| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2020 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2020 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #include <qstringconverter.h> |
| 42 | #include <private/qstringconverter_p.h> |
| 43 | #include "qendian.h" |
| 44 | |
| 45 | #include "private/qsimd_p.h" |
| 46 | #include "private/qstringiterator_p.h" |
| 47 | #include "qbytearraymatcher.h" |
| 48 | |
| 49 | #ifdef Q_OS_WIN |
| 50 | #include <qt_windows.h> |
| 51 | #endif |
| 52 | |
| 53 | #if __has_include(<bit>) && __cplusplus > 201703L |
| 54 | #include <bit> |
| 55 | #endif |
| 56 | |
| 57 | QT_BEGIN_NAMESPACE |
| 58 | |
| 59 | enum { Endian = 0, Data = 1 }; |
| 60 | |
| 61 | static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf }; |
| 62 | |
| 63 | #if (defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)) \ |
| 64 | || (defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64)) |
| 65 | static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept |
| 66 | { |
| 67 | #if defined(__cpp_lib_int_pow2) && __cpp_lib_int_pow2 >= 202002L |
| 68 | return std::bit_width(v) - 1; |
| 69 | #else |
| 70 | uint result = qCountLeadingZeroBits(v); |
| 71 | // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31 |
| 72 | // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when |
| 73 | // counting up: msb index is 0 (because it starts there), and the lsb index is 31. |
| 74 | result ^= sizeof(unsigned) * 8 - 1; |
| 75 | return result; |
| 76 | #endif |
| 77 | } |
| 78 | #endif |
| 79 | |
| 80 | #if defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2) |
| 81 | static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end) |
| 82 | { |
| 83 | // do sixteen characters at a time |
| 84 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 85 | # ifdef __AVX2__ |
| 86 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 87 | __m128i data1 = _mm256_castsi256_si128(data); |
| 88 | __m128i data2 = _mm256_extracti128_si256(data, 1); |
| 89 | # else |
| 90 | __m128i data1 = _mm_loadu_si128((const __m128i*)src); |
| 91 | __m128i data2 = _mm_loadu_si128(1+(const __m128i*)src); |
| 92 | # endif |
| 93 | |
| 94 | // check if everything is ASCII |
| 95 | // the highest ASCII value is U+007F |
| 96 | // Do the packing directly: |
| 97 | // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit |
| 98 | // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff, |
| 99 | // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII, |
| 100 | // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as |
| 101 | // "non-ASCII", but it's an acceptable compromise. |
| 102 | __m128i packed = _mm_packus_epi16(data1, data2); |
| 103 | __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128()); |
| 104 | |
| 105 | // store, even if there are non-ASCII characters here |
| 106 | _mm_storeu_si128((__m128i*)dst, packed); |
| 107 | |
| 108 | // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL) |
| 109 | ushort n = ~_mm_movemask_epi8(nonAscii); |
| 110 | if (n) { |
| 111 | // find the next probable ASCII character |
| 112 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 113 | // characters still coming |
| 114 | nextAscii = src + qBitScanReverse(n) + 1; |
| 115 | |
| 116 | n = qCountTrailingZeroBits(n); |
| 117 | dst += n; |
| 118 | src += n; |
| 119 | return false; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | if (end - src >= 8) { |
| 124 | // do eight characters at a time |
| 125 | __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src)); |
| 126 | __m128i packed = _mm_packus_epi16(data, data); |
| 127 | __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128()); |
| 128 | |
| 129 | // store even non-ASCII |
| 130 | _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), packed); |
| 131 | |
| 132 | uchar n = ~_mm_movemask_epi8(nonAscii); |
| 133 | if (n) { |
| 134 | nextAscii = src + qBitScanReverse(n) + 1; |
| 135 | n = qCountTrailingZeroBits(n); |
| 136 | dst += n; |
| 137 | src += n; |
| 138 | return false; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | return src == end; |
| 143 | } |
| 144 | |
| 145 | static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 146 | { |
| 147 | // do sixteen characters at a time |
| 148 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 149 | __m128i data = _mm_loadu_si128((const __m128i*)src); |
| 150 | |
| 151 | #ifdef __AVX2__ |
| 152 | const int BitSpacing = 2; |
| 153 | // load and zero extend to an YMM register |
| 154 | const __m256i extended = _mm256_cvtepu8_epi16(data); |
| 155 | |
| 156 | uint n = _mm256_movemask_epi8(extended); |
| 157 | if (!n) { |
| 158 | // store |
| 159 | _mm256_storeu_si256((__m256i*)dst, extended); |
| 160 | continue; |
| 161 | } |
| 162 | #else |
| 163 | const int BitSpacing = 1; |
| 164 | |
| 165 | // check if everything is ASCII |
| 166 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 167 | uint n = _mm_movemask_epi8(data); |
| 168 | if (!n) { |
| 169 | // unpack |
| 170 | _mm_storeu_si128((__m128i*)dst, _mm_unpacklo_epi8(data, _mm_setzero_si128())); |
| 171 | _mm_storeu_si128(1+(__m128i*)dst, _mm_unpackhi_epi8(data, _mm_setzero_si128())); |
| 172 | continue; |
| 173 | } |
| 174 | #endif |
| 175 | |
| 176 | // copy the front part that is still ASCII |
| 177 | while (!(n & 1)) { |
| 178 | *dst++ = *src++; |
| 179 | n >>= BitSpacing; |
| 180 | } |
| 181 | |
| 182 | // find the next probable ASCII character |
| 183 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 184 | // characters still coming |
| 185 | n = qBitScanReverse(n); |
| 186 | nextAscii = src + (n / BitSpacing) + 1; |
| 187 | return false; |
| 188 | |
| 189 | } |
| 190 | |
| 191 | if (end - src >= 8) { |
| 192 | __m128i data = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src)); |
| 193 | uint n = _mm_movemask_epi8(data) & 0xff; |
| 194 | if (!n) { |
| 195 | // unpack and store |
| 196 | _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), _mm_unpacklo_epi8(data, _mm_setzero_si128())); |
| 197 | } else { |
| 198 | while (!(n & 1)) { |
| 199 | *dst++ = *src++; |
| 200 | n >>= 1; |
| 201 | } |
| 202 | |
| 203 | n = qBitScanReverse(n); |
| 204 | nextAscii = src + n + 1; |
| 205 | return false; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | return src == end; |
| 210 | } |
| 211 | |
| 212 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 213 | { |
| 214 | #ifdef __AVX2__ |
| 215 | // do 32 characters at a time |
| 216 | // (this is similar to simdTestMask in qstring.cpp) |
| 217 | const __m256i mask = _mm256_set1_epi8(0x80); |
| 218 | for ( ; end - src >= 32; src += 32) { |
| 219 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 220 | if (_mm256_testz_si256(mask, data)) |
| 221 | continue; |
| 222 | |
| 223 | uint n = _mm256_movemask_epi8(data); |
| 224 | Q_ASSUME(n); |
| 225 | |
| 226 | // find the next probable ASCII character |
| 227 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 228 | // characters still coming |
| 229 | nextAscii = src + qBitScanReverse(n) + 1; |
| 230 | |
| 231 | // return the non-ASCII character |
| 232 | return src + qCountTrailingZeroBits(n); |
| 233 | } |
| 234 | #endif |
| 235 | |
| 236 | // do sixteen characters at a time |
| 237 | for ( ; end - src >= 16; src += 16) { |
| 238 | __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); |
| 239 | |
| 240 | // check if everything is ASCII |
| 241 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 242 | uint n = _mm_movemask_epi8(data); |
| 243 | if (!n) |
| 244 | continue; |
| 245 | |
| 246 | // find the next probable ASCII character |
| 247 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 248 | // characters still coming |
| 249 | nextAscii = src + qBitScanReverse(n) + 1; |
| 250 | |
| 251 | // return the non-ASCII character |
| 252 | return src + qCountTrailingZeroBits(n); |
| 253 | } |
| 254 | |
| 255 | // do four characters at a time |
| 256 | for ( ; end - src >= 4; src += 4) { |
| 257 | quint32 data = qFromUnaligned<quint32>(src); |
| 258 | data &= 0x80808080U; |
| 259 | if (!data) |
| 260 | continue; |
| 261 | |
| 262 | // We don't try to guess which of the three bytes is ASCII and which |
| 263 | // one isn't. The chance that at least two of them are non-ASCII is |
| 264 | // better than 75%. |
| 265 | nextAscii = src; |
| 266 | return src; |
| 267 | } |
| 268 | nextAscii = end; |
| 269 | return src; |
| 270 | } |
| 271 | |
| 272 | // Compare only the US-ASCII beginning of [src8, end8) and [src16, end16) |
| 273 | // and advance src8 and src16 to the first character that could not be compared |
| 274 | static void simdCompareAscii(const char8_t *&src8, const char8_t *end8, const char16_t *&src16, const char16_t *end16) |
| 275 | { |
| 276 | int bitSpacing = 1; |
| 277 | qptrdiff len = qMin(end8 - src8, end16 - src16); |
| 278 | qptrdiff offset = 0; |
| 279 | uint mask = 0; |
| 280 | |
| 281 | // do sixteen characters at a time |
| 282 | for ( ; offset + 16 < len; offset += 16) { |
| 283 | __m128i data8 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src8 + offset)); |
| 284 | #ifdef __AVX2__ |
| 285 | // AVX2 version, use 256-bit registers and VPMOVXZBW |
| 286 | __m256i data16 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src16 + offset)); |
| 287 | |
| 288 | // expand US-ASCII as if it were Latin1 and confirm it's US-ASCII |
| 289 | __m256i datax8 = _mm256_cvtepu8_epi16(data8); |
| 290 | mask = _mm256_movemask_epi8(datax8); |
| 291 | if (mask) |
| 292 | break; |
| 293 | |
| 294 | // compare Latin1 to UTF-16 |
| 295 | __m256i latin1cmp = _mm256_cmpeq_epi16(datax8, data16); |
| 296 | mask = ~_mm256_movemask_epi8(latin1cmp); |
| 297 | if (mask) |
| 298 | break; |
| 299 | #else |
| 300 | // non-AVX2 code |
| 301 | __m128i datalo16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset)); |
| 302 | __m128i datahi16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset) + 1); |
| 303 | |
| 304 | // expand US-ASCII as if it were Latin1, we'll confirm later |
| 305 | __m128i datalo8 = _mm_unpacklo_epi8(data8, _mm_setzero_si128()); |
| 306 | __m128i datahi8 = _mm_unpackhi_epi8(data8, _mm_setzero_si128()); |
| 307 | |
| 308 | // compare Latin1 to UTF-16 |
| 309 | __m128i latin1cmplo = _mm_cmpeq_epi16(datalo8, datalo16); |
| 310 | __m128i latin1cmphi = _mm_cmpeq_epi16(datahi8, datahi16); |
| 311 | mask = _mm_movemask_epi8(latin1cmphi) << 16; |
| 312 | mask |= ushort(_mm_movemask_epi8(latin1cmplo)); |
| 313 | mask = ~mask; |
| 314 | if (mask) |
| 315 | break; |
| 316 | |
| 317 | // confirm it was US-ASCII |
| 318 | mask = _mm_movemask_epi8(data8); |
| 319 | if (mask) { |
| 320 | bitSpacing = 0; |
| 321 | break; |
| 322 | } |
| 323 | #endif |
| 324 | } |
| 325 | |
| 326 | // helper for comparing 4 or 8 characters |
| 327 | auto cmp_lt_16 = [&mask, &offset](int n, __m128i data8, __m128i data16) { |
| 328 | // n = 4 -> sizemask = 0xff |
| 329 | // n = 8 -> sizemask = 0xffff |
| 330 | unsigned sizemask = (1U << (2 * n)) - 1; |
| 331 | |
| 332 | // expand as if Latin1 |
| 333 | data8 = _mm_unpacklo_epi8(data8, _mm_setzero_si128()); |
| 334 | |
| 335 | // compare and confirm it's US-ASCII |
| 336 | __m128i latin1cmp = _mm_cmpeq_epi16(data8, data16); |
| 337 | mask = ~_mm_movemask_epi8(latin1cmp) & sizemask; |
| 338 | mask |= _mm_movemask_epi8(data8); |
| 339 | if (mask == 0) |
| 340 | offset += n; |
| 341 | }; |
| 342 | |
| 343 | // do eight characters at a time |
| 344 | if (mask == 0 && offset + 8 < len) { |
| 345 | __m128i data8 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src8 + offset)); |
| 346 | __m128i data16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset)); |
| 347 | cmp_lt_16(8, data8, data16); |
| 348 | } |
| 349 | |
| 350 | // do four characters |
| 351 | if (mask == 0 && offset + 4 < len) { |
| 352 | __m128i data8 = _mm_cvtsi32_si128(qFromUnaligned<quint32>(src8 + offset)); |
| 353 | __m128i data16 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src16 + offset)); |
| 354 | cmp_lt_16(4, data8, data16); |
| 355 | } |
| 356 | |
| 357 | // correct the source pointers to point to the first character we couldn't deal with |
| 358 | if (mask) |
| 359 | offset += qCountTrailingZeroBits(mask) >> bitSpacing; |
| 360 | src8 += offset; |
| 361 | src16 += offset; |
| 362 | } |
| 363 | #elif defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64) // vaddv is only available on Aarch64 |
| 364 | static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end) |
| 365 | { |
| 366 | uint16x8_t maxAscii = vdupq_n_u16(0x7f); |
| 367 | uint16x8_t mask1 = { 1, 1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 }; |
| 368 | uint16x8_t mask2 = vshlq_n_u16(mask1, 1); |
| 369 | |
| 370 | // do sixteen characters at a time |
| 371 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 372 | // load 2 lanes (or: "load interleaved") |
| 373 | uint16x8x2_t in = vld2q_u16(src); |
| 374 | |
| 375 | // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc), |
| 376 | // add those together into a scalar, and merge the scalars. |
| 377 | uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1)) |
| 378 | | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2)); |
| 379 | |
| 380 | // merge the two lanes by shifting the values of the second by 8 and inserting them |
| 381 | uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8); |
| 382 | |
| 383 | // store, even if there are non-ASCII characters here |
| 384 | vst1q_u8(dst, vreinterpretq_u8_u16(out)); |
| 385 | |
| 386 | if (nonAscii) { |
| 387 | // find the next probable ASCII character |
| 388 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 389 | // characters still coming |
| 390 | nextAscii = src + qBitScanReverse(nonAscii) + 1; |
| 391 | |
| 392 | nonAscii = qCountTrailingZeroBits(nonAscii); |
| 393 | dst += nonAscii; |
| 394 | src += nonAscii; |
| 395 | return false; |
| 396 | } |
| 397 | } |
| 398 | return src == end; |
| 399 | } |
| 400 | |
| 401 | static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 402 | { |
| 403 | // do eight characters at a time |
| 404 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 405 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
| 406 | for ( ; end - src >= 8; src += 8, dst += 8) { |
| 407 | uint8x8_t c = vld1_u8(src); |
| 408 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 409 | if (!n) { |
| 410 | // store |
| 411 | vst1q_u16(dst, vmovl_u8(c)); |
| 412 | continue; |
| 413 | } |
| 414 | |
| 415 | // copy the front part that is still ASCII |
| 416 | while (!(n & 1)) { |
| 417 | *dst++ = *src++; |
| 418 | n >>= 1; |
| 419 | } |
| 420 | |
| 421 | // find the next probable ASCII character |
| 422 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 423 | // characters still coming |
| 424 | n = qBitScanReverse(n); |
| 425 | nextAscii = src + n + 1; |
| 426 | return false; |
| 427 | |
| 428 | } |
| 429 | return src == end; |
| 430 | } |
| 431 | |
| 432 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 433 | { |
| 434 | // The SIMD code below is untested, so just force an early return until |
| 435 | // we've had the time to verify it works. |
| 436 | nextAscii = end; |
| 437 | return src; |
| 438 | |
| 439 | // do eight characters at a time |
| 440 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 441 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
| 442 | for ( ; end - src >= 8; src += 8) { |
| 443 | uint8x8_t c = vld1_u8(src); |
| 444 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 445 | if (!n) |
| 446 | continue; |
| 447 | |
| 448 | // find the next probable ASCII character |
| 449 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 450 | // characters still coming |
| 451 | nextAscii = src + qBitScanReverse(n) + 1; |
| 452 | |
| 453 | // return the non-ASCII character |
| 454 | return src + qCountTrailingZeroBits(n); |
| 455 | } |
| 456 | nextAscii = end; |
| 457 | return src; |
| 458 | } |
| 459 | |
| 460 | static void simdCompareAscii(const char8_t *&, const char8_t *, const char16_t *&, const char16_t *) |
| 461 | { |
| 462 | } |
| 463 | #else |
| 464 | static inline bool simdEncodeAscii(uchar *, const ushort *, const ushort *, const ushort *) |
| 465 | { |
| 466 | return false; |
| 467 | } |
| 468 | |
| 469 | static inline bool simdDecodeAscii(ushort *, const uchar *, const uchar *, const uchar *) |
| 470 | { |
| 471 | return false; |
| 472 | } |
| 473 | |
| 474 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 475 | { |
| 476 | nextAscii = end; |
| 477 | return src; |
| 478 | } |
| 479 | |
| 480 | static void simdCompareAscii(const char8_t *&, const char8_t *, const char16_t *&, const char16_t *) |
| 481 | { |
| 482 | } |
| 483 | #endif |
| 484 | |
| 485 | enum { = 1 }; |
| 486 | |
| 487 | QByteArray QUtf8::convertFromUnicode(QStringView in) |
| 488 | { |
| 489 | qsizetype len = in.size(); |
| 490 | |
| 491 | // create a QByteArray with the worst case scenario size |
| 492 | QByteArray result(len * 3, Qt::Uninitialized); |
| 493 | uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData())); |
| 494 | const ushort *src = reinterpret_cast<const ushort *>(in.data()); |
| 495 | const ushort *const end = src + len; |
| 496 | |
| 497 | while (src != end) { |
| 498 | const ushort *nextAscii = end; |
| 499 | if (simdEncodeAscii(dst, nextAscii, src, end)) |
| 500 | break; |
| 501 | |
| 502 | do { |
| 503 | ushort u = *src++; |
| 504 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u, dst, src, end); |
| 505 | if (res < 0) { |
| 506 | // encoding error - append '?' |
| 507 | *dst++ = '?'; |
| 508 | } |
| 509 | } while (src < nextAscii); |
| 510 | } |
| 511 | |
| 512 | result.truncate(dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData()))); |
| 513 | return result; |
| 514 | } |
| 515 | |
| 516 | QByteArray QUtf8::convertFromUnicode(QStringView in, QStringConverterBase::State *state) |
| 517 | { |
| 518 | QByteArray ba(3*in.size() +3, Qt::Uninitialized); |
| 519 | char *end = convertFromUnicode(ba.data(), in, state); |
| 520 | ba.truncate(end - ba.data()); |
| 521 | return ba; |
| 522 | } |
| 523 | |
| 524 | char *QUtf8::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) |
| 525 | { |
| 526 | Q_ASSERT(state); |
| 527 | const QChar *uc = in.data(); |
| 528 | qsizetype len = in.length(); |
| 529 | if (!len) |
| 530 | return out; |
| 531 | |
| 532 | auto appendReplacementChar = [state](uchar *cursor) -> uchar * { |
| 533 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) { |
| 534 | *cursor++ = 0; |
| 535 | } else { |
| 536 | // QChar::replacement encoded in utf8 |
| 537 | *cursor++ = 0xef; |
| 538 | *cursor++ = 0xbf; |
| 539 | *cursor++ = 0xbd; |
| 540 | } |
| 541 | return cursor; |
| 542 | }; |
| 543 | |
| 544 | uchar *cursor = reinterpret_cast<uchar *>(out); |
| 545 | const ushort *src = reinterpret_cast<const ushort *>(uc); |
| 546 | const ushort *const end = src + len; |
| 547 | |
| 548 | if (!(state->flags & QStringDecoder::Flag::Stateless)) { |
| 549 | if (state->remainingChars) { |
| 550 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(state->state_data[0], cursor, src, end); |
| 551 | if (res < 0) |
| 552 | cursor = appendReplacementChar(cursor); |
| 553 | state->state_data[0] = 0; |
| 554 | state->remainingChars = 0; |
| 555 | } else if (!(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom) { |
| 556 | // append UTF-8 BOM |
| 557 | *cursor++ = utf8bom[0]; |
| 558 | *cursor++ = utf8bom[1]; |
| 559 | *cursor++ = utf8bom[2]; |
| 560 | state->internalState |= HeaderDone; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | while (src != end) { |
| 565 | const ushort *nextAscii = end; |
| 566 | if (simdEncodeAscii(cursor, nextAscii, src, end)) |
| 567 | break; |
| 568 | |
| 569 | do { |
| 570 | ushort uc = *src++; |
| 571 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end); |
| 572 | if (Q_LIKELY(res >= 0)) |
| 573 | continue; |
| 574 | |
| 575 | if (res == QUtf8BaseTraits::Error) { |
| 576 | // encoding error |
| 577 | ++state->invalidChars; |
| 578 | cursor = appendReplacementChar(cursor); |
| 579 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 580 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 581 | ++state->invalidChars; |
| 582 | cursor = appendReplacementChar(cursor); |
| 583 | } else { |
| 584 | state->remainingChars = 1; |
| 585 | state->state_data[0] = uc; |
| 586 | } |
| 587 | return reinterpret_cast<char *>(cursor); |
| 588 | } |
| 589 | } while (src < nextAscii); |
| 590 | } |
| 591 | |
| 592 | return reinterpret_cast<char *>(cursor); |
| 593 | } |
| 594 | |
| 595 | QString QUtf8::convertToUnicode(QByteArrayView in) |
| 596 | { |
| 597 | // UTF-8 to UTF-16 always needs the exact same number of words or less: |
| 598 | // UTF-8 UTF-16 |
| 599 | // 1 byte 1 word |
| 600 | // 2 bytes 1 word |
| 601 | // 3 bytes 1 word |
| 602 | // 4 bytes 2 words (one surrogate pair) |
| 603 | // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8), |
| 604 | // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or |
| 605 | // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK). |
| 606 | // |
| 607 | // The table holds for invalid sequences too: we'll insert one replacement char |
| 608 | // per invalid byte. |
| 609 | QString result(in.size(), Qt::Uninitialized); |
| 610 | QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared |
| 611 | const QChar *end = convertToUnicode(data, in); |
| 612 | result.truncate(end - data); |
| 613 | return result; |
| 614 | } |
| 615 | |
| 616 | /*! |
| 617 | \since 5.7 |
| 618 | \overload |
| 619 | |
| 620 | Converts the UTF-8 sequence of bytes viewed by \a in to a sequence of |
| 621 | QChar starting at \a buffer. The buffer is expected to be large enough |
| 622 | to hold the result. An upper bound for the size of the buffer is |
| 623 | \c in.size() QChars. |
| 624 | |
| 625 | If, during decoding, an error occurs, a QChar::ReplacementCharacter is |
| 626 | written. |
| 627 | |
| 628 | Returns a pointer to one past the last QChar written. |
| 629 | |
| 630 | This function never throws. |
| 631 | */ |
| 632 | |
| 633 | QChar *QUtf8::convertToUnicode(QChar *buffer, QByteArrayView in) noexcept |
| 634 | { |
| 635 | ushort *dst = reinterpret_cast<ushort *>(buffer); |
| 636 | const uchar *const start = reinterpret_cast<const uchar *>(in.data()); |
| 637 | const uchar *src = start; |
| 638 | const uchar *end = src + in.size(); |
| 639 | |
| 640 | // attempt to do a full decoding in SIMD |
| 641 | const uchar *nextAscii = end; |
| 642 | if (!simdDecodeAscii(dst, nextAscii, src, end)) { |
| 643 | // at least one non-ASCII entry |
| 644 | // check if we failed to decode the UTF-8 BOM; if so, skip it |
| 645 | if (Q_UNLIKELY(src == start) |
| 646 | && end - src >= 3 |
| 647 | && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) { |
| 648 | src += 3; |
| 649 | } |
| 650 | |
| 651 | while (src < end) { |
| 652 | nextAscii = end; |
| 653 | if (simdDecodeAscii(dst, nextAscii, src, end)) |
| 654 | break; |
| 655 | |
| 656 | do { |
| 657 | uchar b = *src++; |
| 658 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end); |
| 659 | if (res < 0) { |
| 660 | // decoding error |
| 661 | *dst++ = QChar::ReplacementCharacter; |
| 662 | } |
| 663 | } while (src < nextAscii); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | return reinterpret_cast<QChar *>(dst); |
| 668 | } |
| 669 | |
| 670 | QString QUtf8::convertToUnicode(QByteArrayView in, QStringConverter::State *state) |
| 671 | { |
| 672 | // See above for buffer requirements for stateless decoding. However, that |
| 673 | // fails if the state is not empty. The following situations can add to the |
| 674 | // requirements: |
| 675 | // state contains chars starts with requirement |
| 676 | // 1 of 2 bytes valid continuation 0 |
| 677 | // 2 of 3 bytes same 0 |
| 678 | // 3 bytes of 4 same +1 (need to insert surrogate pair) |
| 679 | // 1 of 2 bytes invalid continuation +1 (need to insert replacement and restart) |
| 680 | // 2 of 3 bytes same +1 (same) |
| 681 | // 3 of 4 bytes same +1 (same) |
| 682 | QString result(in.size() + 1, Qt::Uninitialized); |
| 683 | QChar *end = convertToUnicode(result.data(), in, state); |
| 684 | result.truncate(end - result.constData()); |
| 685 | return result; |
| 686 | } |
| 687 | |
| 688 | QChar *QUtf8::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 689 | { |
| 690 | qsizetype len = in.size(); |
| 691 | |
| 692 | Q_ASSERT(state); |
| 693 | if (!len) |
| 694 | return out; |
| 695 | |
| 696 | |
| 697 | ushort replacement = QChar::ReplacementCharacter; |
| 698 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) |
| 699 | replacement = QChar::Null; |
| 700 | |
| 701 | int res; |
| 702 | uchar ch = 0; |
| 703 | |
| 704 | ushort *dst = reinterpret_cast<ushort *>(out); |
| 705 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
| 706 | const uchar *end = src + len; |
| 707 | |
| 708 | if (!(state->flags & QStringConverter::Flag::Stateless)) { |
| 709 | bool = state->internalState & HeaderDone || state->flags & QStringConverter::Flag::ConvertInitialBom; |
| 710 | if (state->remainingChars || !headerdone) { |
| 711 | // handle incoming state first |
| 712 | uchar remainingCharsData[4]; // longest UTF-8 sequence possible |
| 713 | qsizetype remainingCharsCount = state->remainingChars; |
| 714 | qsizetype newCharsToCopy = qMin<qsizetype>(sizeof(remainingCharsData) - remainingCharsCount, end - src); |
| 715 | |
| 716 | memset(remainingCharsData, 0, sizeof(remainingCharsData)); |
| 717 | memcpy(remainingCharsData, &state->state_data[0], remainingCharsCount); |
| 718 | memcpy(remainingCharsData + remainingCharsCount, src, newCharsToCopy); |
| 719 | |
| 720 | const uchar *begin = &remainingCharsData[1]; |
| 721 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(remainingCharsData[0], dst, begin, |
| 722 | static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy); |
| 723 | if (res == QUtf8BaseTraits::Error) { |
| 724 | ++state->invalidChars; |
| 725 | *dst++ = replacement; |
| 726 | ++src; |
| 727 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 728 | // if we got EndOfString again, then there were too few bytes in src; |
| 729 | // copy to our state and return |
| 730 | state->remainingChars = remainingCharsCount + newCharsToCopy; |
| 731 | memcpy(&state->state_data[0], remainingCharsData, state->remainingChars); |
| 732 | return out; |
| 733 | } else if (!headerdone) { |
| 734 | // eat the UTF-8 BOM |
| 735 | if (dst[-1] == 0xfeff) |
| 736 | --dst; |
| 737 | } |
| 738 | state->internalState |= HeaderDone; |
| 739 | |
| 740 | // adjust src now that we have maybe consumed a few chars |
| 741 | if (res >= 0) { |
| 742 | Q_ASSERT(res > remainingCharsCount); |
| 743 | src += res - remainingCharsCount; |
| 744 | } |
| 745 | } |
| 746 | } else if (!(state->flags & QStringConverter::Flag::ConvertInitialBom)) { |
| 747 | // stateless, remove initial BOM |
| 748 | if (len > 2 && src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2]) |
| 749 | // skip BOM |
| 750 | src += 3; |
| 751 | } |
| 752 | |
| 753 | // main body, stateless decoding |
| 754 | res = 0; |
| 755 | const uchar *nextAscii = src; |
| 756 | while (res >= 0 && src < end) { |
| 757 | if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end)) |
| 758 | break; |
| 759 | |
| 760 | ch = *src++; |
| 761 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(ch, dst, src, end); |
| 762 | if (res == QUtf8BaseTraits::Error) { |
| 763 | res = 0; |
| 764 | ++state->invalidChars; |
| 765 | *dst++ = replacement; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | if (res == QUtf8BaseTraits::EndOfString) { |
| 770 | // unterminated UTF sequence |
| 771 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 772 | *dst++ = QChar::ReplacementCharacter; |
| 773 | ++state->invalidChars; |
| 774 | while (src++ < end) { |
| 775 | *dst++ = QChar::ReplacementCharacter; |
| 776 | ++state->invalidChars; |
| 777 | } |
| 778 | state->remainingChars = 0; |
| 779 | } else { |
| 780 | --src; // unread the byte in ch |
| 781 | state->remainingChars = end - src; |
| 782 | memcpy(&state->state_data[0], src, end - src); |
| 783 | } |
| 784 | } else { |
| 785 | state->remainingChars = 0; |
| 786 | } |
| 787 | |
| 788 | return reinterpret_cast<QChar *>(dst); |
| 789 | } |
| 790 | |
| 791 | struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii |
| 792 | { |
| 793 | struct NoOutput {}; |
| 794 | static void appendUtf16(const NoOutput &, ushort) {} |
| 795 | static void appendUcs4(const NoOutput &, uint) {} |
| 796 | }; |
| 797 | |
| 798 | QUtf8::ValidUtf8Result QUtf8::isValidUtf8(QByteArrayView in) |
| 799 | { |
| 800 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
| 801 | const uchar *end = src + in.size(); |
| 802 | const uchar *nextAscii = src; |
| 803 | bool isValidAscii = true; |
| 804 | |
| 805 | while (src < end) { |
| 806 | if (src >= nextAscii) |
| 807 | src = simdFindNonAscii(src, end, nextAscii); |
| 808 | if (src == end) |
| 809 | break; |
| 810 | |
| 811 | do { |
| 812 | uchar b = *src++; |
| 813 | if ((b & 0x80) == 0) |
| 814 | continue; |
| 815 | |
| 816 | isValidAscii = false; |
| 817 | QUtf8NoOutputTraits::NoOutput output; |
| 818 | int res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, output, src, end); |
| 819 | if (res < 0) { |
| 820 | // decoding error |
| 821 | return { false, false }; |
| 822 | } |
| 823 | } while (src < nextAscii); |
| 824 | } |
| 825 | |
| 826 | return { true, isValidAscii }; |
| 827 | } |
| 828 | |
| 829 | int QUtf8::compareUtf8(QByteArrayView utf8, QStringView utf16) noexcept |
| 830 | { |
| 831 | auto src1 = reinterpret_cast<const char8_t *>(utf8.data()); |
| 832 | auto end1 = src1 + utf8.size(); |
| 833 | auto src2 = reinterpret_cast<const char16_t *>(utf16.data()); |
| 834 | auto end2 = src2 + utf16.size(); |
| 835 | |
| 836 | do { |
| 837 | simdCompareAscii(src1, end1, src2, end2); |
| 838 | |
| 839 | if (src1 < end1 && src2 < end2) { |
| 840 | char32_t uc1 = *src1++; |
| 841 | char32_t uc2 = *src2++; |
| 842 | |
| 843 | if (uc1 >= 0x80) { |
| 844 | char32_t *output = &uc1; |
| 845 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraitsNoAscii>(uc1, output, src1, end1); |
| 846 | if (res < 0) { |
| 847 | // decoding error |
| 848 | uc1 = QChar::ReplacementCharacter; |
| 849 | } |
| 850 | |
| 851 | // Only decode the UTF-16 surrogate pair if the UTF-8 code point |
| 852 | // wasn't US-ASCII (a surrogate cannot match US-ASCII). |
| 853 | if (QChar::isHighSurrogate(uc2) && src2 < end2 && QChar::isLowSurrogate(*src2)) |
| 854 | uc2 = QChar::surrogateToUcs4(uc2, *src2++); |
| 855 | } |
| 856 | |
| 857 | if (uc1 != uc2) |
| 858 | return int(uc1) - int(uc2); |
| 859 | } |
| 860 | } while (src1 < end1 && src2 < end2); |
| 861 | |
| 862 | // the shorter string sorts first |
| 863 | return (end1 > src1) - int(end2 > src2); |
| 864 | } |
| 865 | |
| 866 | int QUtf8::compareUtf8(QByteArrayView utf8, QLatin1String s) |
| 867 | { |
| 868 | uint uc1 = QChar::Null; |
| 869 | auto src1 = reinterpret_cast<const uchar *>(utf8.data()); |
| 870 | auto end1 = src1 + utf8.size(); |
| 871 | auto src2 = reinterpret_cast<const uchar *>(s.latin1()); |
| 872 | auto end2 = src2 + s.size(); |
| 873 | |
| 874 | while (src1 < end1 && src2 < end2) { |
| 875 | uchar b = *src1++; |
| 876 | uint *output = &uc1; |
| 877 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1); |
| 878 | if (res < 0) { |
| 879 | // decoding error |
| 880 | uc1 = QChar::ReplacementCharacter; |
| 881 | } |
| 882 | |
| 883 | uint uc2 = *src2++; |
| 884 | if (uc1 != uc2) |
| 885 | return int(uc1) - int(uc2); |
| 886 | } |
| 887 | |
| 888 | // the shorter string sorts first |
| 889 | return (end1 > src1) - (end2 > src2); |
| 890 | } |
| 891 | |
| 892 | QByteArray QUtf16::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 893 | { |
| 894 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 895 | qsizetype length = 2 * in.size(); |
| 896 | if (writeBom) |
| 897 | length += 2; |
| 898 | |
| 899 | QByteArray d(length, Qt::Uninitialized); |
| 900 | char *end = convertFromUnicode(d.data(), in, state, endian); |
| 901 | Q_ASSERT(end - d.constData() == d.length()); |
| 902 | Q_UNUSED(end); |
| 903 | return d; |
| 904 | } |
| 905 | |
| 906 | char *QUtf16::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 907 | { |
| 908 | Q_ASSERT(state); |
| 909 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 910 | |
| 911 | if (endian == DetectEndianness) |
| 912 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 913 | |
| 914 | if (writeBom) { |
| 915 | QChar bom(QChar::ByteOrderMark); |
| 916 | if (endian == BigEndianness) |
| 917 | qToBigEndian(bom.unicode(), out); |
| 918 | else |
| 919 | qToLittleEndian(bom.unicode(), out); |
| 920 | out += 2; |
| 921 | } |
| 922 | if (endian == BigEndianness) |
| 923 | qToBigEndian<ushort>(in.data(), in.length(), out); |
| 924 | else |
| 925 | qToLittleEndian<ushort>(in.data(), in.length(), out); |
| 926 | |
| 927 | state->remainingChars = 0; |
| 928 | state->internalState |= HeaderDone; |
| 929 | return out + 2*in.length(); |
| 930 | } |
| 931 | |
| 932 | QString QUtf16::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 933 | { |
| 934 | QString result((in.size() + 1) >> 1, Qt::Uninitialized); // worst case |
| 935 | QChar *qch = convertToUnicode(result.data(), in, state, endian); |
| 936 | result.truncate(qch - result.constData()); |
| 937 | return result; |
| 938 | } |
| 939 | |
| 940 | QChar *QUtf16::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 941 | { |
| 942 | qsizetype len = in.size(); |
| 943 | const char *chars = in.data(); |
| 944 | |
| 945 | Q_ASSERT(state); |
| 946 | |
| 947 | if (endian == DetectEndianness) |
| 948 | endian = (DataEndianness)state->state_data[Endian]; |
| 949 | |
| 950 | const char *end = chars + len; |
| 951 | |
| 952 | // make sure we can decode at least one char |
| 953 | if (state->remainingChars + len < 2) { |
| 954 | if (len) { |
| 955 | Q_ASSERT(state->remainingChars == 0 && len == 1); |
| 956 | state->remainingChars = 1; |
| 957 | state->state_data[Data] = *chars; |
| 958 | } |
| 959 | return out; |
| 960 | } |
| 961 | |
| 962 | bool = state && state->internalState & HeaderDone; |
| 963 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
| 964 | headerdone = true; |
| 965 | |
| 966 | if (!headerdone || state->remainingChars) { |
| 967 | uchar buf; |
| 968 | if (state->remainingChars) |
| 969 | buf = state->state_data[Data]; |
| 970 | else |
| 971 | buf = *chars++; |
| 972 | |
| 973 | // detect BOM, set endianness |
| 974 | state->internalState |= HeaderDone; |
| 975 | QChar ch(buf, *chars++); |
| 976 | if (endian == DetectEndianness) { |
| 977 | if (ch == QChar::ByteOrderSwapped) { |
| 978 | endian = BigEndianness; |
| 979 | } else if (ch == QChar::ByteOrderMark) { |
| 980 | endian = LittleEndianness; |
| 981 | } else { |
| 982 | if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 983 | endian = BigEndianness; |
| 984 | } else { |
| 985 | endian = LittleEndianness; |
| 986 | } |
| 987 | } |
| 988 | } |
| 989 | if (endian == BigEndianness) |
| 990 | ch = QChar::fromUcs2((ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8)); |
| 991 | if (headerdone || ch != QChar::ByteOrderMark) |
| 992 | *out++ = ch; |
| 993 | } else if (endian == DetectEndianness) { |
| 994 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 995 | } |
| 996 | |
| 997 | int nPairs = (end - chars) >> 1; |
| 998 | if (endian == BigEndianness) |
| 999 | qFromBigEndian<ushort>(chars, nPairs, out); |
| 1000 | else |
| 1001 | qFromLittleEndian<ushort>(chars, nPairs, out); |
| 1002 | out += nPairs; |
| 1003 | |
| 1004 | state->state_data[Endian] = endian; |
| 1005 | state->remainingChars = 0; |
| 1006 | if ((end - chars) & 1) { |
| 1007 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 1008 | *out++ = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? QChar::Null : QChar::ReplacementCharacter; |
| 1009 | } else { |
| 1010 | state->remainingChars = 1; |
| 1011 | state->state_data[Data] = *(end - 1); |
| 1012 | } |
| 1013 | } else { |
| 1014 | state->state_data[Data] = 0; |
| 1015 | } |
| 1016 | |
| 1017 | return out; |
| 1018 | } |
| 1019 | |
| 1020 | QByteArray QUtf32::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 1021 | { |
| 1022 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 1023 | int length = 4*in.size(); |
| 1024 | if (writeBom) |
| 1025 | length += 4; |
| 1026 | QByteArray ba(length, Qt::Uninitialized); |
| 1027 | char *end = convertFromUnicode(ba.data(), in, state, endian); |
| 1028 | Q_ASSERT(end - ba.constData() == length); |
| 1029 | Q_UNUSED(end); |
| 1030 | return ba; |
| 1031 | } |
| 1032 | |
| 1033 | char *QUtf32::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 1034 | { |
| 1035 | Q_ASSERT(state); |
| 1036 | |
| 1037 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 1038 | qsizetype length = 4*in.length(); |
| 1039 | if (writeBom) |
| 1040 | length += 4; |
| 1041 | |
| 1042 | if (endian == DetectEndianness) |
| 1043 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 1044 | |
| 1045 | if (writeBom) { |
| 1046 | if (endian == BigEndianness) { |
| 1047 | out[0] = 0; |
| 1048 | out[1] = 0; |
| 1049 | out[2] = (char)0xfe; |
| 1050 | out[3] = (char)0xff; |
| 1051 | } else { |
| 1052 | out[0] = (char)0xff; |
| 1053 | out[1] = (char)0xfe; |
| 1054 | out[2] = 0; |
| 1055 | out[3] = 0; |
| 1056 | } |
| 1057 | out += 4; |
| 1058 | state->internalState |= HeaderDone; |
| 1059 | } |
| 1060 | |
| 1061 | const QChar *uc = in.data(); |
| 1062 | const QChar *end = in.data() + in.length(); |
| 1063 | QChar ch; |
| 1064 | uint ucs4; |
| 1065 | if (state->remainingChars == 1) { |
| 1066 | ch = state->state_data[Data]; |
| 1067 | // this is ugly, but shortcuts a whole lot of logic that would otherwise be required |
| 1068 | state->remainingChars = 0; |
| 1069 | goto decode_surrogate; |
| 1070 | } |
| 1071 | |
| 1072 | while (uc < end) { |
| 1073 | ch = *uc++; |
| 1074 | if (Q_LIKELY(!ch.isSurrogate())) { |
| 1075 | ucs4 = ch.unicode(); |
| 1076 | } else if (Q_LIKELY(ch.isHighSurrogate())) { |
| 1077 | decode_surrogate: |
| 1078 | if (uc == end) { |
| 1079 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 1080 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1081 | } else { |
| 1082 | state->remainingChars = 1; |
| 1083 | state->state_data[Data] = ch.unicode(); |
| 1084 | return out; |
| 1085 | } |
| 1086 | } else if (uc->isLowSurrogate()) { |
| 1087 | ucs4 = QChar::surrogateToUcs4(ch, *uc++); |
| 1088 | } else { |
| 1089 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1090 | } |
| 1091 | } else { |
| 1092 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1093 | } |
| 1094 | if (endian == BigEndianness) |
| 1095 | qToBigEndian(ucs4, out); |
| 1096 | else |
| 1097 | qToLittleEndian(ucs4, out); |
| 1098 | out += 4; |
| 1099 | } |
| 1100 | |
| 1101 | return out; |
| 1102 | } |
| 1103 | |
| 1104 | QString QUtf32::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 1105 | { |
| 1106 | QString result; |
| 1107 | result.resize((in.size() + 7) >> 1); // worst case |
| 1108 | QChar *end = convertToUnicode(result.data(), in, state, endian); |
| 1109 | result.truncate(end - result.constData()); |
| 1110 | return result; |
| 1111 | } |
| 1112 | |
| 1113 | QChar *QUtf32::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 1114 | { |
| 1115 | qsizetype len = in.size(); |
| 1116 | const char *chars = in.data(); |
| 1117 | |
| 1118 | Q_ASSERT(state); |
| 1119 | if (endian == DetectEndianness) |
| 1120 | endian = (DataEndianness)state->state_data[Endian]; |
| 1121 | |
| 1122 | const char *end = chars + len; |
| 1123 | |
| 1124 | uchar tuple[4]; |
| 1125 | memcpy(tuple, &state->state_data[Data], 4); |
| 1126 | |
| 1127 | // make sure we can decode at least one char |
| 1128 | if (state->remainingChars + len < 4) { |
| 1129 | if (len) { |
| 1130 | while (chars < end) { |
| 1131 | tuple[state->remainingChars] = *chars; |
| 1132 | ++state->remainingChars; |
| 1133 | ++chars; |
| 1134 | } |
| 1135 | Q_ASSERT(state->remainingChars < 4); |
| 1136 | memcpy(&state->state_data[Data], tuple, 4); |
| 1137 | } |
| 1138 | return out; |
| 1139 | } |
| 1140 | |
| 1141 | bool = state->internalState & HeaderDone; |
| 1142 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
| 1143 | headerdone = true; |
| 1144 | |
| 1145 | int num = state->remainingChars; |
| 1146 | state->remainingChars = 0; |
| 1147 | |
| 1148 | if (!headerdone || endian == DetectEndianness || num) { |
| 1149 | while (num < 4) |
| 1150 | tuple[num++] = *chars++; |
| 1151 | if (endian == DetectEndianness) { |
| 1152 | if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0) { |
| 1153 | endian = LittleEndianness; |
| 1154 | } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff) { |
| 1155 | endian = BigEndianness; |
| 1156 | } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 1157 | endian = BigEndianness; |
| 1158 | } else { |
| 1159 | endian = LittleEndianness; |
| 1160 | } |
| 1161 | } |
| 1162 | uint code = (endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple); |
| 1163 | if (headerdone || code != QChar::ByteOrderMark) { |
| 1164 | if (QChar::requiresSurrogates(code)) { |
| 1165 | *out++ = QChar(QChar::highSurrogate(code)); |
| 1166 | *out++ = QChar(QChar::lowSurrogate(code)); |
| 1167 | } else { |
| 1168 | *out++ = QChar(code); |
| 1169 | } |
| 1170 | } |
| 1171 | num = 0; |
| 1172 | } else if (endian == DetectEndianness) { |
| 1173 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 1174 | } |
| 1175 | state->state_data[Endian] = endian; |
| 1176 | state->internalState |= HeaderDone; |
| 1177 | |
| 1178 | while (chars < end) { |
| 1179 | tuple[num++] = *chars++; |
| 1180 | if (num == 4) { |
| 1181 | uint code = (endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple); |
| 1182 | for (char16_t c : QChar::fromUcs4(code)) |
| 1183 | *out++ = c; |
| 1184 | num = 0; |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | if (num) { |
| 1189 | if (state->flags & QStringDecoder::Flag::Stateless) { |
| 1190 | *out++ = QChar::ReplacementCharacter; |
| 1191 | } else { |
| 1192 | state->state_data[Endian] = endian; |
| 1193 | state->remainingChars = num; |
| 1194 | memcpy(&state->state_data[Data], tuple, 4); |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | return out; |
| 1199 | } |
| 1200 | |
| 1201 | #if defined(Q_OS_WIN) && !defined(QT_BOOTSTRAPPED) |
| 1202 | static QString convertToUnicodeCharByChar(QByteArrayView in, QStringConverter::State *state) |
| 1203 | { |
| 1204 | qsizetype length = in.size(); |
| 1205 | const char *chars = in.data(); |
| 1206 | |
| 1207 | Q_ASSERT(state); |
| 1208 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
| 1209 | state = nullptr; |
| 1210 | |
| 1211 | if (!chars || !length) |
| 1212 | return QString(); |
| 1213 | |
| 1214 | int copyLocation = 0; |
| 1215 | int extra = 2; |
| 1216 | if (state && state->remainingChars) { |
| 1217 | copyLocation = state->remainingChars; |
| 1218 | extra += copyLocation; |
| 1219 | } |
| 1220 | int newLength = length + extra; |
| 1221 | char *mbcs = new char[newLength]; |
| 1222 | //ensure that we have a NULL terminated string |
| 1223 | mbcs[newLength-1] = 0; |
| 1224 | mbcs[newLength-2] = 0; |
| 1225 | memcpy(&(mbcs[copyLocation]), chars, length); |
| 1226 | if (copyLocation) { |
| 1227 | //copy the last character from the state |
| 1228 | mbcs[0] = (char)state->state_data[0]; |
| 1229 | state->remainingChars = 0; |
| 1230 | } |
| 1231 | const char *mb = mbcs; |
| 1232 | const char *next = 0; |
| 1233 | QString s; |
| 1234 | while ((next = CharNextExA(CP_ACP, mb, 0)) != mb) { |
| 1235 | wchar_t wc[2] ={0}; |
| 1236 | int charlength = next - mb; |
| 1237 | int len = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED|MB_ERR_INVALID_CHARS, mb, charlength, wc, 2); |
| 1238 | if (len>0) { |
| 1239 | s.append(QChar(wc[0])); |
| 1240 | } else { |
| 1241 | int r = GetLastError(); |
| 1242 | //check if the character being dropped is the last character |
| 1243 | if (r == ERROR_NO_UNICODE_TRANSLATION && mb == (mbcs+newLength -3) && state) { |
| 1244 | state->remainingChars = 1; |
| 1245 | state->state_data[0] = (char)*mb; |
| 1246 | } |
| 1247 | } |
| 1248 | mb = next; |
| 1249 | } |
| 1250 | delete [] mbcs; |
| 1251 | return s; |
| 1252 | } |
| 1253 | |
| 1254 | |
| 1255 | QString QLocal8Bit::convertToUnicode(QByteArrayView in, QStringConverter::State *state) |
| 1256 | { |
| 1257 | qsizetype length = in.size(); |
| 1258 | |
| 1259 | Q_ASSERT(length < INT_MAX); // ### FIXME |
| 1260 | const char *mb = in.data(); |
| 1261 | int mblen = length; |
| 1262 | |
| 1263 | if (!mb || !mblen) |
| 1264 | return QString(); |
| 1265 | |
| 1266 | QVarLengthArray<wchar_t, 4096> wc(4096); |
| 1267 | int len; |
| 1268 | QString sp; |
| 1269 | bool prepend = false; |
| 1270 | char state_data = 0; |
| 1271 | int remainingChars = 0; |
| 1272 | |
| 1273 | //save the current state information |
| 1274 | if (state) { |
| 1275 | state_data = (char)state->state_data[0]; |
| 1276 | remainingChars = state->remainingChars; |
| 1277 | } |
| 1278 | |
| 1279 | //convert the pending character (if available) |
| 1280 | if (state && remainingChars) { |
| 1281 | char prev[3] = {0}; |
| 1282 | prev[0] = state_data; |
| 1283 | prev[1] = mb[0]; |
| 1284 | remainingChars = 0; |
| 1285 | len = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, |
| 1286 | prev, 2, wc.data(), wc.length()); |
| 1287 | if (len) { |
| 1288 | sp.append(QChar(wc[0])); |
| 1289 | if (mblen == 1) { |
| 1290 | state->remainingChars = 0; |
| 1291 | return sp; |
| 1292 | } |
| 1293 | prepend = true; |
| 1294 | mb++; |
| 1295 | mblen--; |
| 1296 | wc[0] = 0; |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | while (!(len=MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED|MB_ERR_INVALID_CHARS, |
| 1301 | mb, mblen, wc.data(), wc.length()))) { |
| 1302 | int r = GetLastError(); |
| 1303 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
| 1304 | const int wclen = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, |
| 1305 | mb, mblen, 0, 0); |
| 1306 | wc.resize(wclen); |
| 1307 | } else if (r == ERROR_NO_UNICODE_TRANSLATION) { |
| 1308 | //find the last non NULL character |
| 1309 | while (mblen > 1 && !(mb[mblen-1])) |
| 1310 | mblen--; |
| 1311 | //check whether, we hit an invalid character in the middle |
| 1312 | if ((mblen <= 1) || (remainingChars && state_data)) |
| 1313 | return convertToUnicodeCharByChar(in, state); |
| 1314 | //Remove the last character and try again... |
| 1315 | state_data = mb[mblen-1]; |
| 1316 | remainingChars = 1; |
| 1317 | mblen--; |
| 1318 | } else { |
| 1319 | // Fail. |
| 1320 | qWarning("MultiByteToWideChar: Cannot convert multibyte text" ); |
| 1321 | break; |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | if (len <= 0) |
| 1326 | return QString(); |
| 1327 | |
| 1328 | if (wc[len-1] == 0) // len - 1: we don't want terminator |
| 1329 | --len; |
| 1330 | |
| 1331 | //save the new state information |
| 1332 | if (state) { |
| 1333 | state->state_data[0] = (char)state_data; |
| 1334 | state->remainingChars = remainingChars; |
| 1335 | } |
| 1336 | QString s((QChar*)wc.data(), len); |
| 1337 | if (prepend) { |
| 1338 | return sp+s; |
| 1339 | } |
| 1340 | return s; |
| 1341 | } |
| 1342 | |
| 1343 | QByteArray QLocal8Bit::convertFromUnicode(QStringView in, QStringConverter::State *state) |
| 1344 | { |
| 1345 | const QChar *ch = in.data(); |
| 1346 | qsizetype uclen = in.size(); |
| 1347 | |
| 1348 | Q_ASSERT(uclen < INT_MAX); // ### FIXME |
| 1349 | Q_ASSERT(state); |
| 1350 | Q_UNUSED(state); // ### Fixme |
| 1351 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
| 1352 | state = nullptr; |
| 1353 | |
| 1354 | if (!ch) |
| 1355 | return QByteArray(); |
| 1356 | if (uclen == 0) |
| 1357 | return QByteArray("" ); |
| 1358 | BOOL used_def; |
| 1359 | QByteArray mb(4096, 0); |
| 1360 | int len; |
| 1361 | while (!(len=WideCharToMultiByte(CP_ACP, 0, (const wchar_t*)ch, uclen, |
| 1362 | mb.data(), mb.size()-1, 0, &used_def))) |
| 1363 | { |
| 1364 | int r = GetLastError(); |
| 1365 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
| 1366 | mb.resize(1+WideCharToMultiByte(CP_ACP, 0, |
| 1367 | (const wchar_t*)ch, uclen, |
| 1368 | 0, 0, 0, &used_def)); |
| 1369 | // and try again... |
| 1370 | } else { |
| 1371 | // Fail. Probably can't happen in fact (dwFlags is 0). |
| 1372 | #ifndef QT_NO_DEBUG |
| 1373 | // Can't use qWarning(), as it'll recurse to handle %ls |
| 1374 | fprintf(stderr, |
| 1375 | "WideCharToMultiByte: Cannot convert multibyte text (error %d): %ls\n" , |
| 1376 | r, reinterpret_cast<const wchar_t*>(QString(ch, uclen).utf16())); |
| 1377 | #endif |
| 1378 | break; |
| 1379 | } |
| 1380 | } |
| 1381 | mb.resize(len); |
| 1382 | return mb; |
| 1383 | } |
| 1384 | #endif |
| 1385 | |
| 1386 | void QStringConverter::State::clear() |
| 1387 | { |
| 1388 | if (clearFn) |
| 1389 | clearFn(this); |
| 1390 | else |
| 1391 | state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0; |
| 1392 | remainingChars = 0; |
| 1393 | invalidChars = 0; |
| 1394 | internalState = 0; |
| 1395 | } |
| 1396 | |
| 1397 | static QChar *fromUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1398 | { |
| 1399 | return QUtf16::convertToUnicode(out, in, state, DetectEndianness); |
| 1400 | } |
| 1401 | |
| 1402 | static char *toUtf16(char *out, QStringView in, QStringConverter::State *state) |
| 1403 | { |
| 1404 | return QUtf16::convertFromUnicode(out, in, state, DetectEndianness); |
| 1405 | } |
| 1406 | |
| 1407 | static QChar *fromUtf16BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1408 | { |
| 1409 | return QUtf16::convertToUnicode(out, in, state, BigEndianness); |
| 1410 | } |
| 1411 | |
| 1412 | static char *toUtf16BE(char *out, QStringView in, QStringConverter::State *state) |
| 1413 | { |
| 1414 | return QUtf16::convertFromUnicode(out, in, state, BigEndianness); |
| 1415 | } |
| 1416 | |
| 1417 | static QChar *fromUtf16LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1418 | { |
| 1419 | return QUtf16::convertToUnicode(out, in, state, LittleEndianness); |
| 1420 | } |
| 1421 | |
| 1422 | static char *toUtf16LE(char *out, QStringView in, QStringConverter::State *state) |
| 1423 | { |
| 1424 | return QUtf16::convertFromUnicode(out, in, state, LittleEndianness); |
| 1425 | } |
| 1426 | |
| 1427 | static QChar *fromUtf32(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1428 | { |
| 1429 | return QUtf32::convertToUnicode(out, in, state, DetectEndianness); |
| 1430 | } |
| 1431 | |
| 1432 | static char *toUtf32(char *out, QStringView in, QStringConverter::State *state) |
| 1433 | { |
| 1434 | return QUtf32::convertFromUnicode(out, in, state, DetectEndianness); |
| 1435 | } |
| 1436 | |
| 1437 | static QChar *fromUtf32BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1438 | { |
| 1439 | return QUtf32::convertToUnicode(out, in, state, BigEndianness); |
| 1440 | } |
| 1441 | |
| 1442 | static char *toUtf32BE(char *out, QStringView in, QStringConverter::State *state) |
| 1443 | { |
| 1444 | return QUtf32::convertFromUnicode(out, in, state, BigEndianness); |
| 1445 | } |
| 1446 | |
| 1447 | static QChar *fromUtf32LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1448 | { |
| 1449 | return QUtf32::convertToUnicode(out, in, state, LittleEndianness); |
| 1450 | } |
| 1451 | |
| 1452 | static char *toUtf32LE(char *out, QStringView in, QStringConverter::State *state) |
| 1453 | { |
| 1454 | return QUtf32::convertFromUnicode(out, in, state, LittleEndianness); |
| 1455 | } |
| 1456 | |
| 1457 | void qt_from_latin1(char16_t *dst, const char *str, size_t size) noexcept; |
| 1458 | |
| 1459 | static QChar *fromLatin1(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1460 | { |
| 1461 | Q_ASSERT(state); |
| 1462 | Q_UNUSED(state); |
| 1463 | |
| 1464 | qt_from_latin1(reinterpret_cast<char16_t *>(out), in.data(), size_t(in.size())); |
| 1465 | return out + in.size(); |
| 1466 | } |
| 1467 | |
| 1468 | |
| 1469 | static char *toLatin1(char *out, QStringView in, QStringConverter::State *state) |
| 1470 | { |
| 1471 | Q_ASSERT(state); |
| 1472 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
| 1473 | state = nullptr; |
| 1474 | |
| 1475 | const char replacement = (state && state->flags & QStringConverter::Flag::ConvertInvalidToNull) ? 0 : '?'; |
| 1476 | int invalid = 0; |
| 1477 | for (qsizetype i = 0; i < in.length(); ++i) { |
| 1478 | if (in[i] > QChar(0xff)) { |
| 1479 | *out = replacement; |
| 1480 | ++invalid; |
| 1481 | } else { |
| 1482 | *out = (char)in[i].cell(); |
| 1483 | } |
| 1484 | ++out; |
| 1485 | } |
| 1486 | if (state) |
| 1487 | state->invalidChars += invalid; |
| 1488 | return out; |
| 1489 | } |
| 1490 | |
| 1491 | static QChar *fromLocal8Bit(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1492 | { |
| 1493 | QString s = QLocal8Bit::convertToUnicode(in, state); |
| 1494 | memcpy(out, s.constData(), s.length()*sizeof(QChar)); |
| 1495 | return out + s.length(); |
| 1496 | } |
| 1497 | |
| 1498 | static char *toLocal8Bit(char *out, QStringView in, QStringConverter::State *state) |
| 1499 | { |
| 1500 | QByteArray s = QLocal8Bit::convertFromUnicode(in, state); |
| 1501 | memcpy(out, s.constData(), s.length()); |
| 1502 | return out + s.length(); |
| 1503 | } |
| 1504 | |
| 1505 | |
| 1506 | static qsizetype fromUtf8Len(qsizetype l) { return l + 1; } |
| 1507 | static qsizetype toUtf8Len(qsizetype l) { return 3*(l + 1); } |
| 1508 | |
| 1509 | static qsizetype fromUtf16Len(qsizetype l) { return l/2 + 2; } |
| 1510 | static qsizetype toUtf16Len(qsizetype l) { return 2*(l + 1); } |
| 1511 | |
| 1512 | static qsizetype fromUtf32Len(qsizetype l) { return l/2 + 2; } |
| 1513 | static qsizetype toUtf32Len(qsizetype l) { return 4*(l + 1); } |
| 1514 | |
| 1515 | static qsizetype fromLatin1Len(qsizetype l) { return l + 1; } |
| 1516 | static qsizetype toLatin1Len(qsizetype l) { return l + 1; } |
| 1517 | |
| 1518 | |
| 1519 | |
| 1520 | /*! |
| 1521 | \class QStringConverterBase |
| 1522 | \internal |
| 1523 | |
| 1524 | Just a common base class for QStringConverter and QTextCodec |
| 1525 | */ |
| 1526 | |
| 1527 | /*! |
| 1528 | \class QStringConverter |
| 1529 | \inmodule QtCore |
| 1530 | \brief The QStringConverter class provides a base class for encoding and decoding text. |
| 1531 | \reentrant |
| 1532 | \ingroup i18n |
| 1533 | |
| 1534 | Qt uses UTF-16 to store, draw and manipulate strings. In many |
| 1535 | situations you may wish to deal with data that uses a different |
| 1536 | encoding. Most text data transferred over files and network connections is encoded |
| 1537 | in UTF-8. |
| 1538 | |
| 1539 | The QStringConverter class is a base class for the \l {QStringEncoder} and |
| 1540 | \l {QStringDecoder} classes that help with converting between different |
| 1541 | text encodings. QStringDecoder can decode a string from an encoded representation |
| 1542 | into UTF-16, the format Qt uses internally. QStringEncoder does the opposite |
| 1543 | operation, encoding UTF-16 encoded data (usually in the form of a QString) to |
| 1544 | the requested encoding. |
| 1545 | |
| 1546 | The supported encodings are: |
| 1547 | |
| 1548 | \list |
| 1549 | \li UTF-8 |
| 1550 | \li UTF-16 |
| 1551 | \li UTF-16BE |
| 1552 | \li UTF-16LE |
| 1553 | \li UTF-32 |
| 1554 | \li UTF-32BE |
| 1555 | \li UTF-32LE |
| 1556 | \li ISO-8859-1 (Latin-1) |
| 1557 | \li The system encoding |
| 1558 | \endlist |
| 1559 | |
| 1560 | \l {QStringConverter}s can be used as follows to convert some encoded |
| 1561 | string to and from UTF-16. |
| 1562 | |
| 1563 | Suppose you have some string encoded in UTF-8, and |
| 1564 | want to convert it to a QString. The simple way |
| 1565 | to do it is to use a \l {QStringDecoder} like this: |
| 1566 | |
| 1567 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
| 1568 | |
| 1569 | After this, \c string holds the text in decoded form. |
| 1570 | Converting a string from Unicode to the local encoding is just as |
| 1571 | easy using the \l {QStringEncoder} class: |
| 1572 | |
| 1573 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
| 1574 | |
| 1575 | To read or write text files in various encodings, use QTextStream and |
| 1576 | its \l{QTextStream::setEncoding()}{setEncoding()} function. |
| 1577 | |
| 1578 | Some care must be taken when trying to convert the data in chunks, |
| 1579 | for example, when receiving it over a network. In such cases it is |
| 1580 | possible that a multi-byte character will be split over two |
| 1581 | chunks. At best this might result in the loss of a character and |
| 1582 | at worst cause the entire conversion to fail. |
| 1583 | |
| 1584 | Both QStringEncoder and QStringDecoder make this easy, by tracking |
| 1585 | this in an internal state. So simply calling the encoder or decoder |
| 1586 | again with the next chunk of data will automatically continue encoding |
| 1587 | or decoding the data correctly: |
| 1588 | |
| 1589 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
| 1590 | |
| 1591 | The QStringDecoder object maintains state between chunks and therefore |
| 1592 | works correctly even if a multi-byte character is split between |
| 1593 | chunks. |
| 1594 | |
| 1595 | QStringConverter objects can't be copied because of their internal state, but |
| 1596 | can be moved. |
| 1597 | |
| 1598 | \sa QTextStream, QStringDecoder, QStringEncoder |
| 1599 | */ |
| 1600 | |
| 1601 | /*! |
| 1602 | \enum QStringConverter::Flag |
| 1603 | |
| 1604 | \value Default Default conversion rules apply. |
| 1605 | \value ConvertInvalidToNull If this flag is set, each invalid input |
| 1606 | character is output as a null character. If it is not set, |
| 1607 | invalid input characters are represented as QChar::ReplacementCharacter |
| 1608 | if the output encoding can represent that character, otherwise as a question mark. |
| 1609 | \value WriteBom When converting from a QString to an output encoding, write a QChar::ByteOrderMark as the first |
| 1610 | character if the output encoding supports this. This is the case for UTF-8, UTF-16 and UTF-32 |
| 1611 | encodings. |
| 1612 | \value ConvertInitialBom When converting from an input encoding to a QString the QStringDecoder usually skips an |
| 1613 | leading QChar::ByteOrderMark. When this flag is set, the byte order mark will not be |
| 1614 | skipped, but converted to utf-16 and inserted at the start of the created QString. |
| 1615 | \value Stateless Ignore possible converter states between different function calls |
| 1616 | to encode or decode strings. This will also cause the QStringConverter to raise an error if an incomplete |
| 1617 | sequence of data is encountered. |
| 1618 | */ |
| 1619 | |
| 1620 | /*! |
| 1621 | \enum QStringConverter::Encoding |
| 1622 | \value Utf8 Create a converter to or from UTF-8 |
| 1623 | \value Utf16 Create a converter to or from UTF-16. When decoding, the byte order will get automatically |
| 1624 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
| 1625 | be assumed. |
| 1626 | \value Utf16BE Create a converter to or from big endian UTF-16. |
| 1627 | \value Utf16LE Create a converter to or from litte endian UTF-16. |
| 1628 | \value Utf32 Create a converter to or from UTF-32. When decoding, the byte order will get automatically |
| 1629 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
| 1630 | be assumed. |
| 1631 | \value Utf32BE Create a converter to or from big endian UTF-32. |
| 1632 | \value Utf32LE Create a converter to or from litte endian UTF-32. |
| 1633 | \value Latin1 Create a converter to or from ISO-8859-1 (Latin1). |
| 1634 | \value System Create a converter to or from the underlying encoding of the |
| 1635 | operating systems locale. This is always assumed to be UTF-8 for Unix based |
| 1636 | systems. On Windows, this converts to and from the locale code page. |
| 1637 | */ |
| 1638 | |
| 1639 | /*! |
| 1640 | \struct QStringConverter::Interface |
| 1641 | \internal |
| 1642 | */ |
| 1643 | |
| 1644 | const QStringConverter::Interface QStringConverter::encodingInterfaces[QStringConverter::LastEncoding + 1] = |
| 1645 | { |
| 1646 | { "UTF-8" , QUtf8::convertToUnicode, fromUtf8Len, QUtf8::convertFromUnicode, toUtf8Len }, |
| 1647 | { "UTF-16" , fromUtf16, fromUtf16Len, toUtf16, toUtf16Len }, |
| 1648 | { "UTF-16LE" , fromUtf16LE, fromUtf16Len, toUtf16LE, toUtf16Len }, |
| 1649 | { "UTF-16BE" , fromUtf16BE, fromUtf16Len, toUtf16BE, toUtf16Len }, |
| 1650 | { "UTF-32" , fromUtf32, fromUtf32Len, toUtf32, toUtf32Len }, |
| 1651 | { "UTF-32LE" , fromUtf32LE, fromUtf32Len, toUtf32LE, toUtf32Len }, |
| 1652 | { "UTF-32BE" , fromUtf32BE, fromUtf32Len, toUtf32BE, toUtf32Len }, |
| 1653 | { "ISO-8859-1" , fromLatin1, fromLatin1Len, toLatin1, toLatin1Len }, |
| 1654 | { "Locale" , fromLocal8Bit, fromUtf8Len, toLocal8Bit, toUtf8Len } |
| 1655 | }; |
| 1656 | |
| 1657 | // match names case insensitive and skipping '-' and '_' |
| 1658 | static bool nameMatch(const char *a, const char *b) |
| 1659 | { |
| 1660 | while (*a && *b) { |
| 1661 | if (*a == '-' || *a == '_') { |
| 1662 | ++a; |
| 1663 | continue; |
| 1664 | } |
| 1665 | if (*b == '-' || *b == '_') { |
| 1666 | ++b; |
| 1667 | continue; |
| 1668 | } |
| 1669 | if (toupper(*a) != toupper(*b)) |
| 1670 | return false; |
| 1671 | ++a; |
| 1672 | ++b; |
| 1673 | } |
| 1674 | return !*a && !*b; |
| 1675 | } |
| 1676 | |
| 1677 | |
| 1678 | /*! |
| 1679 | \fn constexpr QStringConverter::QStringConverter() |
| 1680 | \internal |
| 1681 | */ |
| 1682 | |
| 1683 | /*! |
| 1684 | \fn constexpr QStringConverter::QStringConverter(Encoding, Flags) |
| 1685 | \internal |
| 1686 | */ |
| 1687 | |
| 1688 | /*! |
| 1689 | \internal |
| 1690 | */ |
| 1691 | QStringConverter::QStringConverter(const char *name, Flags f) |
| 1692 | : iface(nullptr), state(f) |
| 1693 | { |
| 1694 | auto e = encodingForName(name); |
| 1695 | if (e) |
| 1696 | iface = encodingInterfaces + int(e.value()); |
| 1697 | } |
| 1698 | |
| 1699 | /*! |
| 1700 | \fn bool QStringConverter::isValid() const |
| 1701 | |
| 1702 | Returns true if this is a valid string converter that can be used for encoding or |
| 1703 | decoding text. |
| 1704 | |
| 1705 | Default constructed string converters or converters constructed with an unsupported |
| 1706 | name are not valid. |
| 1707 | */ |
| 1708 | |
| 1709 | /*! |
| 1710 | \fn void QStringConverter::resetState() |
| 1711 | |
| 1712 | Resets the internal state of the converter, clearing potential errors or partial |
| 1713 | conversions. |
| 1714 | */ |
| 1715 | |
| 1716 | /*! |
| 1717 | \fn bool QStringConverter::hasError() const |
| 1718 | |
| 1719 | Returns true if a conversion could not correctly convert a character. This could for example |
| 1720 | get triggered by an invalid UTF-8 sequence or when a character can't get converted due to |
| 1721 | limitations in the target encoding. |
| 1722 | */ |
| 1723 | |
| 1724 | /*! |
| 1725 | \fn const char *QStringConverter::name() const |
| 1726 | |
| 1727 | Returns the canonical name of the encoding this QStringConverter can encode or decode. |
| 1728 | Returns a nullptr if the converter is not valid. |
| 1729 | |
| 1730 | \sa isValid() |
| 1731 | */ |
| 1732 | |
| 1733 | /*! |
| 1734 | Returns an optional encoding for \a name. The optional is empty if the name could |
| 1735 | not get converted to a valid encoding. |
| 1736 | */ |
| 1737 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForName(const char *name) |
| 1738 | { |
| 1739 | for (int i = 0; i < LastEncoding + 1; ++i) { |
| 1740 | if (nameMatch(encodingInterfaces[i].name, name)) |
| 1741 | return QStringConverter::Encoding(i); |
| 1742 | } |
| 1743 | if (nameMatch(name, "latin1" )) |
| 1744 | return QStringConverter::Latin1; |
| 1745 | return std::nullopt; |
| 1746 | } |
| 1747 | |
| 1748 | /*! |
| 1749 | Returns the encoding for the content of \a data if it can be determined. |
| 1750 | \a expectedFirstCharacter can be passed as an additional hint to help determine |
| 1751 | the encoding. |
| 1752 | |
| 1753 | The returned optional is empty, if the encoding is unclear. |
| 1754 | */ |
| 1755 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForData(QByteArrayView data, char16_t expectedFirstCharacter) |
| 1756 | { |
| 1757 | qsizetype arraySize = data.size(); |
| 1758 | if (arraySize > 3) { |
| 1759 | uint uc = qFromUnaligned<uint>(data.data()); |
| 1760 | if (uc == qToBigEndian(uint(QChar::ByteOrderMark))) |
| 1761 | return QStringConverter::Utf32BE; |
| 1762 | if (uc == qToLittleEndian(uint(QChar::ByteOrderMark))) |
| 1763 | return QStringConverter::Utf32LE; |
| 1764 | if (expectedFirstCharacter) { |
| 1765 | // catch also anything starting with the expected character |
| 1766 | if (qToLittleEndian(uc) == expectedFirstCharacter) |
| 1767 | return QStringConverter::Utf32LE; |
| 1768 | else if (qToBigEndian(uc) == expectedFirstCharacter) |
| 1769 | return QStringConverter::Utf32BE; |
| 1770 | } |
| 1771 | } |
| 1772 | |
| 1773 | if (arraySize > 2) { |
| 1774 | if (memcmp(data.data(), utf8bom, sizeof(utf8bom)) == 0) |
| 1775 | return QStringConverter::Utf8; |
| 1776 | } |
| 1777 | |
| 1778 | if (arraySize > 1) { |
| 1779 | ushort uc = qFromUnaligned<ushort>(data.data()); |
| 1780 | if (uc == qToBigEndian(ushort(QChar::ByteOrderMark))) |
| 1781 | return QStringConverter::Utf16BE; |
| 1782 | if (uc == qToLittleEndian(ushort(QChar::ByteOrderMark))) |
| 1783 | return QStringConverter::Utf16LE; |
| 1784 | if (expectedFirstCharacter) { |
| 1785 | // catch also anything starting with the expected character |
| 1786 | if (qToLittleEndian(uc) == expectedFirstCharacter) |
| 1787 | return QStringConverter::Utf16LE; |
| 1788 | else if (qToBigEndian(uc) == expectedFirstCharacter) |
| 1789 | return QStringConverter::Utf16BE; |
| 1790 | } |
| 1791 | } |
| 1792 | return std::nullopt; |
| 1793 | } |
| 1794 | |
| 1795 | /*! |
| 1796 | Tries to determine the encoding of the HTML in \a data by looking at leading byte |
| 1797 | order marks or a charset specifier in the HTML meta tag. If the optional is empty, |
| 1798 | the encoding specified is not supported by QStringConverter. If no encoding is |
| 1799 | detected, the method returns Utf8. |
| 1800 | */ |
| 1801 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForHtml(QByteArrayView data) |
| 1802 | { |
| 1803 | // determine charset |
| 1804 | auto encoding = encodingForData(data); |
| 1805 | if (encoding) |
| 1806 | // trust the initial BOM |
| 1807 | return encoding; |
| 1808 | |
| 1809 | QByteArray = data.first(qMin(data.size(), qsizetype(1024))).toByteArray().toLower(); |
| 1810 | int pos = header.indexOf("meta " ); |
| 1811 | if (pos != -1) { |
| 1812 | pos = header.indexOf("charset=" , pos); |
| 1813 | if (pos != -1) { |
| 1814 | pos += int(qstrlen("charset=" )); |
| 1815 | if (pos < header.size() && (header.at(pos) == '\"' || header.at(pos) == '\'')) |
| 1816 | ++pos; |
| 1817 | |
| 1818 | int pos2 = pos; |
| 1819 | // The attribute can be closed with either """, "'", ">" or "/", |
| 1820 | // none of which are valid charset characters. |
| 1821 | while (++pos2 < header.size()) { |
| 1822 | char ch = header.at(pos2); |
| 1823 | if (ch == '\"' || ch == '\'' || ch == '>' || ch == '/') { |
| 1824 | QByteArray name = header.mid(pos, pos2 - pos); |
| 1825 | int colon = name.indexOf(':'); |
| 1826 | if (colon > 0) |
| 1827 | name = name.left(colon); |
| 1828 | name = name.simplified(); |
| 1829 | if (name == "unicode" ) // QTBUG-41998, ICU will return UTF-16. |
| 1830 | name = QByteArrayLiteral("UTF-8" ); |
| 1831 | if (!name.isEmpty()) |
| 1832 | return encodingForName(name); |
| 1833 | } |
| 1834 | } |
| 1835 | } |
| 1836 | } |
| 1837 | return Utf8; |
| 1838 | } |
| 1839 | |
| 1840 | /*! |
| 1841 | Returns the canonical name for \a encoding. |
| 1842 | */ |
| 1843 | const char *QStringConverter::nameForEncoding(QStringConverter::Encoding e) |
| 1844 | { |
| 1845 | return encodingInterfaces[int(e)].name; |
| 1846 | } |
| 1847 | |
| 1848 | /*! |
| 1849 | \class QStringEncoder |
| 1850 | \inmodule QtCore |
| 1851 | \brief The QStringEncoder class provides a state-based encoder for text. |
| 1852 | \reentrant |
| 1853 | \ingroup i18n |
| 1854 | |
| 1855 | A text encoder converts text from Qt's internal representation into an encoded |
| 1856 | text format using a specific encoding. |
| 1857 | |
| 1858 | Converting a string from Unicode to the local encoding can be achieved |
| 1859 | using the following code: |
| 1860 | |
| 1861 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
| 1862 | |
| 1863 | The encoder remembers any state that is required between calls, so converting |
| 1864 | data received in chunks, for example, when receiving it over a network, is just as |
| 1865 | easy, by calling the encoder whenever new data is available: |
| 1866 | |
| 1867 | \snippet code/src_corelib_text_qstringconverter.cpp 3 |
| 1868 | |
| 1869 | The QStringEncoder object maintains state between chunks and therefore |
| 1870 | works correctly even if a UTF-16 surrogate character is split between |
| 1871 | chunks. |
| 1872 | |
| 1873 | QStringEncoder objects can't be copied because of their internal state, but |
| 1874 | can be moved. |
| 1875 | |
| 1876 | \sa QStringConverter, QStringDecoder |
| 1877 | */ |
| 1878 | |
| 1879 | /*! |
| 1880 | \fn constexpr QStringEncoder::QStringEncoder(const Interface *i) |
| 1881 | \internal |
| 1882 | */ |
| 1883 | |
| 1884 | /*! |
| 1885 | \fn constexpr QStringEncoder::QStringEncoder() |
| 1886 | |
| 1887 | Default constructs an encoder. The default encoder is not valid, |
| 1888 | and can't be used for converting text. |
| 1889 | */ |
| 1890 | |
| 1891 | /*! |
| 1892 | \fn constexpr QStringEncoder::QStringEncoder(Encoding encoding, Flags flags = Flag::Default) |
| 1893 | |
| 1894 | Creates an encoder object using \a encoding and \a flags. |
| 1895 | */ |
| 1896 | |
| 1897 | /*! |
| 1898 | \fn constexpr QStringEncoder::QStringEncoder(const char *name, Flags flags = Flag::Default) |
| 1899 | |
| 1900 | Creates an encoder object using \a name and \a flags. |
| 1901 | If \a name is not the name of a known encoding an invalid converter will get created. |
| 1902 | |
| 1903 | \sa isValid() |
| 1904 | */ |
| 1905 | |
| 1906 | /*! |
| 1907 | \fn QByteArray QStringEncoder::operator()(const QString &in) |
| 1908 | \fn QByteArray QStringEncoder::encode(const QString &in) |
| 1909 | |
| 1910 | Converts \a in and returns the data as a byte array. |
| 1911 | */ |
| 1912 | |
| 1913 | /*! |
| 1914 | \fn QByteArray QStringEncoder::operator()(QStringView in) |
| 1915 | \fn QByteArray QStringEncoder::encode(QStringView in) |
| 1916 | \overload |
| 1917 | |
| 1918 | Converts \a in and returns the data as a byte array. |
| 1919 | */ |
| 1920 | |
| 1921 | /*! |
| 1922 | \fn QByteArray QStringEncoder::operator()(const QChar *in, qsizetype length) |
| 1923 | \fn QByteArray QStringEncoder::encode(const QChar *in, qsizetype length) |
| 1924 | \overload |
| 1925 | |
| 1926 | Converts \a length QChars from \a in and returns the data as a byte array. |
| 1927 | */ |
| 1928 | |
| 1929 | /*! |
| 1930 | \fn qsizetype QStringEncoder::requiredSpace(qsizetype inputLength) const |
| 1931 | |
| 1932 | Returns the maximum amount of characters required to be able to process |
| 1933 | \a inputLength decoded data. |
| 1934 | |
| 1935 | \sa appendToBuffer |
| 1936 | */ |
| 1937 | |
| 1938 | /*! |
| 1939 | \fn char *QStringEncoder::appendToBuffer(char *out, const QChar *in, qsizetype length) |
| 1940 | |
| 1941 | Encodes \a length QChars from \a in and writes the encoded result into the buffer |
| 1942 | starting at \a out. Returns a pointer to the end of data written. |
| 1943 | |
| 1944 | \a out needs to be large enough to be able to hold all the decoded data. Use |
| 1945 | \l{requiredSpace} to determine the maximum size requirements to be able to encode |
| 1946 | a QChar buffer of \a length. |
| 1947 | |
| 1948 | \sa requiredSpace |
| 1949 | */ |
| 1950 | |
| 1951 | /*! |
| 1952 | \class QStringDecoder |
| 1953 | \inmodule QtCore |
| 1954 | \brief The QStringDecoder class provides a state-based decoder for text. |
| 1955 | \reentrant |
| 1956 | \ingroup i18n |
| 1957 | |
| 1958 | A text decoder converts text an encoded text format that uses a specific encoding |
| 1959 | into Qt's internal representation. |
| 1960 | |
| 1961 | Converting encoded data into a QString can be achieved |
| 1962 | using the following code: |
| 1963 | |
| 1964 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
| 1965 | |
| 1966 | The decoder remembers any state that is required between calls, so converting |
| 1967 | data received in chunks, for example, when receiving it over a network, is just as |
| 1968 | easy, by calling the decoder whenever new data is available: |
| 1969 | |
| 1970 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
| 1971 | |
| 1972 | The QStringDecoder object maintains state between chunks and therefore |
| 1973 | works correctly even if chunks are split in the middle of a multi-byte character |
| 1974 | sequence. |
| 1975 | |
| 1976 | QStringDecoder objects can't be copied because of their internal state, but |
| 1977 | can be moved. |
| 1978 | |
| 1979 | \sa QStringConverter, QStringEncoder |
| 1980 | */ |
| 1981 | |
| 1982 | /*! |
| 1983 | \fn constexpr QStringDecoder::QStringDecoder(const Interface *i) |
| 1984 | \internal |
| 1985 | */ |
| 1986 | |
| 1987 | /*! |
| 1988 | \fn constexpr QStringDecoder::QStringDecoder() |
| 1989 | |
| 1990 | Default constructs an decoder. The default decoder is not valid, |
| 1991 | and can't be used for converting text. |
| 1992 | */ |
| 1993 | |
| 1994 | /*! |
| 1995 | \fn constexpr QStringDecoder::QStringDecoder(Encoding encoding, Flags flags = Flag::Default) |
| 1996 | |
| 1997 | Creates an decoder object using \a encoding and \a flags. |
| 1998 | */ |
| 1999 | |
| 2000 | /*! |
| 2001 | \fn constexpr QStringDecoder::QStringDecoder(const char *name, Flags flags = Flag::Default) |
| 2002 | |
| 2003 | Creates an decoder object using \a name and \a flags. |
| 2004 | If \a name is not the name of a known encoding an invalid converter will get created. |
| 2005 | |
| 2006 | \sa isValid() |
| 2007 | */ |
| 2008 | |
| 2009 | /*! |
| 2010 | \fn QString QStringDecoder::operator()(const QByteArray &ba) |
| 2011 | \fn QString QStringDecoder::decode(const QByteArray &ba) |
| 2012 | |
| 2013 | Converts \a ba and returns the data as a QString. |
| 2014 | */ |
| 2015 | |
| 2016 | /*! |
| 2017 | \fn QString QStringDecoder::operator()(const char *in, qsizetype size) |
| 2018 | \fn QString QStringDecoder::decode(const char *in, qsizetype size) |
| 2019 | \overload |
| 2020 | |
| 2021 | Converts a byte array containing the first \a size bytes of the array \a in |
| 2022 | and returns the data as a QString. |
| 2023 | */ |
| 2024 | |
| 2025 | /*! |
| 2026 | \fn QString QStringDecoder::operator()(const char *chars) |
| 2027 | \fn QString QStringDecoder::decode(const char *chars) |
| 2028 | \overload |
| 2029 | |
| 2030 | Converts \a chars and returns the data as a QString. \a chars is assumed to |
| 2031 | point to a \c{\0}-terminated string and its length is determined dynamically. |
| 2032 | */ |
| 2033 | |
| 2034 | /*! |
| 2035 | \fn qsizetype QStringDecoder::requiredSpace(qsizetype inputLength) const |
| 2036 | |
| 2037 | Returns the maximum amount of UTF-16 code units required to be able to process |
| 2038 | \a inputLength encoded data. |
| 2039 | |
| 2040 | \sa appendToBuffer |
| 2041 | */ |
| 2042 | |
| 2043 | /*! |
| 2044 | \fn QChar *QStringDecoder::appendToBuffer(QChar *out, QByteArrayView in) |
| 2045 | |
| 2046 | Decodes the sequence of bytes viewed by \a in and writes the decoded result into |
| 2047 | the buffer starting at \a out. Returns a pointer to the end of data written. |
| 2048 | |
| 2049 | \a out needs to be large enough to be able to hold all the decoded data. Use |
| 2050 | \l{requiredSpace} to determine the maximum size requirements to decode an encoded |
| 2051 | data buffer of \c in.size() bytes. |
| 2052 | |
| 2053 | \sa requiredSpace |
| 2054 | */ |
| 2055 | |
| 2056 | QT_END_NAMESPACE |
| 2057 | |