1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qpathsimplifier_p.h" |
41 | |
42 | #include <QtCore/qvarlengtharray.h> |
43 | #include <QtCore/qglobal.h> |
44 | #include <QtCore/qpoint.h> |
45 | #include <QtCore/qalgorithms.h> |
46 | |
47 | #include <private/qopengl_p.h> |
48 | #include <private/qrbtree_p.h> |
49 | |
50 | QT_BEGIN_NAMESPACE |
51 | |
52 | #define Q_FIXED_POINT_SCALE 256 |
53 | #define Q_TRIANGULATE_END_OF_POLYGON quint32(-1) |
54 | |
55 | |
56 | |
57 | //============================================================================// |
58 | // QPoint // |
59 | //============================================================================// |
60 | |
61 | inline bool operator < (const QPoint &a, const QPoint &b) |
62 | { |
63 | return a.y() < b.y() || (a.y() == b.y() && a.x() < b.x()); |
64 | } |
65 | |
66 | inline bool operator > (const QPoint &a, const QPoint &b) |
67 | { |
68 | return b < a; |
69 | } |
70 | |
71 | inline bool operator <= (const QPoint &a, const QPoint &b) |
72 | { |
73 | return !(a > b); |
74 | } |
75 | |
76 | inline bool operator >= (const QPoint &a, const QPoint &b) |
77 | { |
78 | return !(a < b); |
79 | } |
80 | |
81 | namespace { |
82 | |
83 | inline int cross(const QPoint &u, const QPoint &v) |
84 | { |
85 | return u.x() * v.y() - u.y() * v.x(); |
86 | } |
87 | |
88 | inline int dot(const QPoint &u, const QPoint &v) |
89 | { |
90 | return u.x() * v.x() + u.y() * v.y(); |
91 | } |
92 | |
93 | //============================================================================// |
94 | // Fraction // |
95 | //============================================================================// |
96 | |
97 | // Fraction must be in the range [0, 1) |
98 | struct Fraction |
99 | { |
100 | bool isValid() const { return denominator != 0; } |
101 | |
102 | // numerator and denominator must not have common denominators. |
103 | unsigned int numerator, denominator; |
104 | }; |
105 | |
106 | inline unsigned int gcd(unsigned int x, unsigned int y) |
107 | { |
108 | while (y != 0) { |
109 | unsigned int z = y; |
110 | y = x % y; |
111 | x = z; |
112 | } |
113 | return x; |
114 | } |
115 | |
116 | // Fraction must be in the range [0, 1) |
117 | // Assume input is valid. |
118 | Fraction fraction(unsigned int n, unsigned int d) { |
119 | Fraction result; |
120 | if (n == 0) { |
121 | result.numerator = 0; |
122 | result.denominator = 1; |
123 | } else { |
124 | unsigned int g = gcd(n, d); |
125 | result.numerator = n / g; |
126 | result.denominator = d / g; |
127 | } |
128 | return result; |
129 | } |
130 | |
131 | //============================================================================// |
132 | // Rational // |
133 | //============================================================================// |
134 | |
135 | struct Rational |
136 | { |
137 | int integer; |
138 | Fraction fraction; |
139 | }; |
140 | |
141 | //============================================================================// |
142 | // IntersectionPoint // |
143 | //============================================================================// |
144 | |
145 | struct IntersectionPoint |
146 | { |
147 | bool isValid() const { return x.fraction.isValid() && y.fraction.isValid(); } |
148 | QPoint round() const; |
149 | bool isAccurate() const { return x.fraction.numerator == 0 && y.fraction.numerator == 0; } |
150 | |
151 | Rational x; // 8:8 signed, 32/32 |
152 | Rational y; // 8:8 signed, 32/32 |
153 | }; |
154 | |
155 | QPoint IntersectionPoint::round() const |
156 | { |
157 | QPoint result(x.integer, y.integer); |
158 | if (2 * x.fraction.numerator >= x.fraction.denominator) |
159 | ++result.rx(); |
160 | if (2 * y.fraction.numerator >= y.fraction.denominator) |
161 | ++result.ry(); |
162 | return result; |
163 | } |
164 | |
165 | // Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the |
166 | // line and zero if exactly on the line. |
167 | // The returned value is the z-component of the qCross product between 'v2-v1' and 'p-v1', |
168 | // which is twice the signed area of the triangle 'p'->'v1'->'v2' (positive for CW order). |
169 | inline int pointDistanceFromLine(const QPoint &p, const QPoint &v1, const QPoint &v2) |
170 | { |
171 | return cross(v2 - v1, p - v1); |
172 | } |
173 | |
174 | IntersectionPoint intersectionPoint(const QPoint &u1, const QPoint &u2, |
175 | const QPoint &v1, const QPoint &v2) |
176 | { |
177 | IntersectionPoint result = {{0, {0, 0}}, {0, {0, 0}}}; |
178 | |
179 | QPoint u = u2 - u1; |
180 | QPoint v = v2 - v1; |
181 | int d1 = cross(u, v1 - u1); |
182 | int d2 = cross(u, v2 - u1); |
183 | int det = d2 - d1; |
184 | int d3 = cross(v, u1 - v1); |
185 | int d4 = d3 - det; //qCross(v, u2 - v1); |
186 | |
187 | // Check that the math is correct. |
188 | Q_ASSERT(d4 == cross(v, u2 - v1)); |
189 | |
190 | // The intersection point can be expressed as: |
191 | // v1 - v * d1/det |
192 | // v2 - v * d2/det |
193 | // u1 + u * d3/det |
194 | // u2 + u * d4/det |
195 | |
196 | // I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap. |
197 | if (det == 0) |
198 | return result; |
199 | |
200 | if (det < 0) { |
201 | det = -det; |
202 | d1 = -d1; |
203 | d2 = -d2; |
204 | d3 = -d3; |
205 | d4 = -d4; |
206 | } |
207 | |
208 | // I'm only interested in lines intersecting at their interior, not at their end points. |
209 | // The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'. |
210 | if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0) |
211 | return result; |
212 | |
213 | // Calculate the intersection point as follows: |
214 | // v1 - v * d1/det | v1 <= v2 (component-wise) |
215 | // v2 - v * d2/det | v2 < v1 (component-wise) |
216 | |
217 | // Assuming 16 bits per vector component. |
218 | if (v.x() >= 0) { |
219 | result.x.integer = v1.x() + int(qint64(-v.x()) * d1 / det); |
220 | result.x.fraction = fraction((unsigned int)(qint64(-v.x()) * d1 % det), (unsigned int)det); |
221 | } else { |
222 | result.x.integer = v2.x() + int(qint64(-v.x()) * d2 / det); |
223 | result.x.fraction = fraction((unsigned int)(qint64(-v.x()) * d2 % det), (unsigned int)det); |
224 | } |
225 | |
226 | if (v.y() >= 0) { |
227 | result.y.integer = v1.y() + int(qint64(-v.y()) * d1 / det); |
228 | result.y.fraction = fraction((unsigned int)(qint64(-v.y()) * d1 % det), (unsigned int)det); |
229 | } else { |
230 | result.y.integer = v2.y() + int(qint64(-v.y()) * d2 / det); |
231 | result.y.fraction = fraction((unsigned int)(qint64(-v.y()) * d2 % det), (unsigned int)det); |
232 | } |
233 | |
234 | Q_ASSERT(result.x.fraction.isValid()); |
235 | Q_ASSERT(result.y.fraction.isValid()); |
236 | return result; |
237 | } |
238 | |
239 | //============================================================================// |
240 | // PathSimplifier // |
241 | //============================================================================// |
242 | |
243 | class PathSimplifier |
244 | { |
245 | public: |
246 | PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
247 | QDataBuffer<quint32> &indices, const QTransform &matrix); |
248 | |
249 | private: |
250 | struct Element; |
251 | |
252 | class BoundingVolumeHierarchy |
253 | { |
254 | public: |
255 | struct Node |
256 | { |
257 | enum Type |
258 | { |
259 | Leaf, |
260 | Split |
261 | }; |
262 | Type type; |
263 | QPoint minimum; |
264 | QPoint maximum; |
265 | union { |
266 | Element *element; // type == Leaf |
267 | Node *left; // type == Split |
268 | }; |
269 | Node *right; |
270 | }; |
271 | |
272 | BoundingVolumeHierarchy(); |
273 | ~BoundingVolumeHierarchy(); |
274 | void allocate(int nodeCount); |
275 | void free(); |
276 | Node *newNode(); |
277 | |
278 | Node *root; |
279 | private: |
280 | void freeNode(Node *n); |
281 | |
282 | Node *nodeBlock; |
283 | int blockSize; |
284 | int firstFree; |
285 | }; |
286 | |
287 | struct Element |
288 | { |
289 | enum Degree |
290 | { |
291 | Line = 1, |
292 | Quadratic = 2, |
293 | Cubic = 3 |
294 | }; |
295 | |
296 | quint32 &upperIndex() { return indices[pointingUp ? degree : 0]; } |
297 | quint32 &lowerIndex() { return indices[pointingUp ? 0 : degree]; } |
298 | quint32 upperIndex() const { return indices[pointingUp ? degree : 0]; } |
299 | quint32 lowerIndex() const { return indices[pointingUp ? 0 : degree]; } |
300 | void flip(); |
301 | |
302 | QPoint middle; |
303 | quint32 indices[4]; // index to points |
304 | Element *next, *previous; // used in connectElements() |
305 | int winding; // used in connectElements() |
306 | union { |
307 | QRBTree<Element *>::Node *edgeNode; // used in connectElements() |
308 | BoundingVolumeHierarchy::Node *bvhNode; |
309 | }; |
310 | Degree degree : 8; |
311 | uint processed : 1; // initially false, true when the element has been checked for intersections. |
312 | uint pointingUp : 1; // used in connectElements() |
313 | uint originallyPointingUp : 1; // used in connectElements() |
314 | }; |
315 | |
316 | class ElementAllocator |
317 | { |
318 | public: |
319 | ElementAllocator(); |
320 | ~ElementAllocator(); |
321 | void allocate(int count); |
322 | Element *newElement(); |
323 | private: |
324 | struct ElementBlock |
325 | { |
326 | ElementBlock *next; |
327 | int blockSize; |
328 | int firstFree; |
329 | Element elements[1]; |
330 | } *blocks; |
331 | }; |
332 | |
333 | struct Event |
334 | { |
335 | enum Type { Upper, Lower }; |
336 | bool operator < (const Event &other) const; |
337 | |
338 | QPoint point; |
339 | Type type; |
340 | Element *element; |
341 | }; |
342 | |
343 | typedef QRBTree<Element *>::Node RBNode; |
344 | typedef BoundingVolumeHierarchy::Node BVHNode; |
345 | |
346 | void initElements(const QVectorPath &path, const QTransform &matrix); |
347 | void removeIntersections(); |
348 | void connectElements(); |
349 | void fillIndices(); |
350 | BVHNode *buildTree(Element **elements, int elementCount); |
351 | bool intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, BVHNode *treeNode); |
352 | bool equalElements(const Element *e1, const Element *e2); |
353 | bool splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, quint32 pointIndex, bool processAgain); |
354 | void appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element); |
355 | QPair<int, int> calculateSeparatingAxisRange(const QPoint &axis, Element *element); |
356 | void splitCurve(QDataBuffer<Element *> &elements, BVHNode *node); |
357 | bool setElementToQuadratic(Element *element, quint32 pointIndex1, const QPoint &ctrl, quint32 pointIndex2); |
358 | bool setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
359 | void setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
360 | RBNode *findElementLeftOf(const Element *element, const QPair<RBNode *, RBNode *> &bounds); |
361 | bool elementIsLeftOf(const Element *left, const Element *right); |
362 | QPair<RBNode *, RBNode *> outerBounds(const QPoint &point); |
363 | static bool flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
364 | static bool flattenCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
365 | static bool splitQuadratic(const QPoint &u, const QPoint &v, const QPoint &w, QPoint *result); |
366 | static bool splitCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q, QPoint *result); |
367 | void subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
368 | void subDivCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
369 | static void sortEvents(Event *events, int count); |
370 | |
371 | ElementAllocator m_elementAllocator; |
372 | QDataBuffer<Element *> m_elements; |
373 | QDataBuffer<QPoint> *m_points; |
374 | BoundingVolumeHierarchy m_bvh; |
375 | QDataBuffer<quint32> *m_indices; |
376 | QRBTree<Element *> m_elementList; |
377 | uint m_hints; |
378 | }; |
379 | |
380 | inline PathSimplifier::BoundingVolumeHierarchy::BoundingVolumeHierarchy() |
381 | : root(nullptr) |
382 | , nodeBlock(nullptr) |
383 | , blockSize(0) |
384 | , firstFree(0) |
385 | { |
386 | } |
387 | |
388 | inline PathSimplifier::BoundingVolumeHierarchy::~BoundingVolumeHierarchy() |
389 | { |
390 | free(); |
391 | } |
392 | |
393 | inline void PathSimplifier::BoundingVolumeHierarchy::allocate(int nodeCount) |
394 | { |
395 | Q_ASSERT(nodeBlock == nullptr); |
396 | Q_ASSERT(firstFree == 0); |
397 | nodeBlock = new Node[blockSize = nodeCount]; |
398 | } |
399 | |
400 | inline void PathSimplifier::BoundingVolumeHierarchy::free() |
401 | { |
402 | freeNode(root); |
403 | delete[] nodeBlock; |
404 | nodeBlock = nullptr; |
405 | firstFree = blockSize = 0; |
406 | root = nullptr; |
407 | } |
408 | |
409 | inline PathSimplifier::BVHNode *PathSimplifier::BoundingVolumeHierarchy::newNode() |
410 | { |
411 | if (firstFree < blockSize) |
412 | return &nodeBlock[firstFree++]; |
413 | return new Node; |
414 | } |
415 | |
416 | inline void PathSimplifier::BoundingVolumeHierarchy::freeNode(Node *n) |
417 | { |
418 | if (!n) |
419 | return; |
420 | Q_ASSERT(n->type == Node::Split || n->type == Node::Leaf); |
421 | if (n->type == Node::Split) { |
422 | freeNode(n->left); |
423 | freeNode(n->right); |
424 | } |
425 | if (!(n >= nodeBlock && n < nodeBlock + blockSize)) |
426 | delete n; |
427 | } |
428 | |
429 | inline PathSimplifier::ElementAllocator::ElementAllocator() |
430 | : blocks(nullptr) |
431 | { |
432 | } |
433 | |
434 | inline PathSimplifier::ElementAllocator::~ElementAllocator() |
435 | { |
436 | while (blocks) { |
437 | ElementBlock *block = blocks; |
438 | blocks = blocks->next; |
439 | free(block); |
440 | } |
441 | } |
442 | |
443 | inline void PathSimplifier::ElementAllocator::allocate(int count) |
444 | { |
445 | Q_ASSERT(blocks == nullptr); |
446 | Q_ASSERT(count > 0); |
447 | blocks = (ElementBlock *)malloc(sizeof(ElementBlock) + (count - 1) * sizeof(Element)); |
448 | blocks->blockSize = count; |
449 | blocks->next = nullptr; |
450 | blocks->firstFree = 0; |
451 | } |
452 | |
453 | inline PathSimplifier::Element *PathSimplifier::ElementAllocator::newElement() |
454 | { |
455 | Q_ASSERT(blocks); |
456 | if (blocks->firstFree < blocks->blockSize) |
457 | return &blocks->elements[blocks->firstFree++]; |
458 | ElementBlock *oldBlock = blocks; |
459 | blocks = (ElementBlock *)malloc(sizeof(ElementBlock) + (oldBlock->blockSize - 1) * sizeof(Element)); |
460 | blocks->blockSize = oldBlock->blockSize; |
461 | blocks->next = oldBlock; |
462 | blocks->firstFree = 0; |
463 | return &blocks->elements[blocks->firstFree++]; |
464 | } |
465 | |
466 | |
467 | inline bool PathSimplifier::Event::operator < (const Event &other) const |
468 | { |
469 | if (point == other.point) |
470 | return type < other.type; |
471 | return other.point < point; |
472 | } |
473 | |
474 | inline void PathSimplifier::Element::flip() |
475 | { |
476 | for (int i = 0; i < (degree + 1) >> 1; ++i) { |
477 | Q_ASSERT(degree >= Line && degree <= Cubic); |
478 | Q_ASSERT(i >= 0 && i < degree); |
479 | qSwap(indices[i], indices[degree - i]); |
480 | } |
481 | pointingUp = !pointingUp; |
482 | Q_ASSERT(next == nullptr && previous == nullptr); |
483 | } |
484 | |
485 | PathSimplifier::PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
486 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
487 | : m_elements(0) |
488 | , m_points(&vertices) |
489 | , m_indices(&indices) |
490 | { |
491 | m_points->reset(); |
492 | m_indices->reset(); |
493 | initElements(path, matrix); |
494 | if (!m_elements.isEmpty()) { |
495 | removeIntersections(); |
496 | connectElements(); |
497 | fillIndices(); |
498 | } |
499 | } |
500 | |
501 | void PathSimplifier::initElements(const QVectorPath &path, const QTransform &matrix) |
502 | { |
503 | m_hints = path.hints(); |
504 | int pathElementCount = path.elementCount(); |
505 | if (pathElementCount == 0) |
506 | return; |
507 | m_elements.reserve(2 * pathElementCount); |
508 | m_elementAllocator.allocate(2 * pathElementCount); |
509 | m_points->reserve(2 * pathElementCount); |
510 | const QPainterPath::ElementType *e = path.elements(); |
511 | const qreal *p = path.points(); |
512 | if (e) { |
513 | qreal x, y; |
514 | quint32 moveToIndex = 0; |
515 | quint32 previousIndex = 0; |
516 | for (int i = 0; i < pathElementCount; ++i, ++e, p += 2) { |
517 | switch (*e) { |
518 | case QPainterPath::MoveToElement: |
519 | { |
520 | if (!m_points->isEmpty()) { |
521 | const QPoint &from = m_points->at(previousIndex); |
522 | const QPoint &to = m_points->at(moveToIndex); |
523 | if (from != to) { |
524 | Element *element = m_elementAllocator.newElement(); |
525 | element->degree = Element::Line; |
526 | element->indices[0] = previousIndex; |
527 | element->indices[1] = moveToIndex; |
528 | element->middle.rx() = (from.x() + to.x()) >> 1; |
529 | element->middle.ry() = (from.y() + to.y()) >> 1; |
530 | m_elements.add(element); |
531 | } |
532 | } |
533 | previousIndex = moveToIndex = m_points->size(); |
534 | matrix.map(p[0], p[1], &x, &y); |
535 | QPoint to(qRound(x * Q_FIXED_POINT_SCALE), qRound(y * Q_FIXED_POINT_SCALE)); |
536 | m_points->add(to); |
537 | } |
538 | break; |
539 | case QPainterPath::LineToElement: |
540 | Q_ASSERT(!m_points->isEmpty()); |
541 | { |
542 | matrix.map(p[0], p[1], &x, &y); |
543 | QPoint to(qRound(x * Q_FIXED_POINT_SCALE), qRound(y * Q_FIXED_POINT_SCALE)); |
544 | const QPoint &from = m_points->last(); |
545 | if (to != from) { |
546 | Element *element = m_elementAllocator.newElement(); |
547 | element->degree = Element::Line; |
548 | element->indices[0] = previousIndex; |
549 | element->indices[1] = quint32(m_points->size()); |
550 | element->middle.rx() = (from.x() + to.x()) >> 1; |
551 | element->middle.ry() = (from.y() + to.y()) >> 1; |
552 | m_elements.add(element); |
553 | previousIndex = m_points->size(); |
554 | m_points->add(to); |
555 | } |
556 | } |
557 | break; |
558 | case QPainterPath::CurveToElement: |
559 | Q_ASSERT(i + 2 < pathElementCount); |
560 | Q_ASSERT(!m_points->isEmpty()); |
561 | Q_ASSERT(e[1] == QPainterPath::CurveToDataElement); |
562 | Q_ASSERT(e[2] == QPainterPath::CurveToDataElement); |
563 | { |
564 | quint32 startPointIndex = previousIndex; |
565 | matrix.map(p[4], p[5], &x, &y); |
566 | QPoint end(qRound(x * Q_FIXED_POINT_SCALE), qRound(y * Q_FIXED_POINT_SCALE)); |
567 | previousIndex = m_points->size(); |
568 | m_points->add(end); |
569 | |
570 | // See if this cubic bezier is really quadratic. |
571 | qreal x1 = p[-2] + qreal(1.5) * (p[0] - p[-2]); |
572 | qreal y1 = p[-1] + qreal(1.5) * (p[1] - p[-1]); |
573 | qreal x2 = p[4] + qreal(1.5) * (p[2] - p[4]); |
574 | qreal y2 = p[5] + qreal(1.5) * (p[3] - p[5]); |
575 | |
576 | Element *element = m_elementAllocator.newElement(); |
577 | if (qAbs(x1 - x2) < qreal(1e-3) && qAbs(y1 - y2) < qreal(1e-3)) { |
578 | // The bezier curve is quadratic. |
579 | matrix.map(x1, y1, &x, &y); |
580 | QPoint ctrl(qRound(x * Q_FIXED_POINT_SCALE), |
581 | qRound(y * Q_FIXED_POINT_SCALE)); |
582 | setElementToQuadratic(element, startPointIndex, ctrl, previousIndex); |
583 | } else { |
584 | // The bezier curve is cubic. |
585 | matrix.map(p[0], p[1], &x, &y); |
586 | QPoint ctrl1(qRound(x * Q_FIXED_POINT_SCALE), |
587 | qRound(y * Q_FIXED_POINT_SCALE)); |
588 | matrix.map(p[2], p[3], &x, &y); |
589 | QPoint ctrl2(qRound(x * Q_FIXED_POINT_SCALE), |
590 | qRound(y * Q_FIXED_POINT_SCALE)); |
591 | setElementToCubicAndSimplify(element, startPointIndex, ctrl1, ctrl2, |
592 | previousIndex); |
593 | } |
594 | m_elements.add(element); |
595 | } |
596 | i += 2; |
597 | e += 2; |
598 | p += 4; |
599 | |
600 | break; |
601 | default: |
602 | Q_ASSERT_X(0, "QSGPathSimplifier::initialize" , "Unexpected element type." ); |
603 | break; |
604 | } |
605 | } |
606 | if (!m_points->isEmpty()) { |
607 | const QPoint &from = m_points->at(previousIndex); |
608 | const QPoint &to = m_points->at(moveToIndex); |
609 | if (from != to) { |
610 | Element *element = m_elementAllocator.newElement(); |
611 | element->degree = Element::Line; |
612 | element->indices[0] = previousIndex; |
613 | element->indices[1] = moveToIndex; |
614 | element->middle.rx() = (from.x() + to.x()) >> 1; |
615 | element->middle.ry() = (from.y() + to.y()) >> 1; |
616 | m_elements.add(element); |
617 | } |
618 | } |
619 | } else { |
620 | qreal x, y; |
621 | |
622 | for (int i = 0; i < pathElementCount; ++i, p += 2) { |
623 | matrix.map(p[0], p[1], &x, &y); |
624 | QPoint to(qRound(x * Q_FIXED_POINT_SCALE), qRound(y * Q_FIXED_POINT_SCALE)); |
625 | if (to != m_points->last()) |
626 | m_points->add(to); |
627 | } |
628 | |
629 | while (!m_points->isEmpty() && m_points->last() == m_points->first()) |
630 | m_points->pop_back(); |
631 | |
632 | if (m_points->isEmpty()) |
633 | return; |
634 | |
635 | quint32 prev = quint32(m_points->size() - 1); |
636 | for (int i = 0; i < m_points->size(); ++i) { |
637 | QPoint &to = m_points->at(i); |
638 | QPoint &from = m_points->at(prev); |
639 | Element *element = m_elementAllocator.newElement(); |
640 | element->degree = Element::Line; |
641 | element->indices[0] = prev; |
642 | element->indices[1] = quint32(i); |
643 | element->middle.rx() = (from.x() + to.x()) >> 1; |
644 | element->middle.ry() = (from.y() + to.y()) >> 1; |
645 | m_elements.add(element); |
646 | prev = i; |
647 | } |
648 | } |
649 | |
650 | for (int i = 0; i < m_elements.size(); ++i) |
651 | m_elements.at(i)->processed = false; |
652 | } |
653 | |
654 | void PathSimplifier::removeIntersections() |
655 | { |
656 | Q_ASSERT(!m_elements.isEmpty()); |
657 | QDataBuffer<Element *> elements(m_elements.size()); |
658 | for (int i = 0; i < m_elements.size(); ++i) |
659 | elements.add(m_elements.at(i)); |
660 | m_bvh.allocate(2 * m_elements.size()); |
661 | m_bvh.root = buildTree(elements.data(), elements.size()); |
662 | |
663 | elements.reset(); |
664 | for (int i = 0; i < m_elements.size(); ++i) |
665 | elements.add(m_elements.at(i)); |
666 | |
667 | while (!elements.isEmpty()) { |
668 | Element *element = elements.last(); |
669 | elements.pop_back(); |
670 | BVHNode *node = element->bvhNode; |
671 | Q_ASSERT(node->type == BVHNode::Leaf); |
672 | Q_ASSERT(node->element == element); |
673 | if (!element->processed) { |
674 | if (!intersectNodes(elements, node, m_bvh.root)) |
675 | element->processed = true; |
676 | } |
677 | } |
678 | |
679 | m_bvh.free(); // The bounding volume hierarchy is not needed anymore. |
680 | } |
681 | |
682 | void PathSimplifier::connectElements() |
683 | { |
684 | Q_ASSERT(!m_elements.isEmpty()); |
685 | QDataBuffer<Event> events(m_elements.size() * 2); |
686 | for (int i = 0; i < m_elements.size(); ++i) { |
687 | Element *element = m_elements.at(i); |
688 | element->next = element->previous = nullptr; |
689 | element->winding = 0; |
690 | element->edgeNode = nullptr; |
691 | const QPoint &u = m_points->at(element->indices[0]); |
692 | const QPoint &v = m_points->at(element->indices[element->degree]); |
693 | if (u != v) { |
694 | element->pointingUp = element->originallyPointingUp = v < u; |
695 | |
696 | Event event; |
697 | event.element = element; |
698 | event.point = u; |
699 | event.type = element->pointingUp ? Event::Lower : Event::Upper; |
700 | events.add(event); |
701 | event.point = v; |
702 | event.type = element->pointingUp ? Event::Upper : Event::Lower; |
703 | events.add(event); |
704 | } |
705 | } |
706 | QVarLengthArray<Element *, 8> orderedElements; |
707 | if (!events.isEmpty()) |
708 | sortEvents(events.data(), events.size()); |
709 | while (!events.isEmpty()) { |
710 | const Event *event = &events.last(); |
711 | QPoint eventPoint = event->point; |
712 | |
713 | // Find all elements passing through the event point. |
714 | QPair<RBNode *, RBNode *> bounds = outerBounds(eventPoint); |
715 | |
716 | // Special case: single element above and single element below event point. |
717 | int eventCount = events.size(); |
718 | if (event->type == Event::Lower && eventCount > 2) { |
719 | QPair<RBNode *, RBNode *> range; |
720 | range.first = bounds.first ? m_elementList.next(bounds.first) |
721 | : m_elementList.front(m_elementList.root); |
722 | range.second = bounds.second ? m_elementList.previous(bounds.second) |
723 | : m_elementList.back(m_elementList.root); |
724 | |
725 | const Event *event2 = &events.at(eventCount - 2); |
726 | const Event *event3 = &events.at(eventCount - 3); |
727 | Q_ASSERT(event2->point == eventPoint); // There are always at least two events at a point. |
728 | if (range.first == range.second && event2->type == Event::Upper && event3->point != eventPoint) { |
729 | Element *element = event->element; |
730 | Element *element2 = event2->element; |
731 | element->edgeNode->data = event2->element; |
732 | element2->edgeNode = element->edgeNode; |
733 | element->edgeNode = nullptr; |
734 | |
735 | events.pop_back(); |
736 | events.pop_back(); |
737 | |
738 | if (element2->pointingUp != element->pointingUp) |
739 | element2->flip(); |
740 | element2->winding = element->winding; |
741 | int winding = element->winding; |
742 | if (element->originallyPointingUp) |
743 | ++winding; |
744 | if (winding == 0 || winding == 1) { |
745 | if (element->pointingUp) { |
746 | element->previous = event2->element; |
747 | element2->next = event->element; |
748 | } else { |
749 | element->next = event2->element; |
750 | element2->previous = event->element; |
751 | } |
752 | } |
753 | continue; |
754 | } |
755 | } |
756 | orderedElements.clear(); |
757 | |
758 | // First, find the ones above the event point. |
759 | if (m_elementList.root) { |
760 | RBNode *current = bounds.first ? m_elementList.next(bounds.first) |
761 | : m_elementList.front(m_elementList.root); |
762 | while (current != bounds.second) { |
763 | Element *element = current->data; |
764 | Q_ASSERT(element->edgeNode == current); |
765 | int winding = element->winding; |
766 | if (element->originallyPointingUp) |
767 | ++winding; |
768 | const QPoint &lower = m_points->at(element->lowerIndex()); |
769 | if (lower == eventPoint) { |
770 | if (winding == 0 || winding == 1) |
771 | orderedElements.append(current->data); |
772 | } else { |
773 | // The element is passing through 'event.point'. |
774 | Q_ASSERT(m_points->at(element->upperIndex()) != eventPoint); |
775 | Q_ASSERT(element->degree == Element::Line); |
776 | // Split the line. |
777 | Element *eventElement = event->element; |
778 | int indexIndex = (event->type == Event::Upper) == eventElement->pointingUp |
779 | ? eventElement->degree : 0; |
780 | quint32 pointIndex = eventElement->indices[indexIndex]; |
781 | Q_ASSERT(eventPoint == m_points->at(pointIndex)); |
782 | |
783 | Element *upperElement = m_elementAllocator.newElement(); |
784 | *upperElement = *element; |
785 | upperElement->lowerIndex() = element->upperIndex() = pointIndex; |
786 | upperElement->edgeNode = nullptr; |
787 | element->next = element->previous = nullptr; |
788 | if (upperElement->next) |
789 | upperElement->next->previous = upperElement; |
790 | else if (upperElement->previous) |
791 | upperElement->previous->next = upperElement; |
792 | if (element->pointingUp != element->originallyPointingUp) |
793 | element->flip(); |
794 | if (winding == 0 || winding == 1) |
795 | orderedElements.append(upperElement); |
796 | m_elements.add(upperElement); |
797 | } |
798 | current = m_elementList.next(current); |
799 | } |
800 | } |
801 | while (!events.isEmpty() && events.last().point == eventPoint) { |
802 | event = &events.last(); |
803 | if (event->type == Event::Upper) { |
804 | Q_ASSERT(event->point == m_points->at(event->element->upperIndex())); |
805 | RBNode *left = findElementLeftOf(event->element, bounds); |
806 | RBNode *node = m_elementList.newNode(); |
807 | node->data = event->element; |
808 | Q_ASSERT(event->element->edgeNode == nullptr); |
809 | event->element->edgeNode = node; |
810 | m_elementList.attachAfter(left, node); |
811 | } else { |
812 | Q_ASSERT(event->type == Event::Lower); |
813 | Q_ASSERT(event->point == m_points->at(event->element->lowerIndex())); |
814 | Element *element = event->element; |
815 | Q_ASSERT(element->edgeNode); |
816 | m_elementList.deleteNode(element->edgeNode); |
817 | Q_ASSERT(element->edgeNode == nullptr); |
818 | } |
819 | events.pop_back(); |
820 | } |
821 | |
822 | if (m_elementList.root) { |
823 | RBNode *current = bounds.first ? m_elementList.next(bounds.first) |
824 | : m_elementList.front(m_elementList.root); |
825 | int winding = bounds.first ? bounds.first->data->winding : 0; |
826 | |
827 | // Calculate winding numbers and flip elements if necessary. |
828 | while (current != bounds.second) { |
829 | Element *element = current->data; |
830 | Q_ASSERT(element->edgeNode == current); |
831 | int ccw = winding & 1; |
832 | Q_ASSERT(element->pointingUp == element->originallyPointingUp); |
833 | if (element->originallyPointingUp) { |
834 | --winding; |
835 | } else { |
836 | ++winding; |
837 | ccw ^= 1; |
838 | } |
839 | element->winding = winding; |
840 | if (ccw == 0) |
841 | element->flip(); |
842 | current = m_elementList.next(current); |
843 | } |
844 | |
845 | // Pick elements with correct winding number. |
846 | current = bounds.second ? m_elementList.previous(bounds.second) |
847 | : m_elementList.back(m_elementList.root); |
848 | while (current != bounds.first) { |
849 | Element *element = current->data; |
850 | Q_ASSERT(element->edgeNode == current); |
851 | Q_ASSERT(m_points->at(element->upperIndex()) == eventPoint); |
852 | int winding = element->winding; |
853 | if (element->originallyPointingUp) |
854 | ++winding; |
855 | if (winding == 0 || winding == 1) |
856 | orderedElements.append(current->data); |
857 | current = m_elementList.previous(current); |
858 | } |
859 | } |
860 | |
861 | if (!orderedElements.isEmpty()) { |
862 | Q_ASSERT((orderedElements.size() & 1) == 0); |
863 | int i = 0; |
864 | Element *firstElement = orderedElements.at(0); |
865 | if (m_points->at(firstElement->indices[0]) != eventPoint) { |
866 | orderedElements.append(firstElement); |
867 | i = 1; |
868 | } |
869 | for (; i < orderedElements.size(); i += 2) { |
870 | Q_ASSERT(i + 1 < orderedElements.size()); |
871 | Element *next = orderedElements.at(i); |
872 | Element *previous = orderedElements.at(i + 1); |
873 | Q_ASSERT(next->previous == nullptr); |
874 | Q_ASSERT(previous->next == nullptr); |
875 | next->previous = previous; |
876 | previous->next = next; |
877 | } |
878 | } |
879 | } |
880 | #ifndef QT_NO_DEBUG |
881 | for (int i = 0; i < m_elements.size(); ++i) { |
882 | const Element *element = m_elements.at(i); |
883 | Q_ASSERT(element->next == nullptr || element->next->previous == element); |
884 | Q_ASSERT(element->previous == nullptr || element->previous->next == element); |
885 | Q_ASSERT((element->next == nullptr) == (element->previous == nullptr)); |
886 | } |
887 | #endif |
888 | } |
889 | |
890 | void PathSimplifier::fillIndices() |
891 | { |
892 | for (int i = 0; i < m_elements.size(); ++i) |
893 | m_elements.at(i)->processed = false; |
894 | for (int i = 0; i < m_elements.size(); ++i) { |
895 | Element *element = m_elements.at(i); |
896 | if (element->processed || element->next == nullptr) |
897 | continue; |
898 | do { |
899 | m_indices->add(element->indices[0]); |
900 | switch (element->degree) { |
901 | case Element::Quadratic: |
902 | { |
903 | QPoint pts[] = { |
904 | m_points->at(element->indices[0]), |
905 | m_points->at(element->indices[1]), |
906 | m_points->at(element->indices[2]) |
907 | }; |
908 | subDivQuadratic(pts[0], pts[1], pts[2]); |
909 | } |
910 | break; |
911 | case Element::Cubic: |
912 | { |
913 | QPoint pts[] = { |
914 | m_points->at(element->indices[0]), |
915 | m_points->at(element->indices[1]), |
916 | m_points->at(element->indices[2]), |
917 | m_points->at(element->indices[3]) |
918 | }; |
919 | subDivCubic(pts[0], pts[1], pts[2], pts[3]); |
920 | } |
921 | break; |
922 | default: |
923 | break; |
924 | } |
925 | Q_ASSERT(element->next); |
926 | element->processed = true; |
927 | element = element->next; |
928 | } while (element != m_elements.at(i)); |
929 | m_indices->add(Q_TRIANGULATE_END_OF_POLYGON); |
930 | } |
931 | } |
932 | |
933 | PathSimplifier::BVHNode *PathSimplifier::buildTree(Element **elements, int elementCount) |
934 | { |
935 | Q_ASSERT(elementCount > 0); |
936 | BVHNode *node = m_bvh.newNode(); |
937 | if (elementCount == 1) { |
938 | Element *element = *elements; |
939 | element->bvhNode = node; |
940 | node->type = BVHNode::Leaf; |
941 | node->element = element; |
942 | node->minimum = node->maximum = m_points->at(element->indices[0]); |
943 | for (int i = 1; i <= element->degree; ++i) { |
944 | const QPoint &p = m_points->at(element->indices[i]); |
945 | node->minimum.rx() = qMin(node->minimum.x(), p.x()); |
946 | node->minimum.ry() = qMin(node->minimum.y(), p.y()); |
947 | node->maximum.rx() = qMax(node->maximum.x(), p.x()); |
948 | node->maximum.ry() = qMax(node->maximum.y(), p.y()); |
949 | } |
950 | return node; |
951 | } |
952 | |
953 | node->type = BVHNode::Split; |
954 | |
955 | QPoint minimum, maximum; |
956 | minimum = maximum = elements[0]->middle; |
957 | |
958 | for (int i = 1; i < elementCount; ++i) { |
959 | const QPoint &p = elements[i]->middle; |
960 | minimum.rx() = qMin(minimum.x(), p.x()); |
961 | minimum.ry() = qMin(minimum.y(), p.y()); |
962 | maximum.rx() = qMax(maximum.x(), p.x()); |
963 | maximum.ry() = qMax(maximum.y(), p.y()); |
964 | } |
965 | |
966 | int comp, pivot; |
967 | if (maximum.x() - minimum.x() > maximum.y() - minimum.y()) { |
968 | comp = 0; |
969 | pivot = (maximum.x() + minimum.x()) >> 1; |
970 | } else { |
971 | comp = 1; |
972 | pivot = (maximum.y() + minimum.y()) >> 1; |
973 | } |
974 | |
975 | int lo = 0; |
976 | int hi = elementCount - 1; |
977 | while (lo < hi) { |
978 | while (lo < hi && (&elements[lo]->middle.rx())[comp] <= pivot) |
979 | ++lo; |
980 | while (lo < hi && (&elements[hi]->middle.rx())[comp] > pivot) |
981 | --hi; |
982 | if (lo < hi) |
983 | qSwap(elements[lo], elements[hi]); |
984 | } |
985 | |
986 | if (lo == elementCount) { |
987 | // All points are the same. |
988 | Q_ASSERT(minimum.x() == maximum.x() && minimum.y() == maximum.y()); |
989 | lo = elementCount >> 1; |
990 | } |
991 | |
992 | node->left = buildTree(elements, lo); |
993 | node->right = buildTree(elements + lo, elementCount - lo); |
994 | |
995 | const BVHNode *left = node->left; |
996 | const BVHNode *right = node->right; |
997 | node->minimum.rx() = qMin(left->minimum.x(), right->minimum.x()); |
998 | node->minimum.ry() = qMin(left->minimum.y(), right->minimum.y()); |
999 | node->maximum.rx() = qMax(left->maximum.x(), right->maximum.x()); |
1000 | node->maximum.ry() = qMax(left->maximum.y(), right->maximum.y()); |
1001 | |
1002 | return node; |
1003 | } |
1004 | |
1005 | bool PathSimplifier::intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, |
1006 | BVHNode *treeNode) |
1007 | { |
1008 | if (elementNode->minimum.x() >= treeNode->maximum.x() |
1009 | || elementNode->minimum.y() >= treeNode->maximum.y() |
1010 | || elementNode->maximum.x() <= treeNode->minimum.x() |
1011 | || elementNode->maximum.y() <= treeNode->minimum.y()) |
1012 | { |
1013 | return false; |
1014 | } |
1015 | |
1016 | Q_ASSERT(elementNode->type == BVHNode::Leaf); |
1017 | Element *element = elementNode->element; |
1018 | Q_ASSERT(!element->processed); |
1019 | |
1020 | if (treeNode->type == BVHNode::Leaf) { |
1021 | Element *nodeElement = treeNode->element; |
1022 | if (!nodeElement->processed) |
1023 | return false; |
1024 | |
1025 | if (treeNode->element == elementNode->element) |
1026 | return false; |
1027 | |
1028 | if (equalElements(treeNode->element, elementNode->element)) |
1029 | return false; // element doesn't split itself. |
1030 | |
1031 | if (element->degree == Element::Line && nodeElement->degree == Element::Line) { |
1032 | const QPoint &u1 = m_points->at(element->indices[0]); |
1033 | const QPoint &u2 = m_points->at(element->indices[1]); |
1034 | const QPoint &v1 = m_points->at(nodeElement->indices[0]); |
1035 | const QPoint &v2 = m_points->at(nodeElement->indices[1]); |
1036 | IntersectionPoint intersection = intersectionPoint(u1, u2, v1, v2); |
1037 | if (!intersection.isValid()) |
1038 | return false; |
1039 | |
1040 | Q_ASSERT(intersection.x.integer >= qMin(u1.x(), u2.x())); |
1041 | Q_ASSERT(intersection.y.integer >= qMin(u1.y(), u2.y())); |
1042 | Q_ASSERT(intersection.x.integer >= qMin(v1.x(), v2.x())); |
1043 | Q_ASSERT(intersection.y.integer >= qMin(v1.y(), v2.y())); |
1044 | |
1045 | Q_ASSERT(intersection.x.integer <= qMax(u1.x(), u2.x())); |
1046 | Q_ASSERT(intersection.y.integer <= qMax(u1.y(), u2.y())); |
1047 | Q_ASSERT(intersection.x.integer <= qMax(v1.x(), v2.x())); |
1048 | Q_ASSERT(intersection.y.integer <= qMax(v1.y(), v2.y())); |
1049 | |
1050 | m_points->add(intersection.round()); |
1051 | splitLineAt(elements, treeNode, m_points->size() - 1, !intersection.isAccurate()); |
1052 | return splitLineAt(elements, elementNode, m_points->size() - 1, false); |
1053 | } else { |
1054 | QVarLengthArray<QPoint, 12> axes; |
1055 | appendSeparatingAxes(axes, elementNode->element); |
1056 | appendSeparatingAxes(axes, treeNode->element); |
1057 | for (int i = 0; i < axes.size(); ++i) { |
1058 | QPair<int, int> range1 = calculateSeparatingAxisRange(axes.at(i), elementNode->element); |
1059 | QPair<int, int> range2 = calculateSeparatingAxisRange(axes.at(i), treeNode->element); |
1060 | if (range1.first >= range2.second || range1.second <= range2.first) { |
1061 | return false; // Separating axis found. |
1062 | } |
1063 | } |
1064 | // Bounding areas overlap. |
1065 | if (nodeElement->degree > Element::Line) |
1066 | splitCurve(elements, treeNode); |
1067 | if (element->degree > Element::Line) { |
1068 | splitCurve(elements, elementNode); |
1069 | } else { |
1070 | // The element was not split, so it can be processed further. |
1071 | if (intersectNodes(elements, elementNode, treeNode->left)) |
1072 | return true; |
1073 | if (intersectNodes(elements, elementNode, treeNode->right)) |
1074 | return true; |
1075 | return false; |
1076 | } |
1077 | return true; |
1078 | } |
1079 | } else { |
1080 | if (intersectNodes(elements, elementNode, treeNode->left)) |
1081 | return true; |
1082 | if (intersectNodes(elements, elementNode, treeNode->right)) |
1083 | return true; |
1084 | return false; |
1085 | } |
1086 | } |
1087 | |
1088 | bool PathSimplifier::equalElements(const Element *e1, const Element *e2) |
1089 | { |
1090 | Q_ASSERT(e1 != e2); |
1091 | if (e1->degree != e2->degree) |
1092 | return false; |
1093 | |
1094 | // Possibly equal and in the same direction. |
1095 | bool equalSame = true; |
1096 | for (int i = 0; i <= e1->degree; ++i) |
1097 | equalSame &= m_points->at(e1->indices[i]) == m_points->at(e2->indices[i]); |
1098 | |
1099 | // Possibly equal and in opposite directions. |
1100 | bool equalOpposite = true; |
1101 | for (int i = 0; i <= e1->degree; ++i) |
1102 | equalOpposite &= m_points->at(e1->indices[e1->degree - i]) == m_points->at(e2->indices[i]); |
1103 | |
1104 | return equalSame || equalOpposite; |
1105 | } |
1106 | |
1107 | bool PathSimplifier::splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, |
1108 | quint32 pointIndex, bool processAgain) |
1109 | { |
1110 | Q_ASSERT(node->type == BVHNode::Leaf); |
1111 | Element *element = node->element; |
1112 | Q_ASSERT(element->degree == Element::Line); |
1113 | const QPoint &u = m_points->at(element->indices[0]); |
1114 | const QPoint &v = m_points->at(element->indices[1]); |
1115 | const QPoint &p = m_points->at(pointIndex); |
1116 | if (u == p || v == p) |
1117 | return false; // No split needed. |
1118 | |
1119 | if (processAgain) |
1120 | element->processed = false; // Needs to be processed again. |
1121 | |
1122 | Element *first = node->element; |
1123 | Element *second = m_elementAllocator.newElement(); |
1124 | *second = *first; |
1125 | first->indices[1] = second->indices[0] = pointIndex; |
1126 | first->middle.rx() = (u.x() + p.x()) >> 1; |
1127 | first->middle.ry() = (u.y() + p.y()) >> 1; |
1128 | second->middle.rx() = (v.x() + p.x()) >> 1; |
1129 | second->middle.ry() = (v.y() + p.y()) >> 1; |
1130 | m_elements.add(second); |
1131 | |
1132 | BVHNode *left = m_bvh.newNode(); |
1133 | BVHNode *right = m_bvh.newNode(); |
1134 | left->type = right->type = BVHNode::Leaf; |
1135 | left->element = first; |
1136 | right->element = second; |
1137 | left->minimum = right->minimum = node->minimum; |
1138 | left->maximum = right->maximum = node->maximum; |
1139 | if (u.x() < v.x()) |
1140 | left->maximum.rx() = right->minimum.rx() = p.x(); |
1141 | else |
1142 | left->minimum.rx() = right->maximum.rx() = p.x(); |
1143 | if (u.y() < v.y()) |
1144 | left->maximum.ry() = right->minimum.ry() = p.y(); |
1145 | else |
1146 | left->minimum.ry() = right->maximum.ry() = p.y(); |
1147 | left->element->bvhNode = left; |
1148 | right->element->bvhNode = right; |
1149 | |
1150 | node->type = BVHNode::Split; |
1151 | node->left = left; |
1152 | node->right = right; |
1153 | |
1154 | if (!first->processed) { |
1155 | elements.add(left->element); |
1156 | elements.add(right->element); |
1157 | } |
1158 | return true; |
1159 | } |
1160 | |
1161 | void PathSimplifier::appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element) |
1162 | { |
1163 | switch (element->degree) { |
1164 | case Element::Cubic: |
1165 | { |
1166 | const QPoint &u = m_points->at(element->indices[0]); |
1167 | const QPoint &v = m_points->at(element->indices[1]); |
1168 | const QPoint &w = m_points->at(element->indices[2]); |
1169 | const QPoint &q = m_points->at(element->indices[3]); |
1170 | QPoint ns[] = { |
1171 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1172 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1173 | QPoint(w.y() - q.y(), q.x() - w.x()), |
1174 | QPoint(q.y() - u.y(), u.x() - q.x()), |
1175 | QPoint(u.y() - w.y(), w.x() - u.x()), |
1176 | QPoint(v.y() - q.y(), q.x() - v.x()) |
1177 | }; |
1178 | for (int i = 0; i < 6; ++i) { |
1179 | if (ns[i].x() || ns[i].y()) |
1180 | axes.append(ns[i]); |
1181 | } |
1182 | } |
1183 | break; |
1184 | case Element::Quadratic: |
1185 | { |
1186 | const QPoint &u = m_points->at(element->indices[0]); |
1187 | const QPoint &v = m_points->at(element->indices[1]); |
1188 | const QPoint &w = m_points->at(element->indices[2]); |
1189 | QPoint ns[] = { |
1190 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1191 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1192 | QPoint(w.y() - u.y(), u.x() - w.x()) |
1193 | }; |
1194 | for (int i = 0; i < 3; ++i) { |
1195 | if (ns[i].x() || ns[i].y()) |
1196 | axes.append(ns[i]); |
1197 | } |
1198 | } |
1199 | break; |
1200 | case Element::Line: |
1201 | { |
1202 | const QPoint &u = m_points->at(element->indices[0]); |
1203 | const QPoint &v = m_points->at(element->indices[1]); |
1204 | QPoint n(u.y() - v.y(), v.x() - u.x()); |
1205 | if (n.x() || n.y()) |
1206 | axes.append(n); |
1207 | } |
1208 | break; |
1209 | default: |
1210 | Q_ASSERT_X(0, "QSGPathSimplifier::appendSeparatingAxes" , "Unexpected element type." ); |
1211 | break; |
1212 | } |
1213 | } |
1214 | |
1215 | QPair<int, int> PathSimplifier::calculateSeparatingAxisRange(const QPoint &axis, Element *element) |
1216 | { |
1217 | QPair<int, int> range(0x7fffffff, -0x7fffffff); |
1218 | for (int i = 0; i <= element->degree; ++i) { |
1219 | const QPoint &p = m_points->at(element->indices[i]); |
1220 | int dist = dot(axis, p); |
1221 | range.first = qMin(range.first, dist); |
1222 | range.second = qMax(range.second, dist); |
1223 | } |
1224 | return range; |
1225 | } |
1226 | |
1227 | void PathSimplifier::splitCurve(QDataBuffer<Element *> &elements, BVHNode *node) |
1228 | { |
1229 | Q_ASSERT(node->type == BVHNode::Leaf); |
1230 | |
1231 | Element *first = node->element; |
1232 | Element *second = m_elementAllocator.newElement(); |
1233 | *second = *first; |
1234 | m_elements.add(second); |
1235 | Q_ASSERT(first->degree > Element::Line); |
1236 | |
1237 | bool accurate = true; |
1238 | const QPoint &u = m_points->at(first->indices[0]); |
1239 | const QPoint &v = m_points->at(first->indices[1]); |
1240 | const QPoint &w = m_points->at(first->indices[2]); |
1241 | |
1242 | if (first->degree == Element::Quadratic) { |
1243 | QPoint pts[3]; |
1244 | accurate = splitQuadratic(u, v, w, pts); |
1245 | int pointIndex = m_points->size(); |
1246 | m_points->add(pts[1]); |
1247 | accurate &= setElementToQuadratic(first, first->indices[0], pts[0], pointIndex); |
1248 | accurate &= setElementToQuadratic(second, pointIndex, pts[2], second->indices[2]); |
1249 | } else { |
1250 | Q_ASSERT(first->degree == Element::Cubic); |
1251 | const QPoint &q = m_points->at(first->indices[3]); |
1252 | QPoint pts[5]; |
1253 | accurate = splitCubic(u, v, w, q, pts); |
1254 | int pointIndex = m_points->size(); |
1255 | m_points->add(pts[2]); |
1256 | accurate &= setElementToCubic(first, first->indices[0], pts[0], pts[1], pointIndex); |
1257 | accurate &= setElementToCubic(second, pointIndex, pts[3], pts[4], second->indices[3]); |
1258 | } |
1259 | |
1260 | if (!accurate) |
1261 | first->processed = second->processed = false; // Needs to be processed again. |
1262 | |
1263 | BVHNode *left = m_bvh.newNode(); |
1264 | BVHNode *right = m_bvh.newNode(); |
1265 | left->type = right->type = BVHNode::Leaf; |
1266 | left->element = first; |
1267 | right->element = second; |
1268 | |
1269 | left->minimum.rx() = left->minimum.ry() = right->minimum.rx() = right->minimum.ry() = INT_MAX; |
1270 | left->maximum.rx() = left->maximum.ry() = right->maximum.rx() = right->maximum.ry() = INT_MIN; |
1271 | |
1272 | for (int i = 0; i <= first->degree; ++i) { |
1273 | QPoint &p = m_points->at(first->indices[i]); |
1274 | left->minimum.rx() = qMin(left->minimum.x(), p.x()); |
1275 | left->minimum.ry() = qMin(left->minimum.y(), p.y()); |
1276 | left->maximum.rx() = qMax(left->maximum.x(), p.x()); |
1277 | left->maximum.ry() = qMax(left->maximum.y(), p.y()); |
1278 | } |
1279 | for (int i = 0; i <= second->degree; ++i) { |
1280 | QPoint &p = m_points->at(second->indices[i]); |
1281 | right->minimum.rx() = qMin(right->minimum.x(), p.x()); |
1282 | right->minimum.ry() = qMin(right->minimum.y(), p.y()); |
1283 | right->maximum.rx() = qMax(right->maximum.x(), p.x()); |
1284 | right->maximum.ry() = qMax(right->maximum.y(), p.y()); |
1285 | } |
1286 | left->element->bvhNode = left; |
1287 | right->element->bvhNode = right; |
1288 | |
1289 | node->type = BVHNode::Split; |
1290 | node->left = left; |
1291 | node->right = right; |
1292 | |
1293 | if (!first->processed) { |
1294 | elements.add(left->element); |
1295 | elements.add(right->element); |
1296 | } |
1297 | } |
1298 | |
1299 | bool PathSimplifier::setElementToQuadratic(Element *element, quint32 pointIndex1, |
1300 | const QPoint &ctrl, quint32 pointIndex2) |
1301 | { |
1302 | const QPoint &p1 = m_points->at(pointIndex1); |
1303 | const QPoint &p2 = m_points->at(pointIndex2); |
1304 | if (flattenQuadratic(p1, ctrl, p2)) { |
1305 | // Insert line. |
1306 | element->degree = Element::Line; |
1307 | element->indices[0] = pointIndex1; |
1308 | element->indices[1] = pointIndex2; |
1309 | element->middle.rx() = (p1.x() + p2.x()) >> 1; |
1310 | element->middle.ry() = (p1.y() + p2.y()) >> 1; |
1311 | return false; |
1312 | } else { |
1313 | // Insert bezier. |
1314 | element->degree = Element::Quadratic; |
1315 | element->indices[0] = pointIndex1; |
1316 | element->indices[1] = m_points->size(); |
1317 | element->indices[2] = pointIndex2; |
1318 | element->middle.rx() = (p1.x() + ctrl.x() + p2.x()) / 3; |
1319 | element->middle.ry() = (p1.y() + ctrl.y() + p2.y()) / 3; |
1320 | m_points->add(ctrl); |
1321 | return true; |
1322 | } |
1323 | } |
1324 | |
1325 | bool PathSimplifier::setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &v, |
1326 | const QPoint &w, quint32 pointIndex2) |
1327 | { |
1328 | const QPoint &u = m_points->at(pointIndex1); |
1329 | const QPoint &q = m_points->at(pointIndex2); |
1330 | if (flattenCubic(u, v, w, q)) { |
1331 | // Insert line. |
1332 | element->degree = Element::Line; |
1333 | element->indices[0] = pointIndex1; |
1334 | element->indices[1] = pointIndex2; |
1335 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1336 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1337 | return false; |
1338 | } else { |
1339 | // Insert bezier. |
1340 | element->degree = Element::Cubic; |
1341 | element->indices[0] = pointIndex1; |
1342 | element->indices[1] = m_points->size(); |
1343 | element->indices[2] = m_points->size() + 1; |
1344 | element->indices[3] = pointIndex2; |
1345 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1346 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1347 | m_points->add(v); |
1348 | m_points->add(w); |
1349 | return true; |
1350 | } |
1351 | } |
1352 | |
1353 | void PathSimplifier::setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, |
1354 | const QPoint &v, const QPoint &w, |
1355 | quint32 pointIndex2) |
1356 | { |
1357 | const QPoint &u = m_points->at(pointIndex1); |
1358 | const QPoint &q = m_points->at(pointIndex2); |
1359 | if (flattenCubic(u, v, w, q)) { |
1360 | // Insert line. |
1361 | element->degree = Element::Line; |
1362 | element->indices[0] = pointIndex1; |
1363 | element->indices[1] = pointIndex2; |
1364 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1365 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1366 | return; |
1367 | } |
1368 | |
1369 | bool intersecting = (u == q) || intersectionPoint(u, v, w, q).isValid(); |
1370 | if (!intersecting) { |
1371 | // Insert bezier. |
1372 | element->degree = Element::Cubic; |
1373 | element->indices[0] = pointIndex1; |
1374 | element->indices[1] = m_points->size(); |
1375 | element->indices[2] = m_points->size() + 1; |
1376 | element->indices[3] = pointIndex2; |
1377 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1378 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1379 | m_points->add(v); |
1380 | m_points->add(w); |
1381 | return; |
1382 | } |
1383 | |
1384 | QPoint pts[5]; |
1385 | splitCubic(u, v, w, q, pts); |
1386 | int pointIndex = m_points->size(); |
1387 | m_points->add(pts[2]); |
1388 | Element *element2 = m_elementAllocator.newElement(); |
1389 | m_elements.add(element2); |
1390 | setElementToCubicAndSimplify(element, pointIndex1, pts[0], pts[1], pointIndex); |
1391 | setElementToCubicAndSimplify(element2, pointIndex, pts[3], pts[4], pointIndex2); |
1392 | } |
1393 | |
1394 | PathSimplifier::RBNode *PathSimplifier::findElementLeftOf(const Element *element, |
1395 | const QPair<RBNode *, RBNode *> &bounds) |
1396 | { |
1397 | if (!m_elementList.root) |
1398 | return nullptr; |
1399 | RBNode *current = bounds.first; |
1400 | Q_ASSERT(!current || !elementIsLeftOf(element, current->data)); |
1401 | if (!current) |
1402 | current = m_elementList.front(m_elementList.root); |
1403 | Q_ASSERT(current); |
1404 | RBNode *result = nullptr; |
1405 | while (current != bounds.second && !elementIsLeftOf(element, current->data)) { |
1406 | result = current; |
1407 | current = m_elementList.next(current); |
1408 | } |
1409 | return result; |
1410 | } |
1411 | |
1412 | bool PathSimplifier::elementIsLeftOf(const Element *left, const Element *right) |
1413 | { |
1414 | const QPoint &leftU = m_points->at(left->upperIndex()); |
1415 | const QPoint &leftL = m_points->at(left->lowerIndex()); |
1416 | const QPoint &rightU = m_points->at(right->upperIndex()); |
1417 | const QPoint &rightL = m_points->at(right->lowerIndex()); |
1418 | Q_ASSERT(leftL >= rightU && rightL >= leftU); |
1419 | if (leftU.x() < qMin(rightL.x(), rightU.x())) |
1420 | return true; |
1421 | if (leftU.x() > qMax(rightL.x(), rightU.x())) |
1422 | return false; |
1423 | int d = pointDistanceFromLine(leftU, rightL, rightU); |
1424 | // d < 0: left, d > 0: right, d == 0: on top |
1425 | if (d == 0) { |
1426 | d = pointDistanceFromLine(leftL, rightL, rightU); |
1427 | if (d == 0) { |
1428 | if (right->degree > Element::Line) { |
1429 | d = pointDistanceFromLine(leftL, rightL, m_points->at(right->indices[1])); |
1430 | if (d == 0) |
1431 | d = pointDistanceFromLine(leftL, rightL, m_points->at(right->indices[2])); |
1432 | } else if (left->degree > Element::Line) { |
1433 | d = pointDistanceFromLine(m_points->at(left->indices[1]), rightL, rightU); |
1434 | if (d == 0) |
1435 | d = pointDistanceFromLine(m_points->at(left->indices[2]), rightL, rightU); |
1436 | } |
1437 | } |
1438 | } |
1439 | return d < 0; |
1440 | } |
1441 | |
1442 | QPair<PathSimplifier::RBNode *, PathSimplifier::RBNode *> PathSimplifier::outerBounds(const QPoint &point) |
1443 | { |
1444 | RBNode *current = m_elementList.root; |
1445 | QPair<RBNode *, RBNode *> result(nullptr, nullptr); |
1446 | |
1447 | while (current) { |
1448 | const Element *element = current->data; |
1449 | Q_ASSERT(element->edgeNode == current); |
1450 | const QPoint &v1 = m_points->at(element->lowerIndex()); |
1451 | const QPoint &v2 = m_points->at(element->upperIndex()); |
1452 | Q_ASSERT(point >= v2 && point <= v1); |
1453 | if (point == v1 || point == v2) |
1454 | break; |
1455 | int d = pointDistanceFromLine(point, v1, v2); |
1456 | if (d == 0) { |
1457 | if (element->degree == Element::Line) |
1458 | break; |
1459 | d = pointDistanceFromLine(point, v1, m_points->at(element->indices[1])); |
1460 | if (d == 0) |
1461 | d = pointDistanceFromLine(point, v1, m_points->at(element->indices[2])); |
1462 | Q_ASSERT(d != 0); |
1463 | } |
1464 | if (d < 0) { |
1465 | result.second = current; |
1466 | current = current->left; |
1467 | } else { |
1468 | result.first = current; |
1469 | current = current->right; |
1470 | } |
1471 | } |
1472 | |
1473 | if (!current) |
1474 | return result; |
1475 | |
1476 | RBNode *mid = current; |
1477 | |
1478 | current = mid->left; |
1479 | while (current) { |
1480 | const Element *element = current->data; |
1481 | Q_ASSERT(element->edgeNode == current); |
1482 | const QPoint &v1 = m_points->at(element->lowerIndex()); |
1483 | const QPoint &v2 = m_points->at(element->upperIndex()); |
1484 | Q_ASSERT(point >= v2 && point <= v1); |
1485 | bool equal = (point == v1 || point == v2); |
1486 | if (!equal) { |
1487 | int d = pointDistanceFromLine(point, v1, v2); |
1488 | Q_ASSERT(d >= 0); |
1489 | equal = (d == 0 && element->degree == Element::Line); |
1490 | } |
1491 | if (equal) { |
1492 | current = current->left; |
1493 | } else { |
1494 | result.first = current; |
1495 | current = current->right; |
1496 | } |
1497 | } |
1498 | |
1499 | current = mid->right; |
1500 | while (current) { |
1501 | const Element *element = current->data; |
1502 | Q_ASSERT(element->edgeNode == current); |
1503 | const QPoint &v1 = m_points->at(element->lowerIndex()); |
1504 | const QPoint &v2 = m_points->at(element->upperIndex()); |
1505 | Q_ASSERT(point >= v2 && point <= v1); |
1506 | bool equal = (point == v1 || point == v2); |
1507 | if (!equal) { |
1508 | int d = pointDistanceFromLine(point, v1, v2); |
1509 | Q_ASSERT(d <= 0); |
1510 | equal = (d == 0 && element->degree == Element::Line); |
1511 | } |
1512 | if (equal) { |
1513 | current = current->right; |
1514 | } else { |
1515 | result.second = current; |
1516 | current = current->left; |
1517 | } |
1518 | } |
1519 | |
1520 | return result; |
1521 | } |
1522 | |
1523 | inline bool PathSimplifier::flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1524 | { |
1525 | QPoint deltas[2] = { v - u, w - v }; |
1526 | int d = qAbs(cross(deltas[0], deltas[1])); |
1527 | int l = qAbs(deltas[0].x()) + qAbs(deltas[0].y()) + qAbs(deltas[1].x()) + qAbs(deltas[1].y()); |
1528 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3 / 2) || l <= Q_FIXED_POINT_SCALE * 2; |
1529 | } |
1530 | |
1531 | inline bool PathSimplifier::flattenCubic(const QPoint &u, const QPoint &v, |
1532 | const QPoint &w, const QPoint &q) |
1533 | { |
1534 | QPoint deltas[] = { v - u, w - v, q - w, q - u }; |
1535 | int d = qAbs(cross(deltas[0], deltas[1])) + qAbs(cross(deltas[1], deltas[2])) |
1536 | + qAbs(cross(deltas[0], deltas[3])) + qAbs(cross(deltas[3], deltas[2])); |
1537 | int l = qAbs(deltas[0].x()) + qAbs(deltas[0].y()) + qAbs(deltas[1].x()) + qAbs(deltas[1].y()) |
1538 | + qAbs(deltas[2].x()) + qAbs(deltas[2].y()); |
1539 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3) || l <= Q_FIXED_POINT_SCALE * 2; |
1540 | } |
1541 | |
1542 | inline bool PathSimplifier::splitQuadratic(const QPoint &u, const QPoint &v, |
1543 | const QPoint &w, QPoint *result) |
1544 | { |
1545 | result[0] = u + v; |
1546 | result[2] = v + w; |
1547 | result[1] = result[0] + result[2]; |
1548 | bool accurate = ((result[0].x() | result[0].y() | result[2].x() | result[2].y()) & 1) == 0 |
1549 | && ((result[1].x() | result[1].y()) & 3) == 0; |
1550 | result[0].rx() >>= 1; |
1551 | result[0].ry() >>= 1; |
1552 | result[1].rx() >>= 2; |
1553 | result[1].ry() >>= 2; |
1554 | result[2].rx() >>= 1; |
1555 | result[2].ry() >>= 1; |
1556 | return accurate; |
1557 | } |
1558 | |
1559 | inline bool PathSimplifier::splitCubic(const QPoint &u, const QPoint &v, |
1560 | const QPoint &w, const QPoint &q, QPoint *result) |
1561 | { |
1562 | result[0] = u + v; |
1563 | result[2] = v + w; |
1564 | result[4] = w + q; |
1565 | result[1] = result[0] + result[2]; |
1566 | result[3] = result[2] + result[4]; |
1567 | result[2] = result[1] + result[3]; |
1568 | bool accurate = ((result[0].x() | result[0].y() | result[4].x() | result[4].y()) & 1) == 0 |
1569 | && ((result[1].x() | result[1].y() | result[3].x() | result[3].y()) & 3) == 0 |
1570 | && ((result[2].x() | result[2].y()) & 7) == 0; |
1571 | result[0].rx() >>= 1; |
1572 | result[0].ry() >>= 1; |
1573 | result[1].rx() >>= 2; |
1574 | result[1].ry() >>= 2; |
1575 | result[2].rx() >>= 3; |
1576 | result[2].ry() >>= 3; |
1577 | result[3].rx() >>= 2; |
1578 | result[3].ry() >>= 2; |
1579 | result[4].rx() >>= 1; |
1580 | result[4].ry() >>= 1; |
1581 | return accurate; |
1582 | } |
1583 | |
1584 | inline void PathSimplifier::subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1585 | { |
1586 | if (flattenQuadratic(u, v, w)) |
1587 | return; |
1588 | QPoint pts[3]; |
1589 | splitQuadratic(u, v, w, pts); |
1590 | subDivQuadratic(u, pts[0], pts[1]); |
1591 | m_indices->add(m_points->size()); |
1592 | m_points->add(pts[1]); |
1593 | subDivQuadratic(pts[1], pts[2], w); |
1594 | } |
1595 | |
1596 | inline void PathSimplifier::subDivCubic(const QPoint &u, const QPoint &v, |
1597 | const QPoint &w, const QPoint &q) |
1598 | { |
1599 | if (flattenCubic(u, v, w, q)) |
1600 | return; |
1601 | QPoint pts[5]; |
1602 | splitCubic(u, v, w, q, pts); |
1603 | subDivCubic(u, pts[0], pts[1], pts[2]); |
1604 | m_indices->add(m_points->size()); |
1605 | m_points->add(pts[2]); |
1606 | subDivCubic(pts[2], pts[3], pts[4], q); |
1607 | } |
1608 | |
1609 | void PathSimplifier::sortEvents(Event *events, int count) |
1610 | { |
1611 | // Bucket sort + insertion sort. |
1612 | Q_ASSERT(count > 0); |
1613 | QDataBuffer<Event> buffer(count); |
1614 | buffer.resize(count); |
1615 | QScopedArrayPointer<int> bins(new int[count]); |
1616 | int counts[0x101]; |
1617 | memset(counts, 0, sizeof(counts)); |
1618 | |
1619 | int minimum, maximum; |
1620 | minimum = maximum = events[0].point.y(); |
1621 | for (int i = 1; i < count; ++i) { |
1622 | minimum = qMin(minimum, events[i].point.y()); |
1623 | maximum = qMax(maximum, events[i].point.y()); |
1624 | } |
1625 | |
1626 | for (int i = 0; i < count; ++i) { |
1627 | bins[i] = ((maximum - events[i].point.y()) << 8) / (maximum - minimum + 1); |
1628 | Q_ASSERT(bins[i] >= 0 && bins[i] < 0x100); |
1629 | ++counts[bins[i]]; |
1630 | } |
1631 | |
1632 | for (int i = 1; i < 0x100; ++i) |
1633 | counts[i] += counts[i - 1]; |
1634 | counts[0x100] = counts[0xff]; |
1635 | Q_ASSERT(counts[0x100] == count); |
1636 | |
1637 | for (int i = 0; i < count; ++i) |
1638 | buffer.at(--counts[bins[i]]) = events[i]; |
1639 | |
1640 | int j = 0; |
1641 | for (int i = 0; i < 0x100; ++i) { |
1642 | for (; j < counts[i + 1]; ++j) { |
1643 | int k = j; |
1644 | while (k > 0 && (buffer.at(j) < events[k - 1])) { |
1645 | events[k] = events[k - 1]; |
1646 | --k; |
1647 | } |
1648 | events[k] = buffer.at(j); |
1649 | } |
1650 | } |
1651 | } |
1652 | |
1653 | } // end anonymous namespace |
1654 | |
1655 | |
1656 | void qSimplifyPath(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
1657 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1658 | { |
1659 | PathSimplifier(path, vertices, indices, matrix); |
1660 | } |
1661 | |
1662 | void qSimplifyPath(const QPainterPath &path, QDataBuffer<QPoint> &vertices, |
1663 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1664 | { |
1665 | qSimplifyPath(qtVectorPathForPath(path), vertices, indices, matrix); |
1666 | } |
1667 | |
1668 | |
1669 | QT_END_NAMESPACE |
1670 | |