1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/ell_integral.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland based on: |
35 | // (1) B. C. Carlson Numer. Math. 33, 1 (1979) |
36 | // (2) B. C. Carlson, Special Functions of Applied Mathematics (1977) |
37 | // (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
38 | // (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky, |
39 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press |
40 | // (1992), pp. 261-269 |
41 | |
42 | #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
43 | #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1 |
44 | |
45 | namespace std _GLIBCXX_VISIBILITY(default) |
46 | { |
47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
48 | |
49 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
50 | #elif defined(_GLIBCXX_TR1_CMATH) |
51 | namespace tr1 |
52 | { |
53 | #else |
54 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
55 | #endif |
56 | // [5.2] Special functions |
57 | |
58 | // Implementation-space details. |
59 | namespace __detail |
60 | { |
61 | /** |
62 | * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$ |
63 | * of the first kind. |
64 | * |
65 | * The Carlson elliptic function of the first kind is defined by: |
66 | * @f[ |
67 | * R_F(x,y,z) = \frac{1}{2} \int_0^\infty |
68 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}} |
69 | * @f] |
70 | * |
71 | * @param __x The first of three symmetric arguments. |
72 | * @param __y The second of three symmetric arguments. |
73 | * @param __z The third of three symmetric arguments. |
74 | * @return The Carlson elliptic function of the first kind. |
75 | */ |
76 | template<typename _Tp> |
77 | _Tp |
78 | __ellint_rf(_Tp __x, _Tp __y, _Tp __z) |
79 | { |
80 | const _Tp __min = std::numeric_limits<_Tp>::min(); |
81 | const _Tp __max = std::numeric_limits<_Tp>::max(); |
82 | const _Tp __lolim = _Tp(5) * __min; |
83 | const _Tp __uplim = __max / _Tp(5); |
84 | |
85 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
86 | std::__throw_domain_error(__N("Argument less than zero " |
87 | "in __ellint_rf." )); |
88 | else if (__x + __y < __lolim || __x + __z < __lolim |
89 | || __y + __z < __lolim) |
90 | std::__throw_domain_error(__N("Argument too small in __ellint_rf" )); |
91 | else |
92 | { |
93 | const _Tp __c0 = _Tp(1) / _Tp(4); |
94 | const _Tp __c1 = _Tp(1) / _Tp(24); |
95 | const _Tp __c2 = _Tp(1) / _Tp(10); |
96 | const _Tp __c3 = _Tp(3) / _Tp(44); |
97 | const _Tp __c4 = _Tp(1) / _Tp(14); |
98 | |
99 | _Tp __xn = __x; |
100 | _Tp __yn = __y; |
101 | _Tp __zn = __z; |
102 | |
103 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
104 | const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); |
105 | _Tp __mu; |
106 | _Tp __xndev, __yndev, __zndev; |
107 | |
108 | const unsigned int __max_iter = 100; |
109 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
110 | { |
111 | __mu = (__xn + __yn + __zn) / _Tp(3); |
112 | __xndev = 2 - (__mu + __xn) / __mu; |
113 | __yndev = 2 - (__mu + __yn) / __mu; |
114 | __zndev = 2 - (__mu + __zn) / __mu; |
115 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
116 | __epsilon = std::max(__epsilon, std::abs(__zndev)); |
117 | if (__epsilon < __errtol) |
118 | break; |
119 | const _Tp __xnroot = std::sqrt(__xn); |
120 | const _Tp __ynroot = std::sqrt(__yn); |
121 | const _Tp __znroot = std::sqrt(__zn); |
122 | const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
123 | + __ynroot * __znroot; |
124 | __xn = __c0 * (__xn + __lambda); |
125 | __yn = __c0 * (__yn + __lambda); |
126 | __zn = __c0 * (__zn + __lambda); |
127 | } |
128 | |
129 | const _Tp __e2 = __xndev * __yndev - __zndev * __zndev; |
130 | const _Tp __e3 = __xndev * __yndev * __zndev; |
131 | const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2 |
132 | + __c4 * __e3; |
133 | |
134 | return __s / std::sqrt(__mu); |
135 | } |
136 | } |
137 | |
138 | |
139 | /** |
140 | * @brief Return the complete elliptic integral of the first kind |
141 | * @f$ K(k) @f$ by series expansion. |
142 | * |
143 | * The complete elliptic integral of the first kind is defined as |
144 | * @f[ |
145 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
146 | * {\sqrt{1 - k^2sin^2\theta}} |
147 | * @f] |
148 | * |
149 | * This routine is not bad as long as |k| is somewhat smaller than 1 |
150 | * but is not is good as the Carlson elliptic integral formulation. |
151 | * |
152 | * @param __k The argument of the complete elliptic function. |
153 | * @return The complete elliptic function of the first kind. |
154 | */ |
155 | template<typename _Tp> |
156 | _Tp |
157 | __comp_ellint_1_series(_Tp __k) |
158 | { |
159 | |
160 | const _Tp __kk = __k * __k; |
161 | |
162 | _Tp __term = __kk / _Tp(4); |
163 | _Tp __sum = _Tp(1) + __term; |
164 | |
165 | const unsigned int __max_iter = 1000; |
166 | for (unsigned int __i = 2; __i < __max_iter; ++__i) |
167 | { |
168 | __term *= (2 * __i - 1) * __kk / (2 * __i); |
169 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
170 | break; |
171 | __sum += __term; |
172 | } |
173 | |
174 | return __numeric_constants<_Tp>::__pi_2() * __sum; |
175 | } |
176 | |
177 | |
178 | /** |
179 | * @brief Return the complete elliptic integral of the first kind |
180 | * @f$ K(k) @f$ using the Carlson formulation. |
181 | * |
182 | * The complete elliptic integral of the first kind is defined as |
183 | * @f[ |
184 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
185 | * {\sqrt{1 - k^2 sin^2\theta}} |
186 | * @f] |
187 | * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the |
188 | * first kind. |
189 | * |
190 | * @param __k The argument of the complete elliptic function. |
191 | * @return The complete elliptic function of the first kind. |
192 | */ |
193 | template<typename _Tp> |
194 | _Tp |
195 | __comp_ellint_1(_Tp __k) |
196 | { |
197 | |
198 | if (__isnan(__k)) |
199 | return std::numeric_limits<_Tp>::quiet_NaN(); |
200 | else if (std::abs(__k) >= _Tp(1)) |
201 | return std::numeric_limits<_Tp>::quiet_NaN(); |
202 | else |
203 | return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1)); |
204 | } |
205 | |
206 | |
207 | /** |
208 | * @brief Return the incomplete elliptic integral of the first kind |
209 | * @f$ F(k,\phi) @f$ using the Carlson formulation. |
210 | * |
211 | * The incomplete elliptic integral of the first kind is defined as |
212 | * @f[ |
213 | * F(k,\phi) = \int_0^{\phi}\frac{d\theta} |
214 | * {\sqrt{1 - k^2 sin^2\theta}} |
215 | * @f] |
216 | * |
217 | * @param __k The argument of the elliptic function. |
218 | * @param __phi The integral limit argument of the elliptic function. |
219 | * @return The elliptic function of the first kind. |
220 | */ |
221 | template<typename _Tp> |
222 | _Tp |
223 | __ellint_1(_Tp __k, _Tp __phi) |
224 | { |
225 | |
226 | if (__isnan(__k) || __isnan(__phi)) |
227 | return std::numeric_limits<_Tp>::quiet_NaN(); |
228 | else if (std::abs(__k) > _Tp(1)) |
229 | std::__throw_domain_error(__N("Bad argument in __ellint_1." )); |
230 | else |
231 | { |
232 | // Reduce phi to -pi/2 < phi < +pi/2. |
233 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
234 | + _Tp(0.5L)); |
235 | const _Tp __phi_red = __phi |
236 | - __n * __numeric_constants<_Tp>::__pi(); |
237 | |
238 | const _Tp __s = std::sin(__phi_red); |
239 | const _Tp __c = std::cos(__phi_red); |
240 | |
241 | const _Tp __F = __s |
242 | * __ellint_rf(__c * __c, |
243 | _Tp(1) - __k * __k * __s * __s, _Tp(1)); |
244 | |
245 | if (__n == 0) |
246 | return __F; |
247 | else |
248 | return __F + _Tp(2) * __n * __comp_ellint_1(__k); |
249 | } |
250 | } |
251 | |
252 | |
253 | /** |
254 | * @brief Return the complete elliptic integral of the second kind |
255 | * @f$ E(k) @f$ by series expansion. |
256 | * |
257 | * The complete elliptic integral of the second kind is defined as |
258 | * @f[ |
259 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
260 | * @f] |
261 | * |
262 | * This routine is not bad as long as |k| is somewhat smaller than 1 |
263 | * but is not is good as the Carlson elliptic integral formulation. |
264 | * |
265 | * @param __k The argument of the complete elliptic function. |
266 | * @return The complete elliptic function of the second kind. |
267 | */ |
268 | template<typename _Tp> |
269 | _Tp |
270 | __comp_ellint_2_series(_Tp __k) |
271 | { |
272 | |
273 | const _Tp __kk = __k * __k; |
274 | |
275 | _Tp __term = __kk; |
276 | _Tp __sum = __term; |
277 | |
278 | const unsigned int __max_iter = 1000; |
279 | for (unsigned int __i = 2; __i < __max_iter; ++__i) |
280 | { |
281 | const _Tp __i2m = 2 * __i - 1; |
282 | const _Tp __i2 = 2 * __i; |
283 | __term *= __i2m * __i2m * __kk / (__i2 * __i2); |
284 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
285 | break; |
286 | __sum += __term / __i2m; |
287 | } |
288 | |
289 | return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum); |
290 | } |
291 | |
292 | |
293 | /** |
294 | * @brief Return the Carlson elliptic function of the second kind |
295 | * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where |
296 | * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function |
297 | * of the third kind. |
298 | * |
299 | * The Carlson elliptic function of the second kind is defined by: |
300 | * @f[ |
301 | * R_D(x,y,z) = \frac{3}{2} \int_0^\infty |
302 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}} |
303 | * @f] |
304 | * |
305 | * Based on Carlson's algorithms: |
306 | * - B. C. Carlson Numer. Math. 33, 1 (1979) |
307 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
308 | * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
309 | * by Press, Teukolsky, Vetterling, Flannery (1992) |
310 | * |
311 | * @param __x The first of two symmetric arguments. |
312 | * @param __y The second of two symmetric arguments. |
313 | * @param __z The third argument. |
314 | * @return The Carlson elliptic function of the second kind. |
315 | */ |
316 | template<typename _Tp> |
317 | _Tp |
318 | __ellint_rd(_Tp __x, _Tp __y, _Tp __z) |
319 | { |
320 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
321 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
322 | const _Tp __min = std::numeric_limits<_Tp>::min(); |
323 | const _Tp __max = std::numeric_limits<_Tp>::max(); |
324 | const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); |
325 | const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); |
326 | |
327 | if (__x < _Tp(0) || __y < _Tp(0)) |
328 | std::__throw_domain_error(__N("Argument less than zero " |
329 | "in __ellint_rd." )); |
330 | else if (__x + __y < __lolim || __z < __lolim) |
331 | std::__throw_domain_error(__N("Argument too small " |
332 | "in __ellint_rd." )); |
333 | else |
334 | { |
335 | const _Tp __c0 = _Tp(1) / _Tp(4); |
336 | const _Tp __c1 = _Tp(3) / _Tp(14); |
337 | const _Tp __c2 = _Tp(1) / _Tp(6); |
338 | const _Tp __c3 = _Tp(9) / _Tp(22); |
339 | const _Tp __c4 = _Tp(3) / _Tp(26); |
340 | |
341 | _Tp __xn = __x; |
342 | _Tp __yn = __y; |
343 | _Tp __zn = __z; |
344 | _Tp __sigma = _Tp(0); |
345 | _Tp __power4 = _Tp(1); |
346 | |
347 | _Tp __mu; |
348 | _Tp __xndev, __yndev, __zndev; |
349 | |
350 | const unsigned int __max_iter = 100; |
351 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
352 | { |
353 | __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5); |
354 | __xndev = (__mu - __xn) / __mu; |
355 | __yndev = (__mu - __yn) / __mu; |
356 | __zndev = (__mu - __zn) / __mu; |
357 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
358 | __epsilon = std::max(__epsilon, std::abs(__zndev)); |
359 | if (__epsilon < __errtol) |
360 | break; |
361 | _Tp __xnroot = std::sqrt(__xn); |
362 | _Tp __ynroot = std::sqrt(__yn); |
363 | _Tp __znroot = std::sqrt(__zn); |
364 | _Tp __lambda = __xnroot * (__ynroot + __znroot) |
365 | + __ynroot * __znroot; |
366 | __sigma += __power4 / (__znroot * (__zn + __lambda)); |
367 | __power4 *= __c0; |
368 | __xn = __c0 * (__xn + __lambda); |
369 | __yn = __c0 * (__yn + __lambda); |
370 | __zn = __c0 * (__zn + __lambda); |
371 | } |
372 | |
373 | // Note: __ea is an SPU badname. |
374 | _Tp __eaa = __xndev * __yndev; |
375 | _Tp __eb = __zndev * __zndev; |
376 | _Tp __ec = __eaa - __eb; |
377 | _Tp __ed = __eaa - _Tp(6) * __eb; |
378 | _Tp __ef = __ed + __ec + __ec; |
379 | _Tp __s1 = __ed * (-__c1 + __c3 * __ed |
380 | / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef |
381 | / _Tp(2)); |
382 | _Tp __s2 = __zndev |
383 | * (__c2 * __ef |
384 | + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa)); |
385 | |
386 | return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2) |
387 | / (__mu * std::sqrt(__mu)); |
388 | } |
389 | } |
390 | |
391 | |
392 | /** |
393 | * @brief Return the complete elliptic integral of the second kind |
394 | * @f$ E(k) @f$ using the Carlson formulation. |
395 | * |
396 | * The complete elliptic integral of the second kind is defined as |
397 | * @f[ |
398 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
399 | * @f] |
400 | * |
401 | * @param __k The argument of the complete elliptic function. |
402 | * @return The complete elliptic function of the second kind. |
403 | */ |
404 | template<typename _Tp> |
405 | _Tp |
406 | __comp_ellint_2(_Tp __k) |
407 | { |
408 | |
409 | if (__isnan(__k)) |
410 | return std::numeric_limits<_Tp>::quiet_NaN(); |
411 | else if (std::abs(__k) == 1) |
412 | return _Tp(1); |
413 | else if (std::abs(__k) > _Tp(1)) |
414 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_2." )); |
415 | else |
416 | { |
417 | const _Tp __kk = __k * __k; |
418 | |
419 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
420 | - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3); |
421 | } |
422 | } |
423 | |
424 | |
425 | /** |
426 | * @brief Return the incomplete elliptic integral of the second kind |
427 | * @f$ E(k,\phi) @f$ using the Carlson formulation. |
428 | * |
429 | * The incomplete elliptic integral of the second kind is defined as |
430 | * @f[ |
431 | * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} |
432 | * @f] |
433 | * |
434 | * @param __k The argument of the elliptic function. |
435 | * @param __phi The integral limit argument of the elliptic function. |
436 | * @return The elliptic function of the second kind. |
437 | */ |
438 | template<typename _Tp> |
439 | _Tp |
440 | __ellint_2(_Tp __k, _Tp __phi) |
441 | { |
442 | |
443 | if (__isnan(__k) || __isnan(__phi)) |
444 | return std::numeric_limits<_Tp>::quiet_NaN(); |
445 | else if (std::abs(__k) > _Tp(1)) |
446 | std::__throw_domain_error(__N("Bad argument in __ellint_2." )); |
447 | else |
448 | { |
449 | // Reduce phi to -pi/2 < phi < +pi/2. |
450 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
451 | + _Tp(0.5L)); |
452 | const _Tp __phi_red = __phi |
453 | - __n * __numeric_constants<_Tp>::__pi(); |
454 | |
455 | const _Tp __kk = __k * __k; |
456 | const _Tp __s = std::sin(__phi_red); |
457 | const _Tp __ss = __s * __s; |
458 | const _Tp __sss = __ss * __s; |
459 | const _Tp __c = std::cos(__phi_red); |
460 | const _Tp __cc = __c * __c; |
461 | |
462 | const _Tp __E = __s |
463 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
464 | - __kk * __sss |
465 | * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
466 | / _Tp(3); |
467 | |
468 | if (__n == 0) |
469 | return __E; |
470 | else |
471 | return __E + _Tp(2) * __n * __comp_ellint_2(__k); |
472 | } |
473 | } |
474 | |
475 | |
476 | /** |
477 | * @brief Return the Carlson elliptic function |
478 | * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$ |
479 | * is the Carlson elliptic function of the first kind. |
480 | * |
481 | * The Carlson elliptic function is defined by: |
482 | * @f[ |
483 | * R_C(x,y) = \frac{1}{2} \int_0^\infty |
484 | * \frac{dt}{(t + x)^{1/2}(t + y)} |
485 | * @f] |
486 | * |
487 | * Based on Carlson's algorithms: |
488 | * - B. C. Carlson Numer. Math. 33, 1 (1979) |
489 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
490 | * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
491 | * by Press, Teukolsky, Vetterling, Flannery (1992) |
492 | * |
493 | * @param __x The first argument. |
494 | * @param __y The second argument. |
495 | * @return The Carlson elliptic function. |
496 | */ |
497 | template<typename _Tp> |
498 | _Tp |
499 | __ellint_rc(_Tp __x, _Tp __y) |
500 | { |
501 | const _Tp __min = std::numeric_limits<_Tp>::min(); |
502 | const _Tp __max = std::numeric_limits<_Tp>::max(); |
503 | const _Tp __lolim = _Tp(5) * __min; |
504 | const _Tp __uplim = __max / _Tp(5); |
505 | |
506 | if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim) |
507 | std::__throw_domain_error(__N("Argument less than zero " |
508 | "in __ellint_rc." )); |
509 | else |
510 | { |
511 | const _Tp __c0 = _Tp(1) / _Tp(4); |
512 | const _Tp __c1 = _Tp(1) / _Tp(7); |
513 | const _Tp __c2 = _Tp(9) / _Tp(22); |
514 | const _Tp __c3 = _Tp(3) / _Tp(10); |
515 | const _Tp __c4 = _Tp(3) / _Tp(8); |
516 | |
517 | _Tp __xn = __x; |
518 | _Tp __yn = __y; |
519 | |
520 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
521 | const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); |
522 | _Tp __mu; |
523 | _Tp __sn; |
524 | |
525 | const unsigned int __max_iter = 100; |
526 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
527 | { |
528 | __mu = (__xn + _Tp(2) * __yn) / _Tp(3); |
529 | __sn = (__yn + __mu) / __mu - _Tp(2); |
530 | if (std::abs(__sn) < __errtol) |
531 | break; |
532 | const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn) |
533 | + __yn; |
534 | __xn = __c0 * (__xn + __lambda); |
535 | __yn = __c0 * (__yn + __lambda); |
536 | } |
537 | |
538 | _Tp __s = __sn * __sn |
539 | * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2))); |
540 | |
541 | return (_Tp(1) + __s) / std::sqrt(__mu); |
542 | } |
543 | } |
544 | |
545 | |
546 | /** |
547 | * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$ |
548 | * of the third kind. |
549 | * |
550 | * The Carlson elliptic function of the third kind is defined by: |
551 | * @f[ |
552 | * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty |
553 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)} |
554 | * @f] |
555 | * |
556 | * Based on Carlson's algorithms: |
557 | * - B. C. Carlson Numer. Math. 33, 1 (1979) |
558 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
559 | * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
560 | * by Press, Teukolsky, Vetterling, Flannery (1992) |
561 | * |
562 | * @param __x The first of three symmetric arguments. |
563 | * @param __y The second of three symmetric arguments. |
564 | * @param __z The third of three symmetric arguments. |
565 | * @param __p The fourth argument. |
566 | * @return The Carlson elliptic function of the fourth kind. |
567 | */ |
568 | template<typename _Tp> |
569 | _Tp |
570 | __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p) |
571 | { |
572 | const _Tp __min = std::numeric_limits<_Tp>::min(); |
573 | const _Tp __max = std::numeric_limits<_Tp>::max(); |
574 | const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); |
575 | const _Tp __uplim = _Tp(0.3L) |
576 | * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); |
577 | |
578 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
579 | std::__throw_domain_error(__N("Argument less than zero " |
580 | "in __ellint_rj." )); |
581 | else if (__x + __y < __lolim || __x + __z < __lolim |
582 | || __y + __z < __lolim || __p < __lolim) |
583 | std::__throw_domain_error(__N("Argument too small " |
584 | "in __ellint_rj" )); |
585 | else |
586 | { |
587 | const _Tp __c0 = _Tp(1) / _Tp(4); |
588 | const _Tp __c1 = _Tp(3) / _Tp(14); |
589 | const _Tp __c2 = _Tp(1) / _Tp(3); |
590 | const _Tp __c3 = _Tp(3) / _Tp(22); |
591 | const _Tp __c4 = _Tp(3) / _Tp(26); |
592 | |
593 | _Tp __xn = __x; |
594 | _Tp __yn = __y; |
595 | _Tp __zn = __z; |
596 | _Tp __pn = __p; |
597 | _Tp __sigma = _Tp(0); |
598 | _Tp __power4 = _Tp(1); |
599 | |
600 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
601 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
602 | |
603 | _Tp __lambda, __mu; |
604 | _Tp __xndev, __yndev, __zndev, __pndev; |
605 | |
606 | const unsigned int __max_iter = 100; |
607 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
608 | { |
609 | __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5); |
610 | __xndev = (__mu - __xn) / __mu; |
611 | __yndev = (__mu - __yn) / __mu; |
612 | __zndev = (__mu - __zn) / __mu; |
613 | __pndev = (__mu - __pn) / __mu; |
614 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
615 | __epsilon = std::max(__epsilon, std::abs(__zndev)); |
616 | __epsilon = std::max(__epsilon, std::abs(__pndev)); |
617 | if (__epsilon < __errtol) |
618 | break; |
619 | const _Tp __xnroot = std::sqrt(__xn); |
620 | const _Tp __ynroot = std::sqrt(__yn); |
621 | const _Tp __znroot = std::sqrt(__zn); |
622 | const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
623 | + __ynroot * __znroot; |
624 | const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot) |
625 | + __xnroot * __ynroot * __znroot; |
626 | const _Tp __alpha2 = __alpha1 * __alpha1; |
627 | const _Tp __beta = __pn * (__pn + __lambda) |
628 | * (__pn + __lambda); |
629 | __sigma += __power4 * __ellint_rc(__alpha2, __beta); |
630 | __power4 *= __c0; |
631 | __xn = __c0 * (__xn + __lambda); |
632 | __yn = __c0 * (__yn + __lambda); |
633 | __zn = __c0 * (__zn + __lambda); |
634 | __pn = __c0 * (__pn + __lambda); |
635 | } |
636 | |
637 | // Note: __ea is an SPU badname. |
638 | _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev; |
639 | _Tp __eb = __xndev * __yndev * __zndev; |
640 | _Tp __ec = __pndev * __pndev; |
641 | _Tp __e2 = __eaa - _Tp(3) * __ec; |
642 | _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec); |
643 | _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4) |
644 | - _Tp(3) * __c4 * __e3 / _Tp(2)); |
645 | _Tp __s2 = __eb * (__c2 / _Tp(2) |
646 | + __pndev * (-__c3 - __c3 + __pndev * __c4)); |
647 | _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3) |
648 | - __c2 * __pndev * __ec; |
649 | |
650 | return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3) |
651 | / (__mu * std::sqrt(__mu)); |
652 | } |
653 | } |
654 | |
655 | |
656 | /** |
657 | * @brief Return the complete elliptic integral of the third kind |
658 | * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the |
659 | * Carlson formulation. |
660 | * |
661 | * The complete elliptic integral of the third kind is defined as |
662 | * @f[ |
663 | * \Pi(k,\nu) = \int_0^{\pi/2} |
664 | * \frac{d\theta} |
665 | * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} |
666 | * @f] |
667 | * |
668 | * @param __k The argument of the elliptic function. |
669 | * @param __nu The second argument of the elliptic function. |
670 | * @return The complete elliptic function of the third kind. |
671 | */ |
672 | template<typename _Tp> |
673 | _Tp |
674 | __comp_ellint_3(_Tp __k, _Tp __nu) |
675 | { |
676 | |
677 | if (__isnan(__k) || __isnan(__nu)) |
678 | return std::numeric_limits<_Tp>::quiet_NaN(); |
679 | else if (__nu == _Tp(1)) |
680 | return std::numeric_limits<_Tp>::infinity(); |
681 | else if (std::abs(__k) > _Tp(1)) |
682 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_3." )); |
683 | else |
684 | { |
685 | const _Tp __kk = __k * __k; |
686 | |
687 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
688 | + __nu |
689 | * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu) |
690 | / _Tp(3); |
691 | } |
692 | } |
693 | |
694 | |
695 | /** |
696 | * @brief Return the incomplete elliptic integral of the third kind |
697 | * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation. |
698 | * |
699 | * The incomplete elliptic integral of the third kind is defined as |
700 | * @f[ |
701 | * \Pi(k,\nu,\phi) = \int_0^{\phi} |
702 | * \frac{d\theta} |
703 | * {(1 - \nu \sin^2\theta) |
704 | * \sqrt{1 - k^2 \sin^2\theta}} |
705 | * @f] |
706 | * |
707 | * @param __k The argument of the elliptic function. |
708 | * @param __nu The second argument of the elliptic function. |
709 | * @param __phi The integral limit argument of the elliptic function. |
710 | * @return The elliptic function of the third kind. |
711 | */ |
712 | template<typename _Tp> |
713 | _Tp |
714 | __ellint_3(_Tp __k, _Tp __nu, _Tp __phi) |
715 | { |
716 | |
717 | if (__isnan(__k) || __isnan(__nu) || __isnan(__phi)) |
718 | return std::numeric_limits<_Tp>::quiet_NaN(); |
719 | else if (std::abs(__k) > _Tp(1)) |
720 | std::__throw_domain_error(__N("Bad argument in __ellint_3." )); |
721 | else |
722 | { |
723 | // Reduce phi to -pi/2 < phi < +pi/2. |
724 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
725 | + _Tp(0.5L)); |
726 | const _Tp __phi_red = __phi |
727 | - __n * __numeric_constants<_Tp>::__pi(); |
728 | |
729 | const _Tp __kk = __k * __k; |
730 | const _Tp __s = std::sin(__phi_red); |
731 | const _Tp __ss = __s * __s; |
732 | const _Tp __sss = __ss * __s; |
733 | const _Tp __c = std::cos(__phi_red); |
734 | const _Tp __cc = __c * __c; |
735 | |
736 | const _Tp __Pi = __s |
737 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
738 | + __nu * __sss |
739 | * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1), |
740 | _Tp(1) - __nu * __ss) / _Tp(3); |
741 | |
742 | if (__n == 0) |
743 | return __Pi; |
744 | else |
745 | return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu); |
746 | } |
747 | } |
748 | } // namespace __detail |
749 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
750 | } // namespace tr1 |
751 | #endif |
752 | |
753 | _GLIBCXX_END_NAMESPACE_VERSION |
754 | } |
755 | |
756 | #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
757 | |
758 | |