1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/legendre_function.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland based on: |
35 | // (1) Handbook of Mathematical Functions, |
36 | // ed. Milton Abramowitz and Irene A. Stegun, |
37 | // Dover Publications, |
38 | // Section 8, pp. 331-341 |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
42 | // 2nd ed, pp. 252-254 |
43 | |
44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC |
45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 |
46 | |
47 | #include "special_function_util.h" |
48 | |
49 | namespace std _GLIBCXX_VISIBILITY(default) |
50 | { |
51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
52 | |
53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
54 | # define _GLIBCXX_MATH_NS ::std |
55 | #elif defined(_GLIBCXX_TR1_CMATH) |
56 | namespace tr1 |
57 | { |
58 | # define _GLIBCXX_MATH_NS ::std::tr1 |
59 | #else |
60 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
61 | #endif |
62 | // [5.2] Special functions |
63 | |
64 | // Implementation-space details. |
65 | namespace __detail |
66 | { |
67 | /** |
68 | * @brief Return the Legendre polynomial by recursion on order |
69 | * @f$ l @f$. |
70 | * |
71 | * The Legendre function of @f$ l @f$ and @f$ x @f$, |
72 | * @f$ P_l(x) @f$, is defined by: |
73 | * @f[ |
74 | * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} |
75 | * @f] |
76 | * |
77 | * @param l The order of the Legendre polynomial. @f$l >= 0@f$. |
78 | * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$. |
79 | */ |
80 | template<typename _Tp> |
81 | _Tp |
82 | __poly_legendre_p(unsigned int __l, _Tp __x) |
83 | { |
84 | |
85 | if ((__x < _Tp(-1)) || (__x > _Tp(+1))) |
86 | std::__throw_domain_error(__N("Argument out of range" |
87 | " in __poly_legendre_p." )); |
88 | else if (__isnan(__x)) |
89 | return std::numeric_limits<_Tp>::quiet_NaN(); |
90 | else if (__x == +_Tp(1)) |
91 | return +_Tp(1); |
92 | else if (__x == -_Tp(1)) |
93 | return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); |
94 | else |
95 | { |
96 | _Tp __p_lm2 = _Tp(1); |
97 | if (__l == 0) |
98 | return __p_lm2; |
99 | |
100 | _Tp __p_lm1 = __x; |
101 | if (__l == 1) |
102 | return __p_lm1; |
103 | |
104 | _Tp __p_l = 0; |
105 | for (unsigned int __ll = 2; __ll <= __l; ++__ll) |
106 | { |
107 | // This arrangement is supposed to be better for roundoff |
108 | // protection, Arfken, 2nd Ed, Eq 12.17a. |
109 | __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 |
110 | - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); |
111 | __p_lm2 = __p_lm1; |
112 | __p_lm1 = __p_l; |
113 | } |
114 | |
115 | return __p_l; |
116 | } |
117 | } |
118 | |
119 | |
120 | /** |
121 | * @brief Return the associated Legendre function by recursion |
122 | * on @f$ l @f$. |
123 | * |
124 | * The associated Legendre function is derived from the Legendre function |
125 | * @f$ P_l(x) @f$ by the Rodrigues formula: |
126 | * @f[ |
127 | * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) |
128 | * @f] |
129 | * |
130 | * @param l The order of the associated Legendre function. |
131 | * @f$ l >= 0 @f$. |
132 | * @param m The order of the associated Legendre function. |
133 | * @f$ m <= l @f$. |
134 | * @param x The argument of the associated Legendre function. |
135 | * @f$ |x| <= 1 @f$. |
136 | */ |
137 | template<typename _Tp> |
138 | _Tp |
139 | __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x) |
140 | { |
141 | |
142 | if (__x < _Tp(-1) || __x > _Tp(+1)) |
143 | std::__throw_domain_error(__N("Argument out of range" |
144 | " in __assoc_legendre_p." )); |
145 | else if (__m > __l) |
146 | std::__throw_domain_error(__N("Degree out of range" |
147 | " in __assoc_legendre_p." )); |
148 | else if (__isnan(__x)) |
149 | return std::numeric_limits<_Tp>::quiet_NaN(); |
150 | else if (__m == 0) |
151 | return __poly_legendre_p(__l, __x); |
152 | else |
153 | { |
154 | _Tp __p_mm = _Tp(1); |
155 | if (__m > 0) |
156 | { |
157 | // Two square roots seem more accurate more of the time |
158 | // than just one. |
159 | _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); |
160 | _Tp __fact = _Tp(1); |
161 | for (unsigned int __i = 1; __i <= __m; ++__i) |
162 | { |
163 | __p_mm *= -__fact * __root; |
164 | __fact += _Tp(2); |
165 | } |
166 | } |
167 | if (__l == __m) |
168 | return __p_mm; |
169 | |
170 | _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm; |
171 | if (__l == __m + 1) |
172 | return __p_mp1m; |
173 | |
174 | _Tp __p_lm2m = __p_mm; |
175 | _Tp __P_lm1m = __p_mp1m; |
176 | _Tp __p_lm = _Tp(0); |
177 | for (unsigned int __j = __m + 2; __j <= __l; ++__j) |
178 | { |
179 | __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m |
180 | - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); |
181 | __p_lm2m = __P_lm1m; |
182 | __P_lm1m = __p_lm; |
183 | } |
184 | |
185 | return __p_lm; |
186 | } |
187 | } |
188 | |
189 | |
190 | /** |
191 | * @brief Return the spherical associated Legendre function. |
192 | * |
193 | * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, |
194 | * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where |
195 | * @f[ |
196 | * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} |
197 | * \frac{(l-m)!}{(l+m)!}] |
198 | * P_l^m(\cos\theta) \exp^{im\phi} |
199 | * @f] |
200 | * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the |
201 | * associated Legendre function. |
202 | * |
203 | * This function differs from the associated Legendre function by |
204 | * argument (@f$x = \cos(\theta)@f$) and by a normalization factor |
205 | * but this factor is rather large for large @f$ l @f$ and @f$ m @f$ |
206 | * and so this function is stable for larger differences of @f$ l @f$ |
207 | * and @f$ m @f$. |
208 | * |
209 | * @param l The order of the spherical associated Legendre function. |
210 | * @f$ l >= 0 @f$. |
211 | * @param m The order of the spherical associated Legendre function. |
212 | * @f$ m <= l @f$. |
213 | * @param theta The radian angle argument of the spherical associated |
214 | * Legendre function. |
215 | */ |
216 | template <typename _Tp> |
217 | _Tp |
218 | __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) |
219 | { |
220 | if (__isnan(__theta)) |
221 | return std::numeric_limits<_Tp>::quiet_NaN(); |
222 | |
223 | const _Tp __x = std::cos(__theta); |
224 | |
225 | if (__l < __m) |
226 | { |
227 | std::__throw_domain_error(__N("Bad argument " |
228 | "in __sph_legendre." )); |
229 | } |
230 | else if (__m == 0) |
231 | { |
232 | _Tp __P = __poly_legendre_p(__l, __x); |
233 | _Tp __fact = std::sqrt(_Tp(2 * __l + 1) |
234 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); |
235 | __P *= __fact; |
236 | return __P; |
237 | } |
238 | else if (__x == _Tp(1) || __x == -_Tp(1)) |
239 | { |
240 | // m > 0 here |
241 | return _Tp(0); |
242 | } |
243 | else |
244 | { |
245 | // m > 0 and |x| < 1 here |
246 | |
247 | // Starting value for recursion. |
248 | // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) |
249 | // (-1)^m (1-x^2)^(m/2) / pi^(1/4) |
250 | const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); |
251 | const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); |
252 | #if _GLIBCXX_USE_C99_MATH_TR1 |
253 | const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x); |
254 | #else |
255 | const _Tp __lncirc = std::log(_Tp(1) - __x * __x); |
256 | #endif |
257 | // Gamma(m+1/2) / Gamma(m) |
258 | #if _GLIBCXX_USE_C99_MATH_TR1 |
259 | const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L))) |
260 | - _GLIBCXX_MATH_NS::lgamma(_Tp(__m)); |
261 | #else |
262 | const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) |
263 | - __log_gamma(_Tp(__m)); |
264 | #endif |
265 | const _Tp __lnpre_val = |
266 | -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() |
267 | + _Tp(0.5L) * (__lnpoch + __m * __lncirc); |
268 | _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m) |
269 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); |
270 | _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); |
271 | _Tp __y_mp1m = __y_mp1m_factor * __y_mm; |
272 | |
273 | if (__l == __m) |
274 | { |
275 | return __y_mm; |
276 | } |
277 | else if (__l == __m + 1) |
278 | { |
279 | return __y_mp1m; |
280 | } |
281 | else |
282 | { |
283 | _Tp __y_lm = _Tp(0); |
284 | |
285 | // Compute Y_l^m, l > m+1, upward recursion on l. |
286 | for ( int __ll = __m + 2; __ll <= __l; ++__ll) |
287 | { |
288 | const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); |
289 | const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); |
290 | const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1) |
291 | * _Tp(2 * __ll - 1)); |
292 | const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1) |
293 | / _Tp(2 * __ll - 3)); |
294 | __y_lm = (__x * __y_mp1m * __fact1 |
295 | - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); |
296 | __y_mm = __y_mp1m; |
297 | __y_mp1m = __y_lm; |
298 | } |
299 | |
300 | return __y_lm; |
301 | } |
302 | } |
303 | } |
304 | } // namespace __detail |
305 | #undef _GLIBCXX_MATH_NS |
306 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
307 | } // namespace tr1 |
308 | #endif |
309 | |
310 | _GLIBCXX_END_NAMESPACE_VERSION |
311 | } |
312 | |
313 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC |
314 | |