1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2017 The Qt Company Ltd. |
4 | ** Copyright (C) 2018 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #include "qsemaphore.h" |
42 | #include "qmutex.h" |
43 | #include "qfutex_p.h" |
44 | #include "qwaitcondition.h" |
45 | #include "qdeadlinetimer.h" |
46 | #include "qdatetime.h" |
47 | |
48 | QT_BEGIN_NAMESPACE |
49 | |
50 | using namespace QtFutex; |
51 | |
52 | /*! |
53 | \class QSemaphore |
54 | \inmodule QtCore |
55 | \brief The QSemaphore class provides a general counting semaphore. |
56 | |
57 | \threadsafe |
58 | |
59 | \ingroup thread |
60 | |
61 | A semaphore is a generalization of a mutex. While a mutex can |
62 | only be locked once, it's possible to acquire a semaphore |
63 | multiple times. Semaphores are typically used to protect a |
64 | certain number of identical resources. |
65 | |
66 | Semaphores support two fundamental operations, acquire() and |
67 | release(): |
68 | |
69 | \list |
70 | \li acquire(\e{n}) tries to acquire \e n resources. If there aren't |
71 | that many resources available, the call will block until this |
72 | is the case. |
73 | \li release(\e{n}) releases \e n resources. |
74 | \endlist |
75 | |
76 | There's also a tryAcquire() function that returns immediately if |
77 | it cannot acquire the resources, and an available() function that |
78 | returns the number of available resources at any time. |
79 | |
80 | Example: |
81 | |
82 | \snippet code/src_corelib_thread_qsemaphore.cpp 0 |
83 | |
84 | A typical application of semaphores is for controlling access to |
85 | a circular buffer shared by a producer thread and a consumer |
86 | thread. The \l{Semaphores Example} shows how |
87 | to use QSemaphore to solve that problem. |
88 | |
89 | A non-computing example of a semaphore would be dining at a |
90 | restaurant. A semaphore is initialized with the number of chairs |
91 | in the restaurant. As people arrive, they want a seat. As seats |
92 | are filled, available() is decremented. As people leave, the |
93 | available() is incremented, allowing more people to enter. If a |
94 | party of 10 people want to be seated, but there are only 9 seats, |
95 | those 10 people will wait, but a party of 4 people would be |
96 | seated (taking the available seats to 5, making the party of 10 |
97 | people wait longer). |
98 | |
99 | \sa QSemaphoreReleaser, QMutex, QWaitCondition, QThread, {Semaphores Example} |
100 | */ |
101 | |
102 | /* |
103 | QSemaphore futex operation |
104 | |
105 | QSemaphore stores a 32-bit integer with the counter of currently available |
106 | tokens (value between 0 and INT_MAX). When a thread attempts to acquire n |
107 | tokens and the counter is larger than that, we perform a compare-and-swap |
108 | with the new count. If that succeeds, the acquisition worked; if not, we |
109 | loop again because the counter changed. If there were not enough tokens, |
110 | we'll perform a futex-wait. |
111 | |
112 | Before we do, we set the high bit in the futex to indicate that semaphore |
113 | is contended: that is, there's a thread waiting for more tokens. On |
114 | release() for n tokens, we perform a fetch-and-add of n and then check if |
115 | that high bit was set. If it was, then we clear that bit and perform a |
116 | futex-wake on the semaphore to indicate the waiting threads can wake up and |
117 | acquire tokens. Which ones get woken up is unspecified. |
118 | |
119 | If the system has the ability to wake up a precise number of threads, has |
120 | Linux's FUTEX_WAKE_OP functionality, and is 64-bit, instead of using a |
121 | single bit indicating a contended semaphore, we'll store the number of |
122 | tokens *plus* total number of waiters in the high word. Additionally, all |
123 | multi-token waiters will be waiting on that high word. So when releasing n |
124 | tokens on those systems, we tell the kernel to wake up n single-token |
125 | threads and all of the multi-token ones. Which threads get woken up is |
126 | unspecified, but it's likely single-token threads will get woken up first. |
127 | */ |
128 | |
129 | #if defined(FUTEX_OP) && QT_POINTER_SIZE > 4 |
130 | static constexpr bool futexHasWaiterCount = true; |
131 | #else |
132 | static constexpr bool futexHasWaiterCount = false; |
133 | #endif |
134 | |
135 | static const quintptr futexNeedsWakeAllBit = |
136 | Q_UINT64_C(1) << (sizeof(quintptr) * CHAR_BIT - 1); |
137 | |
138 | static int futexAvailCounter(quintptr v) |
139 | { |
140 | // the low 31 bits |
141 | if (futexHasWaiterCount) { |
142 | // the high bit of the low word isn't used |
143 | Q_ASSERT((v & 0x80000000U) == 0); |
144 | |
145 | // so we can be a little faster |
146 | return int(unsigned(v)); |
147 | } |
148 | return int(v & 0x7fffffffU); |
149 | } |
150 | |
151 | static bool futexNeedsWake(quintptr v) |
152 | { |
153 | // If we're counting waiters, the number of waiters is stored in the low 31 |
154 | // bits of the high word (that is, bits 32-62). If we're not, then we use |
155 | // bit 31 to indicate anyone is waiting. Either way, if any bit 31 or above |
156 | // is set, there are waiters. |
157 | return v >> 31; |
158 | } |
159 | |
160 | static QBasicAtomicInteger<quint32> *futexLow32(QBasicAtomicInteger<quintptr> *ptr) |
161 | { |
162 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
163 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN && QT_POINTER_SIZE > 4 |
164 | ++result; |
165 | #endif |
166 | return result; |
167 | } |
168 | |
169 | static QBasicAtomicInteger<quint32> *futexHigh32(QBasicAtomicInteger<quintptr> *ptr) |
170 | { |
171 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
172 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN && QT_POINTER_SIZE > 4 |
173 | ++result; |
174 | #endif |
175 | return result; |
176 | } |
177 | |
178 | template <bool IsTimed> bool |
179 | futexSemaphoreTryAcquire_loop(QBasicAtomicInteger<quintptr> &u, quintptr curValue, quintptr nn, int timeout) |
180 | { |
181 | QDeadlineTimer timer(IsTimed ? QDeadlineTimer(timeout) : QDeadlineTimer()); |
182 | qint64 remainingTime = timeout * Q_INT64_C(1000) * 1000; |
183 | int n = int(unsigned(nn)); |
184 | |
185 | // we're called after one testAndSet, so start by waiting first |
186 | goto start_wait; |
187 | |
188 | forever { |
189 | if (futexAvailCounter(curValue) >= n) { |
190 | // try to acquire |
191 | quintptr newValue = curValue - nn; |
192 | if (u.testAndSetOrdered(curValue, newValue, curValue)) |
193 | return true; // succeeded! |
194 | continue; |
195 | } |
196 | |
197 | // not enough tokens available, put us to wait |
198 | if (remainingTime == 0) |
199 | return false; |
200 | |
201 | // indicate we're waiting |
202 | start_wait: |
203 | auto ptr = futexLow32(&u); |
204 | if (n > 1 || !futexHasWaiterCount) { |
205 | u.fetchAndOrRelaxed(futexNeedsWakeAllBit); |
206 | curValue |= futexNeedsWakeAllBit; |
207 | if (n > 1 && futexHasWaiterCount) { |
208 | ptr = futexHigh32(&u); |
209 | //curValue >>= 32; // but this is UB in 32-bit, so roundabout: |
210 | curValue = quint64(curValue) >> 32; |
211 | } |
212 | } |
213 | |
214 | if (IsTimed && remainingTime > 0) { |
215 | bool timedout = !futexWait(*ptr, curValue, remainingTime); |
216 | if (timedout) |
217 | return false; |
218 | } else { |
219 | futexWait(*ptr, curValue); |
220 | } |
221 | |
222 | curValue = u.loadAcquire(); |
223 | if (IsTimed) |
224 | remainingTime = timer.remainingTimeNSecs(); |
225 | } |
226 | } |
227 | |
228 | template <bool IsTimed> bool futexSemaphoreTryAcquire(QBasicAtomicInteger<quintptr> &u, int n, int timeout) |
229 | { |
230 | // Try to acquire without waiting (we still loop because the testAndSet |
231 | // call can fail). |
232 | quintptr nn = unsigned(n); |
233 | if (futexHasWaiterCount) |
234 | nn |= quint64(nn) << 32; // token count replicated in high word |
235 | |
236 | quintptr curValue = u.loadAcquire(); |
237 | while (futexAvailCounter(curValue) >= n) { |
238 | // try to acquire |
239 | quintptr newValue = curValue - nn; |
240 | if (u.testAndSetOrdered(curValue, newValue, curValue)) |
241 | return true; // succeeded! |
242 | } |
243 | if (timeout == 0) |
244 | return false; |
245 | |
246 | // we need to wait |
247 | quintptr oneWaiter = quintptr(Q_UINT64_C(1) << 32); // zero on 32-bit |
248 | if (futexHasWaiterCount) { |
249 | // increase the waiter count |
250 | u.fetchAndAddRelaxed(oneWaiter); |
251 | |
252 | // We don't use the fetched value from above so futexWait() fails if |
253 | // it changed after the testAndSetOrdered above. |
254 | if ((quint64(curValue) >> 32) == 0x7fffffff) |
255 | return false; // overflow! |
256 | curValue += oneWaiter; |
257 | |
258 | // Also adjust nn to subtract oneWaiter when we succeed in acquiring. |
259 | nn += oneWaiter; |
260 | } |
261 | |
262 | if (futexSemaphoreTryAcquire_loop<IsTimed>(u, curValue, nn, timeout)) |
263 | return true; |
264 | |
265 | if (futexHasWaiterCount) { |
266 | // decrement the number of threads waiting |
267 | Q_ASSERT(futexHigh32(&u)->loadRelaxed() & 0x7fffffffU); |
268 | u.fetchAndSubRelaxed(oneWaiter); |
269 | } |
270 | return false; |
271 | } |
272 | |
273 | class QSemaphorePrivate { |
274 | public: |
275 | inline QSemaphorePrivate(int n) : avail(n) { } |
276 | |
277 | QMutex mutex; |
278 | QWaitCondition cond; |
279 | |
280 | int avail; |
281 | }; |
282 | |
283 | /*! |
284 | Creates a new semaphore and initializes the number of resources |
285 | it guards to \a n (by default, 0). |
286 | |
287 | \sa release(), available() |
288 | */ |
289 | QSemaphore::QSemaphore(int n) |
290 | { |
291 | Q_ASSERT_X(n >= 0, "QSemaphore" , "parameter 'n' must be non-negative" ); |
292 | if (futexAvailable()) { |
293 | quintptr nn = unsigned(n); |
294 | if (futexHasWaiterCount) |
295 | nn |= quint64(nn) << 32; // token count replicated in high word |
296 | u.storeRelaxed(nn); |
297 | } else { |
298 | d = new QSemaphorePrivate(n); |
299 | } |
300 | } |
301 | |
302 | /*! |
303 | Destroys the semaphore. |
304 | |
305 | \warning Destroying a semaphore that is in use may result in |
306 | undefined behavior. |
307 | */ |
308 | QSemaphore::~QSemaphore() |
309 | { |
310 | if (!futexAvailable()) |
311 | delete d; |
312 | } |
313 | |
314 | /*! |
315 | Tries to acquire \c n resources guarded by the semaphore. If \a n |
316 | > available(), this call will block until enough resources are |
317 | available. |
318 | |
319 | \sa release(), available(), tryAcquire() |
320 | */ |
321 | void QSemaphore::acquire(int n) |
322 | { |
323 | Q_ASSERT_X(n >= 0, "QSemaphore::acquire" , "parameter 'n' must be non-negative" ); |
324 | |
325 | if (futexAvailable()) { |
326 | futexSemaphoreTryAcquire<false>(u, n, -1); |
327 | return; |
328 | } |
329 | |
330 | QMutexLocker locker(&d->mutex); |
331 | while (n > d->avail) |
332 | d->cond.wait(locker.mutex()); |
333 | d->avail -= n; |
334 | } |
335 | |
336 | /*! |
337 | Releases \a n resources guarded by the semaphore. |
338 | |
339 | This function can be used to "create" resources as well. For |
340 | example: |
341 | |
342 | \snippet code/src_corelib_thread_qsemaphore.cpp 1 |
343 | |
344 | QSemaphoreReleaser is a \l{http://en.cppreference.com/w/cpp/language/raii}{RAII} |
345 | wrapper around this function. |
346 | |
347 | \sa acquire(), available(), QSemaphoreReleaser |
348 | */ |
349 | void QSemaphore::release(int n) |
350 | { |
351 | Q_ASSERT_X(n >= 0, "QSemaphore::release" , "parameter 'n' must be non-negative" ); |
352 | |
353 | if (futexAvailable()) { |
354 | quintptr nn = unsigned(n); |
355 | if (futexHasWaiterCount) |
356 | nn |= quint64(nn) << 32; // token count replicated in high word |
357 | quintptr prevValue = u.fetchAndAddRelease(nn); |
358 | if (futexNeedsWake(prevValue)) { |
359 | #ifdef FUTEX_OP |
360 | if (!futexHasWaiterCount) { |
361 | /* |
362 | On 32-bit systems, all waiters are waiting on the same address, |
363 | so we'll wake them all and ask the kernel to clear the high bit. |
364 | |
365 | atomic { |
366 | int oldval = u; |
367 | u = oldval & ~(1 << 31); |
368 | futexWake(u, INT_MAX); |
369 | if (oldval == 0) // impossible condition |
370 | futexWake(u, INT_MAX); |
371 | } |
372 | */ |
373 | quint32 op = FUTEX_OP_ANDN | FUTEX_OP_OPARG_SHIFT; |
374 | quint32 oparg = 31; |
375 | quint32 cmp = FUTEX_OP_CMP_EQ; |
376 | quint32 cmparg = 0; |
377 | futexWakeOp(u, INT_MAX, INT_MAX, u, FUTEX_OP(op, oparg, cmp, cmparg)); |
378 | } else { |
379 | /* |
380 | On 64-bit systems, the single-token waiters wait on the low half |
381 | and the multi-token waiters wait on the upper half. So we ask |
382 | the kernel to wake up n single-token waiters and all multi-token |
383 | waiters (if any), then clear the multi-token wait bit. |
384 | |
385 | atomic { |
386 | int oldval = *upper; |
387 | *upper = oldval & ~(1 << 31); |
388 | futexWake(lower, n); |
389 | if (oldval < 0) // sign bit set |
390 | futexWake(upper, INT_MAX); |
391 | } |
392 | */ |
393 | quint32 op = FUTEX_OP_ANDN | FUTEX_OP_OPARG_SHIFT; |
394 | quint32 oparg = 31; |
395 | quint32 cmp = FUTEX_OP_CMP_LT; |
396 | quint32 cmparg = 0; |
397 | futexWakeOp(*futexLow32(&u), n, INT_MAX, *futexHigh32(&u), FUTEX_OP(op, oparg, cmp, cmparg)); |
398 | } |
399 | #else |
400 | // Unset the bit and wake everyone. There are two possibibilies |
401 | // under which a thread can set the bit between the AND and the |
402 | // futexWake: |
403 | // 1) it did see the new counter value, but it wasn't enough for |
404 | // its acquisition anyway, so it has to wait; |
405 | // 2) it did not see the new counter value, in which case its |
406 | // futexWait will fail. |
407 | u.fetchAndAndRelease(futexNeedsWakeAllBit - 1); |
408 | futexWakeAll(u); |
409 | #endif |
410 | } |
411 | return; |
412 | } |
413 | |
414 | QMutexLocker locker(&d->mutex); |
415 | d->avail += n; |
416 | d->cond.wakeAll(); |
417 | } |
418 | |
419 | /*! |
420 | Returns the number of resources currently available to the |
421 | semaphore. This number can never be negative. |
422 | |
423 | \sa acquire(), release() |
424 | */ |
425 | int QSemaphore::available() const |
426 | { |
427 | if (futexAvailable()) |
428 | return futexAvailCounter(u.loadRelaxed()); |
429 | |
430 | QMutexLocker locker(&d->mutex); |
431 | return d->avail; |
432 | } |
433 | |
434 | /*! |
435 | Tries to acquire \c n resources guarded by the semaphore and |
436 | returns \c true on success. If available() < \a n, this call |
437 | immediately returns \c false without acquiring any resources. |
438 | |
439 | Example: |
440 | |
441 | \snippet code/src_corelib_thread_qsemaphore.cpp 2 |
442 | |
443 | \sa acquire() |
444 | */ |
445 | bool QSemaphore::tryAcquire(int n) |
446 | { |
447 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
448 | |
449 | if (futexAvailable()) |
450 | return futexSemaphoreTryAcquire<false>(u, n, 0); |
451 | |
452 | QMutexLocker locker(&d->mutex); |
453 | if (n > d->avail) |
454 | return false; |
455 | d->avail -= n; |
456 | return true; |
457 | } |
458 | |
459 | /*! |
460 | Tries to acquire \c n resources guarded by the semaphore and |
461 | returns \c true on success. If available() < \a n, this call will |
462 | wait for at most \a timeout milliseconds for resources to become |
463 | available. |
464 | |
465 | Note: Passing a negative number as the \a timeout is equivalent to |
466 | calling acquire(), i.e. this function will wait forever for |
467 | resources to become available if \a timeout is negative. |
468 | |
469 | Example: |
470 | |
471 | \snippet code/src_corelib_thread_qsemaphore.cpp 3 |
472 | |
473 | \sa acquire() |
474 | */ |
475 | bool QSemaphore::tryAcquire(int n, int timeout) |
476 | { |
477 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
478 | |
479 | // We're documented to accept any negative value as "forever" |
480 | // but QDeadlineTimer only accepts -1. |
481 | timeout = qMax(timeout, -1); |
482 | |
483 | if (futexAvailable()) |
484 | return futexSemaphoreTryAcquire<true>(u, n, timeout); |
485 | |
486 | QDeadlineTimer timer(timeout); |
487 | QMutexLocker locker(&d->mutex); |
488 | while (n > d->avail && !timer.hasExpired()) { |
489 | if (!d->cond.wait(locker.mutex(), timer)) |
490 | return false; |
491 | } |
492 | if (n > d->avail) |
493 | return false; |
494 | d->avail -= n; |
495 | return true; |
496 | |
497 | |
498 | } |
499 | |
500 | /*! |
501 | \class QSemaphoreReleaser |
502 | \brief The QSemaphoreReleaser class provides exception-safe deferral of a QSemaphore::release() call. |
503 | \since 5.10 |
504 | \ingroup thread |
505 | \inmodule QtCore |
506 | |
507 | \reentrant |
508 | |
509 | QSemaphoreReleaser can be used wherever you would otherwise use |
510 | QSemaphore::release(). Constructing a QSemaphoreReleaser defers the |
511 | release() call on the semaphore until the QSemaphoreReleaser is |
512 | destroyed (see |
513 | \l{http://en.cppreference.com/w/cpp/language/raii}{RAII pattern}). |
514 | |
515 | You can use this to reliably release a semaphore to avoid dead-lock |
516 | in the face of exceptions or early returns: |
517 | |
518 | \snippet code/src_corelib_thread_qsemaphore.cpp 4 |
519 | |
520 | If an early return is taken or an exception is thrown before the |
521 | \c{sem.release()} call is reached, the semaphore is not released, |
522 | possibly preventing the thread waiting in the corresponding |
523 | \c{sem.acquire()} call from ever continuing execution. |
524 | |
525 | When using RAII instead: |
526 | |
527 | \snippet code/src_corelib_thread_qsemaphore.cpp 5 |
528 | |
529 | this can no longer happen, because the compiler will make sure that |
530 | the QSemaphoreReleaser destructor is always called, and therefore |
531 | the semaphore is always released. |
532 | |
533 | QSemaphoreReleaser is move-enabled and can therefore be returned |
534 | from functions to transfer responsibility for releasing a semaphore |
535 | out of a function or a scope: |
536 | |
537 | \snippet code/src_corelib_thread_qsemaphore.cpp 6 |
538 | |
539 | A QSemaphoreReleaser can be canceled by a call to cancel(). A canceled |
540 | semaphore releaser will no longer call QSemaphore::release() in its |
541 | destructor. |
542 | |
543 | \sa QMutexLocker |
544 | */ |
545 | |
546 | /*! |
547 | \fn QSemaphoreReleaser::QSemaphoreReleaser() |
548 | |
549 | Default constructor. Creates a QSemaphoreReleaser that does nothing. |
550 | */ |
551 | |
552 | /*! |
553 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore &sem, int n) |
554 | |
555 | Constructor. Stores the arguments and calls \a{sem}.release(\a{n}) |
556 | in the destructor. |
557 | */ |
558 | |
559 | /*! |
560 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore *sem, int n) |
561 | |
562 | Constructor. Stores the arguments and calls \a{sem}->release(\a{n}) |
563 | in the destructor. |
564 | */ |
565 | |
566 | /*! |
567 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphoreReleaser &&other) |
568 | |
569 | Move constructor. Takes over responsibility to call QSemaphore::release() |
570 | from \a other, which in turn is canceled. |
571 | |
572 | \sa cancel() |
573 | */ |
574 | |
575 | /*! |
576 | \fn QSemaphoreReleaser::operator=(QSemaphoreReleaser &&other) |
577 | |
578 | Move assignment operator. Takes over responsibility to call QSemaphore::release() |
579 | from \a other, which in turn is canceled. |
580 | |
581 | If this semaphore releaser had the responsibility to call some QSemaphore::release() |
582 | itself, it performs the call before taking over from \a other. |
583 | |
584 | \sa cancel() |
585 | */ |
586 | |
587 | /*! |
588 | \fn QSemaphoreReleaser::~QSemaphoreReleaser() |
589 | |
590 | Unless canceled, calls QSemaphore::release() with the arguments provided |
591 | to the constructor, or by the last move assignment. |
592 | */ |
593 | |
594 | /*! |
595 | \fn QSemaphoreReleaser::swap(QSemaphoreReleaser &other) |
596 | |
597 | Exchanges the responsibilites of \c{*this} and \a other. |
598 | |
599 | Unlike move assignment, neither of the two objects ever releases its |
600 | semaphore, if any, as a consequence of swapping. |
601 | |
602 | Therefore this function is very fast and never fails. |
603 | */ |
604 | |
605 | /*! |
606 | \fn QSemaphoreReleaser::semaphore() const |
607 | |
608 | Returns a pointer to the QSemaphore object provided to the constructor, |
609 | or by the last move assignment, if any. Otherwise, returns \nullptr. |
610 | */ |
611 | |
612 | /*! |
613 | \fn QSemaphoreReleaser::cancel() |
614 | |
615 | Cancels this QSemaphoreReleaser such that the destructor will no longer |
616 | call \c{semaphore()->release()}. Returns the value of semaphore() |
617 | before this call. After this call, semaphore() will return \nullptr. |
618 | |
619 | To enable again, assign a new QSemaphoreReleaser: |
620 | |
621 | \snippet code/src_corelib_thread_qsemaphore.cpp 7 |
622 | */ |
623 | |
624 | |
625 | QT_END_NAMESPACE |
626 | |