1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | /***************************************************************************/ |
41 | /* */ |
42 | /* qgrayraster.c, derived from ftgrays.c */ |
43 | /* */ |
44 | /* A new `perfect' anti-aliasing renderer (body). */ |
45 | /* */ |
46 | /* Copyright 2000-2016 by */ |
47 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
48 | /* */ |
49 | /* This file is part of the FreeType project, and may only be used, */ |
50 | /* modified, and distributed under the terms of the FreeType project */ |
51 | /* license, ../../3rdparty/freetype/docs/FTL.TXT. By continuing to use, */ |
52 | /* modify, or distribute this file you indicate that you have read */ |
53 | /* the license and understand and accept it fully. */ |
54 | /* */ |
55 | /***************************************************************************/ |
56 | |
57 | /*************************************************************************/ |
58 | /* */ |
59 | /* This file can be compiled without the rest of the FreeType engine, by */ |
60 | /* defining the _STANDALONE_ macro when compiling it. You also need to */ |
61 | /* put the files `ftgrays.h' and `ftimage.h' into the current */ |
62 | /* compilation directory. Typically, you could do something like */ |
63 | /* */ |
64 | /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */ |
65 | /* */ |
66 | /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */ |
67 | /* same directory */ |
68 | /* */ |
69 | /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */ |
70 | /* */ |
71 | /* cc -c -D_STANDALONE_ ftgrays.c */ |
72 | /* */ |
73 | /* The renderer can be initialized with a call to */ |
74 | /* `qt_ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */ |
75 | /* with a call to `qt_ft_gray_raster.raster_render'. */ |
76 | /* */ |
77 | /* See the comments and documentation in the file `ftimage.h' for more */ |
78 | /* details on how the raster works. */ |
79 | /* */ |
80 | /*************************************************************************/ |
81 | |
82 | /*************************************************************************/ |
83 | /* */ |
84 | /* This is a new anti-aliasing scan-converter for FreeType 2. The */ |
85 | /* algorithm used here is _very_ different from the one in the standard */ |
86 | /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ |
87 | /* coverage of the outline on each pixel cell. */ |
88 | /* */ |
89 | /* It is based on ideas that I initially found in Raph Levien's */ |
90 | /* excellent LibArt graphics library (see http://www.levien.com/libart */ |
91 | /* for more information, though the web pages do not tell anything */ |
92 | /* about the renderer; you'll have to dive into the source code to */ |
93 | /* understand how it works). */ |
94 | /* */ |
95 | /* Note, however, that this is a _very_ different implementation */ |
96 | /* compared to Raph's. Coverage information is stored in a very */ |
97 | /* different way, and I don't use sorted vector paths. Also, it doesn't */ |
98 | /* use floating point values. */ |
99 | /* */ |
100 | /* This renderer has the following advantages: */ |
101 | /* */ |
102 | /* - It doesn't need an intermediate bitmap. Instead, one can supply a */ |
103 | /* callback function that will be called by the renderer to draw gray */ |
104 | /* spans on any target surface. You can thus do direct composition on */ |
105 | /* any kind of bitmap, provided that you give the renderer the right */ |
106 | /* callback. */ |
107 | /* */ |
108 | /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ |
109 | /* each pixel cell. */ |
110 | /* */ |
111 | /* - It performs a single pass on the outline (the `standard' FT2 */ |
112 | /* renderer makes two passes). */ |
113 | /* */ |
114 | /* - It can easily be modified to render to _any_ number of gray levels */ |
115 | /* cheaply. */ |
116 | /* */ |
117 | /* - For small (< 20) pixel sizes, it is faster than the standard */ |
118 | /* renderer. */ |
119 | /* */ |
120 | /*************************************************************************/ |
121 | |
122 | /*************************************************************************/ |
123 | /* */ |
124 | /* The macro QT_FT_COMPONENT is used in trace mode. It is an implicit */ |
125 | /* parameter of the QT_FT_TRACE() and QT_FT_ERROR() macros, used to print/log */ |
126 | /* messages during execution. */ |
127 | /* */ |
128 | #undef QT_FT_COMPONENT |
129 | #define QT_FT_COMPONENT trace_smooth |
130 | |
131 | |
132 | /* Auxiliary macros for token concatenation. */ |
133 | #define QT_FT_ERR_XCAT( x, y ) x ## y |
134 | #define QT_FT_ERR_CAT( x, y ) QT_FT_ERR_XCAT( x, y ) |
135 | |
136 | #define QT_FT_BEGIN_STMNT do { |
137 | #define QT_FT_END_STMNT } while ( 0 ) |
138 | |
139 | #define QT_FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
140 | #define QT_FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
141 | |
142 | |
143 | /* |
144 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
145 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
146 | * largest error less than 7% compared to the exact value. |
147 | */ |
148 | #define QT_FT_HYPOT( x, y ) \ |
149 | ( x = QT_FT_ABS( x ), \ |
150 | y = QT_FT_ABS( y ), \ |
151 | x > y ? x + ( 3 * y >> 3 ) \ |
152 | : y + ( 3 * x >> 3 ) ) |
153 | |
154 | #define ErrRaster_MemoryOverflow -4 |
155 | |
156 | #if defined(VXWORKS) |
157 | # include <vxWorksCommon.h> /* needed for setjmp.h */ |
158 | #endif |
159 | #include <string.h> /* for qt_ft_memcpy() */ |
160 | #include <setjmp.h> |
161 | #include <limits.h> |
162 | |
163 | #define QT_FT_UINT_MAX UINT_MAX |
164 | |
165 | #define qt_ft_memset memset |
166 | |
167 | #define qt_ft_setjmp setjmp |
168 | #define qt_ft_longjmp longjmp |
169 | #define qt_ft_jmp_buf jmp_buf |
170 | |
171 | #include <stddef.h> |
172 | typedef ptrdiff_t QT_FT_PtrDist; |
173 | |
174 | #define ErrRaster_Invalid_Mode -2 |
175 | #define ErrRaster_Invalid_Outline -1 |
176 | #define ErrRaster_Invalid_Argument -3 |
177 | #define ErrRaster_Memory_Overflow -4 |
178 | #define ErrRaster_OutOfMemory -6 |
179 | |
180 | #define |
181 | #define |
182 | |
183 | #include <private/qrasterdefs_p.h> |
184 | #include <private/qgrayraster_p.h> |
185 | |
186 | #include <qcompilerdetection.h> |
187 | |
188 | #include <stdlib.h> |
189 | #include <stdio.h> |
190 | |
191 | #define QT_FT_UNUSED( x ) (void) x |
192 | |
193 | #define QT_FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
194 | #define QT_FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
195 | #define QT_FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
196 | #define QT_FT_THROW( e ) QT_FT_ERR_CAT( ErrRaster_, e ) |
197 | |
198 | #ifndef QT_FT_MEM_SET |
199 | #define QT_FT_MEM_SET( d, s, c ) qt_ft_memset( d, s, c ) |
200 | #endif |
201 | |
202 | #ifndef QT_FT_MEM_ZERO |
203 | #define QT_FT_MEM_ZERO( dest, count ) QT_FT_MEM_SET( dest, 0, count ) |
204 | #endif |
205 | |
206 | |
207 | #define RAS_ARG PWorker worker |
208 | #define RAS_ARG_ PWorker worker, |
209 | |
210 | #define RAS_VAR worker |
211 | #define RAS_VAR_ worker, |
212 | |
213 | #define ras (*worker) |
214 | |
215 | /* must be at least 6 bits! */ |
216 | #define PIXEL_BITS 8 |
217 | |
218 | #define ONE_PIXEL ( 1L << PIXEL_BITS ) |
219 | #define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS ) |
220 | #define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) ) |
221 | |
222 | #if PIXEL_BITS >= 6 |
223 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
224 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
225 | #else |
226 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
227 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
228 | #endif |
229 | |
230 | /* Compute `dividend / divisor' and return both its quotient and */ |
231 | /* remainder, cast to a specific type. This macro also ensures that */ |
232 | /* the remainder is always positive. */ |
233 | #define QT_FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
234 | QT_FT_BEGIN_STMNT \ |
235 | (quotient) = (type)( (dividend) / (divisor) ); \ |
236 | (remainder) = (type)( (dividend) % (divisor) ); \ |
237 | if ( (remainder) < 0 ) \ |
238 | { \ |
239 | (quotient)--; \ |
240 | (remainder) += (type)(divisor); \ |
241 | } \ |
242 | QT_FT_END_STMNT |
243 | |
244 | /* These macros speed up repetitive divisions by replacing them */ |
245 | /* with multiplications and right shifts. */ |
246 | #define QT_FT_UDIVPREP( b ) \ |
247 | long b ## _r = (long)( ULONG_MAX >> PIXEL_BITS ) / ( b ) |
248 | #define QT_FT_UDIV( a, b ) \ |
249 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
250 | ( sizeof( long ) * CHAR_BIT - PIXEL_BITS ) ) |
251 | |
252 | |
253 | /*************************************************************************/ |
254 | /* */ |
255 | /* TYPE DEFINITIONS */ |
256 | /* */ |
257 | |
258 | /* don't change the following types to QT_FT_Int or QT_FT_Pos, since we might */ |
259 | /* need to define them to "float" or "double" when experimenting with */ |
260 | /* new algorithms */ |
261 | |
262 | typedef long TCoord; /* integer scanline/pixel coordinate */ |
263 | typedef long TPos; /* sub-pixel coordinate */ |
264 | typedef long TArea ; /* cell areas, coordinate products */ |
265 | |
266 | /* maximal number of gray spans in a call to the span callback */ |
267 | #define QT_FT_MAX_GRAY_SPANS 256 |
268 | |
269 | |
270 | typedef struct TCell_* PCell; |
271 | |
272 | typedef struct TCell_ |
273 | { |
274 | int x; |
275 | int cover; |
276 | TArea area; |
277 | PCell next; |
278 | |
279 | } TCell; |
280 | |
281 | |
282 | typedef struct TWorker_ |
283 | { |
284 | TCoord ex, ey; |
285 | TPos min_ex, max_ex; |
286 | TPos min_ey, max_ey; |
287 | TPos count_ex, count_ey; |
288 | |
289 | TArea area; |
290 | int cover; |
291 | int invalid; |
292 | |
293 | PCell cells; |
294 | QT_FT_PtrDist max_cells; |
295 | QT_FT_PtrDist num_cells; |
296 | |
297 | TPos x, y; |
298 | |
299 | QT_FT_Outline outline; |
300 | QT_FT_Bitmap target; |
301 | QT_FT_BBox clip_box; |
302 | |
303 | QT_FT_Span gray_spans[QT_FT_MAX_GRAY_SPANS]; |
304 | int num_gray_spans; |
305 | |
306 | QT_FT_Raster_Span_Func render_span; |
307 | void* render_span_data; |
308 | |
309 | int band_size; |
310 | int band_shoot; |
311 | |
312 | qt_ft_jmp_buf jump_buffer; |
313 | |
314 | void* buffer; |
315 | long buffer_size; |
316 | |
317 | PCell* ycells; |
318 | TPos ycount; |
319 | |
320 | int skip_spans; |
321 | } TWorker, *PWorker; |
322 | |
323 | |
324 | typedef struct TRaster_ |
325 | { |
326 | void* buffer; |
327 | long buffer_size; |
328 | long buffer_allocated_size; |
329 | int band_size; |
330 | void* memory; |
331 | PWorker worker; |
332 | |
333 | } TRaster, *PRaster; |
334 | |
335 | int q_gray_rendered_spans(TRaster *raster) |
336 | { |
337 | if ( raster && raster->worker ) |
338 | return raster->worker->skip_spans > 0 ? 0 : -raster->worker->skip_spans; |
339 | return 0; |
340 | } |
341 | |
342 | /*************************************************************************/ |
343 | /* */ |
344 | /* Initialize the cells table. */ |
345 | /* */ |
346 | static void |
347 | gray_init_cells( RAS_ARG_ void* buffer, |
348 | long byte_size ) |
349 | { |
350 | ras.buffer = buffer; |
351 | ras.buffer_size = byte_size; |
352 | |
353 | ras.ycells = (PCell*) buffer; |
354 | ras.cells = NULL; |
355 | ras.max_cells = 0; |
356 | ras.num_cells = 0; |
357 | ras.area = 0; |
358 | ras.cover = 0; |
359 | ras.invalid = 1; |
360 | } |
361 | |
362 | |
363 | /*************************************************************************/ |
364 | /* */ |
365 | /* Compute the outline bounding box. */ |
366 | /* */ |
367 | static void |
368 | gray_compute_cbox( RAS_ARG ) |
369 | { |
370 | QT_FT_Outline* outline = &ras.outline; |
371 | QT_FT_Vector* vec = outline->points; |
372 | QT_FT_Vector* limit = vec + outline->n_points; |
373 | |
374 | |
375 | if ( outline->n_points <= 0 ) |
376 | { |
377 | ras.min_ex = ras.max_ex = 0; |
378 | ras.min_ey = ras.max_ey = 0; |
379 | return; |
380 | } |
381 | |
382 | ras.min_ex = ras.max_ex = vec->x; |
383 | ras.min_ey = ras.max_ey = vec->y; |
384 | |
385 | vec++; |
386 | |
387 | for ( ; vec < limit; vec++ ) |
388 | { |
389 | TPos x = vec->x; |
390 | TPos y = vec->y; |
391 | |
392 | |
393 | if ( x < ras.min_ex ) ras.min_ex = x; |
394 | if ( x > ras.max_ex ) ras.max_ex = x; |
395 | if ( y < ras.min_ey ) ras.min_ey = y; |
396 | if ( y > ras.max_ey ) ras.max_ey = y; |
397 | } |
398 | |
399 | /* truncate the bounding box to integer pixels */ |
400 | ras.min_ex = ras.min_ex >> 6; |
401 | ras.min_ey = ras.min_ey >> 6; |
402 | ras.max_ex = ( ras.max_ex + 63 ) >> 6; |
403 | ras.max_ey = ( ras.max_ey + 63 ) >> 6; |
404 | } |
405 | |
406 | |
407 | /*************************************************************************/ |
408 | /* */ |
409 | /* Record the current cell in the table. */ |
410 | /* */ |
411 | static PCell |
412 | gray_find_cell( RAS_ARG ) |
413 | { |
414 | PCell *pcell, cell; |
415 | TPos x = ras.ex; |
416 | |
417 | |
418 | if ( x > ras.count_ex ) |
419 | x = ras.count_ex; |
420 | |
421 | pcell = &ras.ycells[ras.ey]; |
422 | for (;;) |
423 | { |
424 | cell = *pcell; |
425 | if ( cell == NULL || cell->x > x ) |
426 | break; |
427 | |
428 | if ( cell->x == x ) |
429 | goto Exit; |
430 | |
431 | pcell = &cell->next; |
432 | } |
433 | |
434 | if ( ras.num_cells >= ras.max_cells ) |
435 | qt_ft_longjmp( ras.jump_buffer, 1 ); |
436 | |
437 | cell = ras.cells + ras.num_cells++; |
438 | cell->x = x; |
439 | cell->area = 0; |
440 | cell->cover = 0; |
441 | |
442 | cell->next = *pcell; |
443 | *pcell = cell; |
444 | |
445 | Exit: |
446 | return cell; |
447 | } |
448 | |
449 | |
450 | static void |
451 | gray_record_cell( RAS_ARG ) |
452 | { |
453 | if ( ras.area | ras.cover ) |
454 | { |
455 | PCell cell = gray_find_cell( RAS_VAR ); |
456 | |
457 | |
458 | cell->area += ras.area; |
459 | cell->cover += ras.cover; |
460 | } |
461 | } |
462 | |
463 | |
464 | /*************************************************************************/ |
465 | /* */ |
466 | /* Set the current cell to a new position. */ |
467 | /* */ |
468 | static void |
469 | gray_set_cell( RAS_ARG_ TCoord ex, |
470 | TCoord ey ) |
471 | { |
472 | /* Move the cell pointer to a new position. We set the `invalid' */ |
473 | /* flag to indicate that the cell isn't part of those we're interested */ |
474 | /* in during the render phase. This means that: */ |
475 | /* */ |
476 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
477 | /* . the new horizontal position must be strictly less than max_ex */ |
478 | /* */ |
479 | /* Note that if a cell is to the left of the clipping region, it is */ |
480 | /* actually set to the (min_ex-1) horizontal position. */ |
481 | |
482 | /* All cells that are on the left of the clipping region go to the */ |
483 | /* min_ex - 1 horizontal position. */ |
484 | ey -= ras.min_ey; |
485 | |
486 | if ( ex > ras.max_ex ) |
487 | ex = ras.max_ex; |
488 | |
489 | ex -= ras.min_ex; |
490 | if ( ex < 0 ) |
491 | ex = -1; |
492 | |
493 | /* are we moving to a different cell ? */ |
494 | if ( ex != ras.ex || ey != ras.ey ) |
495 | { |
496 | /* record the current one if it is valid */ |
497 | if ( !ras.invalid ) |
498 | gray_record_cell( RAS_VAR ); |
499 | |
500 | ras.area = 0; |
501 | ras.cover = 0; |
502 | ras.ex = ex; |
503 | ras.ey = ey; |
504 | } |
505 | |
506 | ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey || |
507 | ex >= ras.count_ex ); |
508 | } |
509 | |
510 | |
511 | /*************************************************************************/ |
512 | /* */ |
513 | /* Start a new contour at a given cell. */ |
514 | /* */ |
515 | static void |
516 | gray_start_cell( RAS_ARG_ TCoord ex, |
517 | TCoord ey ) |
518 | { |
519 | if ( ex > ras.max_ex ) |
520 | ex = (TCoord)( ras.max_ex ); |
521 | |
522 | if ( ex < ras.min_ex ) |
523 | ex = (TCoord)( ras.min_ex - 1 ); |
524 | |
525 | ras.area = 0; |
526 | ras.cover = 0; |
527 | ras.ex = ex - ras.min_ex; |
528 | ras.ey = ey - ras.min_ey; |
529 | ras.invalid = 0; |
530 | |
531 | gray_set_cell( RAS_VAR_ ex, ey ); |
532 | } |
533 | |
534 | // The new render-line implementation is not yet used |
535 | #if 1 |
536 | |
537 | /*************************************************************************/ |
538 | /* */ |
539 | /* Render a scanline as one or more cells. */ |
540 | /* */ |
541 | static void |
542 | gray_render_scanline( RAS_ARG_ TCoord ey, |
543 | TPos x1, |
544 | TCoord y1, |
545 | TPos x2, |
546 | TCoord y2 ) |
547 | { |
548 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
549 | TPos p, dx; |
550 | int incr; |
551 | |
552 | |
553 | ex1 = TRUNC( x1 ); |
554 | ex2 = TRUNC( x2 ); |
555 | |
556 | /* trivial case. Happens often */ |
557 | if ( y1 == y2 ) |
558 | { |
559 | gray_set_cell( RAS_VAR_ ex2, ey ); |
560 | return; |
561 | } |
562 | |
563 | fx1 = FRACT( x1 ); |
564 | fx2 = FRACT( x2 ); |
565 | |
566 | /* everything is located in a single cell. That is easy! */ |
567 | /* */ |
568 | if ( ex1 == ex2 ) |
569 | goto End; |
570 | |
571 | /* ok, we'll have to render a run of adjacent cells on the same */ |
572 | /* scanline... */ |
573 | /* */ |
574 | dx = x2 - x1; |
575 | dy = y2 - y1; |
576 | |
577 | if ( dx > 0 ) |
578 | { |
579 | p = ( ONE_PIXEL - fx1 ) * dy; |
580 | first = ONE_PIXEL; |
581 | incr = 1; |
582 | } else { |
583 | p = fx1 * dy; |
584 | first = 0; |
585 | incr = -1; |
586 | dx = -dx; |
587 | } |
588 | |
589 | QT_FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
590 | |
591 | ras.area += (TArea)( fx1 + first ) * delta; |
592 | ras.cover += delta; |
593 | y1 += delta; |
594 | ex1 += incr; |
595 | gray_set_cell( RAS_VAR_ ex1, ey ); |
596 | |
597 | if ( ex1 != ex2 ) |
598 | { |
599 | TCoord lift, rem; |
600 | |
601 | |
602 | p = ONE_PIXEL * dy; |
603 | QT_FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
604 | |
605 | do |
606 | { |
607 | delta = lift; |
608 | mod += rem; |
609 | if ( mod >= (TCoord)dx ) |
610 | { |
611 | mod -= (TCoord)dx; |
612 | delta++; |
613 | } |
614 | |
615 | ras.area += (TArea)( ONE_PIXEL * delta ); |
616 | ras.cover += delta; |
617 | y1 += delta; |
618 | ex1 += incr; |
619 | gray_set_cell( RAS_VAR_ ex1, ey ); |
620 | } while ( ex1 != ex2 ); |
621 | } |
622 | fx1 = ONE_PIXEL - first; |
623 | |
624 | End: |
625 | dy = y2 - y1; |
626 | |
627 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
628 | ras.cover += dy; |
629 | } |
630 | |
631 | |
632 | /*************************************************************************/ |
633 | /* */ |
634 | /* Render a given line as a series of scanlines. */ |
635 | /* */ |
636 | static void |
637 | gray_render_line( RAS_ARG_ TPos to_x, |
638 | TPos to_y ) |
639 | { |
640 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
641 | TPos p, dx, dy, x, x2; |
642 | int incr; |
643 | |
644 | ey1 = TRUNC( ras.y ); |
645 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
646 | |
647 | /* perform vertical clipping */ |
648 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
649 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
650 | goto End; |
651 | |
652 | fy1 = FRACT( ras.y ); |
653 | fy2 = FRACT( to_y ); |
654 | |
655 | /* everything is on a single scanline */ |
656 | if ( ey1 == ey2 ) |
657 | { |
658 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); |
659 | goto End; |
660 | } |
661 | |
662 | dx = to_x - ras.x; |
663 | dy = to_y - ras.y; |
664 | |
665 | /* vertical line - avoid calling gray_render_scanline */ |
666 | if ( dx == 0 ) |
667 | { |
668 | TCoord ex = TRUNC( ras.x ); |
669 | TCoord two_fx = FRACT( ras.x ) << 1; |
670 | TPos area, max_ey1; |
671 | |
672 | |
673 | if ( dy > 0) |
674 | { |
675 | first = ONE_PIXEL; |
676 | } |
677 | else |
678 | { |
679 | first = 0; |
680 | } |
681 | |
682 | delta = first - fy1; |
683 | ras.area += (TArea)two_fx * delta; |
684 | ras.cover += delta; |
685 | |
686 | delta = first + first - ONE_PIXEL; |
687 | area = (TArea)two_fx * delta; |
688 | max_ey1 = ras.count_ey + ras.min_ey; |
689 | if (dy < 0) { |
690 | if (ey1 > max_ey1) { |
691 | ey1 = (max_ey1 > ey2) ? max_ey1 : ey2; |
692 | gray_set_cell( &ras, ex, ey1 ); |
693 | } else { |
694 | ey1--; |
695 | gray_set_cell( &ras, ex, ey1 ); |
696 | } |
697 | while ( ey1 > ey2 && ey1 >= ras.min_ey) |
698 | { |
699 | ras.area += area; |
700 | ras.cover += delta; |
701 | ey1--; |
702 | |
703 | gray_set_cell( &ras, ex, ey1 ); |
704 | } |
705 | if (ey1 != ey2) { |
706 | ey1 = ey2; |
707 | gray_set_cell( &ras, ex, ey1 ); |
708 | } |
709 | } else { |
710 | if (ey1 < ras.min_ey) { |
711 | ey1 = (ras.min_ey < ey2) ? ras.min_ey : ey2; |
712 | gray_set_cell( &ras, ex, ey1 ); |
713 | } else { |
714 | ey1++; |
715 | gray_set_cell( &ras, ex, ey1 ); |
716 | } |
717 | while ( ey1 < ey2 && ey1 < max_ey1) |
718 | { |
719 | ras.area += area; |
720 | ras.cover += delta; |
721 | ey1++; |
722 | |
723 | gray_set_cell( &ras, ex, ey1 ); |
724 | } |
725 | if (ey1 != ey2) { |
726 | ey1 = ey2; |
727 | gray_set_cell( &ras, ex, ey1 ); |
728 | } |
729 | } |
730 | |
731 | delta = (int)( fy2 - ONE_PIXEL + first ); |
732 | ras.area += (TArea)two_fx * delta; |
733 | ras.cover += delta; |
734 | |
735 | goto End; |
736 | } |
737 | |
738 | /* ok, we have to render several scanlines */ |
739 | if ( dy > 0) |
740 | { |
741 | p = ( ONE_PIXEL - fy1 ) * dx; |
742 | first = ONE_PIXEL; |
743 | incr = 1; |
744 | } |
745 | else |
746 | { |
747 | p = fy1 * dx; |
748 | first = 0; |
749 | incr = -1; |
750 | dy = -dy; |
751 | } |
752 | |
753 | /* the fractional part of x-delta is mod/dy. It is essential to */ |
754 | /* keep track of its accumulation for accurate rendering. */ |
755 | QT_FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
756 | |
757 | x = ras.x + delta; |
758 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first ); |
759 | |
760 | ey1 += incr; |
761 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
762 | |
763 | if ( ey1 != ey2 ) |
764 | { |
765 | TCoord lift, rem; |
766 | |
767 | |
768 | p = ONE_PIXEL * dx; |
769 | QT_FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
770 | |
771 | do |
772 | { |
773 | delta = lift; |
774 | mod += rem; |
775 | if ( mod >= (TCoord)dy ) |
776 | { |
777 | mod -= (TCoord)dy; |
778 | delta++; |
779 | } |
780 | |
781 | x2 = x + delta; |
782 | gray_render_scanline( RAS_VAR_ ey1, |
783 | x, ONE_PIXEL - first, |
784 | x2, first ); |
785 | x = x2; |
786 | |
787 | ey1 += incr; |
788 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
789 | } while ( ey1 != ey2 ); |
790 | } |
791 | |
792 | gray_render_scanline( RAS_VAR_ ey1, |
793 | x, ONE_PIXEL - first, |
794 | to_x, fy2 ); |
795 | |
796 | End: |
797 | ras.x = to_x; |
798 | ras.y = to_y; |
799 | } |
800 | |
801 | |
802 | #else |
803 | |
804 | /*************************************************************************/ |
805 | /* */ |
806 | /* Render a straight line across multiple cells in any direction. */ |
807 | /* */ |
808 | static void |
809 | gray_render_line( RAS_ARG_ TPos to_x, |
810 | TPos to_y ) |
811 | { |
812 | TPos dx, dy, fx1, fy1, fx2, fy2; |
813 | TCoord ex1, ex2, ey1, ey2; |
814 | |
815 | |
816 | ex1 = TRUNC( ras.x ); |
817 | ex2 = TRUNC( to_x ); |
818 | ey1 = TRUNC( ras.y ); |
819 | ey2 = TRUNC( to_y ); |
820 | |
821 | /* perform vertical clipping */ |
822 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
823 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
824 | goto End; |
825 | |
826 | dx = to_x - ras.x; |
827 | dy = to_y - ras.y; |
828 | |
829 | fx1 = FRACT( ras.x ); |
830 | fy1 = FRACT( ras.y ); |
831 | |
832 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
833 | ; |
834 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
835 | { |
836 | ex1 = ex2; |
837 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
838 | } |
839 | else if ( dx == 0 ) |
840 | { |
841 | if ( dy > 0 ) /* vertical line up */ |
842 | do |
843 | { |
844 | fy2 = ONE_PIXEL; |
845 | ras.cover += ( fy2 - fy1 ); |
846 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
847 | fy1 = 0; |
848 | ey1++; |
849 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
850 | } while ( ey1 != ey2 ); |
851 | else /* vertical line down */ |
852 | do |
853 | { |
854 | fy2 = 0; |
855 | ras.cover += ( fy2 - fy1 ); |
856 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
857 | fy1 = ONE_PIXEL; |
858 | ey1--; |
859 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
860 | } while ( ey1 != ey2 ); |
861 | } |
862 | else /* any other line */ |
863 | { |
864 | TArea prod = dx * fy1 - dy * fx1; |
865 | QT_FT_UDIVPREP( dx ); |
866 | QT_FT_UDIVPREP( dy ); |
867 | |
868 | |
869 | /* The fundamental value `prod' determines which side and the */ |
870 | /* exact coordinate where the line exits current cell. It is */ |
871 | /* also easily updated when moving from one cell to the next. */ |
872 | do |
873 | { |
874 | if ( prod <= 0 && |
875 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
876 | { |
877 | fx2 = 0; |
878 | fy2 = (TPos)QT_FT_UDIV( -prod, -dx ); |
879 | prod -= dy * ONE_PIXEL; |
880 | ras.cover += ( fy2 - fy1 ); |
881 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
882 | fx1 = ONE_PIXEL; |
883 | fy1 = fy2; |
884 | ex1--; |
885 | } |
886 | else if ( prod - dx * ONE_PIXEL <= 0 && |
887 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
888 | { |
889 | prod -= dx * ONE_PIXEL; |
890 | fx2 = (TPos)QT_FT_UDIV( -prod, dy ); |
891 | fy2 = ONE_PIXEL; |
892 | ras.cover += ( fy2 - fy1 ); |
893 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
894 | fx1 = fx2; |
895 | fy1 = 0; |
896 | ey1++; |
897 | } |
898 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
899 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
900 | { |
901 | prod += dy * ONE_PIXEL; |
902 | fx2 = ONE_PIXEL; |
903 | fy2 = (TPos)QT_FT_UDIV( prod, dx ); |
904 | ras.cover += ( fy2 - fy1 ); |
905 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
906 | fx1 = 0; |
907 | fy1 = fy2; |
908 | ex1++; |
909 | } |
910 | else /* ( prod + dy * ONE_PIXEL < 0 && |
911 | prod > 0 ) down */ |
912 | { |
913 | fx2 = (TPos)QT_FT_UDIV( prod, -dy ); |
914 | fy2 = 0; |
915 | prod += dx * ONE_PIXEL; |
916 | ras.cover += ( fy2 - fy1 ); |
917 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
918 | fx1 = fx2; |
919 | fy1 = ONE_PIXEL; |
920 | ey1--; |
921 | } |
922 | |
923 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
924 | } while ( ex1 != ex2 || ey1 != ey2 ); |
925 | } |
926 | |
927 | fx2 = FRACT( to_x ); |
928 | fy2 = FRACT( to_y ); |
929 | |
930 | ras.cover += ( fy2 - fy1 ); |
931 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
932 | |
933 | End: |
934 | ras.x = to_x; |
935 | ras.y = to_y; |
936 | } |
937 | |
938 | #endif |
939 | |
940 | static void |
941 | gray_split_conic( QT_FT_Vector* base ) |
942 | { |
943 | TPos a, b; |
944 | |
945 | |
946 | base[4].x = base[2].x; |
947 | b = base[1].x; |
948 | a = base[3].x = ( base[2].x + b ) / 2; |
949 | b = base[1].x = ( base[0].x + b ) / 2; |
950 | base[2].x = ( a + b ) / 2; |
951 | |
952 | base[4].y = base[2].y; |
953 | b = base[1].y; |
954 | a = base[3].y = ( base[2].y + b ) / 2; |
955 | b = base[1].y = ( base[0].y + b ) / 2; |
956 | base[2].y = ( a + b ) / 2; |
957 | } |
958 | |
959 | |
960 | static void |
961 | gray_render_conic( RAS_ARG_ const QT_FT_Vector* control, |
962 | const QT_FT_Vector* to ) |
963 | { |
964 | QT_FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
965 | QT_FT_Vector* arc = bez_stack; |
966 | TPos dx, dy; |
967 | int draw, split; |
968 | |
969 | |
970 | arc[0].x = UPSCALE( to->x ); |
971 | arc[0].y = UPSCALE( to->y ); |
972 | arc[1].x = UPSCALE( control->x ); |
973 | arc[1].y = UPSCALE( control->y ); |
974 | arc[2].x = ras.x; |
975 | arc[2].y = ras.y; |
976 | |
977 | /* short-cut the arc that crosses the current band */ |
978 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
979 | TRUNC( arc[1].y ) >= ras.max_ey && |
980 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
981 | ( TRUNC( arc[0].y ) < ras.min_ey && |
982 | TRUNC( arc[1].y ) < ras.min_ey && |
983 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
984 | { |
985 | ras.x = arc[0].x; |
986 | ras.y = arc[0].y; |
987 | return; |
988 | } |
989 | |
990 | dx = QT_FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
991 | dy = QT_FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
992 | if ( dx < dy ) |
993 | dx = dy; |
994 | |
995 | /* We can calculate the number of necessary bisections because */ |
996 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
997 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
998 | draw = 1; |
999 | while ( dx > ONE_PIXEL / 4 ) |
1000 | { |
1001 | dx >>= 2; |
1002 | draw <<= 1; |
1003 | } |
1004 | |
1005 | /* We use decrement counter to count the total number of segments */ |
1006 | /* to draw starting from 2^level. Before each draw we split as */ |
1007 | /* many times as there are trailing zeros in the counter. */ |
1008 | do |
1009 | { |
1010 | split = 1; |
1011 | while ( ( draw & split ) == 0 ) |
1012 | { |
1013 | gray_split_conic( arc ); |
1014 | arc += 2; |
1015 | split <<= 1; |
1016 | } |
1017 | |
1018 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1019 | arc -= 2; |
1020 | |
1021 | } while ( --draw ); |
1022 | } |
1023 | |
1024 | |
1025 | static void |
1026 | gray_split_cubic( QT_FT_Vector* base ) |
1027 | { |
1028 | TPos a, b, c, d; |
1029 | |
1030 | |
1031 | base[6].x = base[3].x; |
1032 | c = base[1].x; |
1033 | d = base[2].x; |
1034 | base[1].x = a = ( base[0].x + c ) / 2; |
1035 | base[5].x = b = ( base[3].x + d ) / 2; |
1036 | c = ( c + d ) / 2; |
1037 | base[2].x = a = ( a + c ) / 2; |
1038 | base[4].x = b = ( b + c ) / 2; |
1039 | base[3].x = ( a + b ) / 2; |
1040 | |
1041 | base[6].y = base[3].y; |
1042 | c = base[1].y; |
1043 | d = base[2].y; |
1044 | base[1].y = a = ( base[0].y + c ) / 2; |
1045 | base[5].y = b = ( base[3].y + d ) / 2; |
1046 | c = ( c + d ) / 2; |
1047 | base[2].y = a = ( a + c ) / 2; |
1048 | base[4].y = b = ( b + c ) / 2; |
1049 | base[3].y = ( a + b ) / 2; |
1050 | } |
1051 | |
1052 | |
1053 | static void |
1054 | gray_render_cubic( RAS_ARG_ const QT_FT_Vector* control1, |
1055 | const QT_FT_Vector* control2, |
1056 | const QT_FT_Vector* to ) |
1057 | { |
1058 | QT_FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
1059 | QT_FT_Vector* arc = bez_stack; |
1060 | TPos dx, dy, dx_, dy_; |
1061 | TPos dx1, dy1, dx2, dy2; |
1062 | TPos L, s, s_limit; |
1063 | |
1064 | |
1065 | arc[0].x = UPSCALE( to->x ); |
1066 | arc[0].y = UPSCALE( to->y ); |
1067 | arc[1].x = UPSCALE( control2->x ); |
1068 | arc[1].y = UPSCALE( control2->y ); |
1069 | arc[2].x = UPSCALE( control1->x ); |
1070 | arc[2].y = UPSCALE( control1->y ); |
1071 | arc[3].x = ras.x; |
1072 | arc[3].y = ras.y; |
1073 | |
1074 | /* short-cut the arc that crosses the current band */ |
1075 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1076 | TRUNC( arc[1].y ) >= ras.max_ey && |
1077 | TRUNC( arc[2].y ) >= ras.max_ey && |
1078 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
1079 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1080 | TRUNC( arc[1].y ) < ras.min_ey && |
1081 | TRUNC( arc[2].y ) < ras.min_ey && |
1082 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
1083 | { |
1084 | ras.x = arc[0].x; |
1085 | ras.y = arc[0].y; |
1086 | return; |
1087 | } |
1088 | |
1089 | for (;;) |
1090 | { |
1091 | /* Decide whether to split or draw. See `Rapid Termination */ |
1092 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
1093 | /* F. Hain, at */ |
1094 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
1095 | |
1096 | |
1097 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
1098 | dx = dx_ = arc[3].x - arc[0].x; |
1099 | dy = dy_ = arc[3].y - arc[0].y; |
1100 | |
1101 | L = QT_FT_HYPOT( dx_, dy_ ); |
1102 | |
1103 | /* Avoid possible arithmetic overflow below by splitting. */ |
1104 | if ( L > 32767 ) |
1105 | goto Split; |
1106 | |
1107 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
1108 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
1109 | |
1110 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
1111 | dx1 = arc[1].x - arc[0].x; |
1112 | dy1 = arc[1].y - arc[0].y; |
1113 | s = QT_FT_ABS( dy * dx1 - dx * dy1 ); |
1114 | |
1115 | if ( s > s_limit ) |
1116 | goto Split; |
1117 | |
1118 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
1119 | dx2 = arc[2].x - arc[0].x; |
1120 | dy2 = arc[2].y - arc[0].y; |
1121 | s = QT_FT_ABS( dy * dx2 - dx * dy2 ); |
1122 | |
1123 | if ( s > s_limit ) |
1124 | goto Split; |
1125 | |
1126 | /* Split super curvy segments where the off points are so far |
1127 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
1128 | acute as detected by appropriate dot products. */ |
1129 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
1130 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
1131 | goto Split; |
1132 | |
1133 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1134 | |
1135 | if ( arc == bez_stack ) |
1136 | return; |
1137 | |
1138 | arc -= 3; |
1139 | continue; |
1140 | |
1141 | Split: |
1142 | gray_split_cubic( arc ); |
1143 | arc += 3; |
1144 | } |
1145 | } |
1146 | |
1147 | |
1148 | |
1149 | static int |
1150 | gray_move_to( const QT_FT_Vector* to, |
1151 | PWorker worker ) |
1152 | { |
1153 | TPos x, y; |
1154 | |
1155 | |
1156 | /* record current cell, if any */ |
1157 | if ( !ras.invalid ) |
1158 | gray_record_cell( worker ); |
1159 | |
1160 | /* start to a new position */ |
1161 | x = UPSCALE( to->x ); |
1162 | y = UPSCALE( to->y ); |
1163 | |
1164 | gray_start_cell( worker, TRUNC( x ), TRUNC( y ) ); |
1165 | |
1166 | ras.x = x; |
1167 | ras.y = y; |
1168 | return 0; |
1169 | } |
1170 | |
1171 | static void |
1172 | gray_render_span( int count, |
1173 | const QT_FT_Span* spans, |
1174 | PWorker worker ) |
1175 | { |
1176 | unsigned char* p; |
1177 | QT_FT_Bitmap* map = &worker->target; |
1178 | |
1179 | for ( ; count > 0; count--, spans++ ) |
1180 | { |
1181 | unsigned char coverage = spans->coverage; |
1182 | |
1183 | /* first of all, compute the scanline offset */ |
1184 | p = (unsigned char*)map->buffer - spans->y * map->pitch; |
1185 | if ( map->pitch >= 0 ) |
1186 | p += ( map->rows - 1 ) * (unsigned int)map->pitch; |
1187 | |
1188 | |
1189 | if ( coverage ) |
1190 | { |
1191 | unsigned char* q = p + spans->x; |
1192 | |
1193 | |
1194 | /* For small-spans it is faster to do it by ourselves than |
1195 | * calling `memset'. This is mainly due to the cost of the |
1196 | * function call. |
1197 | */ |
1198 | switch ( spans->len ) |
1199 | { |
1200 | case 7: *q++ = coverage; Q_FALLTHROUGH(); |
1201 | case 6: *q++ = coverage; Q_FALLTHROUGH(); |
1202 | case 5: *q++ = coverage; Q_FALLTHROUGH(); |
1203 | case 4: *q++ = coverage; Q_FALLTHROUGH(); |
1204 | case 3: *q++ = coverage; Q_FALLTHROUGH(); |
1205 | case 2: *q++ = coverage; Q_FALLTHROUGH(); |
1206 | case 1: *q = coverage; Q_FALLTHROUGH(); |
1207 | case 0: break; |
1208 | default: |
1209 | QT_FT_MEM_SET( q, coverage, spans->len ); |
1210 | } |
1211 | } |
1212 | } |
1213 | } |
1214 | |
1215 | |
1216 | static void |
1217 | gray_hline( RAS_ARG_ TCoord x, |
1218 | TCoord y, |
1219 | TPos area, |
1220 | int acount ) |
1221 | { |
1222 | int coverage; |
1223 | |
1224 | |
1225 | /* compute the coverage line's coverage, depending on the */ |
1226 | /* outline fill rule */ |
1227 | /* */ |
1228 | /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ |
1229 | /* */ |
1230 | coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); |
1231 | /* use range 0..256 */ |
1232 | if ( coverage < 0 ) |
1233 | coverage = -coverage; |
1234 | |
1235 | if ( ras.outline.flags & QT_FT_OUTLINE_EVEN_ODD_FILL ) |
1236 | { |
1237 | coverage &= 511; |
1238 | |
1239 | if ( coverage > 256 ) |
1240 | coverage = 512 - coverage; |
1241 | else if ( coverage == 256 ) |
1242 | coverage = 255; |
1243 | } |
1244 | else |
1245 | { |
1246 | /* normal non-zero winding rule */ |
1247 | if ( coverage >= 256 ) |
1248 | coverage = 255; |
1249 | } |
1250 | |
1251 | y += (TCoord)ras.min_ey; |
1252 | x += (TCoord)ras.min_ex; |
1253 | |
1254 | /* QT_FT_Span.x is a 16-bit short, so limit our coordinates appropriately */ |
1255 | if ( x >= 32767 ) |
1256 | x = 32767; |
1257 | |
1258 | /* QT_FT_Span.y is a 16-bit short, so limit our coordinates appropriately */ |
1259 | if ( y >= 32767 ) |
1260 | y = 32767; |
1261 | |
1262 | if ( coverage ) |
1263 | { |
1264 | QT_FT_Span* span; |
1265 | int count; |
1266 | int skip; |
1267 | |
1268 | |
1269 | /* see whether we can add this span to the current list */ |
1270 | count = ras.num_gray_spans; |
1271 | span = ras.gray_spans + count - 1; |
1272 | if ( count > 0 && |
1273 | span->y == y && |
1274 | (int)span->x + span->len == (int)x && |
1275 | span->coverage == coverage ) |
1276 | { |
1277 | span->len = (unsigned short)( span->len + acount ); |
1278 | return; |
1279 | } |
1280 | |
1281 | if ( count >= QT_FT_MAX_GRAY_SPANS ) |
1282 | { |
1283 | if ( ras.render_span && count > ras.skip_spans ) |
1284 | { |
1285 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1286 | ras.render_span( ras.num_gray_spans - skip, |
1287 | ras.gray_spans + skip, |
1288 | ras.render_span_data ); |
1289 | } |
1290 | |
1291 | ras.skip_spans -= ras.num_gray_spans; |
1292 | |
1293 | /* ras.render_span( span->y, ras.gray_spans, count ); */ |
1294 | |
1295 | #ifdef DEBUG_GRAYS |
1296 | |
1297 | if ( 1 ) |
1298 | { |
1299 | int n; |
1300 | |
1301 | |
1302 | fprintf( stderr, "y=%3d " , y ); |
1303 | span = ras.gray_spans; |
1304 | for ( n = 0; n < count; n++, span++ ) |
1305 | fprintf( stderr, "[%d..%d]:%02x " , |
1306 | span->x, span->x + span->len - 1, span->coverage ); |
1307 | fprintf( stderr, "\n" ); |
1308 | } |
1309 | |
1310 | #endif /* DEBUG_GRAYS */ |
1311 | |
1312 | ras.num_gray_spans = 0; |
1313 | |
1314 | span = ras.gray_spans; |
1315 | } |
1316 | else |
1317 | span++; |
1318 | |
1319 | /* add a gray span to the current list */ |
1320 | span->x = (short)x; |
1321 | span->len = (unsigned short)acount; |
1322 | span->y = (short)y; |
1323 | span->coverage = (unsigned char)coverage; |
1324 | |
1325 | ras.num_gray_spans++; |
1326 | } |
1327 | } |
1328 | |
1329 | |
1330 | #ifdef DEBUG_GRAYS |
1331 | |
1332 | /* to be called while in the debugger */ |
1333 | gray_dump_cells( RAS_ARG ) |
1334 | { |
1335 | int yindex; |
1336 | |
1337 | |
1338 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1339 | { |
1340 | PCell cell; |
1341 | |
1342 | |
1343 | printf( "%3d:" , yindex ); |
1344 | |
1345 | for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next ) |
1346 | printf( " (%3d, c:%4d, a:%6d)" , cell->x, cell->cover, cell->area ); |
1347 | printf( "\n" ); |
1348 | } |
1349 | } |
1350 | |
1351 | #endif /* DEBUG_GRAYS */ |
1352 | |
1353 | |
1354 | static void |
1355 | gray_sweep( RAS_ARG_ const QT_FT_Bitmap* target ) |
1356 | { |
1357 | int yindex; |
1358 | |
1359 | QT_FT_UNUSED( target ); |
1360 | |
1361 | |
1362 | if ( ras.num_cells == 0 ) |
1363 | return; |
1364 | |
1365 | QT_FT_TRACE7(( "gray_sweep: start\n" )); |
1366 | |
1367 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1368 | { |
1369 | PCell cell = ras.ycells[yindex]; |
1370 | TCoord cover = 0; |
1371 | TCoord x = 0; |
1372 | |
1373 | |
1374 | for ( ; cell != NULL; cell = cell->next ) |
1375 | { |
1376 | TArea area; |
1377 | |
1378 | |
1379 | if ( cell->x > x && cover != 0 ) |
1380 | gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ), |
1381 | cell->x - x ); |
1382 | |
1383 | cover += cell->cover; |
1384 | area = cover * ( ONE_PIXEL * 2 ) - cell->area; |
1385 | |
1386 | if ( area != 0 && cell->x >= 0 ) |
1387 | gray_hline( RAS_VAR_ cell->x, yindex, area, 1 ); |
1388 | |
1389 | x = cell->x + 1; |
1390 | } |
1391 | |
1392 | if ( ras.count_ex > x && cover != 0 ) |
1393 | gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ), |
1394 | ras.count_ex - x ); |
1395 | } |
1396 | |
1397 | QT_FT_TRACE7(( "gray_sweep: end\n" )); |
1398 | } |
1399 | |
1400 | /*************************************************************************/ |
1401 | /* */ |
1402 | /* The following function should only compile in stand_alone mode, */ |
1403 | /* i.e., when building this component without the rest of FreeType. */ |
1404 | /* */ |
1405 | /*************************************************************************/ |
1406 | |
1407 | /*************************************************************************/ |
1408 | /* */ |
1409 | /* <Function> */ |
1410 | /* QT_FT_Outline_Decompose */ |
1411 | /* */ |
1412 | /* <Description> */ |
1413 | /* Walks over an outline's structure to decompose it into individual */ |
1414 | /* segments and Bezier arcs. This function is also able to emit */ |
1415 | /* `move to' and `close to' operations to indicate the start and end */ |
1416 | /* of new contours in the outline. */ |
1417 | /* */ |
1418 | /* <Input> */ |
1419 | /* outline :: A pointer to the source target. */ |
1420 | /* */ |
1421 | /* user :: A typeless pointer which is passed to each */ |
1422 | /* emitter during the decomposition. It can be */ |
1423 | /* used to store the state during the */ |
1424 | /* decomposition. */ |
1425 | /* */ |
1426 | /* <Return> */ |
1427 | /* Error code. 0 means success. */ |
1428 | /* */ |
1429 | static |
1430 | int QT_FT_Outline_Decompose( const QT_FT_Outline* outline, |
1431 | void* user ) |
1432 | { |
1433 | #undef SCALED |
1434 | #define SCALED( x ) (x) |
1435 | |
1436 | QT_FT_Vector v_last; |
1437 | QT_FT_Vector v_control; |
1438 | QT_FT_Vector v_start; |
1439 | |
1440 | QT_FT_Vector* point; |
1441 | QT_FT_Vector* limit; |
1442 | char* tags; |
1443 | |
1444 | int n; /* index of contour in outline */ |
1445 | int first; /* index of first point in contour */ |
1446 | int error; |
1447 | char tag; /* current point's state */ |
1448 | |
1449 | if ( !outline ) |
1450 | return ErrRaster_Invalid_Outline; |
1451 | |
1452 | first = 0; |
1453 | |
1454 | for ( n = 0; n < outline->n_contours; n++ ) |
1455 | { |
1456 | int last; /* index of last point in contour */ |
1457 | |
1458 | |
1459 | last = outline->contours[n]; |
1460 | if ( last < 0 ) |
1461 | goto Invalid_Outline; |
1462 | limit = outline->points + last; |
1463 | |
1464 | v_start = outline->points[first]; |
1465 | v_start.x = SCALED( v_start.x ); |
1466 | v_start.y = SCALED( v_start.y ); |
1467 | |
1468 | v_last = outline->points[last]; |
1469 | v_last.x = SCALED( v_last.x ); |
1470 | v_last.y = SCALED( v_last.y ); |
1471 | |
1472 | v_control = v_start; |
1473 | |
1474 | point = outline->points + first; |
1475 | tags = outline->tags + first; |
1476 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1477 | |
1478 | /* A contour cannot start with a cubic control point! */ |
1479 | if ( tag == QT_FT_CURVE_TAG_CUBIC ) |
1480 | goto Invalid_Outline; |
1481 | |
1482 | /* check first point to determine origin */ |
1483 | if ( tag == QT_FT_CURVE_TAG_CONIC ) |
1484 | { |
1485 | /* first point is conic control. Yes, this happens. */ |
1486 | if ( QT_FT_CURVE_TAG( outline->tags[last] ) == QT_FT_CURVE_TAG_ON ) |
1487 | { |
1488 | /* start at last point if it is on the curve */ |
1489 | v_start = v_last; |
1490 | limit--; |
1491 | } |
1492 | else |
1493 | { |
1494 | /* if both first and last points are conic, */ |
1495 | /* start at their middle and record its position */ |
1496 | /* for closure */ |
1497 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1498 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1499 | |
1500 | v_last = v_start; |
1501 | } |
1502 | point--; |
1503 | tags--; |
1504 | } |
1505 | |
1506 | QT_FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
1507 | v_start.x / 64.0, v_start.y / 64.0 )); |
1508 | error = gray_move_to( &v_start, user ); |
1509 | if ( error ) |
1510 | goto Exit; |
1511 | |
1512 | while ( point < limit ) |
1513 | { |
1514 | point++; |
1515 | tags++; |
1516 | |
1517 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1518 | switch ( tag ) |
1519 | { |
1520 | case QT_FT_CURVE_TAG_ON: /* emit a single line_to */ |
1521 | { |
1522 | QT_FT_Vector vec; |
1523 | |
1524 | |
1525 | vec.x = SCALED( point->x ); |
1526 | vec.y = SCALED( point->y ); |
1527 | |
1528 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1529 | vec.x / 64.0, vec.y / 64.0 )); |
1530 | gray_render_line(user, UPSCALE(vec.x), UPSCALE(vec.y)); |
1531 | continue; |
1532 | } |
1533 | |
1534 | case QT_FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1535 | { |
1536 | v_control.x = SCALED( point->x ); |
1537 | v_control.y = SCALED( point->y ); |
1538 | |
1539 | Do_Conic: |
1540 | if ( point < limit ) |
1541 | { |
1542 | QT_FT_Vector vec; |
1543 | QT_FT_Vector v_middle; |
1544 | |
1545 | |
1546 | point++; |
1547 | tags++; |
1548 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1549 | |
1550 | vec.x = SCALED( point->x ); |
1551 | vec.y = SCALED( point->y ); |
1552 | |
1553 | if ( tag == QT_FT_CURVE_TAG_ON ) |
1554 | { |
1555 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1556 | " with control (%.2f, %.2f)\n" , |
1557 | vec.x / 64.0, vec.y / 64.0, |
1558 | v_control.x / 64.0, v_control.y / 64.0 )); |
1559 | gray_render_conic(user, &v_control, &vec); |
1560 | continue; |
1561 | } |
1562 | |
1563 | if ( tag != QT_FT_CURVE_TAG_CONIC ) |
1564 | goto Invalid_Outline; |
1565 | |
1566 | v_middle.x = ( v_control.x + vec.x ) / 2; |
1567 | v_middle.y = ( v_control.y + vec.y ) / 2; |
1568 | |
1569 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1570 | " with control (%.2f, %.2f)\n" , |
1571 | v_middle.x / 64.0, v_middle.y / 64.0, |
1572 | v_control.x / 64.0, v_control.y / 64.0 )); |
1573 | gray_render_conic(user, &v_control, &v_middle); |
1574 | |
1575 | v_control = vec; |
1576 | goto Do_Conic; |
1577 | } |
1578 | |
1579 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1580 | " with control (%.2f, %.2f)\n" , |
1581 | v_start.x / 64.0, v_start.y / 64.0, |
1582 | v_control.x / 64.0, v_control.y / 64.0 )); |
1583 | gray_render_conic(user, &v_control, &v_start); |
1584 | goto Close; |
1585 | } |
1586 | |
1587 | default: /* QT_FT_CURVE_TAG_CUBIC */ |
1588 | { |
1589 | QT_FT_Vector vec1, vec2; |
1590 | |
1591 | |
1592 | if ( point + 1 > limit || |
1593 | QT_FT_CURVE_TAG( tags[1] ) != QT_FT_CURVE_TAG_CUBIC ) |
1594 | goto Invalid_Outline; |
1595 | |
1596 | point += 2; |
1597 | tags += 2; |
1598 | |
1599 | vec1.x = SCALED( point[-2].x ); |
1600 | vec1.y = SCALED( point[-2].y ); |
1601 | |
1602 | vec2.x = SCALED( point[-1].x ); |
1603 | vec2.y = SCALED( point[-1].y ); |
1604 | |
1605 | if ( point <= limit ) |
1606 | { |
1607 | QT_FT_Vector vec; |
1608 | |
1609 | |
1610 | vec.x = SCALED( point->x ); |
1611 | vec.y = SCALED( point->y ); |
1612 | |
1613 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1614 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1615 | vec.x / 64.0, vec.y / 64.0, |
1616 | vec1.x / 64.0, vec1.y / 64.0, |
1617 | vec2.x / 64.0, vec2.y / 64.0 )); |
1618 | gray_render_cubic(user, &vec1, &vec2, &vec); |
1619 | continue; |
1620 | } |
1621 | |
1622 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1623 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1624 | v_start.x / 64.0, v_start.y / 64.0, |
1625 | vec1.x / 64.0, vec1.y / 64.0, |
1626 | vec2.x / 64.0, vec2.y / 64.0 )); |
1627 | gray_render_cubic(user, &vec1, &vec2, &v_start); |
1628 | goto Close; |
1629 | } |
1630 | } |
1631 | } |
1632 | |
1633 | /* close the contour with a line segment */ |
1634 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1635 | v_start.x / 64.0, v_start.y / 64.0 )); |
1636 | gray_render_line(user, UPSCALE(v_start.x), UPSCALE(v_start.y)); |
1637 | |
1638 | Close: |
1639 | first = last + 1; |
1640 | } |
1641 | |
1642 | QT_FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
1643 | return 0; |
1644 | |
1645 | Exit: |
1646 | QT_FT_TRACE5(( "FT_Outline_Decompose: Error %d\n" , error )); |
1647 | return error; |
1648 | |
1649 | Invalid_Outline: |
1650 | return ErrRaster_Invalid_Outline; |
1651 | } |
1652 | |
1653 | typedef struct TBand_ |
1654 | { |
1655 | TPos min, max; |
1656 | |
1657 | } TBand; |
1658 | |
1659 | static int |
1660 | gray_convert_glyph_inner( RAS_ARG ) |
1661 | { |
1662 | volatile int error = 0; |
1663 | |
1664 | if ( qt_ft_setjmp( ras.jump_buffer ) == 0 ) |
1665 | { |
1666 | error = QT_FT_Outline_Decompose( &ras.outline, &ras ); |
1667 | if ( !ras.invalid ) |
1668 | gray_record_cell( RAS_VAR ); |
1669 | } |
1670 | else |
1671 | { |
1672 | error = ErrRaster_Memory_Overflow; |
1673 | } |
1674 | |
1675 | return error; |
1676 | } |
1677 | |
1678 | |
1679 | static int |
1680 | gray_convert_glyph( RAS_ARG ) |
1681 | { |
1682 | TBand bands[40]; |
1683 | TBand* volatile band; |
1684 | int volatile n, num_bands; |
1685 | TPos volatile min, max, max_y; |
1686 | QT_FT_BBox* clip; |
1687 | int skip; |
1688 | |
1689 | ras.num_gray_spans = 0; |
1690 | |
1691 | /* Set up state in the raster object */ |
1692 | gray_compute_cbox( RAS_VAR ); |
1693 | |
1694 | /* clip to target bitmap, exit if nothing to do */ |
1695 | clip = &ras.clip_box; |
1696 | |
1697 | if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax || |
1698 | ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax ) |
1699 | return 0; |
1700 | |
1701 | if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin; |
1702 | if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin; |
1703 | |
1704 | if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax; |
1705 | if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax; |
1706 | |
1707 | ras.count_ex = ras.max_ex - ras.min_ex; |
1708 | ras.count_ey = ras.max_ey - ras.min_ey; |
1709 | |
1710 | /* set up vertical bands */ |
1711 | num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size ); |
1712 | if ( num_bands == 0 ) |
1713 | num_bands = 1; |
1714 | if ( num_bands >= 39 ) |
1715 | num_bands = 39; |
1716 | |
1717 | ras.band_shoot = 0; |
1718 | |
1719 | min = ras.min_ey; |
1720 | max_y = ras.max_ey; |
1721 | |
1722 | for ( n = 0; n < num_bands; n++, min = max ) |
1723 | { |
1724 | max = min + ras.band_size; |
1725 | if ( n == num_bands - 1 || max > max_y ) |
1726 | max = max_y; |
1727 | |
1728 | bands[0].min = min; |
1729 | bands[0].max = max; |
1730 | band = bands; |
1731 | |
1732 | while ( band >= bands ) |
1733 | { |
1734 | TPos bottom, top, middle; |
1735 | int error; |
1736 | |
1737 | { |
1738 | PCell cells_max; |
1739 | int yindex; |
1740 | int cell_start, cell_end, cell_mod; |
1741 | |
1742 | |
1743 | ras.ycells = (PCell*)ras.buffer; |
1744 | ras.ycount = band->max - band->min; |
1745 | |
1746 | cell_start = sizeof ( PCell ) * ras.ycount; |
1747 | cell_mod = cell_start % sizeof ( TCell ); |
1748 | if ( cell_mod > 0 ) |
1749 | cell_start += sizeof ( TCell ) - cell_mod; |
1750 | |
1751 | cell_end = ras.buffer_size; |
1752 | cell_end -= cell_end % sizeof( TCell ); |
1753 | |
1754 | cells_max = (PCell)( (char*)ras.buffer + cell_end ); |
1755 | ras.cells = (PCell)( (char*)ras.buffer + cell_start ); |
1756 | if ( ras.cells >= cells_max ) |
1757 | goto ReduceBands; |
1758 | |
1759 | ras.max_cells = (int)(cells_max - ras.cells); |
1760 | if ( ras.max_cells < 2 ) |
1761 | goto ReduceBands; |
1762 | |
1763 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1764 | ras.ycells[yindex] = NULL; |
1765 | } |
1766 | |
1767 | ras.num_cells = 0; |
1768 | ras.invalid = 1; |
1769 | ras.min_ey = band->min; |
1770 | ras.max_ey = band->max; |
1771 | ras.count_ey = band->max - band->min; |
1772 | |
1773 | error = gray_convert_glyph_inner( RAS_VAR ); |
1774 | |
1775 | if ( !error ) |
1776 | { |
1777 | gray_sweep( RAS_VAR_ &ras.target ); |
1778 | band--; |
1779 | continue; |
1780 | } |
1781 | else if ( error != ErrRaster_Memory_Overflow ) |
1782 | return 1; |
1783 | |
1784 | ReduceBands: |
1785 | /* render pool overflow; we will reduce the render band by half */ |
1786 | bottom = band->min; |
1787 | top = band->max; |
1788 | middle = bottom + ( ( top - bottom ) >> 1 ); |
1789 | |
1790 | /* This is too complex for a single scanline; there must */ |
1791 | /* be some problems. */ |
1792 | if ( middle == bottom ) |
1793 | { |
1794 | #ifdef DEBUG_GRAYS |
1795 | fprintf( stderr, "Rotten glyph!\n" ); |
1796 | #endif |
1797 | return ErrRaster_OutOfMemory; |
1798 | } |
1799 | |
1800 | if ( bottom-top >= ras.band_size ) |
1801 | ras.band_shoot++; |
1802 | |
1803 | band[1].min = bottom; |
1804 | band[1].max = middle; |
1805 | band[0].min = middle; |
1806 | band[0].max = top; |
1807 | band++; |
1808 | } |
1809 | } |
1810 | |
1811 | if ( ras.render_span && ras.num_gray_spans > ras.skip_spans ) |
1812 | { |
1813 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1814 | ras.render_span( ras.num_gray_spans - skip, |
1815 | ras.gray_spans + skip, |
1816 | ras.render_span_data ); |
1817 | } |
1818 | |
1819 | ras.skip_spans -= ras.num_gray_spans; |
1820 | |
1821 | if ( ras.band_shoot > 8 && ras.band_size > 16 ) |
1822 | ras.band_size = ras.band_size / 2; |
1823 | |
1824 | return 0; |
1825 | } |
1826 | |
1827 | |
1828 | static int |
1829 | gray_raster_render( QT_FT_Raster raster, |
1830 | const QT_FT_Raster_Params* params ) |
1831 | { |
1832 | const QT_FT_Outline* outline = (const QT_FT_Outline*)params->source; |
1833 | const QT_FT_Bitmap* target_map = params->target; |
1834 | PWorker worker; |
1835 | |
1836 | |
1837 | if ( !raster || !raster->buffer || !raster->buffer_size ) |
1838 | return ErrRaster_Invalid_Argument; |
1839 | |
1840 | if ( raster->worker ) |
1841 | raster->worker->skip_spans = params->skip_spans; |
1842 | |
1843 | /* If raster object and raster buffer are allocated, but */ |
1844 | /* raster size isn't of the minimum size, indicate out of */ |
1845 | /* memory. */ |
1846 | if (raster->buffer_allocated_size < MINIMUM_POOL_SIZE ) |
1847 | return ErrRaster_OutOfMemory; |
1848 | |
1849 | if ( !outline ) |
1850 | return ErrRaster_Invalid_Outline; |
1851 | |
1852 | /* return immediately if the outline is empty */ |
1853 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
1854 | return 0; |
1855 | |
1856 | if ( !outline->contours || !outline->points ) |
1857 | return ErrRaster_Invalid_Outline; |
1858 | |
1859 | if ( outline->n_points != |
1860 | outline->contours[outline->n_contours - 1] + 1 ) |
1861 | return ErrRaster_Invalid_Outline; |
1862 | |
1863 | worker = raster->worker; |
1864 | |
1865 | /* if direct mode is not set, we must have a target bitmap */ |
1866 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1867 | { |
1868 | if ( !target_map ) |
1869 | return ErrRaster_Invalid_Argument; |
1870 | |
1871 | /* nothing to do */ |
1872 | if ( !target_map->width || !target_map->rows ) |
1873 | return 0; |
1874 | |
1875 | if ( !target_map->buffer ) |
1876 | return ErrRaster_Invalid_Argument; |
1877 | } |
1878 | |
1879 | /* this version does not support monochrome rendering */ |
1880 | if ( !( params->flags & QT_FT_RASTER_FLAG_AA ) ) |
1881 | return ErrRaster_Invalid_Mode; |
1882 | |
1883 | /* compute clipping box */ |
1884 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1885 | { |
1886 | /* compute clip box from target pixmap */ |
1887 | ras.clip_box.xMin = 0; |
1888 | ras.clip_box.yMin = 0; |
1889 | ras.clip_box.xMax = target_map->width; |
1890 | ras.clip_box.yMax = target_map->rows; |
1891 | } |
1892 | else if ( params->flags & QT_FT_RASTER_FLAG_CLIP ) |
1893 | { |
1894 | ras.clip_box = params->clip_box; |
1895 | } |
1896 | else |
1897 | { |
1898 | ras.clip_box.xMin = -32768L; |
1899 | ras.clip_box.yMin = -32768L; |
1900 | ras.clip_box.xMax = 32767L; |
1901 | ras.clip_box.yMax = 32767L; |
1902 | } |
1903 | |
1904 | gray_init_cells( worker, raster->buffer, raster->buffer_size ); |
1905 | |
1906 | ras.outline = *outline; |
1907 | ras.num_cells = 0; |
1908 | ras.invalid = 1; |
1909 | ras.band_size = raster->band_size; |
1910 | |
1911 | if ( target_map ) |
1912 | ras.target = *target_map; |
1913 | |
1914 | ras.render_span = (QT_FT_Raster_Span_Func)gray_render_span; |
1915 | ras.render_span_data = &ras; |
1916 | |
1917 | if ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) |
1918 | { |
1919 | ras.render_span = (QT_FT_Raster_Span_Func)params->gray_spans; |
1920 | ras.render_span_data = params->user; |
1921 | } |
1922 | |
1923 | return gray_convert_glyph( worker ); |
1924 | } |
1925 | |
1926 | |
1927 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ |
1928 | /**** a static object. *****/ |
1929 | |
1930 | static int |
1931 | gray_raster_new( QT_FT_Raster* araster ) |
1932 | { |
1933 | *araster = malloc(sizeof(TRaster)); |
1934 | if (!*araster) { |
1935 | *araster = 0; |
1936 | return ErrRaster_Memory_Overflow; |
1937 | } |
1938 | QT_FT_MEM_ZERO(*araster, sizeof(TRaster)); |
1939 | |
1940 | return 0; |
1941 | } |
1942 | |
1943 | |
1944 | static void |
1945 | gray_raster_done( QT_FT_Raster raster ) |
1946 | { |
1947 | free(raster); |
1948 | } |
1949 | |
1950 | |
1951 | static void |
1952 | gray_raster_reset( QT_FT_Raster raster, |
1953 | char* pool_base, |
1954 | long pool_size ) |
1955 | { |
1956 | PRaster rast = (PRaster)raster; |
1957 | |
1958 | if ( raster ) |
1959 | { |
1960 | if ( pool_base && ( pool_size >= MINIMUM_POOL_SIZE ) ) |
1961 | { |
1962 | PWorker worker = (PWorker)pool_base; |
1963 | |
1964 | |
1965 | rast->worker = worker; |
1966 | rast->buffer = pool_base + |
1967 | ( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) & |
1968 | ~( sizeof ( TCell ) - 1 ) ); |
1969 | rast->buffer_size = (long)( ( pool_base + pool_size ) - |
1970 | (char*)rast->buffer ) & |
1971 | ~( sizeof ( TCell ) - 1 ); |
1972 | rast->band_size = (int)( rast->buffer_size / |
1973 | ( sizeof ( TCell ) * 8 ) ); |
1974 | } |
1975 | else if ( pool_base) |
1976 | { /* Case when there is a raster pool allocated, but it */ |
1977 | /* doesn't have the minimum size (and so memory will be reallocated) */ |
1978 | rast->buffer = pool_base; |
1979 | rast->worker = NULL; |
1980 | rast->buffer_size = pool_size; |
1981 | } |
1982 | else |
1983 | { |
1984 | rast->buffer = NULL; |
1985 | rast->buffer_size = 0; |
1986 | rast->worker = NULL; |
1987 | } |
1988 | rast->buffer_allocated_size = pool_size; |
1989 | } |
1990 | } |
1991 | |
1992 | const QT_FT_Raster_Funcs qt_ft_grays_raster = |
1993 | { |
1994 | QT_FT_GLYPH_FORMAT_OUTLINE, |
1995 | |
1996 | (QT_FT_Raster_New_Func) gray_raster_new, |
1997 | (QT_FT_Raster_Reset_Func) gray_raster_reset, |
1998 | (QT_FT_Raster_Set_Mode_Func)0, |
1999 | (QT_FT_Raster_Render_Func) gray_raster_render, |
2000 | (QT_FT_Raster_Done_Func) gray_raster_done |
2001 | }; |
2002 | |
2003 | /* END */ |
2004 | |