1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/exp_integral.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland based on: |
35 | // |
36 | // (1) Handbook of Mathematical Functions, |
37 | // Ed. by Milton Abramowitz and Irene A. Stegun, |
38 | // Dover Publications, New-York, Section 5, pp. 228-251. |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
42 | // 2nd ed, pp. 222-225. |
43 | // |
44 | |
45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC |
46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 |
47 | |
48 | #include "special_function_util.h" |
49 | |
50 | namespace std _GLIBCXX_VISIBILITY(default) |
51 | { |
52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
53 | |
54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
55 | #elif defined(_GLIBCXX_TR1_CMATH) |
56 | namespace tr1 |
57 | { |
58 | #else |
59 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
60 | #endif |
61 | // [5.2] Special functions |
62 | |
63 | // Implementation-space details. |
64 | namespace __detail |
65 | { |
66 | template<typename _Tp> _Tp __expint_E1(_Tp); |
67 | |
68 | /** |
69 | * @brief Return the exponential integral @f$ E_1(x) @f$ |
70 | * by series summation. This should be good |
71 | * for @f$ x < 1 @f$. |
72 | * |
73 | * The exponential integral is given by |
74 | * \f[ |
75 | * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt |
76 | * \f] |
77 | * |
78 | * @param __x The argument of the exponential integral function. |
79 | * @return The exponential integral. |
80 | */ |
81 | template<typename _Tp> |
82 | _Tp |
83 | __expint_E1_series(_Tp __x) |
84 | { |
85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
86 | _Tp __term = _Tp(1); |
87 | _Tp __esum = _Tp(0); |
88 | _Tp __osum = _Tp(0); |
89 | const unsigned int __max_iter = 1000; |
90 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
91 | { |
92 | __term *= - __x / __i; |
93 | if (std::abs(__term) < __eps) |
94 | break; |
95 | if (__term >= _Tp(0)) |
96 | __esum += __term / __i; |
97 | else |
98 | __osum += __term / __i; |
99 | } |
100 | |
101 | return - __esum - __osum |
102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); |
103 | } |
104 | |
105 | |
106 | /** |
107 | * @brief Return the exponential integral @f$ E_1(x) @f$ |
108 | * by asymptotic expansion. |
109 | * |
110 | * The exponential integral is given by |
111 | * \f[ |
112 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
113 | * \f] |
114 | * |
115 | * @param __x The argument of the exponential integral function. |
116 | * @return The exponential integral. |
117 | */ |
118 | template<typename _Tp> |
119 | _Tp |
120 | __expint_E1_asymp(_Tp __x) |
121 | { |
122 | _Tp __term = _Tp(1); |
123 | _Tp __esum = _Tp(1); |
124 | _Tp __osum = _Tp(0); |
125 | const unsigned int __max_iter = 1000; |
126 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
127 | { |
128 | _Tp __prev = __term; |
129 | __term *= - __i / __x; |
130 | if (std::abs(__term) > std::abs(__prev)) |
131 | break; |
132 | if (__term >= _Tp(0)) |
133 | __esum += __term; |
134 | else |
135 | __osum += __term; |
136 | } |
137 | |
138 | return std::exp(- __x) * (__esum + __osum) / __x; |
139 | } |
140 | |
141 | |
142 | /** |
143 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
144 | * by series summation. |
145 | * |
146 | * The exponential integral is given by |
147 | * \f[ |
148 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
149 | * \f] |
150 | * |
151 | * @param __n The order of the exponential integral function. |
152 | * @param __x The argument of the exponential integral function. |
153 | * @return The exponential integral. |
154 | */ |
155 | template<typename _Tp> |
156 | _Tp |
157 | __expint_En_series(unsigned int __n, _Tp __x) |
158 | { |
159 | const unsigned int __max_iter = 1000; |
160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
161 | const int __nm1 = __n - 1; |
162 | _Tp __ans = (__nm1 != 0 |
163 | ? _Tp(1) / __nm1 : -std::log(__x) |
164 | - __numeric_constants<_Tp>::__gamma_e()); |
165 | _Tp __fact = _Tp(1); |
166 | for (int __i = 1; __i <= __max_iter; ++__i) |
167 | { |
168 | __fact *= -__x / _Tp(__i); |
169 | _Tp __del; |
170 | if ( __i != __nm1 ) |
171 | __del = -__fact / _Tp(__i - __nm1); |
172 | else |
173 | { |
174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); |
175 | for (int __ii = 1; __ii <= __nm1; ++__ii) |
176 | __psi += _Tp(1) / _Tp(__ii); |
177 | __del = __fact * (__psi - std::log(__x)); |
178 | } |
179 | __ans += __del; |
180 | if (std::abs(__del) < __eps * std::abs(__ans)) |
181 | return __ans; |
182 | } |
183 | std::__throw_runtime_error(__N("Series summation failed " |
184 | "in __expint_En_series." )); |
185 | } |
186 | |
187 | |
188 | /** |
189 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
190 | * by continued fractions. |
191 | * |
192 | * The exponential integral is given by |
193 | * \f[ |
194 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
195 | * \f] |
196 | * |
197 | * @param __n The order of the exponential integral function. |
198 | * @param __x The argument of the exponential integral function. |
199 | * @return The exponential integral. |
200 | */ |
201 | template<typename _Tp> |
202 | _Tp |
203 | __expint_En_cont_frac(unsigned int __n, _Tp __x) |
204 | { |
205 | const unsigned int __max_iter = 1000; |
206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min(); |
208 | const int __nm1 = __n - 1; |
209 | _Tp __b = __x + _Tp(__n); |
210 | _Tp __c = _Tp(1) / __fp_min; |
211 | _Tp __d = _Tp(1) / __b; |
212 | _Tp __h = __d; |
213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) |
214 | { |
215 | _Tp __a = -_Tp(__i * (__nm1 + __i)); |
216 | __b += _Tp(2); |
217 | __d = _Tp(1) / (__a * __d + __b); |
218 | __c = __b + __a / __c; |
219 | const _Tp __del = __c * __d; |
220 | __h *= __del; |
221 | if (std::abs(__del - _Tp(1)) < __eps) |
222 | { |
223 | const _Tp __ans = __h * std::exp(-__x); |
224 | return __ans; |
225 | } |
226 | } |
227 | std::__throw_runtime_error(__N("Continued fraction failed " |
228 | "in __expint_En_cont_frac." )); |
229 | } |
230 | |
231 | |
232 | /** |
233 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
234 | * by recursion. Use upward recursion for @f$ x < n @f$ |
235 | * and downward recursion (Miller's algorithm) otherwise. |
236 | * |
237 | * The exponential integral is given by |
238 | * \f[ |
239 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
240 | * \f] |
241 | * |
242 | * @param __n The order of the exponential integral function. |
243 | * @param __x The argument of the exponential integral function. |
244 | * @return The exponential integral. |
245 | */ |
246 | template<typename _Tp> |
247 | _Tp |
248 | __expint_En_recursion(unsigned int __n, _Tp __x) |
249 | { |
250 | _Tp __En; |
251 | _Tp __E1 = __expint_E1(__x); |
252 | if (__x < _Tp(__n)) |
253 | { |
254 | // Forward recursion is stable only for n < x. |
255 | __En = __E1; |
256 | for (unsigned int __j = 2; __j < __n; ++__j) |
257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); |
258 | } |
259 | else |
260 | { |
261 | // Backward recursion is stable only for n >= x. |
262 | __En = _Tp(1); |
263 | const int __N = __n + 20; // TODO: Check this starting number. |
264 | _Tp __save = _Tp(0); |
265 | for (int __j = __N; __j > 0; --__j) |
266 | { |
267 | __En = (std::exp(-__x) - __j * __En) / __x; |
268 | if (__j == __n) |
269 | __save = __En; |
270 | } |
271 | _Tp __norm = __En / __E1; |
272 | __En /= __norm; |
273 | } |
274 | |
275 | return __En; |
276 | } |
277 | |
278 | /** |
279 | * @brief Return the exponential integral @f$ Ei(x) @f$ |
280 | * by series summation. |
281 | * |
282 | * The exponential integral is given by |
283 | * \f[ |
284 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
285 | * \f] |
286 | * |
287 | * @param __x The argument of the exponential integral function. |
288 | * @return The exponential integral. |
289 | */ |
290 | template<typename _Tp> |
291 | _Tp |
292 | __expint_Ei_series(_Tp __x) |
293 | { |
294 | _Tp __term = _Tp(1); |
295 | _Tp __sum = _Tp(0); |
296 | const unsigned int __max_iter = 1000; |
297 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
298 | { |
299 | __term *= __x / __i; |
300 | __sum += __term / __i; |
301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) |
302 | break; |
303 | } |
304 | |
305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); |
306 | } |
307 | |
308 | |
309 | /** |
310 | * @brief Return the exponential integral @f$ Ei(x) @f$ |
311 | * by asymptotic expansion. |
312 | * |
313 | * The exponential integral is given by |
314 | * \f[ |
315 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
316 | * \f] |
317 | * |
318 | * @param __x The argument of the exponential integral function. |
319 | * @return The exponential integral. |
320 | */ |
321 | template<typename _Tp> |
322 | _Tp |
323 | __expint_Ei_asymp(_Tp __x) |
324 | { |
325 | _Tp __term = _Tp(1); |
326 | _Tp __sum = _Tp(1); |
327 | const unsigned int __max_iter = 1000; |
328 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
329 | { |
330 | _Tp __prev = __term; |
331 | __term *= __i / __x; |
332 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
333 | break; |
334 | if (__term >= __prev) |
335 | break; |
336 | __sum += __term; |
337 | } |
338 | |
339 | return std::exp(__x) * __sum / __x; |
340 | } |
341 | |
342 | |
343 | /** |
344 | * @brief Return the exponential integral @f$ Ei(x) @f$. |
345 | * |
346 | * The exponential integral is given by |
347 | * \f[ |
348 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
349 | * \f] |
350 | * |
351 | * @param __x The argument of the exponential integral function. |
352 | * @return The exponential integral. |
353 | */ |
354 | template<typename _Tp> |
355 | _Tp |
356 | __expint_Ei(_Tp __x) |
357 | { |
358 | if (__x < _Tp(0)) |
359 | return -__expint_E1(-__x); |
360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) |
361 | return __expint_Ei_series(__x); |
362 | else |
363 | return __expint_Ei_asymp(__x); |
364 | } |
365 | |
366 | |
367 | /** |
368 | * @brief Return the exponential integral @f$ E_1(x) @f$. |
369 | * |
370 | * The exponential integral is given by |
371 | * \f[ |
372 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
373 | * \f] |
374 | * |
375 | * @param __x The argument of the exponential integral function. |
376 | * @return The exponential integral. |
377 | */ |
378 | template<typename _Tp> |
379 | _Tp |
380 | __expint_E1(_Tp __x) |
381 | { |
382 | if (__x < _Tp(0)) |
383 | return -__expint_Ei(-__x); |
384 | else if (__x < _Tp(1)) |
385 | return __expint_E1_series(__x); |
386 | else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point. |
387 | return __expint_En_cont_frac(1, __x); |
388 | else |
389 | return __expint_E1_asymp(__x); |
390 | } |
391 | |
392 | |
393 | /** |
394 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
395 | * for large argument. |
396 | * |
397 | * The exponential integral is given by |
398 | * \f[ |
399 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
400 | * \f] |
401 | * |
402 | * This is something of an extension. |
403 | * |
404 | * @param __n The order of the exponential integral function. |
405 | * @param __x The argument of the exponential integral function. |
406 | * @return The exponential integral. |
407 | */ |
408 | template<typename _Tp> |
409 | _Tp |
410 | __expint_asymp(unsigned int __n, _Tp __x) |
411 | { |
412 | _Tp __term = _Tp(1); |
413 | _Tp __sum = _Tp(1); |
414 | for (unsigned int __i = 1; __i <= __n; ++__i) |
415 | { |
416 | _Tp __prev = __term; |
417 | __term *= -(__n - __i + 1) / __x; |
418 | if (std::abs(__term) > std::abs(__prev)) |
419 | break; |
420 | __sum += __term; |
421 | } |
422 | |
423 | return std::exp(-__x) * __sum / __x; |
424 | } |
425 | |
426 | |
427 | /** |
428 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
429 | * for large order. |
430 | * |
431 | * The exponential integral is given by |
432 | * \f[ |
433 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
434 | * \f] |
435 | * |
436 | * This is something of an extension. |
437 | * |
438 | * @param __n The order of the exponential integral function. |
439 | * @param __x The argument of the exponential integral function. |
440 | * @return The exponential integral. |
441 | */ |
442 | template<typename _Tp> |
443 | _Tp |
444 | __expint_large_n(unsigned int __n, _Tp __x) |
445 | { |
446 | const _Tp __xpn = __x + __n; |
447 | const _Tp __xpn2 = __xpn * __xpn; |
448 | _Tp __term = _Tp(1); |
449 | _Tp __sum = _Tp(1); |
450 | for (unsigned int __i = 1; __i <= __n; ++__i) |
451 | { |
452 | _Tp __prev = __term; |
453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; |
454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
455 | break; |
456 | __sum += __term; |
457 | } |
458 | |
459 | return std::exp(-__x) * __sum / __xpn; |
460 | } |
461 | |
462 | |
463 | /** |
464 | * @brief Return the exponential integral @f$ E_n(x) @f$. |
465 | * |
466 | * The exponential integral is given by |
467 | * \f[ |
468 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
469 | * \f] |
470 | * This is something of an extension. |
471 | * |
472 | * @param __n The order of the exponential integral function. |
473 | * @param __x The argument of the exponential integral function. |
474 | * @return The exponential integral. |
475 | */ |
476 | template<typename _Tp> |
477 | _Tp |
478 | __expint(unsigned int __n, _Tp __x) |
479 | { |
480 | // Return NaN on NaN input. |
481 | if (__isnan(__x)) |
482 | return std::numeric_limits<_Tp>::quiet_NaN(); |
483 | else if (__n <= 1 && __x == _Tp(0)) |
484 | return std::numeric_limits<_Tp>::infinity(); |
485 | else |
486 | { |
487 | _Tp __E0 = std::exp(__x) / __x; |
488 | if (__n == 0) |
489 | return __E0; |
490 | |
491 | _Tp __E1 = __expint_E1(__x); |
492 | if (__n == 1) |
493 | return __E1; |
494 | |
495 | if (__x == _Tp(0)) |
496 | return _Tp(1) / static_cast<_Tp>(__n - 1); |
497 | |
498 | _Tp __En = __expint_En_recursion(__n, __x); |
499 | |
500 | return __En; |
501 | } |
502 | } |
503 | |
504 | |
505 | /** |
506 | * @brief Return the exponential integral @f$ Ei(x) @f$. |
507 | * |
508 | * The exponential integral is given by |
509 | * \f[ |
510 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
511 | * \f] |
512 | * |
513 | * @param __x The argument of the exponential integral function. |
514 | * @return The exponential integral. |
515 | */ |
516 | template<typename _Tp> |
517 | inline _Tp |
518 | __expint(_Tp __x) |
519 | { |
520 | if (__isnan(__x)) |
521 | return std::numeric_limits<_Tp>::quiet_NaN(); |
522 | else |
523 | return __expint_Ei(__x); |
524 | } |
525 | } // namespace __detail |
526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
527 | } // namespace tr1 |
528 | #endif |
529 | |
530 | _GLIBCXX_END_NAMESPACE_VERSION |
531 | } |
532 | |
533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC |
534 | |