo *t = nullptr; |
389 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
390 | if (!(*it)->activateRef) { |
391 | t = *it; |
392 | break; |
393 | } |
394 | } |
395 | |
396 | if (!t) |
397 | return false; |
398 | |
399 | if (currentTime < t->timeout) { |
400 | // time to wait |
401 | tm = roundToMillisecond(t->timeout - currentTime); |
402 | } else { |
403 | // no time to wait |
404 | tm.tv_sec = 0; |
405 | tm.tv_nsec = 0; |
406 | } |
407 | |
408 | return true; |
409 | } |
410 | |
411 | /* |
412 | Returns the timer's remaining time in milliseconds with the given timerId, or |
413 | null if there is nothing left. If the timer id is not found in the list, the |
414 | returned value will be -1. If the timer is overdue, the returned value will be 0. |
415 | */ |
416 | int QTimerInfoList::timerRemainingTime(int timerId) |
417 | { |
418 | timespec currentTime = updateCurrentTime(); |
419 | repairTimersIfNeeded(); |
420 | timespec tm = {0, 0}; |
421 | |
422 | for (int i = 0; i < count(); ++i) { |
423 | QTimerInfo *t = at(i); |
424 | if (t->id == timerId) { |
425 | if (currentTime < t->timeout) { |
426 | // time to wait |
427 | tm = roundToMillisecond(t->timeout - currentTime); |
428 | return tm.tv_sec*1000 + tm.tv_nsec/1000/1000; |
429 | } else { |
430 | return 0; |
431 | } |
432 | } |
433 | } |
434 | |
435 | #ifndef QT_NO_DEBUG |
436 | qWarning("QTimerInfoList::timerRemainingTime: timer id %i not found" , timerId); |
437 | #endif |
438 | |
439 | return -1; |
440 | } |
441 | |
442 | void QTimerInfoList::registerTimer(int timerId, qint64 interval, Qt::TimerType timerType, QObject *object) |
443 | { |
444 | QTimerInfo *t = new QTimerInfo; |
445 | t->id = timerId; |
446 | t->interval = interval; |
447 | t->timerType = timerType; |
448 | t->obj = object; |
449 | t->activateRef = nullptr; |
450 | |
451 | timespec expected = updateCurrentTime() + interval; |
452 | |
453 | switch (timerType) { |
454 | case Qt::PreciseTimer: |
455 | // high precision timer is based on millisecond precision |
456 | // so no adjustment is necessary |
457 | t->timeout = expected; |
458 | break; |
459 | |
460 | case Qt::CoarseTimer: |
461 | // this timer has up to 5% coarseness |
462 | // so our boundaries are 20 ms and 20 s |
463 | // below 20 ms, 5% inaccuracy is below 1 ms, so we convert to high precision |
464 | // above 20 s, 5% inaccuracy is above 1 s, so we convert to VeryCoarseTimer |
465 | if (interval >= 20000) { |
466 | t->timerType = Qt::VeryCoarseTimer; |
467 | } else { |
468 | t->timeout = expected; |
469 | if (interval <= 20) { |
470 | t->timerType = Qt::PreciseTimer; |
471 | // no adjustment is necessary |
472 | } else if (interval <= 20000) { |
473 | calculateCoarseTimerTimeout(t, currentTime); |
474 | } |
475 | break; |
476 | } |
477 | Q_FALLTHROUGH(); |
478 | case Qt::VeryCoarseTimer: |
479 | // the very coarse timer is based on full second precision, |
480 | // so we keep the interval in seconds (round to closest second) |
481 | t->interval /= 500; |
482 | t->interval += 1; |
483 | t->interval >>= 1; |
484 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
485 | t->timeout.tv_nsec = 0; |
486 | |
487 | // if we're past the half-second mark, increase the timeout again |
488 | if (currentTime.tv_nsec > 500*1000*1000) |
489 | ++t->timeout.tv_sec; |
490 | } |
491 | |
492 | timerInsert(t); |
493 | |
494 | #ifdef QTIMERINFO_DEBUG |
495 | t->expected = expected; |
496 | t->cumulativeError = 0; |
497 | t->count = 0; |
498 | if (t->timerType != Qt::PreciseTimer) |
499 | qDebug() << "timer" << t->timerType << Qt::hex <<t->id << Qt::dec << "interval" << t->interval << "expected at" |
500 | << t->expected << "will fire first at" << t->timeout; |
501 | #endif |
502 | } |
503 | |
504 | bool QTimerInfoList::unregisterTimer(int timerId) |
505 | { |
506 | // set timer inactive |
507 | for (int i = 0; i < count(); ++i) { |
508 | QTimerInfo *t = at(i); |
509 | if (t->id == timerId) { |
510 | // found it |
511 | removeAt(i); |
512 | if (t == firstTimerInfo) |
513 | firstTimerInfo = nullptr; |
514 | if (t->activateRef) |
515 | *(t->activateRef) = nullptr; |
516 | delete t; |
517 | return true; |
518 | } |
519 | } |
520 | // id not found |
521 | return false; |
522 | } |
523 | |
524 | bool QTimerInfoList::unregisterTimers(QObject *object) |
525 | { |
526 | if (isEmpty()) |
527 | return false; |
528 | for (int i = 0; i < count(); ++i) { |
529 | QTimerInfo *t = at(i); |
530 | if (t->obj == object) { |
531 | // object found |
532 | removeAt(i); |
533 | if (t == firstTimerInfo) |
534 | firstTimerInfo = nullptr; |
535 | if (t->activateRef) |
536 | *(t->activateRef) = nullptr; |
537 | delete t; |
538 | // move back one so that we don't skip the new current item |
539 | --i; |
540 | } |
541 | } |
542 | return true; |
543 | } |
544 | |
545 | QList<QAbstractEventDispatcher::TimerInfo> QTimerInfoList::registeredTimers(QObject *object) const |
546 | { |
547 | QList<QAbstractEventDispatcher::TimerInfo> list; |
548 | for (int i = 0; i < count(); ++i) { |
549 | const QTimerInfo * const t = at(i); |
550 | if (t->obj == object) { |
551 | list << QAbstractEventDispatcher::TimerInfo(t->id, |
552 | (t->timerType == Qt::VeryCoarseTimer |
553 | ? t->interval * 1000 |
554 | : t->interval), |
555 | t->timerType); |
556 | } |
557 | } |
558 | return list; |
559 | } |
560 | |
561 | /* |
562 | Activate pending timers, returning how many where activated. |
563 | */ |
564 | int QTimerInfoList::activateTimers() |
565 | { |
566 | if (qt_disable_lowpriority_timers || isEmpty()) |
567 | return 0; // nothing to do |
568 | |
569 | int n_act = 0, maxCount = 0; |
570 | firstTimerInfo = nullptr; |
571 | |
572 | timespec currentTime = updateCurrentTime(); |
573 | // qDebug() << "Thread" << QThread::currentThreadId() << "woken up at" << currentTime; |
574 | repairTimersIfNeeded(); |
575 | |
576 | |
577 | // Find out how many timer have expired |
578 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
579 | if (currentTime < (*it)->timeout) |
580 | break; |
581 | maxCount++; |
582 | } |
583 | |
584 | //fire the timers. |
585 | while (maxCount--) { |
586 | if (isEmpty()) |
587 | break; |
588 | |
589 | QTimerInfo *currentTimerInfo = constFirst(); |
590 | if (currentTime < currentTimerInfo->timeout) |
591 | break; // no timer has expired |
592 | |
593 | if (!firstTimerInfo) { |
594 | firstTimerInfo = currentTimerInfo; |
595 | } else if (firstTimerInfo == currentTimerInfo) { |
596 | // avoid sending the same timer multiple times |
597 | break; |
598 | } else if (currentTimerInfo->interval < firstTimerInfo->interval |
599 | || currentTimerInfo->interval == firstTimerInfo->interval) { |
600 | firstTimerInfo = currentTimerInfo; |
601 | } |
602 | |
603 | // remove from list |
604 | removeFirst(); |
605 | |
606 | #ifdef QTIMERINFO_DEBUG |
607 | float diff; |
608 | if (currentTime < currentTimerInfo->expected) { |
609 | // early |
610 | timeval early = currentTimerInfo->expected - currentTime; |
611 | diff = -(early.tv_sec + early.tv_usec / 1000000.0); |
612 | } else { |
613 | timeval late = currentTime - currentTimerInfo->expected; |
614 | diff = late.tv_sec + late.tv_usec / 1000000.0; |
615 | } |
616 | currentTimerInfo->cumulativeError += diff; |
617 | ++currentTimerInfo->count; |
618 | if (currentTimerInfo->timerType != Qt::PreciseTimer) |
619 | qDebug() << "timer" << currentTimerInfo->timerType << Qt::hex << currentTimerInfo->id << Qt::dec << "interval" |
620 | << currentTimerInfo->interval << "firing at" << currentTime |
621 | << "(orig" << currentTimerInfo->expected << "scheduled at" << currentTimerInfo->timeout |
622 | << ") off by" << diff << "activation" << currentTimerInfo->count |
623 | << "avg error" << (currentTimerInfo->cumulativeError / currentTimerInfo->count); |
624 | #endif |
625 | |
626 | // determine next timeout time |
627 | calculateNextTimeout(currentTimerInfo, currentTime); |
628 | |
629 | // reinsert timer |
630 | timerInsert(currentTimerInfo); |
631 | if (currentTimerInfo->interval > 0) |
632 | n_act++; |
633 | |
634 | if (!currentTimerInfo->activateRef) { |
635 | // send event, but don't allow it to recurse |
636 | currentTimerInfo->activateRef = ¤tTimerInfo; |
637 | |
638 | QTimerEvent e(currentTimerInfo->id); |
639 | QCoreApplication::sendEvent(currentTimerInfo->obj, &e); |
640 | |
641 | if (currentTimerInfo) |
642 | currentTimerInfo->activateRef = nullptr; |
643 | } |
644 | } |
645 | |
646 | firstTimerInfo = nullptr; |
647 | // qDebug() << "Thread" << QThread::currentThreadId() << "activated" << n_act << "timers"; |
648 | return n_act; |
649 | } |
650 | |
651 | QT_END_NAMESPACE |
652 | |