1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/hypergeometric.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland based: |
35 | // (1) Handbook of Mathematical Functions, |
36 | // ed. Milton Abramowitz and Irene A. Stegun, |
37 | // Dover Publications, |
38 | // Section 6, pp. 555-566 |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
40 | |
41 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |
42 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 |
43 | |
44 | namespace std _GLIBCXX_VISIBILITY(default) |
45 | { |
46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
47 | |
48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
49 | # define _GLIBCXX_MATH_NS ::std |
50 | #elif defined(_GLIBCXX_TR1_CMATH) |
51 | namespace tr1 |
52 | { |
53 | # define _GLIBCXX_MATH_NS ::std::tr1 |
54 | #else |
55 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
56 | #endif |
57 | // [5.2] Special functions |
58 | |
59 | // Implementation-space details. |
60 | namespace __detail |
61 | { |
62 | /** |
63 | * @brief This routine returns the confluent hypergeometric function |
64 | * by series expansion. |
65 | * |
66 | * @f[ |
67 | * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} |
68 | * \sum_{n=0}^{\infty} |
69 | * \frac{\Gamma(a+n)}{\Gamma(c+n)} |
70 | * \frac{x^n}{n!} |
71 | * @f] |
72 | * |
73 | * If a and b are integers and a < 0 and either b > 0 or b < a |
74 | * then the series is a polynomial with a finite number of |
75 | * terms. If b is an integer and b <= 0 the confluent |
76 | * hypergeometric function is undefined. |
77 | * |
78 | * @param __a The "numerator" parameter. |
79 | * @param __c The "denominator" parameter. |
80 | * @param __x The argument of the confluent hypergeometric function. |
81 | * @return The confluent hypergeometric function. |
82 | */ |
83 | template<typename _Tp> |
84 | _Tp |
85 | __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) |
86 | { |
87 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
88 | |
89 | _Tp __term = _Tp(1); |
90 | _Tp __Fac = _Tp(1); |
91 | const unsigned int __max_iter = 100000; |
92 | unsigned int __i; |
93 | for (__i = 0; __i < __max_iter; ++__i) |
94 | { |
95 | __term *= (__a + _Tp(__i)) * __x |
96 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); |
97 | if (std::abs(__term) < __eps) |
98 | { |
99 | break; |
100 | } |
101 | __Fac += __term; |
102 | } |
103 | if (__i == __max_iter) |
104 | std::__throw_runtime_error(__N("Series failed to converge " |
105 | "in __conf_hyperg_series." )); |
106 | |
107 | return __Fac; |
108 | } |
109 | |
110 | |
111 | /** |
112 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
113 | * by an iterative procedure described in |
114 | * Luke, Algorithms for the Computation of Mathematical Functions. |
115 | * |
116 | * Like the case of the 2F1 rational approximations, these are |
117 | * probably guaranteed to converge for x < 0, barring gross |
118 | * numerical instability in the pre-asymptotic regime. |
119 | */ |
120 | template<typename _Tp> |
121 | _Tp |
122 | __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) |
123 | { |
124 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); |
125 | const int __nmax = 20000; |
126 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
127 | const _Tp __x = -__xin; |
128 | const _Tp __x3 = __x * __x * __x; |
129 | const _Tp __t0 = __a / __c; |
130 | const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); |
131 | const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); |
132 | _Tp __F = _Tp(1); |
133 | _Tp __prec; |
134 | |
135 | _Tp __Bnm3 = _Tp(1); |
136 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; |
137 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); |
138 | |
139 | _Tp __Anm3 = _Tp(1); |
140 | _Tp __Anm2 = __Bnm2 - __t0 * __x; |
141 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x |
142 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; |
143 | |
144 | int __n = 3; |
145 | while(1) |
146 | { |
147 | _Tp __npam1 = _Tp(__n - 1) + __a; |
148 | _Tp __npcm1 = _Tp(__n - 1) + __c; |
149 | _Tp __npam2 = _Tp(__n - 2) + __a; |
150 | _Tp __npcm2 = _Tp(__n - 2) + __c; |
151 | _Tp __tnm1 = _Tp(2 * __n - 1); |
152 | _Tp __tnm3 = _Tp(2 * __n - 3); |
153 | _Tp __tnm5 = _Tp(2 * __n - 5); |
154 | _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); |
155 | _Tp __F2 = (_Tp(__n) + __a) * __npam1 |
156 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); |
157 | _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) |
158 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 |
159 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); |
160 | _Tp __E = -__npam1 * (_Tp(__n - 1) - __c) |
161 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); |
162 | |
163 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 |
164 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; |
165 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 |
166 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; |
167 | _Tp __r = __An / __Bn; |
168 | |
169 | __prec = std::abs((__F - __r) / __F); |
170 | __F = __r; |
171 | |
172 | if (__prec < __eps || __n > __nmax) |
173 | break; |
174 | |
175 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) |
176 | { |
177 | __An /= __big; |
178 | __Bn /= __big; |
179 | __Anm1 /= __big; |
180 | __Bnm1 /= __big; |
181 | __Anm2 /= __big; |
182 | __Bnm2 /= __big; |
183 | __Anm3 /= __big; |
184 | __Bnm3 /= __big; |
185 | } |
186 | else if (std::abs(__An) < _Tp(1) / __big |
187 | || std::abs(__Bn) < _Tp(1) / __big) |
188 | { |
189 | __An *= __big; |
190 | __Bn *= __big; |
191 | __Anm1 *= __big; |
192 | __Bnm1 *= __big; |
193 | __Anm2 *= __big; |
194 | __Bnm2 *= __big; |
195 | __Anm3 *= __big; |
196 | __Bnm3 *= __big; |
197 | } |
198 | |
199 | ++__n; |
200 | __Bnm3 = __Bnm2; |
201 | __Bnm2 = __Bnm1; |
202 | __Bnm1 = __Bn; |
203 | __Anm3 = __Anm2; |
204 | __Anm2 = __Anm1; |
205 | __Anm1 = __An; |
206 | } |
207 | |
208 | if (__n >= __nmax) |
209 | std::__throw_runtime_error(__N("Iteration failed to converge " |
210 | "in __conf_hyperg_luke." )); |
211 | |
212 | return __F; |
213 | } |
214 | |
215 | |
216 | /** |
217 | * @brief Return the confluent hypogeometric function |
218 | * @f$ _1F_1(a;c;x) @f$. |
219 | * |
220 | * @todo Handle b == nonpositive integer blowup - return NaN. |
221 | * |
222 | * @param __a The @a numerator parameter. |
223 | * @param __c The @a denominator parameter. |
224 | * @param __x The argument of the confluent hypergeometric function. |
225 | * @return The confluent hypergeometric function. |
226 | */ |
227 | template<typename _Tp> |
228 | _Tp |
229 | __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) |
230 | { |
231 | #if _GLIBCXX_USE_C99_MATH_TR1 |
232 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); |
233 | #else |
234 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); |
235 | #endif |
236 | if (__isnan(__a) || __isnan(__c) || __isnan(__x)) |
237 | return std::numeric_limits<_Tp>::quiet_NaN(); |
238 | else if (__c_nint == __c && __c_nint <= 0) |
239 | return std::numeric_limits<_Tp>::infinity(); |
240 | else if (__a == _Tp(0)) |
241 | return _Tp(1); |
242 | else if (__c == __a) |
243 | return std::exp(__x); |
244 | else if (__x < _Tp(0)) |
245 | return __conf_hyperg_luke(__a, __c, __x); |
246 | else |
247 | return __conf_hyperg_series(__a, __c, __x); |
248 | } |
249 | |
250 | |
251 | /** |
252 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
253 | * by series expansion. |
254 | * |
255 | * The hypogeometric function is defined by |
256 | * @f[ |
257 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
258 | * \sum_{n=0}^{\infty} |
259 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
260 | * \frac{x^n}{n!} |
261 | * @f] |
262 | * |
263 | * This works and it's pretty fast. |
264 | * |
265 | * @param __a The first @a numerator parameter. |
266 | * @param __a The second @a numerator parameter. |
267 | * @param __c The @a denominator parameter. |
268 | * @param __x The argument of the confluent hypergeometric function. |
269 | * @return The confluent hypergeometric function. |
270 | */ |
271 | template<typename _Tp> |
272 | _Tp |
273 | __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
274 | { |
275 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
276 | |
277 | _Tp __term = _Tp(1); |
278 | _Tp __Fabc = _Tp(1); |
279 | const unsigned int __max_iter = 100000; |
280 | unsigned int __i; |
281 | for (__i = 0; __i < __max_iter; ++__i) |
282 | { |
283 | __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x |
284 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); |
285 | if (std::abs(__term) < __eps) |
286 | { |
287 | break; |
288 | } |
289 | __Fabc += __term; |
290 | } |
291 | if (__i == __max_iter) |
292 | std::__throw_runtime_error(__N("Series failed to converge " |
293 | "in __hyperg_series." )); |
294 | |
295 | return __Fabc; |
296 | } |
297 | |
298 | |
299 | /** |
300 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
301 | * by an iterative procedure described in |
302 | * Luke, Algorithms for the Computation of Mathematical Functions. |
303 | */ |
304 | template<typename _Tp> |
305 | _Tp |
306 | __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) |
307 | { |
308 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); |
309 | const int __nmax = 20000; |
310 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
311 | const _Tp __x = -__xin; |
312 | const _Tp __x3 = __x * __x * __x; |
313 | const _Tp __t0 = __a * __b / __c; |
314 | const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); |
315 | const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) |
316 | / (_Tp(2) * (__c + _Tp(1))); |
317 | |
318 | _Tp __F = _Tp(1); |
319 | |
320 | _Tp __Bnm3 = _Tp(1); |
321 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; |
322 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); |
323 | |
324 | _Tp __Anm3 = _Tp(1); |
325 | _Tp __Anm2 = __Bnm2 - __t0 * __x; |
326 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x |
327 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; |
328 | |
329 | int __n = 3; |
330 | while (1) |
331 | { |
332 | const _Tp __npam1 = _Tp(__n - 1) + __a; |
333 | const _Tp __npbm1 = _Tp(__n - 1) + __b; |
334 | const _Tp __npcm1 = _Tp(__n - 1) + __c; |
335 | const _Tp __npam2 = _Tp(__n - 2) + __a; |
336 | const _Tp __npbm2 = _Tp(__n - 2) + __b; |
337 | const _Tp __npcm2 = _Tp(__n - 2) + __c; |
338 | const _Tp __tnm1 = _Tp(2 * __n - 1); |
339 | const _Tp __tnm3 = _Tp(2 * __n - 3); |
340 | const _Tp __tnm5 = _Tp(2 * __n - 5); |
341 | const _Tp __n2 = __n * __n; |
342 | const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n |
343 | + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) |
344 | / (_Tp(2) * __tnm3 * __npcm1); |
345 | const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n |
346 | + _Tp(2) - __a * __b) * __npam1 * __npbm1 |
347 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); |
348 | const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 |
349 | * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) |
350 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 |
351 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); |
352 | const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) |
353 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); |
354 | |
355 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 |
356 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; |
357 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 |
358 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; |
359 | const _Tp __r = __An / __Bn; |
360 | |
361 | const _Tp __prec = std::abs((__F - __r) / __F); |
362 | __F = __r; |
363 | |
364 | if (__prec < __eps || __n > __nmax) |
365 | break; |
366 | |
367 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) |
368 | { |
369 | __An /= __big; |
370 | __Bn /= __big; |
371 | __Anm1 /= __big; |
372 | __Bnm1 /= __big; |
373 | __Anm2 /= __big; |
374 | __Bnm2 /= __big; |
375 | __Anm3 /= __big; |
376 | __Bnm3 /= __big; |
377 | } |
378 | else if (std::abs(__An) < _Tp(1) / __big |
379 | || std::abs(__Bn) < _Tp(1) / __big) |
380 | { |
381 | __An *= __big; |
382 | __Bn *= __big; |
383 | __Anm1 *= __big; |
384 | __Bnm1 *= __big; |
385 | __Anm2 *= __big; |
386 | __Bnm2 *= __big; |
387 | __Anm3 *= __big; |
388 | __Bnm3 *= __big; |
389 | } |
390 | |
391 | ++__n; |
392 | __Bnm3 = __Bnm2; |
393 | __Bnm2 = __Bnm1; |
394 | __Bnm1 = __Bn; |
395 | __Anm3 = __Anm2; |
396 | __Anm2 = __Anm1; |
397 | __Anm1 = __An; |
398 | } |
399 | |
400 | if (__n >= __nmax) |
401 | std::__throw_runtime_error(__N("Iteration failed to converge " |
402 | "in __hyperg_luke." )); |
403 | |
404 | return __F; |
405 | } |
406 | |
407 | |
408 | /** |
409 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
410 | * by the reflection formulae in Abramowitz & Stegun formula |
411 | * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for |
412 | * d = c - a - b integral. This assumes a, b, c != negative |
413 | * integer. |
414 | * |
415 | * The hypogeometric function is defined by |
416 | * @f[ |
417 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
418 | * \sum_{n=0}^{\infty} |
419 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
420 | * \frac{x^n}{n!} |
421 | * @f] |
422 | * |
423 | * The reflection formula for nonintegral @f$ d = c - a - b @f$ is: |
424 | * @f[ |
425 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} |
426 | * _2F_1(a,b;1-d;1-x) |
427 | * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} |
428 | * _2F_1(c-a,c-b;1+d;1-x) |
429 | * @f] |
430 | * |
431 | * The reflection formula for integral @f$ m = c - a - b @f$ is: |
432 | * @f[ |
433 | * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} |
434 | * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} |
435 | * - |
436 | * @f] |
437 | */ |
438 | template<typename _Tp> |
439 | _Tp |
440 | __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
441 | { |
442 | const _Tp __d = __c - __a - __b; |
443 | const int __intd = std::floor(__d + _Tp(0.5L)); |
444 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
445 | const _Tp __toler = _Tp(1000) * __eps; |
446 | const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); |
447 | const bool __d_integer = (std::abs(__d - __intd) < __toler); |
448 | |
449 | if (__d_integer) |
450 | { |
451 | const _Tp __ln_omx = std::log(_Tp(1) - __x); |
452 | const _Tp __ad = std::abs(__d); |
453 | _Tp __F1, __F2; |
454 | |
455 | _Tp __d1, __d2; |
456 | if (__d >= _Tp(0)) |
457 | { |
458 | __d1 = __d; |
459 | __d2 = _Tp(0); |
460 | } |
461 | else |
462 | { |
463 | __d1 = _Tp(0); |
464 | __d2 = __d; |
465 | } |
466 | |
467 | const _Tp __lng_c = __log_gamma(__c); |
468 | |
469 | // Evaluate F1. |
470 | if (__ad < __eps) |
471 | { |
472 | // d = c - a - b = 0. |
473 | __F1 = _Tp(0); |
474 | } |
475 | else |
476 | { |
477 | |
478 | bool __ok_d1 = true; |
479 | _Tp __lng_ad, __lng_ad1, __lng_bd1; |
480 | __try |
481 | { |
482 | __lng_ad = __log_gamma(__ad); |
483 | __lng_ad1 = __log_gamma(__a + __d1); |
484 | __lng_bd1 = __log_gamma(__b + __d1); |
485 | } |
486 | __catch(...) |
487 | { |
488 | __ok_d1 = false; |
489 | } |
490 | |
491 | if (__ok_d1) |
492 | { |
493 | /* Gamma functions in the denominator are ok. |
494 | * Proceed with evaluation. |
495 | */ |
496 | _Tp __sum1 = _Tp(1); |
497 | _Tp __term = _Tp(1); |
498 | _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx |
499 | - __lng_ad1 - __lng_bd1; |
500 | |
501 | /* Do F1 sum. |
502 | */ |
503 | for (int __i = 1; __i < __ad; ++__i) |
504 | { |
505 | const int __j = __i - 1; |
506 | __term *= (__a + __d2 + __j) * (__b + __d2 + __j) |
507 | / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); |
508 | __sum1 += __term; |
509 | } |
510 | |
511 | if (__ln_pre1 > __log_max) |
512 | std::__throw_runtime_error(__N("Overflow of gamma functions" |
513 | " in __hyperg_luke." )); |
514 | else |
515 | __F1 = std::exp(__ln_pre1) * __sum1; |
516 | } |
517 | else |
518 | { |
519 | // Gamma functions in the denominator were not ok. |
520 | // So the F1 term is zero. |
521 | __F1 = _Tp(0); |
522 | } |
523 | } // end F1 evaluation |
524 | |
525 | // Evaluate F2. |
526 | bool __ok_d2 = true; |
527 | _Tp __lng_ad2, __lng_bd2; |
528 | __try |
529 | { |
530 | __lng_ad2 = __log_gamma(__a + __d2); |
531 | __lng_bd2 = __log_gamma(__b + __d2); |
532 | } |
533 | __catch(...) |
534 | { |
535 | __ok_d2 = false; |
536 | } |
537 | |
538 | if (__ok_d2) |
539 | { |
540 | // Gamma functions in the denominator are ok. |
541 | // Proceed with evaluation. |
542 | const int __maxiter = 2000; |
543 | const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); |
544 | const _Tp __psi_1pd = __psi(_Tp(1) + __ad); |
545 | const _Tp __psi_apd1 = __psi(__a + __d1); |
546 | const _Tp __psi_bpd1 = __psi(__b + __d1); |
547 | |
548 | _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 |
549 | - __psi_bpd1 - __ln_omx; |
550 | _Tp __fact = _Tp(1); |
551 | _Tp __sum2 = __psi_term; |
552 | _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx |
553 | - __lng_ad2 - __lng_bd2; |
554 | |
555 | // Do F2 sum. |
556 | int __j; |
557 | for (__j = 1; __j < __maxiter; ++__j) |
558 | { |
559 | // Values for psi functions use recurrence; |
560 | // Abramowitz & Stegun 6.3.5 |
561 | const _Tp __term1 = _Tp(1) / _Tp(__j) |
562 | + _Tp(1) / (__ad + __j); |
563 | const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) |
564 | + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); |
565 | __psi_term += __term1 - __term2; |
566 | __fact *= (__a + __d1 + _Tp(__j - 1)) |
567 | * (__b + __d1 + _Tp(__j - 1)) |
568 | / ((__ad + __j) * __j) * (_Tp(1) - __x); |
569 | const _Tp __delta = __fact * __psi_term; |
570 | __sum2 += __delta; |
571 | if (std::abs(__delta) < __eps * std::abs(__sum2)) |
572 | break; |
573 | } |
574 | if (__j == __maxiter) |
575 | std::__throw_runtime_error(__N("Sum F2 failed to converge " |
576 | "in __hyperg_reflect" )); |
577 | |
578 | if (__sum2 == _Tp(0)) |
579 | __F2 = _Tp(0); |
580 | else |
581 | __F2 = std::exp(__ln_pre2) * __sum2; |
582 | } |
583 | else |
584 | { |
585 | // Gamma functions in the denominator not ok. |
586 | // So the F2 term is zero. |
587 | __F2 = _Tp(0); |
588 | } // end F2 evaluation |
589 | |
590 | const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); |
591 | const _Tp __F = __F1 + __sgn_2 * __F2; |
592 | |
593 | return __F; |
594 | } |
595 | else |
596 | { |
597 | // d = c - a - b not an integer. |
598 | |
599 | // These gamma functions appear in the denominator, so we |
600 | // catch their harmless domain errors and set the terms to zero. |
601 | bool __ok1 = true; |
602 | _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); |
603 | _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); |
604 | __try |
605 | { |
606 | __sgn_g1ca = __log_gamma_sign(__c - __a); |
607 | __ln_g1ca = __log_gamma(__c - __a); |
608 | __sgn_g1cb = __log_gamma_sign(__c - __b); |
609 | __ln_g1cb = __log_gamma(__c - __b); |
610 | } |
611 | __catch(...) |
612 | { |
613 | __ok1 = false; |
614 | } |
615 | |
616 | bool __ok2 = true; |
617 | _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); |
618 | _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); |
619 | __try |
620 | { |
621 | __sgn_g2a = __log_gamma_sign(__a); |
622 | __ln_g2a = __log_gamma(__a); |
623 | __sgn_g2b = __log_gamma_sign(__b); |
624 | __ln_g2b = __log_gamma(__b); |
625 | } |
626 | __catch(...) |
627 | { |
628 | __ok2 = false; |
629 | } |
630 | |
631 | const _Tp __sgn_gc = __log_gamma_sign(__c); |
632 | const _Tp __ln_gc = __log_gamma(__c); |
633 | const _Tp __sgn_gd = __log_gamma_sign(__d); |
634 | const _Tp __ln_gd = __log_gamma(__d); |
635 | const _Tp __sgn_gmd = __log_gamma_sign(-__d); |
636 | const _Tp __ln_gmd = __log_gamma(-__d); |
637 | |
638 | const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb; |
639 | const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b; |
640 | |
641 | _Tp __pre1, __pre2; |
642 | if (__ok1 && __ok2) |
643 | { |
644 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; |
645 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b |
646 | + __d * std::log(_Tp(1) - __x); |
647 | if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) |
648 | { |
649 | __pre1 = std::exp(__ln_pre1); |
650 | __pre2 = std::exp(__ln_pre2); |
651 | __pre1 *= __sgn1; |
652 | __pre2 *= __sgn2; |
653 | } |
654 | else |
655 | { |
656 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
657 | "in __hyperg_reflect" )); |
658 | } |
659 | } |
660 | else if (__ok1 && !__ok2) |
661 | { |
662 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; |
663 | if (__ln_pre1 < __log_max) |
664 | { |
665 | __pre1 = std::exp(__ln_pre1); |
666 | __pre1 *= __sgn1; |
667 | __pre2 = _Tp(0); |
668 | } |
669 | else |
670 | { |
671 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
672 | "in __hyperg_reflect" )); |
673 | } |
674 | } |
675 | else if (!__ok1 && __ok2) |
676 | { |
677 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b |
678 | + __d * std::log(_Tp(1) - __x); |
679 | if (__ln_pre2 < __log_max) |
680 | { |
681 | __pre1 = _Tp(0); |
682 | __pre2 = std::exp(__ln_pre2); |
683 | __pre2 *= __sgn2; |
684 | } |
685 | else |
686 | { |
687 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
688 | "in __hyperg_reflect" )); |
689 | } |
690 | } |
691 | else |
692 | { |
693 | __pre1 = _Tp(0); |
694 | __pre2 = _Tp(0); |
695 | std::__throw_runtime_error(__N("Underflow of gamma functions " |
696 | "in __hyperg_reflect" )); |
697 | } |
698 | |
699 | const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, |
700 | _Tp(1) - __x); |
701 | const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, |
702 | _Tp(1) - __x); |
703 | |
704 | const _Tp __F = __pre1 * __F1 + __pre2 * __F2; |
705 | |
706 | return __F; |
707 | } |
708 | } |
709 | |
710 | |
711 | /** |
712 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. |
713 | * |
714 | * The hypogeometric function is defined by |
715 | * @f[ |
716 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
717 | * \sum_{n=0}^{\infty} |
718 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
719 | * \frac{x^n}{n!} |
720 | * @f] |
721 | * |
722 | * @param __a The first @a numerator parameter. |
723 | * @param __a The second @a numerator parameter. |
724 | * @param __c The @a denominator parameter. |
725 | * @param __x The argument of the confluent hypergeometric function. |
726 | * @return The confluent hypergeometric function. |
727 | */ |
728 | template<typename _Tp> |
729 | _Tp |
730 | __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
731 | { |
732 | #if _GLIBCXX_USE_C99_MATH_TR1 |
733 | const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); |
734 | const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); |
735 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); |
736 | #else |
737 | const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); |
738 | const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); |
739 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); |
740 | #endif |
741 | const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); |
742 | if (std::abs(__x) >= _Tp(1)) |
743 | std::__throw_domain_error(__N("Argument outside unit circle " |
744 | "in __hyperg." )); |
745 | else if (__isnan(__a) || __isnan(__b) |
746 | || __isnan(__c) || __isnan(__x)) |
747 | return std::numeric_limits<_Tp>::quiet_NaN(); |
748 | else if (__c_nint == __c && __c_nint <= _Tp(0)) |
749 | return std::numeric_limits<_Tp>::infinity(); |
750 | else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) |
751 | return std::pow(_Tp(1) - __x, __c - __a - __b); |
752 | else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) |
753 | && __x >= _Tp(0) && __x < _Tp(0.995L)) |
754 | return __hyperg_series(__a, __b, __c, __x); |
755 | else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) |
756 | { |
757 | // For integer a and b the hypergeometric function is a |
758 | // finite polynomial. |
759 | if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler) |
760 | return __hyperg_series(__a_nint, __b, __c, __x); |
761 | else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler) |
762 | return __hyperg_series(__a, __b_nint, __c, __x); |
763 | else if (__x < -_Tp(0.25L)) |
764 | return __hyperg_luke(__a, __b, __c, __x); |
765 | else if (__x < _Tp(0.5L)) |
766 | return __hyperg_series(__a, __b, __c, __x); |
767 | else |
768 | if (std::abs(__c) > _Tp(10)) |
769 | return __hyperg_series(__a, __b, __c, __x); |
770 | else |
771 | return __hyperg_reflect(__a, __b, __c, __x); |
772 | } |
773 | else |
774 | return __hyperg_luke(__a, __b, __c, __x); |
775 | } |
776 | } // namespace __detail |
777 | #undef _GLIBCXX_MATH_NS |
778 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
779 | } // namespace tr1 |
780 | #endif |
781 | |
782 | _GLIBCXX_END_NAMESPACE_VERSION |
783 | } |
784 | |
785 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |
786 | |