1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <cstdint> // for std::uint_fast64_t |
36 | #include <bits/stl_algobase.h> // for std::min. |
37 | |
38 | namespace std _GLIBCXX_VISIBILITY(default) |
39 | { |
40 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
41 | |
42 | template<typename _Key, typename _Value, typename _Alloc, |
43 | typename _ExtractKey, typename _Equal, |
44 | typename _H1, typename _H2, typename _Hash, |
45 | typename _RehashPolicy, typename _Traits> |
46 | class _Hashtable; |
47 | |
48 | namespace __detail |
49 | { |
50 | /** |
51 | * @defgroup hashtable-detail Base and Implementation Classes |
52 | * @ingroup unordered_associative_containers |
53 | * @{ |
54 | */ |
55 | template<typename _Key, typename _Value, |
56 | typename _ExtractKey, typename _Equal, |
57 | typename _H1, typename _H2, typename _Hash, typename _Traits> |
58 | struct _Hashtable_base; |
59 | |
60 | // Helper function: return distance(first, last) for forward |
61 | // iterators, or 0/1 for input iterators. |
62 | template<class _Iterator> |
63 | inline typename std::iterator_traits<_Iterator>::difference_type |
64 | __distance_fw(_Iterator __first, _Iterator __last, |
65 | std::input_iterator_tag) |
66 | { return __first != __last ? 1 : 0; } |
67 | |
68 | template<class _Iterator> |
69 | inline typename std::iterator_traits<_Iterator>::difference_type |
70 | __distance_fw(_Iterator __first, _Iterator __last, |
71 | std::forward_iterator_tag) |
72 | { return std::distance(__first, __last); } |
73 | |
74 | template<class _Iterator> |
75 | inline typename std::iterator_traits<_Iterator>::difference_type |
76 | __distance_fw(_Iterator __first, _Iterator __last) |
77 | { return __distance_fw(__first, __last, |
78 | std::__iterator_category(__first)); } |
79 | |
80 | struct _Identity |
81 | { |
82 | template<typename _Tp> |
83 | _Tp&& |
84 | operator()(_Tp&& __x) const |
85 | { return std::forward<_Tp>(__x); } |
86 | }; |
87 | |
88 | struct _Select1st |
89 | { |
90 | template<typename _Tp> |
91 | auto |
92 | operator()(_Tp&& __x) const |
93 | -> decltype(std::get<0>(std::forward<_Tp>(__x))) |
94 | { return std::get<0>(std::forward<_Tp>(__x)); } |
95 | }; |
96 | |
97 | template<typename _NodeAlloc> |
98 | struct _Hashtable_alloc; |
99 | |
100 | // Functor recycling a pool of nodes and using allocation once the pool is |
101 | // empty. |
102 | template<typename _NodeAlloc> |
103 | struct _ReuseOrAllocNode |
104 | { |
105 | private: |
106 | using __node_alloc_type = _NodeAlloc; |
107 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
108 | using __node_alloc_traits = |
109 | typename __hashtable_alloc::__node_alloc_traits; |
110 | using __node_type = typename __hashtable_alloc::__node_type; |
111 | |
112 | public: |
113 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
114 | : _M_nodes(__nodes), _M_h(__h) { } |
115 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
116 | |
117 | ~_ReuseOrAllocNode() |
118 | { _M_h._M_deallocate_nodes(_M_nodes); } |
119 | |
120 | template<typename _Arg> |
121 | __node_type* |
122 | operator()(_Arg&& __arg) const |
123 | { |
124 | if (_M_nodes) |
125 | { |
126 | __node_type* __node = _M_nodes; |
127 | _M_nodes = _M_nodes->_M_next(); |
128 | __node->_M_nxt = nullptr; |
129 | auto& __a = _M_h._M_node_allocator(); |
130 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
131 | __try |
132 | { |
133 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
134 | std::forward<_Arg>(__arg)); |
135 | } |
136 | __catch(...) |
137 | { |
138 | __node->~__node_type(); |
139 | __node_alloc_traits::deallocate(__a, __node, 1); |
140 | __throw_exception_again; |
141 | } |
142 | return __node; |
143 | } |
144 | return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); |
145 | } |
146 | |
147 | private: |
148 | mutable __node_type* _M_nodes; |
149 | __hashtable_alloc& _M_h; |
150 | }; |
151 | |
152 | // Functor similar to the previous one but without any pool of nodes to |
153 | // recycle. |
154 | template<typename _NodeAlloc> |
155 | struct _AllocNode |
156 | { |
157 | private: |
158 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
159 | using __node_type = typename __hashtable_alloc::__node_type; |
160 | |
161 | public: |
162 | _AllocNode(__hashtable_alloc& __h) |
163 | : _M_h(__h) { } |
164 | |
165 | template<typename _Arg> |
166 | __node_type* |
167 | operator()(_Arg&& __arg) const |
168 | { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } |
169 | |
170 | private: |
171 | __hashtable_alloc& _M_h; |
172 | }; |
173 | |
174 | // Auxiliary types used for all instantiations of _Hashtable nodes |
175 | // and iterators. |
176 | |
177 | /** |
178 | * struct _Hashtable_traits |
179 | * |
180 | * Important traits for hash tables. |
181 | * |
182 | * @tparam _Cache_hash_code Boolean value. True if the value of |
183 | * the hash function is stored along with the value. This is a |
184 | * time-space tradeoff. Storing it may improve lookup speed by |
185 | * reducing the number of times we need to call the _Equal |
186 | * function. |
187 | * |
188 | * @tparam _Constant_iterators Boolean value. True if iterator and |
189 | * const_iterator are both constant iterator types. This is true |
190 | * for unordered_set and unordered_multiset, false for |
191 | * unordered_map and unordered_multimap. |
192 | * |
193 | * @tparam _Unique_keys Boolean value. True if the return value |
194 | * of _Hashtable::count(k) is always at most one, false if it may |
195 | * be an arbitrary number. This is true for unordered_set and |
196 | * unordered_map, false for unordered_multiset and |
197 | * unordered_multimap. |
198 | */ |
199 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
200 | struct _Hashtable_traits |
201 | { |
202 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
203 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
204 | using __unique_keys = __bool_constant<_Unique_keys>; |
205 | }; |
206 | |
207 | /** |
208 | * struct _Hash_node_base |
209 | * |
210 | * Nodes, used to wrap elements stored in the hash table. A policy |
211 | * template parameter of class template _Hashtable controls whether |
212 | * nodes also store a hash code. In some cases (e.g. strings) this |
213 | * may be a performance win. |
214 | */ |
215 | struct _Hash_node_base |
216 | { |
217 | _Hash_node_base* _M_nxt; |
218 | |
219 | _Hash_node_base() noexcept : _M_nxt() { } |
220 | |
221 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
222 | }; |
223 | |
224 | /** |
225 | * struct _Hash_node_value_base |
226 | * |
227 | * Node type with the value to store. |
228 | */ |
229 | template<typename _Value> |
230 | struct _Hash_node_value_base : _Hash_node_base |
231 | { |
232 | typedef _Value value_type; |
233 | |
234 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
235 | |
236 | _Value* |
237 | _M_valptr() noexcept |
238 | { return _M_storage._M_ptr(); } |
239 | |
240 | const _Value* |
241 | _M_valptr() const noexcept |
242 | { return _M_storage._M_ptr(); } |
243 | |
244 | _Value& |
245 | _M_v() noexcept |
246 | { return *_M_valptr(); } |
247 | |
248 | const _Value& |
249 | _M_v() const noexcept |
250 | { return *_M_valptr(); } |
251 | }; |
252 | |
253 | /** |
254 | * Primary template struct _Hash_node. |
255 | */ |
256 | template<typename _Value, bool _Cache_hash_code> |
257 | struct _Hash_node; |
258 | |
259 | /** |
260 | * Specialization for nodes with caches, struct _Hash_node. |
261 | * |
262 | * Base class is __detail::_Hash_node_value_base. |
263 | */ |
264 | template<typename _Value> |
265 | struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value> |
266 | { |
267 | std::size_t _M_hash_code; |
268 | |
269 | _Hash_node* |
270 | _M_next() const noexcept |
271 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
272 | }; |
273 | |
274 | /** |
275 | * Specialization for nodes without caches, struct _Hash_node. |
276 | * |
277 | * Base class is __detail::_Hash_node_value_base. |
278 | */ |
279 | template<typename _Value> |
280 | struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value> |
281 | { |
282 | _Hash_node* |
283 | _M_next() const noexcept |
284 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
285 | }; |
286 | |
287 | /// Base class for node iterators. |
288 | template<typename _Value, bool _Cache_hash_code> |
289 | struct _Node_iterator_base |
290 | { |
291 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
292 | |
293 | __node_type* _M_cur; |
294 | |
295 | _Node_iterator_base(__node_type* __p) noexcept |
296 | : _M_cur(__p) { } |
297 | |
298 | void |
299 | _M_incr() noexcept |
300 | { _M_cur = _M_cur->_M_next(); } |
301 | }; |
302 | |
303 | template<typename _Value, bool _Cache_hash_code> |
304 | inline bool |
305 | operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, |
306 | const _Node_iterator_base<_Value, _Cache_hash_code >& __y) |
307 | noexcept |
308 | { return __x._M_cur == __y._M_cur; } |
309 | |
310 | template<typename _Value, bool _Cache_hash_code> |
311 | inline bool |
312 | operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, |
313 | const _Node_iterator_base<_Value, _Cache_hash_code>& __y) |
314 | noexcept |
315 | { return __x._M_cur != __y._M_cur; } |
316 | |
317 | /// Node iterators, used to iterate through all the hashtable. |
318 | template<typename _Value, bool __constant_iterators, bool __cache> |
319 | struct _Node_iterator |
320 | : public _Node_iterator_base<_Value, __cache> |
321 | { |
322 | private: |
323 | using __base_type = _Node_iterator_base<_Value, __cache>; |
324 | using __node_type = typename __base_type::__node_type; |
325 | |
326 | public: |
327 | typedef _Value value_type; |
328 | typedef std::ptrdiff_t difference_type; |
329 | typedef std::forward_iterator_tag iterator_category; |
330 | |
331 | using pointer = typename std::conditional<__constant_iterators, |
332 | const _Value*, _Value*>::type; |
333 | |
334 | using reference = typename std::conditional<__constant_iterators, |
335 | const _Value&, _Value&>::type; |
336 | |
337 | _Node_iterator() noexcept |
338 | : __base_type(0) { } |
339 | |
340 | explicit |
341 | _Node_iterator(__node_type* __p) noexcept |
342 | : __base_type(__p) { } |
343 | |
344 | reference |
345 | operator*() const noexcept |
346 | { return this->_M_cur->_M_v(); } |
347 | |
348 | pointer |
349 | operator->() const noexcept |
350 | { return this->_M_cur->_M_valptr(); } |
351 | |
352 | _Node_iterator& |
353 | operator++() noexcept |
354 | { |
355 | this->_M_incr(); |
356 | return *this; |
357 | } |
358 | |
359 | _Node_iterator |
360 | operator++(int) noexcept |
361 | { |
362 | _Node_iterator __tmp(*this); |
363 | this->_M_incr(); |
364 | return __tmp; |
365 | } |
366 | }; |
367 | |
368 | /// Node const_iterators, used to iterate through all the hashtable. |
369 | template<typename _Value, bool __constant_iterators, bool __cache> |
370 | struct _Node_const_iterator |
371 | : public _Node_iterator_base<_Value, __cache> |
372 | { |
373 | private: |
374 | using __base_type = _Node_iterator_base<_Value, __cache>; |
375 | using __node_type = typename __base_type::__node_type; |
376 | |
377 | public: |
378 | typedef _Value value_type; |
379 | typedef std::ptrdiff_t difference_type; |
380 | typedef std::forward_iterator_tag iterator_category; |
381 | |
382 | typedef const _Value* pointer; |
383 | typedef const _Value& reference; |
384 | |
385 | _Node_const_iterator() noexcept |
386 | : __base_type(0) { } |
387 | |
388 | explicit |
389 | _Node_const_iterator(__node_type* __p) noexcept |
390 | : __base_type(__p) { } |
391 | |
392 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
393 | __cache>& __x) noexcept |
394 | : __base_type(__x._M_cur) { } |
395 | |
396 | reference |
397 | operator*() const noexcept |
398 | { return this->_M_cur->_M_v(); } |
399 | |
400 | pointer |
401 | operator->() const noexcept |
402 | { return this->_M_cur->_M_valptr(); } |
403 | |
404 | _Node_const_iterator& |
405 | operator++() noexcept |
406 | { |
407 | this->_M_incr(); |
408 | return *this; |
409 | } |
410 | |
411 | _Node_const_iterator |
412 | operator++(int) noexcept |
413 | { |
414 | _Node_const_iterator __tmp(*this); |
415 | this->_M_incr(); |
416 | return __tmp; |
417 | } |
418 | }; |
419 | |
420 | // Many of class template _Hashtable's template parameters are policy |
421 | // classes. These are defaults for the policies. |
422 | |
423 | /// Default range hashing function: use division to fold a large number |
424 | /// into the range [0, N). |
425 | struct _Mod_range_hashing |
426 | { |
427 | typedef std::size_t first_argument_type; |
428 | typedef std::size_t second_argument_type; |
429 | typedef std::size_t result_type; |
430 | |
431 | result_type |
432 | operator()(first_argument_type __num, |
433 | second_argument_type __den) const noexcept |
434 | { return __num % __den; } |
435 | }; |
436 | |
437 | /// Default ranged hash function H. In principle it should be a |
438 | /// function object composed from objects of type H1 and H2 such that |
439 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
440 | /// h1 and h2. So instead we'll just use a tag to tell class template |
441 | /// hashtable to do that composition. |
442 | struct _Default_ranged_hash { }; |
443 | |
444 | /// Default value for rehash policy. Bucket size is (usually) the |
445 | /// smallest prime that keeps the load factor small enough. |
446 | struct _Prime_rehash_policy |
447 | { |
448 | using __has_load_factor = std::true_type; |
449 | |
450 | _Prime_rehash_policy(float __z = 1.0) noexcept |
451 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
452 | |
453 | float |
454 | max_load_factor() const noexcept |
455 | { return _M_max_load_factor; } |
456 | |
457 | // Return a bucket size no smaller than n. |
458 | std::size_t |
459 | _M_next_bkt(std::size_t __n) const; |
460 | |
461 | // Return a bucket count appropriate for n elements |
462 | std::size_t |
463 | _M_bkt_for_elements(std::size_t __n) const |
464 | { return __builtin_ceil(__n / (long double)_M_max_load_factor); } |
465 | |
466 | // __n_bkt is current bucket count, __n_elt is current element count, |
467 | // and __n_ins is number of elements to be inserted. Do we need to |
468 | // increase bucket count? If so, return make_pair(true, n), where n |
469 | // is the new bucket count. If not, return make_pair(false, 0). |
470 | std::pair<bool, std::size_t> |
471 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
472 | std::size_t __n_ins) const; |
473 | |
474 | typedef std::size_t _State; |
475 | |
476 | _State |
477 | _M_state() const |
478 | { return _M_next_resize; } |
479 | |
480 | void |
481 | _M_reset() noexcept |
482 | { _M_next_resize = 0; } |
483 | |
484 | void |
485 | _M_reset(_State __state) |
486 | { _M_next_resize = __state; } |
487 | |
488 | static const std::size_t _S_growth_factor = 2; |
489 | |
490 | float _M_max_load_factor; |
491 | mutable std::size_t _M_next_resize; |
492 | }; |
493 | |
494 | /// Range hashing function assuming that second arg is a power of 2. |
495 | struct _Mask_range_hashing |
496 | { |
497 | typedef std::size_t first_argument_type; |
498 | typedef std::size_t second_argument_type; |
499 | typedef std::size_t result_type; |
500 | |
501 | result_type |
502 | operator()(first_argument_type __num, |
503 | second_argument_type __den) const noexcept |
504 | { return __num & (__den - 1); } |
505 | }; |
506 | |
507 | /// Compute closest power of 2. |
508 | _GLIBCXX14_CONSTEXPR |
509 | inline std::size_t |
510 | __clp2(std::size_t __n) noexcept |
511 | { |
512 | #if __SIZEOF_SIZE_T__ >= 8 |
513 | std::uint_fast64_t __x = __n; |
514 | #else |
515 | std::uint_fast32_t __x = __n; |
516 | #endif |
517 | // Algorithm from Hacker's Delight, Figure 3-3. |
518 | __x = __x - 1; |
519 | __x = __x | (__x >> 1); |
520 | __x = __x | (__x >> 2); |
521 | __x = __x | (__x >> 4); |
522 | __x = __x | (__x >> 8); |
523 | __x = __x | (__x >>16); |
524 | #if __SIZEOF_SIZE_T__ >= 8 |
525 | __x = __x | (__x >>32); |
526 | #endif |
527 | return __x + 1; |
528 | } |
529 | |
530 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
531 | /// operations. |
532 | struct _Power2_rehash_policy |
533 | { |
534 | using __has_load_factor = std::true_type; |
535 | |
536 | _Power2_rehash_policy(float __z = 1.0) noexcept |
537 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
538 | |
539 | float |
540 | max_load_factor() const noexcept |
541 | { return _M_max_load_factor; } |
542 | |
543 | // Return a bucket size no smaller than n (as long as n is not above the |
544 | // highest power of 2). |
545 | std::size_t |
546 | _M_next_bkt(std::size_t __n) noexcept |
547 | { |
548 | const auto __max_width = std::min<size_t>(sizeof(size_t), 8); |
549 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
550 | std::size_t __res = __clp2(__n); |
551 | |
552 | if (__res == __n) |
553 | __res <<= 1; |
554 | |
555 | if (__res == 0) |
556 | __res = __max_bkt; |
557 | |
558 | if (__res == __max_bkt) |
559 | // Set next resize to the max value so that we never try to rehash again |
560 | // as we already reach the biggest possible bucket number. |
561 | // Note that it might result in max_load_factor not being respected. |
562 | _M_next_resize = std::size_t(-1); |
563 | else |
564 | _M_next_resize |
565 | = __builtin_ceil(__res * (long double)_M_max_load_factor); |
566 | |
567 | return __res; |
568 | } |
569 | |
570 | // Return a bucket count appropriate for n elements |
571 | std::size_t |
572 | _M_bkt_for_elements(std::size_t __n) const noexcept |
573 | { return __builtin_ceil(__n / (long double)_M_max_load_factor); } |
574 | |
575 | // __n_bkt is current bucket count, __n_elt is current element count, |
576 | // and __n_ins is number of elements to be inserted. Do we need to |
577 | // increase bucket count? If so, return make_pair(true, n), where n |
578 | // is the new bucket count. If not, return make_pair(false, 0). |
579 | std::pair<bool, std::size_t> |
580 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
581 | std::size_t __n_ins) noexcept |
582 | { |
583 | if (__n_elt + __n_ins >= _M_next_resize) |
584 | { |
585 | long double __min_bkts = (__n_elt + __n_ins) |
586 | / (long double)_M_max_load_factor; |
587 | if (__min_bkts >= __n_bkt) |
588 | return std::make_pair(true, |
589 | _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, |
590 | __n_bkt * _S_growth_factor))); |
591 | |
592 | _M_next_resize |
593 | = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); |
594 | return std::make_pair(false, 0); |
595 | } |
596 | else |
597 | return std::make_pair(false, 0); |
598 | } |
599 | |
600 | typedef std::size_t _State; |
601 | |
602 | _State |
603 | _M_state() const noexcept |
604 | { return _M_next_resize; } |
605 | |
606 | void |
607 | _M_reset() noexcept |
608 | { _M_next_resize = 0; } |
609 | |
610 | void |
611 | _M_reset(_State __state) noexcept |
612 | { _M_next_resize = __state; } |
613 | |
614 | static const std::size_t _S_growth_factor = 2; |
615 | |
616 | float _M_max_load_factor; |
617 | std::size_t _M_next_resize; |
618 | }; |
619 | |
620 | // Base classes for std::_Hashtable. We define these base classes |
621 | // because in some cases we want to do different things depending on |
622 | // the value of a policy class. In some cases the policy class |
623 | // affects which member functions and nested typedefs are defined; |
624 | // we handle that by specializing base class templates. Several of |
625 | // the base class templates need to access other members of class |
626 | // template _Hashtable, so we use a variant of the "Curiously |
627 | // Recurring Template Pattern" (CRTP) technique. |
628 | |
629 | /** |
630 | * Primary class template _Map_base. |
631 | * |
632 | * If the hashtable has a value type of the form pair<T1, T2> and a |
633 | * key extraction policy (_ExtractKey) that returns the first part |
634 | * of the pair, the hashtable gets a mapped_type typedef. If it |
635 | * satisfies those criteria and also has unique keys, then it also |
636 | * gets an operator[]. |
637 | */ |
638 | template<typename _Key, typename _Value, typename _Alloc, |
639 | typename _ExtractKey, typename _Equal, |
640 | typename _H1, typename _H2, typename _Hash, |
641 | typename _RehashPolicy, typename _Traits, |
642 | bool _Unique_keys = _Traits::__unique_keys::value> |
643 | struct _Map_base { }; |
644 | |
645 | /// Partial specialization, __unique_keys set to false. |
646 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
647 | typename _H1, typename _H2, typename _Hash, |
648 | typename _RehashPolicy, typename _Traits> |
649 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
650 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false> |
651 | { |
652 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
653 | }; |
654 | |
655 | /// Partial specialization, __unique_keys set to true. |
656 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
657 | typename _H1, typename _H2, typename _Hash, |
658 | typename _RehashPolicy, typename _Traits> |
659 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
660 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true> |
661 | { |
662 | private: |
663 | using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair, |
664 | _Select1st, |
665 | _Equal, _H1, _H2, _Hash, |
666 | _Traits>; |
667 | |
668 | using __hashtable = _Hashtable<_Key, _Pair, _Alloc, |
669 | _Select1st, _Equal, |
670 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
671 | |
672 | using __hash_code = typename __hashtable_base::__hash_code; |
673 | using __node_type = typename __hashtable_base::__node_type; |
674 | |
675 | public: |
676 | using key_type = typename __hashtable_base::key_type; |
677 | using iterator = typename __hashtable_base::iterator; |
678 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
679 | |
680 | mapped_type& |
681 | operator[](const key_type& __k); |
682 | |
683 | mapped_type& |
684 | operator[](key_type&& __k); |
685 | |
686 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
687 | // DR 761. unordered_map needs an at() member function. |
688 | mapped_type& |
689 | at(const key_type& __k); |
690 | |
691 | const mapped_type& |
692 | at(const key_type& __k) const; |
693 | }; |
694 | |
695 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
696 | typename _H1, typename _H2, typename _Hash, |
697 | typename _RehashPolicy, typename _Traits> |
698 | auto |
699 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
700 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
701 | operator[](const key_type& __k) |
702 | -> mapped_type& |
703 | { |
704 | __hashtable* __h = static_cast<__hashtable*>(this); |
705 | __hash_code __code = __h->_M_hash_code(__k); |
706 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
707 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
708 | |
709 | if (!__p) |
710 | { |
711 | __p = __h->_M_allocate_node(std::piecewise_construct, |
712 | std::tuple<const key_type&>(__k), |
713 | std::tuple<>()); |
714 | return __h->_M_insert_unique_node(__n, __code, __p)->second; |
715 | } |
716 | |
717 | return __p->_M_v().second; |
718 | } |
719 | |
720 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
721 | typename _H1, typename _H2, typename _Hash, |
722 | typename _RehashPolicy, typename _Traits> |
723 | auto |
724 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
725 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
726 | operator[](key_type&& __k) |
727 | -> mapped_type& |
728 | { |
729 | __hashtable* __h = static_cast<__hashtable*>(this); |
730 | __hash_code __code = __h->_M_hash_code(__k); |
731 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
732 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
733 | |
734 | if (!__p) |
735 | { |
736 | __p = __h->_M_allocate_node(std::piecewise_construct, |
737 | std::forward_as_tuple(std::move(__k)), |
738 | std::tuple<>()); |
739 | return __h->_M_insert_unique_node(__n, __code, __p)->second; |
740 | } |
741 | |
742 | return __p->_M_v().second; |
743 | } |
744 | |
745 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
746 | typename _H1, typename _H2, typename _Hash, |
747 | typename _RehashPolicy, typename _Traits> |
748 | auto |
749 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
750 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
751 | at(const key_type& __k) |
752 | -> mapped_type& |
753 | { |
754 | __hashtable* __h = static_cast<__hashtable*>(this); |
755 | __hash_code __code = __h->_M_hash_code(__k); |
756 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
757 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
758 | |
759 | if (!__p) |
760 | __throw_out_of_range(__N("_Map_base::at" )); |
761 | return __p->_M_v().second; |
762 | } |
763 | |
764 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
765 | typename _H1, typename _H2, typename _Hash, |
766 | typename _RehashPolicy, typename _Traits> |
767 | auto |
768 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
769 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
770 | at(const key_type& __k) const |
771 | -> const mapped_type& |
772 | { |
773 | const __hashtable* __h = static_cast<const __hashtable*>(this); |
774 | __hash_code __code = __h->_M_hash_code(__k); |
775 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
776 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
777 | |
778 | if (!__p) |
779 | __throw_out_of_range(__N("_Map_base::at" )); |
780 | return __p->_M_v().second; |
781 | } |
782 | |
783 | /** |
784 | * Primary class template _Insert_base. |
785 | * |
786 | * Defines @c insert member functions appropriate to all _Hashtables. |
787 | */ |
788 | template<typename _Key, typename _Value, typename _Alloc, |
789 | typename _ExtractKey, typename _Equal, |
790 | typename _H1, typename _H2, typename _Hash, |
791 | typename _RehashPolicy, typename _Traits> |
792 | struct _Insert_base |
793 | { |
794 | protected: |
795 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
796 | _Equal, _H1, _H2, _Hash, |
797 | _RehashPolicy, _Traits>; |
798 | |
799 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
800 | _Equal, _H1, _H2, _Hash, |
801 | _Traits>; |
802 | |
803 | using value_type = typename __hashtable_base::value_type; |
804 | using iterator = typename __hashtable_base::iterator; |
805 | using const_iterator = typename __hashtable_base::const_iterator; |
806 | using size_type = typename __hashtable_base::size_type; |
807 | |
808 | using __unique_keys = typename __hashtable_base::__unique_keys; |
809 | using __ireturn_type = typename __hashtable_base::__ireturn_type; |
810 | using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>; |
811 | using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>; |
812 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
813 | |
814 | __hashtable& |
815 | _M_conjure_hashtable() |
816 | { return *(static_cast<__hashtable*>(this)); } |
817 | |
818 | template<typename _InputIterator, typename _NodeGetter> |
819 | void |
820 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
821 | const _NodeGetter&, true_type); |
822 | |
823 | template<typename _InputIterator, typename _NodeGetter> |
824 | void |
825 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
826 | const _NodeGetter&, false_type); |
827 | |
828 | public: |
829 | __ireturn_type |
830 | insert(const value_type& __v) |
831 | { |
832 | __hashtable& __h = _M_conjure_hashtable(); |
833 | __node_gen_type __node_gen(__h); |
834 | return __h._M_insert(__v, __node_gen, __unique_keys()); |
835 | } |
836 | |
837 | iterator |
838 | insert(const_iterator __hint, const value_type& __v) |
839 | { |
840 | __hashtable& __h = _M_conjure_hashtable(); |
841 | __node_gen_type __node_gen(__h); |
842 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys()); |
843 | } |
844 | |
845 | void |
846 | insert(initializer_list<value_type> __l) |
847 | { this->insert(__l.begin(), __l.end()); } |
848 | |
849 | template<typename _InputIterator> |
850 | void |
851 | insert(_InputIterator __first, _InputIterator __last) |
852 | { |
853 | __hashtable& __h = _M_conjure_hashtable(); |
854 | __node_gen_type __node_gen(__h); |
855 | return _M_insert_range(__first, __last, __node_gen, __unique_keys()); |
856 | } |
857 | }; |
858 | |
859 | template<typename _Key, typename _Value, typename _Alloc, |
860 | typename _ExtractKey, typename _Equal, |
861 | typename _H1, typename _H2, typename _Hash, |
862 | typename _RehashPolicy, typename _Traits> |
863 | template<typename _InputIterator, typename _NodeGetter> |
864 | void |
865 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
866 | _RehashPolicy, _Traits>:: |
867 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
868 | const _NodeGetter& __node_gen, true_type) |
869 | { |
870 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
871 | if (__n_elt == 0) |
872 | return; |
873 | |
874 | __hashtable& __h = _M_conjure_hashtable(); |
875 | for (; __first != __last; ++__first) |
876 | { |
877 | if (__h._M_insert(*__first, __node_gen, __unique_keys(), |
878 | __n_elt).second) |
879 | __n_elt = 1; |
880 | else if (__n_elt != 1) |
881 | --__n_elt; |
882 | } |
883 | } |
884 | |
885 | template<typename _Key, typename _Value, typename _Alloc, |
886 | typename _ExtractKey, typename _Equal, |
887 | typename _H1, typename _H2, typename _Hash, |
888 | typename _RehashPolicy, typename _Traits> |
889 | template<typename _InputIterator, typename _NodeGetter> |
890 | void |
891 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
892 | _RehashPolicy, _Traits>:: |
893 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
894 | const _NodeGetter& __node_gen, false_type) |
895 | { |
896 | using __rehash_type = typename __hashtable::__rehash_type; |
897 | using __rehash_state = typename __hashtable::__rehash_state; |
898 | using pair_type = std::pair<bool, std::size_t>; |
899 | |
900 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
901 | if (__n_elt == 0) |
902 | return; |
903 | |
904 | __hashtable& __h = _M_conjure_hashtable(); |
905 | __rehash_type& __rehash = __h._M_rehash_policy; |
906 | const __rehash_state& __saved_state = __rehash._M_state(); |
907 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
908 | __h._M_element_count, |
909 | __n_elt); |
910 | |
911 | if (__do_rehash.first) |
912 | __h._M_rehash(__do_rehash.second, __saved_state); |
913 | |
914 | for (; __first != __last; ++__first) |
915 | __h._M_insert(*__first, __node_gen, __unique_keys()); |
916 | } |
917 | |
918 | /** |
919 | * Primary class template _Insert. |
920 | * |
921 | * Defines @c insert member functions that depend on _Hashtable policies, |
922 | * via partial specializations. |
923 | */ |
924 | template<typename _Key, typename _Value, typename _Alloc, |
925 | typename _ExtractKey, typename _Equal, |
926 | typename _H1, typename _H2, typename _Hash, |
927 | typename _RehashPolicy, typename _Traits, |
928 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
929 | struct _Insert; |
930 | |
931 | /// Specialization. |
932 | template<typename _Key, typename _Value, typename _Alloc, |
933 | typename _ExtractKey, typename _Equal, |
934 | typename _H1, typename _H2, typename _Hash, |
935 | typename _RehashPolicy, typename _Traits> |
936 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
937 | _RehashPolicy, _Traits, true> |
938 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
939 | _H1, _H2, _Hash, _RehashPolicy, _Traits> |
940 | { |
941 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
942 | _Equal, _H1, _H2, _Hash, |
943 | _RehashPolicy, _Traits>; |
944 | |
945 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
946 | _Equal, _H1, _H2, _Hash, |
947 | _Traits>; |
948 | |
949 | using value_type = typename __base_type::value_type; |
950 | using iterator = typename __base_type::iterator; |
951 | using const_iterator = typename __base_type::const_iterator; |
952 | |
953 | using __unique_keys = typename __base_type::__unique_keys; |
954 | using __ireturn_type = typename __hashtable_base::__ireturn_type; |
955 | using __hashtable = typename __base_type::__hashtable; |
956 | using __node_gen_type = typename __base_type::__node_gen_type; |
957 | |
958 | using __base_type::insert; |
959 | |
960 | __ireturn_type |
961 | insert(value_type&& __v) |
962 | { |
963 | __hashtable& __h = this->_M_conjure_hashtable(); |
964 | __node_gen_type __node_gen(__h); |
965 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys()); |
966 | } |
967 | |
968 | iterator |
969 | insert(const_iterator __hint, value_type&& __v) |
970 | { |
971 | __hashtable& __h = this->_M_conjure_hashtable(); |
972 | __node_gen_type __node_gen(__h); |
973 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
974 | __unique_keys()); |
975 | } |
976 | }; |
977 | |
978 | /// Specialization. |
979 | template<typename _Key, typename _Value, typename _Alloc, |
980 | typename _ExtractKey, typename _Equal, |
981 | typename _H1, typename _H2, typename _Hash, |
982 | typename _RehashPolicy, typename _Traits> |
983 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
984 | _RehashPolicy, _Traits, false> |
985 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
986 | _H1, _H2, _Hash, _RehashPolicy, _Traits> |
987 | { |
988 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
989 | _Equal, _H1, _H2, _Hash, |
990 | _RehashPolicy, _Traits>; |
991 | using value_type = typename __base_type::value_type; |
992 | using iterator = typename __base_type::iterator; |
993 | using const_iterator = typename __base_type::const_iterator; |
994 | |
995 | using __unique_keys = typename __base_type::__unique_keys; |
996 | using __hashtable = typename __base_type::__hashtable; |
997 | using __ireturn_type = typename __base_type::__ireturn_type; |
998 | |
999 | using __base_type::insert; |
1000 | |
1001 | template<typename _Pair> |
1002 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
1003 | |
1004 | template<typename _Pair> |
1005 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
1006 | |
1007 | template<typename _Pair> |
1008 | using _IFconsp = typename _IFcons<_Pair>::type; |
1009 | |
1010 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1011 | __ireturn_type |
1012 | insert(_Pair&& __v) |
1013 | { |
1014 | __hashtable& __h = this->_M_conjure_hashtable(); |
1015 | return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v)); |
1016 | } |
1017 | |
1018 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1019 | iterator |
1020 | insert(const_iterator __hint, _Pair&& __v) |
1021 | { |
1022 | __hashtable& __h = this->_M_conjure_hashtable(); |
1023 | return __h._M_emplace(__hint, __unique_keys(), |
1024 | std::forward<_Pair>(__v)); |
1025 | } |
1026 | }; |
1027 | |
1028 | template<typename _Policy> |
1029 | using __has_load_factor = typename _Policy::__has_load_factor; |
1030 | |
1031 | /** |
1032 | * Primary class template _Rehash_base. |
1033 | * |
1034 | * Give hashtable the max_load_factor functions and reserve iff the |
1035 | * rehash policy supports it. |
1036 | */ |
1037 | template<typename _Key, typename _Value, typename _Alloc, |
1038 | typename _ExtractKey, typename _Equal, |
1039 | typename _H1, typename _H2, typename _Hash, |
1040 | typename _RehashPolicy, typename _Traits, |
1041 | typename = |
1042 | __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>> |
1043 | struct _Rehash_base; |
1044 | |
1045 | /// Specialization when rehash policy doesn't provide load factor management. |
1046 | template<typename _Key, typename _Value, typename _Alloc, |
1047 | typename _ExtractKey, typename _Equal, |
1048 | typename _H1, typename _H2, typename _Hash, |
1049 | typename _RehashPolicy, typename _Traits> |
1050 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1051 | _H1, _H2, _Hash, _RehashPolicy, _Traits, |
1052 | std::false_type> |
1053 | { |
1054 | }; |
1055 | |
1056 | /// Specialization when rehash policy provide load factor management. |
1057 | template<typename _Key, typename _Value, typename _Alloc, |
1058 | typename _ExtractKey, typename _Equal, |
1059 | typename _H1, typename _H2, typename _Hash, |
1060 | typename _RehashPolicy, typename _Traits> |
1061 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1062 | _H1, _H2, _Hash, _RehashPolicy, _Traits, |
1063 | std::true_type> |
1064 | { |
1065 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1066 | _Equal, _H1, _H2, _Hash, |
1067 | _RehashPolicy, _Traits>; |
1068 | |
1069 | float |
1070 | max_load_factor() const noexcept |
1071 | { |
1072 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1073 | return __this->__rehash_policy().max_load_factor(); |
1074 | } |
1075 | |
1076 | void |
1077 | max_load_factor(float __z) |
1078 | { |
1079 | __hashtable* __this = static_cast<__hashtable*>(this); |
1080 | __this->__rehash_policy(_RehashPolicy(__z)); |
1081 | } |
1082 | |
1083 | void |
1084 | reserve(std::size_t __n) |
1085 | { |
1086 | __hashtable* __this = static_cast<__hashtable*>(this); |
1087 | __this->rehash(__builtin_ceil(__n / max_load_factor())); |
1088 | } |
1089 | }; |
1090 | |
1091 | /** |
1092 | * Primary class template _Hashtable_ebo_helper. |
1093 | * |
1094 | * Helper class using EBO when it is not forbidden (the type is not |
1095 | * final) and when it is worth it (the type is empty.) |
1096 | */ |
1097 | template<int _Nm, typename _Tp, |
1098 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1099 | struct _Hashtable_ebo_helper; |
1100 | |
1101 | /// Specialization using EBO. |
1102 | template<int _Nm, typename _Tp> |
1103 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1104 | : private _Tp |
1105 | { |
1106 | _Hashtable_ebo_helper() = default; |
1107 | |
1108 | template<typename _OtherTp> |
1109 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1110 | : _Tp(std::forward<_OtherTp>(__tp)) |
1111 | { } |
1112 | |
1113 | static const _Tp& |
1114 | _S_cget(const _Hashtable_ebo_helper& __eboh) |
1115 | { return static_cast<const _Tp&>(__eboh); } |
1116 | |
1117 | static _Tp& |
1118 | _S_get(_Hashtable_ebo_helper& __eboh) |
1119 | { return static_cast<_Tp&>(__eboh); } |
1120 | }; |
1121 | |
1122 | /// Specialization not using EBO. |
1123 | template<int _Nm, typename _Tp> |
1124 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1125 | { |
1126 | _Hashtable_ebo_helper() = default; |
1127 | |
1128 | template<typename _OtherTp> |
1129 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1130 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1131 | { } |
1132 | |
1133 | static const _Tp& |
1134 | _S_cget(const _Hashtable_ebo_helper& __eboh) |
1135 | { return __eboh._M_tp; } |
1136 | |
1137 | static _Tp& |
1138 | _S_get(_Hashtable_ebo_helper& __eboh) |
1139 | { return __eboh._M_tp; } |
1140 | |
1141 | private: |
1142 | _Tp _M_tp; |
1143 | }; |
1144 | |
1145 | /** |
1146 | * Primary class template _Local_iterator_base. |
1147 | * |
1148 | * Base class for local iterators, used to iterate within a bucket |
1149 | * but not between buckets. |
1150 | */ |
1151 | template<typename _Key, typename _Value, typename _ExtractKey, |
1152 | typename _H1, typename _H2, typename _Hash, |
1153 | bool __cache_hash_code> |
1154 | struct _Local_iterator_base; |
1155 | |
1156 | /** |
1157 | * Primary class template _Hash_code_base. |
1158 | * |
1159 | * Encapsulates two policy issues that aren't quite orthogonal. |
1160 | * (1) the difference between using a ranged hash function and using |
1161 | * the combination of a hash function and a range-hashing function. |
1162 | * In the former case we don't have such things as hash codes, so |
1163 | * we have a dummy type as placeholder. |
1164 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1165 | * meaningless if we have a ranged hash function. |
1166 | * |
1167 | * We also put the key extraction objects here, for convenience. |
1168 | * Each specialization derives from one or more of the template |
1169 | * parameters to benefit from Ebo. This is important as this type |
1170 | * is inherited in some cases by the _Local_iterator_base type used |
1171 | * to implement local_iterator and const_local_iterator. As with |
1172 | * any iterator type we prefer to make it as small as possible. |
1173 | * |
1174 | * Primary template is unused except as a hook for specializations. |
1175 | */ |
1176 | template<typename _Key, typename _Value, typename _ExtractKey, |
1177 | typename _H1, typename _H2, typename _Hash, |
1178 | bool __cache_hash_code> |
1179 | struct _Hash_code_base; |
1180 | |
1181 | /// Specialization: ranged hash function, no caching hash codes. H1 |
1182 | /// and H2 are provided but ignored. We define a dummy hash code type. |
1183 | template<typename _Key, typename _Value, typename _ExtractKey, |
1184 | typename _H1, typename _H2, typename _Hash> |
1185 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> |
1186 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1187 | private _Hashtable_ebo_helper<1, _Hash> |
1188 | { |
1189 | private: |
1190 | using = _Hashtable_ebo_helper<0, _ExtractKey>; |
1191 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1192 | |
1193 | protected: |
1194 | typedef void* __hash_code; |
1195 | typedef _Hash_node<_Value, false> __node_type; |
1196 | |
1197 | // We need the default constructor for the local iterators and _Hashtable |
1198 | // default constructor. |
1199 | _Hash_code_base() = default; |
1200 | |
1201 | _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, |
1202 | const _Hash& __h) |
1203 | : __ebo_extract_key(__ex), __ebo_hash(__h) { } |
1204 | |
1205 | __hash_code |
1206 | _M_hash_code(const _Key& __key) const |
1207 | { return 0; } |
1208 | |
1209 | std::size_t |
1210 | _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const |
1211 | { return _M_ranged_hash()(__k, __n); } |
1212 | |
1213 | std::size_t |
1214 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1215 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(), |
1216 | (std::size_t)0)) ) |
1217 | { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); } |
1218 | |
1219 | void |
1220 | _M_store_code(__node_type*, __hash_code) const |
1221 | { } |
1222 | |
1223 | void |
1224 | _M_copy_code(__node_type*, const __node_type*) const |
1225 | { } |
1226 | |
1227 | void |
1228 | _M_swap(_Hash_code_base& __x) |
1229 | { |
1230 | std::swap(_M_extract(), __x._M_extract()); |
1231 | std::swap(_M_ranged_hash(), __x._M_ranged_hash()); |
1232 | } |
1233 | |
1234 | const _ExtractKey& |
1235 | () const { return __ebo_extract_key::_S_cget(*this); } |
1236 | |
1237 | _ExtractKey& |
1238 | () { return __ebo_extract_key::_S_get(*this); } |
1239 | |
1240 | const _Hash& |
1241 | _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); } |
1242 | |
1243 | _Hash& |
1244 | _M_ranged_hash() { return __ebo_hash::_S_get(*this); } |
1245 | }; |
1246 | |
1247 | // No specialization for ranged hash function while caching hash codes. |
1248 | // That combination is meaningless, and trying to do it is an error. |
1249 | |
1250 | /// Specialization: ranged hash function, cache hash codes. This |
1251 | /// combination is meaningless, so we provide only a declaration |
1252 | /// and no definition. |
1253 | template<typename _Key, typename _Value, typename _ExtractKey, |
1254 | typename _H1, typename _H2, typename _Hash> |
1255 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; |
1256 | |
1257 | /// Specialization: hash function and range-hashing function, no |
1258 | /// caching of hash codes. |
1259 | /// Provides typedef and accessor required by C++ 11. |
1260 | template<typename _Key, typename _Value, typename _ExtractKey, |
1261 | typename _H1, typename _H2> |
1262 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1263 | _Default_ranged_hash, false> |
1264 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1265 | private _Hashtable_ebo_helper<1, _H1>, |
1266 | private _Hashtable_ebo_helper<2, _H2> |
1267 | { |
1268 | private: |
1269 | using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; |
1270 | using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; |
1271 | using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; |
1272 | |
1273 | // Gives the local iterator implementation access to _M_bucket_index(). |
1274 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1275 | _Default_ranged_hash, false>; |
1276 | |
1277 | public: |
1278 | typedef _H1 hasher; |
1279 | |
1280 | hasher |
1281 | hash_function() const |
1282 | { return _M_h1(); } |
1283 | |
1284 | protected: |
1285 | typedef std::size_t __hash_code; |
1286 | typedef _Hash_node<_Value, false> __node_type; |
1287 | |
1288 | // We need the default constructor for the local iterators and _Hashtable |
1289 | // default constructor. |
1290 | _Hash_code_base() = default; |
1291 | |
1292 | _Hash_code_base(const _ExtractKey& __ex, |
1293 | const _H1& __h1, const _H2& __h2, |
1294 | const _Default_ranged_hash&) |
1295 | : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } |
1296 | |
1297 | __hash_code |
1298 | _M_hash_code(const _Key& __k) const |
1299 | { return _M_h1()(__k); } |
1300 | |
1301 | std::size_t |
1302 | _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const |
1303 | { return _M_h2()(__c, __n); } |
1304 | |
1305 | std::size_t |
1306 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1307 | noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>())) |
1308 | && noexcept(declval<const _H2&>()((__hash_code)0, |
1309 | (std::size_t)0)) ) |
1310 | { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); } |
1311 | |
1312 | void |
1313 | _M_store_code(__node_type*, __hash_code) const |
1314 | { } |
1315 | |
1316 | void |
1317 | _M_copy_code(__node_type*, const __node_type*) const |
1318 | { } |
1319 | |
1320 | void |
1321 | _M_swap(_Hash_code_base& __x) |
1322 | { |
1323 | std::swap(_M_extract(), __x._M_extract()); |
1324 | std::swap(_M_h1(), __x._M_h1()); |
1325 | std::swap(_M_h2(), __x._M_h2()); |
1326 | } |
1327 | |
1328 | const _ExtractKey& |
1329 | () const { return __ebo_extract_key::_S_cget(*this); } |
1330 | |
1331 | _ExtractKey& |
1332 | () { return __ebo_extract_key::_S_get(*this); } |
1333 | |
1334 | const _H1& |
1335 | _M_h1() const { return __ebo_h1::_S_cget(*this); } |
1336 | |
1337 | _H1& |
1338 | _M_h1() { return __ebo_h1::_S_get(*this); } |
1339 | |
1340 | const _H2& |
1341 | _M_h2() const { return __ebo_h2::_S_cget(*this); } |
1342 | |
1343 | _H2& |
1344 | _M_h2() { return __ebo_h2::_S_get(*this); } |
1345 | }; |
1346 | |
1347 | /// Specialization: hash function and range-hashing function, |
1348 | /// caching hash codes. H is provided but ignored. Provides |
1349 | /// typedef and accessor required by C++ 11. |
1350 | template<typename _Key, typename _Value, typename _ExtractKey, |
1351 | typename _H1, typename _H2> |
1352 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1353 | _Default_ranged_hash, true> |
1354 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1355 | private _Hashtable_ebo_helper<1, _H1>, |
1356 | private _Hashtable_ebo_helper<2, _H2> |
1357 | { |
1358 | private: |
1359 | // Gives the local iterator implementation access to _M_h2(). |
1360 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1361 | _Default_ranged_hash, true>; |
1362 | |
1363 | using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; |
1364 | using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; |
1365 | using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; |
1366 | |
1367 | public: |
1368 | typedef _H1 hasher; |
1369 | |
1370 | hasher |
1371 | hash_function() const |
1372 | { return _M_h1(); } |
1373 | |
1374 | protected: |
1375 | typedef std::size_t __hash_code; |
1376 | typedef _Hash_node<_Value, true> __node_type; |
1377 | |
1378 | // We need the default constructor for _Hashtable default constructor. |
1379 | _Hash_code_base() = default; |
1380 | _Hash_code_base(const _ExtractKey& __ex, |
1381 | const _H1& __h1, const _H2& __h2, |
1382 | const _Default_ranged_hash&) |
1383 | : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } |
1384 | |
1385 | __hash_code |
1386 | _M_hash_code(const _Key& __k) const |
1387 | { return _M_h1()(__k); } |
1388 | |
1389 | std::size_t |
1390 | _M_bucket_index(const _Key&, __hash_code __c, |
1391 | std::size_t __n) const |
1392 | { return _M_h2()(__c, __n); } |
1393 | |
1394 | std::size_t |
1395 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1396 | noexcept( noexcept(declval<const _H2&>()((__hash_code)0, |
1397 | (std::size_t)0)) ) |
1398 | { return _M_h2()(__p->_M_hash_code, __n); } |
1399 | |
1400 | void |
1401 | _M_store_code(__node_type* __n, __hash_code __c) const |
1402 | { __n->_M_hash_code = __c; } |
1403 | |
1404 | void |
1405 | _M_copy_code(__node_type* __to, const __node_type* __from) const |
1406 | { __to->_M_hash_code = __from->_M_hash_code; } |
1407 | |
1408 | void |
1409 | _M_swap(_Hash_code_base& __x) |
1410 | { |
1411 | std::swap(_M_extract(), __x._M_extract()); |
1412 | std::swap(_M_h1(), __x._M_h1()); |
1413 | std::swap(_M_h2(), __x._M_h2()); |
1414 | } |
1415 | |
1416 | const _ExtractKey& |
1417 | () const { return __ebo_extract_key::_S_cget(*this); } |
1418 | |
1419 | _ExtractKey& |
1420 | () { return __ebo_extract_key::_S_get(*this); } |
1421 | |
1422 | const _H1& |
1423 | _M_h1() const { return __ebo_h1::_S_cget(*this); } |
1424 | |
1425 | _H1& |
1426 | _M_h1() { return __ebo_h1::_S_get(*this); } |
1427 | |
1428 | const _H2& |
1429 | _M_h2() const { return __ebo_h2::_S_cget(*this); } |
1430 | |
1431 | _H2& |
1432 | _M_h2() { return __ebo_h2::_S_get(*this); } |
1433 | }; |
1434 | |
1435 | /** |
1436 | * Primary class template _Equal_helper. |
1437 | * |
1438 | */ |
1439 | template <typename _Key, typename _Value, typename _ExtractKey, |
1440 | typename _Equal, typename _HashCodeType, |
1441 | bool __cache_hash_code> |
1442 | struct _Equal_helper; |
1443 | |
1444 | /// Specialization. |
1445 | template<typename _Key, typename _Value, typename _ExtractKey, |
1446 | typename _Equal, typename _HashCodeType> |
1447 | struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> |
1448 | { |
1449 | static bool |
1450 | _S_equals(const _Equal& __eq, const _ExtractKey& , |
1451 | const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) |
1452 | { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); } |
1453 | }; |
1454 | |
1455 | /// Specialization. |
1456 | template<typename _Key, typename _Value, typename _ExtractKey, |
1457 | typename _Equal, typename _HashCodeType> |
1458 | struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> |
1459 | { |
1460 | static bool |
1461 | _S_equals(const _Equal& __eq, const _ExtractKey& , |
1462 | const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) |
1463 | { return __eq(__k, __extract(__n->_M_v())); } |
1464 | }; |
1465 | |
1466 | |
1467 | /// Partial specialization used when nodes contain a cached hash code. |
1468 | template<typename _Key, typename _Value, typename _ExtractKey, |
1469 | typename _H1, typename _H2, typename _Hash> |
1470 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1471 | _H1, _H2, _Hash, true> |
1472 | : private _Hashtable_ebo_helper<0, _H2> |
1473 | { |
1474 | protected: |
1475 | using __base_type = _Hashtable_ebo_helper<0, _H2>; |
1476 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1477 | _H1, _H2, _Hash, true>; |
1478 | |
1479 | _Local_iterator_base() = default; |
1480 | _Local_iterator_base(const __hash_code_base& __base, |
1481 | _Hash_node<_Value, true>* __p, |
1482 | std::size_t __bkt, std::size_t __bkt_count) |
1483 | : __base_type(__base._M_h2()), |
1484 | _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } |
1485 | |
1486 | void |
1487 | _M_incr() |
1488 | { |
1489 | _M_cur = _M_cur->_M_next(); |
1490 | if (_M_cur) |
1491 | { |
1492 | std::size_t __bkt |
1493 | = __base_type::_S_get(*this)(_M_cur->_M_hash_code, |
1494 | _M_bucket_count); |
1495 | if (__bkt != _M_bucket) |
1496 | _M_cur = nullptr; |
1497 | } |
1498 | } |
1499 | |
1500 | _Hash_node<_Value, true>* _M_cur; |
1501 | std::size_t _M_bucket; |
1502 | std::size_t _M_bucket_count; |
1503 | |
1504 | public: |
1505 | const void* |
1506 | _M_curr() const { return _M_cur; } // for equality ops |
1507 | |
1508 | std::size_t |
1509 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1510 | }; |
1511 | |
1512 | // Uninitialized storage for a _Hash_code_base. |
1513 | // This type is DefaultConstructible and Assignable even if the |
1514 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1515 | // can be DefaultConstructible and Assignable. |
1516 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1517 | struct _Hash_code_storage |
1518 | { |
1519 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1520 | |
1521 | _Tp* |
1522 | _M_h() { return _M_storage._M_ptr(); } |
1523 | |
1524 | const _Tp* |
1525 | _M_h() const { return _M_storage._M_ptr(); } |
1526 | }; |
1527 | |
1528 | // Empty partial specialization for empty _Hash_code_base types. |
1529 | template<typename _Tp> |
1530 | struct _Hash_code_storage<_Tp, true> |
1531 | { |
1532 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1533 | |
1534 | // As _Tp is an empty type there will be no bytes written/read through |
1535 | // the cast pointer, so no strict-aliasing violation. |
1536 | _Tp* |
1537 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1538 | |
1539 | const _Tp* |
1540 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1541 | }; |
1542 | |
1543 | template<typename _Key, typename _Value, typename _ExtractKey, |
1544 | typename _H1, typename _H2, typename _Hash> |
1545 | using __hash_code_for_local_iter |
1546 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1547 | _H1, _H2, _Hash, false>>; |
1548 | |
1549 | // Partial specialization used when hash codes are not cached |
1550 | template<typename _Key, typename _Value, typename _ExtractKey, |
1551 | typename _H1, typename _H2, typename _Hash> |
1552 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1553 | _H1, _H2, _Hash, false> |
1554 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash> |
1555 | { |
1556 | protected: |
1557 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1558 | _H1, _H2, _Hash, false>; |
1559 | |
1560 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1561 | |
1562 | _Local_iterator_base(const __hash_code_base& __base, |
1563 | _Hash_node<_Value, false>* __p, |
1564 | std::size_t __bkt, std::size_t __bkt_count) |
1565 | : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1566 | { _M_init(__base); } |
1567 | |
1568 | ~_Local_iterator_base() |
1569 | { |
1570 | if (_M_bucket_count != -1) |
1571 | _M_destroy(); |
1572 | } |
1573 | |
1574 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1575 | : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket), |
1576 | _M_bucket_count(__iter._M_bucket_count) |
1577 | { |
1578 | if (_M_bucket_count != -1) |
1579 | _M_init(*__iter._M_h()); |
1580 | } |
1581 | |
1582 | _Local_iterator_base& |
1583 | operator=(const _Local_iterator_base& __iter) |
1584 | { |
1585 | if (_M_bucket_count != -1) |
1586 | _M_destroy(); |
1587 | _M_cur = __iter._M_cur; |
1588 | _M_bucket = __iter._M_bucket; |
1589 | _M_bucket_count = __iter._M_bucket_count; |
1590 | if (_M_bucket_count != -1) |
1591 | _M_init(*__iter._M_h()); |
1592 | return *this; |
1593 | } |
1594 | |
1595 | void |
1596 | _M_incr() |
1597 | { |
1598 | _M_cur = _M_cur->_M_next(); |
1599 | if (_M_cur) |
1600 | { |
1601 | std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur, |
1602 | _M_bucket_count); |
1603 | if (__bkt != _M_bucket) |
1604 | _M_cur = nullptr; |
1605 | } |
1606 | } |
1607 | |
1608 | _Hash_node<_Value, false>* _M_cur; |
1609 | std::size_t _M_bucket; |
1610 | std::size_t _M_bucket_count; |
1611 | |
1612 | void |
1613 | _M_init(const __hash_code_base& __base) |
1614 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1615 | |
1616 | void |
1617 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1618 | |
1619 | public: |
1620 | const void* |
1621 | _M_curr() const { return _M_cur; } // for equality ops and debug mode |
1622 | |
1623 | std::size_t |
1624 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1625 | }; |
1626 | |
1627 | template<typename _Key, typename _Value, typename _ExtractKey, |
1628 | typename _H1, typename _H2, typename _Hash, bool __cache> |
1629 | inline bool |
1630 | operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1631 | _H1, _H2, _Hash, __cache>& __x, |
1632 | const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1633 | _H1, _H2, _Hash, __cache>& __y) |
1634 | { return __x._M_curr() == __y._M_curr(); } |
1635 | |
1636 | template<typename _Key, typename _Value, typename _ExtractKey, |
1637 | typename _H1, typename _H2, typename _Hash, bool __cache> |
1638 | inline bool |
1639 | operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1640 | _H1, _H2, _Hash, __cache>& __x, |
1641 | const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1642 | _H1, _H2, _Hash, __cache>& __y) |
1643 | { return __x._M_curr() != __y._M_curr(); } |
1644 | |
1645 | /// local iterators |
1646 | template<typename _Key, typename _Value, typename _ExtractKey, |
1647 | typename _H1, typename _H2, typename _Hash, |
1648 | bool __constant_iterators, bool __cache> |
1649 | struct _Local_iterator |
1650 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1651 | _H1, _H2, _Hash, __cache> |
1652 | { |
1653 | private: |
1654 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1655 | _H1, _H2, _Hash, __cache>; |
1656 | using __hash_code_base = typename __base_type::__hash_code_base; |
1657 | public: |
1658 | typedef _Value value_type; |
1659 | typedef typename std::conditional<__constant_iterators, |
1660 | const _Value*, _Value*>::type |
1661 | pointer; |
1662 | typedef typename std::conditional<__constant_iterators, |
1663 | const _Value&, _Value&>::type |
1664 | reference; |
1665 | typedef std::ptrdiff_t difference_type; |
1666 | typedef std::forward_iterator_tag iterator_category; |
1667 | |
1668 | _Local_iterator() = default; |
1669 | |
1670 | _Local_iterator(const __hash_code_base& __base, |
1671 | _Hash_node<_Value, __cache>* __p, |
1672 | std::size_t __bkt, std::size_t __bkt_count) |
1673 | : __base_type(__base, __p, __bkt, __bkt_count) |
1674 | { } |
1675 | |
1676 | reference |
1677 | operator*() const |
1678 | { return this->_M_cur->_M_v(); } |
1679 | |
1680 | pointer |
1681 | operator->() const |
1682 | { return this->_M_cur->_M_valptr(); } |
1683 | |
1684 | _Local_iterator& |
1685 | operator++() |
1686 | { |
1687 | this->_M_incr(); |
1688 | return *this; |
1689 | } |
1690 | |
1691 | _Local_iterator |
1692 | operator++(int) |
1693 | { |
1694 | _Local_iterator __tmp(*this); |
1695 | this->_M_incr(); |
1696 | return __tmp; |
1697 | } |
1698 | }; |
1699 | |
1700 | /// local const_iterators |
1701 | template<typename _Key, typename _Value, typename _ExtractKey, |
1702 | typename _H1, typename _H2, typename _Hash, |
1703 | bool __constant_iterators, bool __cache> |
1704 | struct _Local_const_iterator |
1705 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1706 | _H1, _H2, _Hash, __cache> |
1707 | { |
1708 | private: |
1709 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1710 | _H1, _H2, _Hash, __cache>; |
1711 | using __hash_code_base = typename __base_type::__hash_code_base; |
1712 | |
1713 | public: |
1714 | typedef _Value value_type; |
1715 | typedef const _Value* pointer; |
1716 | typedef const _Value& reference; |
1717 | typedef std::ptrdiff_t difference_type; |
1718 | typedef std::forward_iterator_tag iterator_category; |
1719 | |
1720 | _Local_const_iterator() = default; |
1721 | |
1722 | _Local_const_iterator(const __hash_code_base& __base, |
1723 | _Hash_node<_Value, __cache>* __p, |
1724 | std::size_t __bkt, std::size_t __bkt_count) |
1725 | : __base_type(__base, __p, __bkt, __bkt_count) |
1726 | { } |
1727 | |
1728 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1729 | _H1, _H2, _Hash, |
1730 | __constant_iterators, |
1731 | __cache>& __x) |
1732 | : __base_type(__x) |
1733 | { } |
1734 | |
1735 | reference |
1736 | operator*() const |
1737 | { return this->_M_cur->_M_v(); } |
1738 | |
1739 | pointer |
1740 | operator->() const |
1741 | { return this->_M_cur->_M_valptr(); } |
1742 | |
1743 | _Local_const_iterator& |
1744 | operator++() |
1745 | { |
1746 | this->_M_incr(); |
1747 | return *this; |
1748 | } |
1749 | |
1750 | _Local_const_iterator |
1751 | operator++(int) |
1752 | { |
1753 | _Local_const_iterator __tmp(*this); |
1754 | this->_M_incr(); |
1755 | return __tmp; |
1756 | } |
1757 | }; |
1758 | |
1759 | /** |
1760 | * Primary class template _Hashtable_base. |
1761 | * |
1762 | * Helper class adding management of _Equal functor to |
1763 | * _Hash_code_base type. |
1764 | * |
1765 | * Base class templates are: |
1766 | * - __detail::_Hash_code_base |
1767 | * - __detail::_Hashtable_ebo_helper |
1768 | */ |
1769 | template<typename _Key, typename _Value, |
1770 | typename _ExtractKey, typename _Equal, |
1771 | typename _H1, typename _H2, typename _Hash, typename _Traits> |
1772 | struct _Hashtable_base |
1773 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, |
1774 | _Traits::__hash_cached::value>, |
1775 | private _Hashtable_ebo_helper<0, _Equal> |
1776 | { |
1777 | public: |
1778 | typedef _Key key_type; |
1779 | typedef _Value value_type; |
1780 | typedef _Equal key_equal; |
1781 | typedef std::size_t size_type; |
1782 | typedef std::ptrdiff_t difference_type; |
1783 | |
1784 | using __traits_type = _Traits; |
1785 | using __hash_cached = typename __traits_type::__hash_cached; |
1786 | using __constant_iterators = typename __traits_type::__constant_iterators; |
1787 | using __unique_keys = typename __traits_type::__unique_keys; |
1788 | |
1789 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1790 | _H1, _H2, _Hash, |
1791 | __hash_cached::value>; |
1792 | |
1793 | using __hash_code = typename __hash_code_base::__hash_code; |
1794 | using __node_type = typename __hash_code_base::__node_type; |
1795 | |
1796 | using iterator = __detail::_Node_iterator<value_type, |
1797 | __constant_iterators::value, |
1798 | __hash_cached::value>; |
1799 | |
1800 | using const_iterator = __detail::_Node_const_iterator<value_type, |
1801 | __constant_iterators::value, |
1802 | __hash_cached::value>; |
1803 | |
1804 | using local_iterator = __detail::_Local_iterator<key_type, value_type, |
1805 | _ExtractKey, _H1, _H2, _Hash, |
1806 | __constant_iterators::value, |
1807 | __hash_cached::value>; |
1808 | |
1809 | using const_local_iterator = __detail::_Local_const_iterator<key_type, |
1810 | value_type, |
1811 | _ExtractKey, _H1, _H2, _Hash, |
1812 | __constant_iterators::value, |
1813 | __hash_cached::value>; |
1814 | |
1815 | using __ireturn_type = typename std::conditional<__unique_keys::value, |
1816 | std::pair<iterator, bool>, |
1817 | iterator>::type; |
1818 | private: |
1819 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1820 | using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal, |
1821 | __hash_code, __hash_cached::value>; |
1822 | |
1823 | protected: |
1824 | _Hashtable_base() = default; |
1825 | _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, |
1826 | const _Hash& __hash, const _Equal& __eq) |
1827 | : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq) |
1828 | { } |
1829 | |
1830 | bool |
1831 | _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const |
1832 | { |
1833 | return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), |
1834 | __k, __c, __n); |
1835 | } |
1836 | |
1837 | void |
1838 | _M_swap(_Hashtable_base& __x) |
1839 | { |
1840 | __hash_code_base::_M_swap(__x); |
1841 | std::swap(_M_eq(), __x._M_eq()); |
1842 | } |
1843 | |
1844 | const _Equal& |
1845 | _M_eq() const { return _EqualEBO::_S_cget(*this); } |
1846 | |
1847 | _Equal& |
1848 | _M_eq() { return _EqualEBO::_S_get(*this); } |
1849 | }; |
1850 | |
1851 | /** |
1852 | * struct _Equality_base. |
1853 | * |
1854 | * Common types and functions for class _Equality. |
1855 | */ |
1856 | struct _Equality_base |
1857 | { |
1858 | protected: |
1859 | template<typename _Uiterator> |
1860 | static bool |
1861 | _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); |
1862 | }; |
1863 | |
1864 | // See std::is_permutation in N3068. |
1865 | template<typename _Uiterator> |
1866 | bool |
1867 | _Equality_base:: |
1868 | _S_is_permutation(_Uiterator __first1, _Uiterator __last1, |
1869 | _Uiterator __first2) |
1870 | { |
1871 | for (; __first1 != __last1; ++__first1, ++__first2) |
1872 | if (!(*__first1 == *__first2)) |
1873 | break; |
1874 | |
1875 | if (__first1 == __last1) |
1876 | return true; |
1877 | |
1878 | _Uiterator __last2 = __first2; |
1879 | std::advance(__last2, std::distance(__first1, __last1)); |
1880 | |
1881 | for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) |
1882 | { |
1883 | _Uiterator __tmp = __first1; |
1884 | while (__tmp != __it1 && !bool(*__tmp == *__it1)) |
1885 | ++__tmp; |
1886 | |
1887 | // We've seen this one before. |
1888 | if (__tmp != __it1) |
1889 | continue; |
1890 | |
1891 | std::ptrdiff_t __n2 = 0; |
1892 | for (__tmp = __first2; __tmp != __last2; ++__tmp) |
1893 | if (*__tmp == *__it1) |
1894 | ++__n2; |
1895 | |
1896 | if (!__n2) |
1897 | return false; |
1898 | |
1899 | std::ptrdiff_t __n1 = 0; |
1900 | for (__tmp = __it1; __tmp != __last1; ++__tmp) |
1901 | if (*__tmp == *__it1) |
1902 | ++__n1; |
1903 | |
1904 | if (__n1 != __n2) |
1905 | return false; |
1906 | } |
1907 | return true; |
1908 | } |
1909 | |
1910 | /** |
1911 | * Primary class template _Equality. |
1912 | * |
1913 | * This is for implementing equality comparison for unordered |
1914 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1915 | * Algorithmically, we follow closely the reference implementations |
1916 | * therein. |
1917 | */ |
1918 | template<typename _Key, typename _Value, typename _Alloc, |
1919 | typename _ExtractKey, typename _Equal, |
1920 | typename _H1, typename _H2, typename _Hash, |
1921 | typename _RehashPolicy, typename _Traits, |
1922 | bool _Unique_keys = _Traits::__unique_keys::value> |
1923 | struct _Equality; |
1924 | |
1925 | /// Specialization. |
1926 | template<typename _Key, typename _Value, typename _Alloc, |
1927 | typename _ExtractKey, typename _Equal, |
1928 | typename _H1, typename _H2, typename _Hash, |
1929 | typename _RehashPolicy, typename _Traits> |
1930 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1931 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true> |
1932 | { |
1933 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1934 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
1935 | |
1936 | bool |
1937 | _M_equal(const __hashtable&) const; |
1938 | }; |
1939 | |
1940 | template<typename _Key, typename _Value, typename _Alloc, |
1941 | typename _ExtractKey, typename _Equal, |
1942 | typename _H1, typename _H2, typename _Hash, |
1943 | typename _RehashPolicy, typename _Traits> |
1944 | bool |
1945 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1946 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
1947 | _M_equal(const __hashtable& __other) const |
1948 | { |
1949 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1950 | |
1951 | if (__this->size() != __other.size()) |
1952 | return false; |
1953 | |
1954 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
1955 | { |
1956 | const auto __ity = __other.find(_ExtractKey()(*__itx)); |
1957 | if (__ity == __other.end() || !bool(*__ity == *__itx)) |
1958 | return false; |
1959 | } |
1960 | return true; |
1961 | } |
1962 | |
1963 | /// Specialization. |
1964 | template<typename _Key, typename _Value, typename _Alloc, |
1965 | typename _ExtractKey, typename _Equal, |
1966 | typename _H1, typename _H2, typename _Hash, |
1967 | typename _RehashPolicy, typename _Traits> |
1968 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1969 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false> |
1970 | : public _Equality_base |
1971 | { |
1972 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1973 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
1974 | |
1975 | bool |
1976 | _M_equal(const __hashtable&) const; |
1977 | }; |
1978 | |
1979 | template<typename _Key, typename _Value, typename _Alloc, |
1980 | typename _ExtractKey, typename _Equal, |
1981 | typename _H1, typename _H2, typename _Hash, |
1982 | typename _RehashPolicy, typename _Traits> |
1983 | bool |
1984 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1985 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false>:: |
1986 | _M_equal(const __hashtable& __other) const |
1987 | { |
1988 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1989 | |
1990 | if (__this->size() != __other.size()) |
1991 | return false; |
1992 | |
1993 | for (auto __itx = __this->begin(); __itx != __this->end();) |
1994 | { |
1995 | const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); |
1996 | const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); |
1997 | |
1998 | if (std::distance(__xrange.first, __xrange.second) |
1999 | != std::distance(__yrange.first, __yrange.second)) |
2000 | return false; |
2001 | |
2002 | if (!_S_is_permutation(__xrange.first, __xrange.second, |
2003 | __yrange.first)) |
2004 | return false; |
2005 | |
2006 | __itx = __xrange.second; |
2007 | } |
2008 | return true; |
2009 | } |
2010 | |
2011 | /** |
2012 | * This type deals with all allocation and keeps an allocator instance through |
2013 | * inheritance to benefit from EBO when possible. |
2014 | */ |
2015 | template<typename _NodeAlloc> |
2016 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
2017 | { |
2018 | private: |
2019 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
2020 | public: |
2021 | using __node_type = typename _NodeAlloc::value_type; |
2022 | using __node_alloc_type = _NodeAlloc; |
2023 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
2024 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
2025 | |
2026 | using __value_alloc_traits = typename __node_alloc_traits::template |
2027 | rebind_traits<typename __node_type::value_type>; |
2028 | |
2029 | using __node_base = __detail::_Hash_node_base; |
2030 | using __bucket_type = __node_base*; |
2031 | using __bucket_alloc_type = |
2032 | __alloc_rebind<__node_alloc_type, __bucket_type>; |
2033 | using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>; |
2034 | |
2035 | _Hashtable_alloc() = default; |
2036 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
2037 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
2038 | |
2039 | template<typename _Alloc> |
2040 | _Hashtable_alloc(_Alloc&& __a) |
2041 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
2042 | { } |
2043 | |
2044 | __node_alloc_type& |
2045 | _M_node_allocator() |
2046 | { return __ebo_node_alloc::_S_get(*this); } |
2047 | |
2048 | const __node_alloc_type& |
2049 | _M_node_allocator() const |
2050 | { return __ebo_node_alloc::_S_cget(*this); } |
2051 | |
2052 | template<typename... _Args> |
2053 | __node_type* |
2054 | _M_allocate_node(_Args&&... __args); |
2055 | |
2056 | void |
2057 | _M_deallocate_node(__node_type* __n); |
2058 | |
2059 | // Deallocate the linked list of nodes pointed to by __n |
2060 | void |
2061 | _M_deallocate_nodes(__node_type* __n); |
2062 | |
2063 | __bucket_type* |
2064 | _M_allocate_buckets(std::size_t __n); |
2065 | |
2066 | void |
2067 | _M_deallocate_buckets(__bucket_type*, std::size_t __n); |
2068 | }; |
2069 | |
2070 | // Definitions of class template _Hashtable_alloc's out-of-line member |
2071 | // functions. |
2072 | template<typename _NodeAlloc> |
2073 | template<typename... _Args> |
2074 | typename _Hashtable_alloc<_NodeAlloc>::__node_type* |
2075 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
2076 | { |
2077 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
2078 | __node_type* __n = std::__to_address(__nptr); |
2079 | __try |
2080 | { |
2081 | ::new ((void*)__n) __node_type; |
2082 | __node_alloc_traits::construct(_M_node_allocator(), |
2083 | __n->_M_valptr(), |
2084 | std::forward<_Args>(__args)...); |
2085 | return __n; |
2086 | } |
2087 | __catch(...) |
2088 | { |
2089 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
2090 | __throw_exception_again; |
2091 | } |
2092 | } |
2093 | |
2094 | template<typename _NodeAlloc> |
2095 | void |
2096 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n) |
2097 | { |
2098 | typedef typename __node_alloc_traits::pointer _Ptr; |
2099 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
2100 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
2101 | __n->~__node_type(); |
2102 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
2103 | } |
2104 | |
2105 | template<typename _NodeAlloc> |
2106 | void |
2107 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n) |
2108 | { |
2109 | while (__n) |
2110 | { |
2111 | __node_type* __tmp = __n; |
2112 | __n = __n->_M_next(); |
2113 | _M_deallocate_node(__tmp); |
2114 | } |
2115 | } |
2116 | |
2117 | template<typename _NodeAlloc> |
2118 | typename _Hashtable_alloc<_NodeAlloc>::__bucket_type* |
2119 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n) |
2120 | { |
2121 | __bucket_alloc_type __alloc(_M_node_allocator()); |
2122 | |
2123 | auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n); |
2124 | __bucket_type* __p = std::__to_address(__ptr); |
2125 | __builtin_memset(__p, 0, __n * sizeof(__bucket_type)); |
2126 | return __p; |
2127 | } |
2128 | |
2129 | template<typename _NodeAlloc> |
2130 | void |
2131 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts, |
2132 | std::size_t __n) |
2133 | { |
2134 | typedef typename __bucket_alloc_traits::pointer _Ptr; |
2135 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
2136 | __bucket_alloc_type __alloc(_M_node_allocator()); |
2137 | __bucket_alloc_traits::deallocate(__alloc, __ptr, __n); |
2138 | } |
2139 | |
2140 | //@} hashtable-detail |
2141 | } // namespace __detail |
2142 | _GLIBCXX_END_NAMESPACE_VERSION |
2143 | } // namespace std |
2144 | |
2145 | #endif // _HASHTABLE_POLICY_H |
2146 | |