1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/riemann_zeta.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland based on: |
35 | // (1) Handbook of Mathematical Functions, |
36 | // Ed. by Milton Abramowitz and Irene A. Stegun, |
37 | // Dover Publications, New-York, Section 5, pp. 807-808. |
38 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
39 | // (3) Gamma, Exploring Euler's Constant, Julian Havil, |
40 | // Princeton, 2003. |
41 | |
42 | #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC |
43 | #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1 |
44 | |
45 | #include "special_function_util.h" |
46 | |
47 | namespace std _GLIBCXX_VISIBILITY(default) |
48 | { |
49 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
50 | |
51 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
52 | # define _GLIBCXX_MATH_NS ::std |
53 | #elif defined(_GLIBCXX_TR1_CMATH) |
54 | namespace tr1 |
55 | { |
56 | # define _GLIBCXX_MATH_NS ::std::tr1 |
57 | #else |
58 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
59 | #endif |
60 | // [5.2] Special functions |
61 | |
62 | // Implementation-space details. |
63 | namespace __detail |
64 | { |
65 | /** |
66 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
67 | * by summation for s > 1. |
68 | * |
69 | * The Riemann zeta function is defined by: |
70 | * \f[ |
71 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
72 | * \f] |
73 | * For s < 1 use the reflection formula: |
74 | * \f[ |
75 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
76 | * \f] |
77 | */ |
78 | template<typename _Tp> |
79 | _Tp |
80 | __riemann_zeta_sum(_Tp __s) |
81 | { |
82 | // A user shouldn't get to this. |
83 | if (__s < _Tp(1)) |
84 | std::__throw_domain_error(__N("Bad argument in zeta sum." )); |
85 | |
86 | const unsigned int max_iter = 10000; |
87 | _Tp __zeta = _Tp(0); |
88 | for (unsigned int __k = 1; __k < max_iter; ++__k) |
89 | { |
90 | _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); |
91 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
92 | { |
93 | break; |
94 | } |
95 | __zeta += __term; |
96 | } |
97 | |
98 | return __zeta; |
99 | } |
100 | |
101 | |
102 | /** |
103 | * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$ |
104 | * by an alternate series for s > 0. |
105 | * |
106 | * The Riemann zeta function is defined by: |
107 | * \f[ |
108 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
109 | * \f] |
110 | * For s < 1 use the reflection formula: |
111 | * \f[ |
112 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
113 | * \f] |
114 | */ |
115 | template<typename _Tp> |
116 | _Tp |
117 | __riemann_zeta_alt(_Tp __s) |
118 | { |
119 | _Tp __sgn = _Tp(1); |
120 | _Tp __zeta = _Tp(0); |
121 | for (unsigned int __i = 1; __i < 10000000; ++__i) |
122 | { |
123 | _Tp __term = __sgn / std::pow(__i, __s); |
124 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
125 | break; |
126 | __zeta += __term; |
127 | __sgn *= _Tp(-1); |
128 | } |
129 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
130 | |
131 | return __zeta; |
132 | } |
133 | |
134 | |
135 | /** |
136 | * @brief Evaluate the Riemann zeta function by series for all s != 1. |
137 | * Convergence is great until largish negative numbers. |
138 | * Then the convergence of the > 0 sum gets better. |
139 | * |
140 | * The series is: |
141 | * \f[ |
142 | * \zeta(s) = \frac{1}{1-2^{1-s}} |
143 | * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} |
144 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s} |
145 | * \f] |
146 | * Havil 2003, p. 206. |
147 | * |
148 | * The Riemann zeta function is defined by: |
149 | * \f[ |
150 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
151 | * \f] |
152 | * For s < 1 use the reflection formula: |
153 | * \f[ |
154 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
155 | * \f] |
156 | */ |
157 | template<typename _Tp> |
158 | _Tp |
159 | __riemann_zeta_glob(_Tp __s) |
160 | { |
161 | _Tp __zeta = _Tp(0); |
162 | |
163 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
164 | // Max e exponent before overflow. |
165 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
166 | * std::log(_Tp(10)) - _Tp(1); |
167 | |
168 | // This series works until the binomial coefficient blows up |
169 | // so use reflection. |
170 | if (__s < _Tp(0)) |
171 | { |
172 | #if _GLIBCXX_USE_C99_MATH_TR1 |
173 | if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0)) |
174 | return _Tp(0); |
175 | else |
176 | #endif |
177 | { |
178 | _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s); |
179 | __zeta *= std::pow(_Tp(2) |
180 | * __numeric_constants<_Tp>::__pi(), __s) |
181 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
182 | #if _GLIBCXX_USE_C99_MATH_TR1 |
183 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
184 | #else |
185 | * std::exp(__log_gamma(_Tp(1) - __s)) |
186 | #endif |
187 | / __numeric_constants<_Tp>::__pi(); |
188 | return __zeta; |
189 | } |
190 | } |
191 | |
192 | _Tp __num = _Tp(0.5L); |
193 | const unsigned int __maxit = 10000; |
194 | for (unsigned int __i = 0; __i < __maxit; ++__i) |
195 | { |
196 | bool __punt = false; |
197 | _Tp __sgn = _Tp(1); |
198 | _Tp __term = _Tp(0); |
199 | for (unsigned int __j = 0; __j <= __i; ++__j) |
200 | { |
201 | #if _GLIBCXX_USE_C99_MATH_TR1 |
202 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
203 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
204 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
205 | #else |
206 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
207 | - __log_gamma(_Tp(1 + __j)) |
208 | - __log_gamma(_Tp(1 + __i - __j)); |
209 | #endif |
210 | if (__bincoeff > __max_bincoeff) |
211 | { |
212 | // This only gets hit for x << 0. |
213 | __punt = true; |
214 | break; |
215 | } |
216 | __bincoeff = std::exp(__bincoeff); |
217 | __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); |
218 | __sgn *= _Tp(-1); |
219 | } |
220 | if (__punt) |
221 | break; |
222 | __term *= __num; |
223 | __zeta += __term; |
224 | if (std::abs(__term/__zeta) < __eps) |
225 | break; |
226 | __num *= _Tp(0.5L); |
227 | } |
228 | |
229 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
230 | |
231 | return __zeta; |
232 | } |
233 | |
234 | |
235 | /** |
236 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
237 | * using the product over prime factors. |
238 | * \f[ |
239 | * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}} |
240 | * \f] |
241 | * where @f$ {p_i} @f$ are the prime numbers. |
242 | * |
243 | * The Riemann zeta function is defined by: |
244 | * \f[ |
245 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
246 | * \f] |
247 | * For s < 1 use the reflection formula: |
248 | * \f[ |
249 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
250 | * \f] |
251 | */ |
252 | template<typename _Tp> |
253 | _Tp |
254 | __riemann_zeta_product(_Tp __s) |
255 | { |
256 | static const _Tp __prime[] = { |
257 | _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19), |
258 | _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47), |
259 | _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79), |
260 | _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109) |
261 | }; |
262 | static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp); |
263 | |
264 | _Tp __zeta = _Tp(1); |
265 | for (unsigned int __i = 0; __i < __num_primes; ++__i) |
266 | { |
267 | const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); |
268 | __zeta *= __fact; |
269 | if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon()) |
270 | break; |
271 | } |
272 | |
273 | __zeta = _Tp(1) / __zeta; |
274 | |
275 | return __zeta; |
276 | } |
277 | |
278 | |
279 | /** |
280 | * @brief Return the Riemann zeta function @f$ \zeta(s) @f$. |
281 | * |
282 | * The Riemann zeta function is defined by: |
283 | * \f[ |
284 | * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1 |
285 | * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) |
286 | * \Gamma (1 - s) \zeta (1 - s) for s < 1 |
287 | * \f] |
288 | * For s < 1 use the reflection formula: |
289 | * \f[ |
290 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
291 | * \f] |
292 | */ |
293 | template<typename _Tp> |
294 | _Tp |
295 | __riemann_zeta(_Tp __s) |
296 | { |
297 | if (__isnan(__s)) |
298 | return std::numeric_limits<_Tp>::quiet_NaN(); |
299 | else if (__s == _Tp(1)) |
300 | return std::numeric_limits<_Tp>::infinity(); |
301 | else if (__s < -_Tp(19)) |
302 | { |
303 | _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s); |
304 | __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) |
305 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
306 | #if _GLIBCXX_USE_C99_MATH_TR1 |
307 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
308 | #else |
309 | * std::exp(__log_gamma(_Tp(1) - __s)) |
310 | #endif |
311 | / __numeric_constants<_Tp>::__pi(); |
312 | return __zeta; |
313 | } |
314 | else if (__s < _Tp(20)) |
315 | { |
316 | // Global double sum or McLaurin? |
317 | bool __glob = true; |
318 | if (__glob) |
319 | return __riemann_zeta_glob(__s); |
320 | else |
321 | { |
322 | if (__s > _Tp(1)) |
323 | return __riemann_zeta_sum(__s); |
324 | else |
325 | { |
326 | _Tp __zeta = std::pow(_Tp(2) |
327 | * __numeric_constants<_Tp>::__pi(), __s) |
328 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
329 | #if _GLIBCXX_USE_C99_MATH_TR1 |
330 | * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s) |
331 | #else |
332 | * std::exp(__log_gamma(_Tp(1) - __s)) |
333 | #endif |
334 | * __riemann_zeta_sum(_Tp(1) - __s); |
335 | return __zeta; |
336 | } |
337 | } |
338 | } |
339 | else |
340 | return __riemann_zeta_product(__s); |
341 | } |
342 | |
343 | |
344 | /** |
345 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
346 | * for all s != 1 and x > -1. |
347 | * |
348 | * The Hurwitz zeta function is defined by: |
349 | * @f[ |
350 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
351 | * @f] |
352 | * The Riemann zeta function is a special case: |
353 | * @f[ |
354 | * \zeta(s) = \zeta(1,s) |
355 | * @f] |
356 | * |
357 | * This functions uses the double sum that converges for s != 1 |
358 | * and x > -1: |
359 | * @f[ |
360 | * \zeta(x,s) = \frac{1}{s-1} |
361 | * \sum_{n=0}^{\infty} \frac{1}{n + 1} |
362 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s} |
363 | * @f] |
364 | */ |
365 | template<typename _Tp> |
366 | _Tp |
367 | __hurwitz_zeta_glob(_Tp __a, _Tp __s) |
368 | { |
369 | _Tp __zeta = _Tp(0); |
370 | |
371 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
372 | // Max e exponent before overflow. |
373 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
374 | * std::log(_Tp(10)) - _Tp(1); |
375 | |
376 | const unsigned int __maxit = 10000; |
377 | for (unsigned int __i = 0; __i < __maxit; ++__i) |
378 | { |
379 | bool __punt = false; |
380 | _Tp __sgn = _Tp(1); |
381 | _Tp __term = _Tp(0); |
382 | for (unsigned int __j = 0; __j <= __i; ++__j) |
383 | { |
384 | #if _GLIBCXX_USE_C99_MATH_TR1 |
385 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
386 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
387 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
388 | #else |
389 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
390 | - __log_gamma(_Tp(1 + __j)) |
391 | - __log_gamma(_Tp(1 + __i - __j)); |
392 | #endif |
393 | if (__bincoeff > __max_bincoeff) |
394 | { |
395 | // This only gets hit for x << 0. |
396 | __punt = true; |
397 | break; |
398 | } |
399 | __bincoeff = std::exp(__bincoeff); |
400 | __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); |
401 | __sgn *= _Tp(-1); |
402 | } |
403 | if (__punt) |
404 | break; |
405 | __term /= _Tp(__i + 1); |
406 | if (std::abs(__term / __zeta) < __eps) |
407 | break; |
408 | __zeta += __term; |
409 | } |
410 | |
411 | __zeta /= __s - _Tp(1); |
412 | |
413 | return __zeta; |
414 | } |
415 | |
416 | |
417 | /** |
418 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
419 | * for all s != 1 and x > -1. |
420 | * |
421 | * The Hurwitz zeta function is defined by: |
422 | * @f[ |
423 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
424 | * @f] |
425 | * The Riemann zeta function is a special case: |
426 | * @f[ |
427 | * \zeta(s) = \zeta(1,s) |
428 | * @f] |
429 | */ |
430 | template<typename _Tp> |
431 | inline _Tp |
432 | __hurwitz_zeta(_Tp __a, _Tp __s) |
433 | { return __hurwitz_zeta_glob(__a, __s); } |
434 | } // namespace __detail |
435 | #undef _GLIBCXX_MATH_NS |
436 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
437 | } // namespace tr1 |
438 | #endif |
439 | |
440 | _GLIBCXX_END_NAMESPACE_VERSION |
441 | } |
442 | |
443 | #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC |
444 | |