1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2021 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
36 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
37 | |
38 | namespace std _GLIBCXX_VISIBILITY(default) |
39 | { |
40 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
41 | |
42 | template<typename _Key, typename _Value, typename _Alloc, |
43 | typename _ExtractKey, typename _Equal, |
44 | typename _Hash, typename _RangeHash, typename _Unused, |
45 | typename _RehashPolicy, typename _Traits> |
46 | class _Hashtable; |
47 | |
48 | namespace __detail |
49 | { |
50 | /** |
51 | * @defgroup hashtable-detail Base and Implementation Classes |
52 | * @ingroup unordered_associative_containers |
53 | * @{ |
54 | */ |
55 | template<typename _Key, typename _Value, typename _ExtractKey, |
56 | typename _Equal, typename _Hash, typename _RangeHash, |
57 | typename _Unused, typename _Traits> |
58 | struct _Hashtable_base; |
59 | |
60 | // Helper function: return distance(first, last) for forward |
61 | // iterators, or 0/1 for input iterators. |
62 | template<class _Iterator> |
63 | inline typename std::iterator_traits<_Iterator>::difference_type |
64 | __distance_fw(_Iterator __first, _Iterator __last, |
65 | std::input_iterator_tag) |
66 | { return __first != __last ? 1 : 0; } |
67 | |
68 | template<class _Iterator> |
69 | inline typename std::iterator_traits<_Iterator>::difference_type |
70 | __distance_fw(_Iterator __first, _Iterator __last, |
71 | std::forward_iterator_tag) |
72 | { return std::distance(__first, __last); } |
73 | |
74 | template<class _Iterator> |
75 | inline typename std::iterator_traits<_Iterator>::difference_type |
76 | __distance_fw(_Iterator __first, _Iterator __last) |
77 | { return __distance_fw(__first, __last, |
78 | std::__iterator_category(__first)); } |
79 | |
80 | struct _Identity |
81 | { |
82 | template<typename _Tp> |
83 | _Tp&& |
84 | operator()(_Tp&& __x) const noexcept |
85 | { return std::forward<_Tp>(__x); } |
86 | }; |
87 | |
88 | struct _Select1st |
89 | { |
90 | template<typename _Tp> |
91 | auto |
92 | operator()(_Tp&& __x) const noexcept |
93 | -> decltype(std::get<0>(std::forward<_Tp>(__x))) |
94 | { return std::get<0>(std::forward<_Tp>(__x)); } |
95 | }; |
96 | |
97 | template<typename _NodeAlloc> |
98 | struct _Hashtable_alloc; |
99 | |
100 | // Functor recycling a pool of nodes and using allocation once the pool is |
101 | // empty. |
102 | template<typename _NodeAlloc> |
103 | struct _ReuseOrAllocNode |
104 | { |
105 | private: |
106 | using __node_alloc_type = _NodeAlloc; |
107 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
108 | using __node_alloc_traits = |
109 | typename __hashtable_alloc::__node_alloc_traits; |
110 | using __node_type = typename __hashtable_alloc::__node_type; |
111 | |
112 | public: |
113 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
114 | : _M_nodes(__nodes), _M_h(__h) { } |
115 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
116 | |
117 | ~_ReuseOrAllocNode() |
118 | { _M_h._M_deallocate_nodes(_M_nodes); } |
119 | |
120 | template<typename _Arg> |
121 | __node_type* |
122 | operator()(_Arg&& __arg) const |
123 | { |
124 | if (_M_nodes) |
125 | { |
126 | __node_type* __node = _M_nodes; |
127 | _M_nodes = _M_nodes->_M_next(); |
128 | __node->_M_nxt = nullptr; |
129 | auto& __a = _M_h._M_node_allocator(); |
130 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
131 | __try |
132 | { |
133 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
134 | std::forward<_Arg>(__arg)); |
135 | } |
136 | __catch(...) |
137 | { |
138 | _M_h._M_deallocate_node_ptr(__node); |
139 | __throw_exception_again; |
140 | } |
141 | return __node; |
142 | } |
143 | return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); |
144 | } |
145 | |
146 | private: |
147 | mutable __node_type* _M_nodes; |
148 | __hashtable_alloc& _M_h; |
149 | }; |
150 | |
151 | // Functor similar to the previous one but without any pool of nodes to |
152 | // recycle. |
153 | template<typename _NodeAlloc> |
154 | struct _AllocNode |
155 | { |
156 | private: |
157 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
158 | using __node_type = typename __hashtable_alloc::__node_type; |
159 | |
160 | public: |
161 | _AllocNode(__hashtable_alloc& __h) |
162 | : _M_h(__h) { } |
163 | |
164 | template<typename _Arg> |
165 | __node_type* |
166 | operator()(_Arg&& __arg) const |
167 | { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } |
168 | |
169 | private: |
170 | __hashtable_alloc& _M_h; |
171 | }; |
172 | |
173 | // Auxiliary types used for all instantiations of _Hashtable nodes |
174 | // and iterators. |
175 | |
176 | /** |
177 | * struct _Hashtable_traits |
178 | * |
179 | * Important traits for hash tables. |
180 | * |
181 | * @tparam _Cache_hash_code Boolean value. True if the value of |
182 | * the hash function is stored along with the value. This is a |
183 | * time-space tradeoff. Storing it may improve lookup speed by |
184 | * reducing the number of times we need to call the _Hash or _Equal |
185 | * functors. |
186 | * |
187 | * @tparam _Constant_iterators Boolean value. True if iterator and |
188 | * const_iterator are both constant iterator types. This is true |
189 | * for unordered_set and unordered_multiset, false for |
190 | * unordered_map and unordered_multimap. |
191 | * |
192 | * @tparam _Unique_keys Boolean value. True if the return value |
193 | * of _Hashtable::count(k) is always at most one, false if it may |
194 | * be an arbitrary number. This is true for unordered_set and |
195 | * unordered_map, false for unordered_multiset and |
196 | * unordered_multimap. |
197 | */ |
198 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
199 | struct _Hashtable_traits |
200 | { |
201 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
202 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
203 | using __unique_keys = __bool_constant<_Unique_keys>; |
204 | }; |
205 | |
206 | /** |
207 | * struct _Hash_node_base |
208 | * |
209 | * Nodes, used to wrap elements stored in the hash table. A policy |
210 | * template parameter of class template _Hashtable controls whether |
211 | * nodes also store a hash code. In some cases (e.g. strings) this |
212 | * may be a performance win. |
213 | */ |
214 | struct _Hash_node_base |
215 | { |
216 | _Hash_node_base* _M_nxt; |
217 | |
218 | _Hash_node_base() noexcept : _M_nxt() { } |
219 | |
220 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
221 | }; |
222 | |
223 | /** |
224 | * struct _Hash_node_value_base |
225 | * |
226 | * Node type with the value to store. |
227 | */ |
228 | template<typename _Value> |
229 | struct _Hash_node_value_base |
230 | { |
231 | typedef _Value value_type; |
232 | |
233 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
234 | |
235 | _Value* |
236 | _M_valptr() noexcept |
237 | { return _M_storage._M_ptr(); } |
238 | |
239 | const _Value* |
240 | _M_valptr() const noexcept |
241 | { return _M_storage._M_ptr(); } |
242 | |
243 | _Value& |
244 | _M_v() noexcept |
245 | { return *_M_valptr(); } |
246 | |
247 | const _Value& |
248 | _M_v() const noexcept |
249 | { return *_M_valptr(); } |
250 | }; |
251 | |
252 | /** |
253 | * Primary template struct _Hash_node_code_cache. |
254 | */ |
255 | template<bool _Cache_hash_code> |
256 | struct _Hash_node_code_cache |
257 | { }; |
258 | |
259 | /** |
260 | * Specialization for node with cache, struct _Hash_node_code_cache. |
261 | */ |
262 | template<> |
263 | struct _Hash_node_code_cache<true> |
264 | { std::size_t _M_hash_code; }; |
265 | |
266 | template<typename _Value, bool _Cache_hash_code> |
267 | struct _Hash_node_value |
268 | : _Hash_node_value_base<_Value> |
269 | , _Hash_node_code_cache<_Cache_hash_code> |
270 | { }; |
271 | |
272 | /** |
273 | * Primary template struct _Hash_node. |
274 | */ |
275 | template<typename _Value, bool _Cache_hash_code> |
276 | struct _Hash_node |
277 | : _Hash_node_base |
278 | , _Hash_node_value<_Value, _Cache_hash_code> |
279 | { |
280 | _Hash_node* |
281 | _M_next() const noexcept |
282 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
283 | }; |
284 | |
285 | /// Base class for node iterators. |
286 | template<typename _Value, bool _Cache_hash_code> |
287 | struct _Node_iterator_base |
288 | { |
289 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
290 | |
291 | __node_type* _M_cur; |
292 | |
293 | _Node_iterator_base() : _M_cur(nullptr) { } |
294 | _Node_iterator_base(__node_type* __p) noexcept |
295 | : _M_cur(__p) { } |
296 | |
297 | void |
298 | _M_incr() noexcept |
299 | { _M_cur = _M_cur->_M_next(); } |
300 | |
301 | friend bool |
302 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
303 | noexcept |
304 | { return __x._M_cur == __y._M_cur; } |
305 | |
306 | #if __cpp_impl_three_way_comparison < 201907L |
307 | friend bool |
308 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
309 | noexcept |
310 | { return __x._M_cur != __y._M_cur; } |
311 | #endif |
312 | }; |
313 | |
314 | /// Node iterators, used to iterate through all the hashtable. |
315 | template<typename _Value, bool __constant_iterators, bool __cache> |
316 | struct _Node_iterator |
317 | : public _Node_iterator_base<_Value, __cache> |
318 | { |
319 | private: |
320 | using __base_type = _Node_iterator_base<_Value, __cache>; |
321 | using __node_type = typename __base_type::__node_type; |
322 | |
323 | public: |
324 | typedef _Value value_type; |
325 | typedef std::ptrdiff_t difference_type; |
326 | typedef std::forward_iterator_tag iterator_category; |
327 | |
328 | using pointer = typename std::conditional<__constant_iterators, |
329 | const value_type*, value_type*>::type; |
330 | |
331 | using reference = typename std::conditional<__constant_iterators, |
332 | const value_type&, value_type&>::type; |
333 | |
334 | _Node_iterator() = default; |
335 | |
336 | explicit |
337 | _Node_iterator(__node_type* __p) noexcept |
338 | : __base_type(__p) { } |
339 | |
340 | reference |
341 | operator*() const noexcept |
342 | { return this->_M_cur->_M_v(); } |
343 | |
344 | pointer |
345 | operator->() const noexcept |
346 | { return this->_M_cur->_M_valptr(); } |
347 | |
348 | _Node_iterator& |
349 | operator++() noexcept |
350 | { |
351 | this->_M_incr(); |
352 | return *this; |
353 | } |
354 | |
355 | _Node_iterator |
356 | operator++(int) noexcept |
357 | { |
358 | _Node_iterator __tmp(*this); |
359 | this->_M_incr(); |
360 | return __tmp; |
361 | } |
362 | }; |
363 | |
364 | /// Node const_iterators, used to iterate through all the hashtable. |
365 | template<typename _Value, bool __constant_iterators, bool __cache> |
366 | struct _Node_const_iterator |
367 | : public _Node_iterator_base<_Value, __cache> |
368 | { |
369 | private: |
370 | using __base_type = _Node_iterator_base<_Value, __cache>; |
371 | using __node_type = typename __base_type::__node_type; |
372 | |
373 | public: |
374 | typedef _Value value_type; |
375 | typedef std::ptrdiff_t difference_type; |
376 | typedef std::forward_iterator_tag iterator_category; |
377 | |
378 | typedef const value_type* pointer; |
379 | typedef const value_type& reference; |
380 | |
381 | _Node_const_iterator() = default; |
382 | |
383 | explicit |
384 | _Node_const_iterator(__node_type* __p) noexcept |
385 | : __base_type(__p) { } |
386 | |
387 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
388 | __cache>& __x) noexcept |
389 | : __base_type(__x._M_cur) { } |
390 | |
391 | reference |
392 | operator*() const noexcept |
393 | { return this->_M_cur->_M_v(); } |
394 | |
395 | pointer |
396 | operator->() const noexcept |
397 | { return this->_M_cur->_M_valptr(); } |
398 | |
399 | _Node_const_iterator& |
400 | operator++() noexcept |
401 | { |
402 | this->_M_incr(); |
403 | return *this; |
404 | } |
405 | |
406 | _Node_const_iterator |
407 | operator++(int) noexcept |
408 | { |
409 | _Node_const_iterator __tmp(*this); |
410 | this->_M_incr(); |
411 | return __tmp; |
412 | } |
413 | }; |
414 | |
415 | // Many of class template _Hashtable's template parameters are policy |
416 | // classes. These are defaults for the policies. |
417 | |
418 | /// Default range hashing function: use division to fold a large number |
419 | /// into the range [0, N). |
420 | struct _Mod_range_hashing |
421 | { |
422 | typedef std::size_t first_argument_type; |
423 | typedef std::size_t second_argument_type; |
424 | typedef std::size_t result_type; |
425 | |
426 | result_type |
427 | operator()(first_argument_type __num, |
428 | second_argument_type __den) const noexcept |
429 | { return __num % __den; } |
430 | }; |
431 | |
432 | /// Default ranged hash function H. In principle it should be a |
433 | /// function object composed from objects of type H1 and H2 such that |
434 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
435 | /// h1 and h2. So instead we'll just use a tag to tell class template |
436 | /// hashtable to do that composition. |
437 | struct _Default_ranged_hash { }; |
438 | |
439 | /// Default value for rehash policy. Bucket size is (usually) the |
440 | /// smallest prime that keeps the load factor small enough. |
441 | struct _Prime_rehash_policy |
442 | { |
443 | using __has_load_factor = true_type; |
444 | |
445 | _Prime_rehash_policy(float __z = 1.0) noexcept |
446 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
447 | |
448 | float |
449 | max_load_factor() const noexcept |
450 | { return _M_max_load_factor; } |
451 | |
452 | // Return a bucket size no smaller than n. |
453 | std::size_t |
454 | _M_next_bkt(std::size_t __n) const; |
455 | |
456 | // Return a bucket count appropriate for n elements |
457 | std::size_t |
458 | _M_bkt_for_elements(std::size_t __n) const |
459 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
460 | |
461 | // __n_bkt is current bucket count, __n_elt is current element count, |
462 | // and __n_ins is number of elements to be inserted. Do we need to |
463 | // increase bucket count? If so, return make_pair(true, n), where n |
464 | // is the new bucket count. If not, return make_pair(false, 0). |
465 | std::pair<bool, std::size_t> |
466 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
467 | std::size_t __n_ins) const; |
468 | |
469 | typedef std::size_t _State; |
470 | |
471 | _State |
472 | _M_state() const |
473 | { return _M_next_resize; } |
474 | |
475 | void |
476 | _M_reset() noexcept |
477 | { _M_next_resize = 0; } |
478 | |
479 | void |
480 | _M_reset(_State __state) |
481 | { _M_next_resize = __state; } |
482 | |
483 | static const std::size_t _S_growth_factor = 2; |
484 | |
485 | float _M_max_load_factor; |
486 | mutable std::size_t _M_next_resize; |
487 | }; |
488 | |
489 | /// Range hashing function assuming that second arg is a power of 2. |
490 | struct _Mask_range_hashing |
491 | { |
492 | typedef std::size_t first_argument_type; |
493 | typedef std::size_t second_argument_type; |
494 | typedef std::size_t result_type; |
495 | |
496 | result_type |
497 | operator()(first_argument_type __num, |
498 | second_argument_type __den) const noexcept |
499 | { return __num & (__den - 1); } |
500 | }; |
501 | |
502 | /// Compute closest power of 2 not less than __n |
503 | inline std::size_t |
504 | __clp2(std::size_t __n) noexcept |
505 | { |
506 | using __gnu_cxx::__int_traits; |
507 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
508 | if (__n < 2) |
509 | return __n; |
510 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
511 | ? __builtin_clzll(__n - 1ull) |
512 | : __builtin_clzl(__n - 1ul); |
513 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
514 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
515 | } |
516 | |
517 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
518 | /// operations. |
519 | struct _Power2_rehash_policy |
520 | { |
521 | using __has_load_factor = true_type; |
522 | |
523 | _Power2_rehash_policy(float __z = 1.0) noexcept |
524 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
525 | |
526 | float |
527 | max_load_factor() const noexcept |
528 | { return _M_max_load_factor; } |
529 | |
530 | // Return a bucket size no smaller than n (as long as n is not above the |
531 | // highest power of 2). |
532 | std::size_t |
533 | _M_next_bkt(std::size_t __n) noexcept |
534 | { |
535 | if (__n == 0) |
536 | // Special case on container 1st initialization with 0 bucket count |
537 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
538 | // want to add an element allocation will take place. |
539 | return 1; |
540 | |
541 | const auto __max_width = std::min<size_t>(sizeof(size_t), 8); |
542 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
543 | std::size_t __res = __clp2(__n); |
544 | |
545 | if (__res == 0) |
546 | __res = __max_bkt; |
547 | else if (__res == 1) |
548 | // If __res is 1 we force it to 2 to make sure there will be an |
549 | // allocation so that nothing need to be stored in the initial |
550 | // single bucket |
551 | __res = 2; |
552 | |
553 | if (__res == __max_bkt) |
554 | // Set next resize to the max value so that we never try to rehash again |
555 | // as we already reach the biggest possible bucket number. |
556 | // Note that it might result in max_load_factor not being respected. |
557 | _M_next_resize = size_t(-1); |
558 | else |
559 | _M_next_resize |
560 | = __builtin_floor(__res * (double)_M_max_load_factor); |
561 | |
562 | return __res; |
563 | } |
564 | |
565 | // Return a bucket count appropriate for n elements |
566 | std::size_t |
567 | _M_bkt_for_elements(std::size_t __n) const noexcept |
568 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
569 | |
570 | // __n_bkt is current bucket count, __n_elt is current element count, |
571 | // and __n_ins is number of elements to be inserted. Do we need to |
572 | // increase bucket count? If so, return make_pair(true, n), where n |
573 | // is the new bucket count. If not, return make_pair(false, 0). |
574 | std::pair<bool, std::size_t> |
575 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
576 | std::size_t __n_ins) noexcept |
577 | { |
578 | if (__n_elt + __n_ins > _M_next_resize) |
579 | { |
580 | // If _M_next_resize is 0 it means that we have nothing allocated so |
581 | // far and that we start inserting elements. In this case we start |
582 | // with an initial bucket size of 11. |
583 | double __min_bkts |
584 | = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11) |
585 | / (double)_M_max_load_factor; |
586 | if (__min_bkts >= __n_bkt) |
587 | return { true, |
588 | _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, |
589 | __n_bkt * _S_growth_factor)) }; |
590 | |
591 | _M_next_resize |
592 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
593 | return { false, 0 }; |
594 | } |
595 | else |
596 | return { false, 0 }; |
597 | } |
598 | |
599 | typedef std::size_t _State; |
600 | |
601 | _State |
602 | _M_state() const noexcept |
603 | { return _M_next_resize; } |
604 | |
605 | void |
606 | _M_reset() noexcept |
607 | { _M_next_resize = 0; } |
608 | |
609 | void |
610 | _M_reset(_State __state) noexcept |
611 | { _M_next_resize = __state; } |
612 | |
613 | static const std::size_t _S_growth_factor = 2; |
614 | |
615 | float _M_max_load_factor; |
616 | std::size_t _M_next_resize; |
617 | }; |
618 | |
619 | // Base classes for std::_Hashtable. We define these base classes |
620 | // because in some cases we want to do different things depending on |
621 | // the value of a policy class. In some cases the policy class |
622 | // affects which member functions and nested typedefs are defined; |
623 | // we handle that by specializing base class templates. Several of |
624 | // the base class templates need to access other members of class |
625 | // template _Hashtable, so we use a variant of the "Curiously |
626 | // Recurring Template Pattern" (CRTP) technique. |
627 | |
628 | /** |
629 | * Primary class template _Map_base. |
630 | * |
631 | * If the hashtable has a value type of the form pair<T1, T2> and a |
632 | * key extraction policy (_ExtractKey) that returns the first part |
633 | * of the pair, the hashtable gets a mapped_type typedef. If it |
634 | * satisfies those criteria and also has unique keys, then it also |
635 | * gets an operator[]. |
636 | */ |
637 | template<typename _Key, typename _Value, typename _Alloc, |
638 | typename _ExtractKey, typename _Equal, |
639 | typename _Hash, typename _RangeHash, typename _Unused, |
640 | typename _RehashPolicy, typename _Traits, |
641 | bool _Unique_keys = _Traits::__unique_keys::value> |
642 | struct _Map_base { }; |
643 | |
644 | /// Partial specialization, __unique_keys set to false. |
645 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
646 | typename _Hash, typename _RangeHash, typename _Unused, |
647 | typename _RehashPolicy, typename _Traits> |
648 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
649 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
650 | { |
651 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
652 | }; |
653 | |
654 | /// Partial specialization, __unique_keys set to true. |
655 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
656 | typename _Hash, typename _RangeHash, typename _Unused, |
657 | typename _RehashPolicy, typename _Traits> |
658 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
659 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
660 | { |
661 | private: |
662 | using __hashtable_base = _Hashtable_base<_Key, _Pair, _Select1st, _Equal, |
663 | _Hash, _RangeHash, _Unused, |
664 | _Traits>; |
665 | |
666 | using __hashtable = _Hashtable<_Key, _Pair, _Alloc, _Select1st, _Equal, |
667 | _Hash, _RangeHash, |
668 | _Unused, _RehashPolicy, _Traits>; |
669 | |
670 | using __hash_code = typename __hashtable_base::__hash_code; |
671 | |
672 | public: |
673 | using key_type = typename __hashtable_base::key_type; |
674 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
675 | |
676 | mapped_type& |
677 | operator[](const key_type& __k); |
678 | |
679 | mapped_type& |
680 | operator[](key_type&& __k); |
681 | |
682 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
683 | // DR 761. unordered_map needs an at() member function. |
684 | mapped_type& |
685 | at(const key_type& __k); |
686 | |
687 | const mapped_type& |
688 | at(const key_type& __k) const; |
689 | }; |
690 | |
691 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
692 | typename _Hash, typename _RangeHash, typename _Unused, |
693 | typename _RehashPolicy, typename _Traits> |
694 | auto |
695 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
696 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
697 | operator[](const key_type& __k) |
698 | -> mapped_type& |
699 | { |
700 | __hashtable* __h = static_cast<__hashtable*>(this); |
701 | __hash_code __code = __h->_M_hash_code(__k); |
702 | std::size_t __bkt = __h->_M_bucket_index(__code); |
703 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
704 | return __node->_M_v().second; |
705 | |
706 | typename __hashtable::_Scoped_node __node { |
707 | __h, |
708 | std::piecewise_construct, |
709 | std::tuple<const key_type&>(__k), |
710 | std::tuple<>() |
711 | }; |
712 | auto __pos |
713 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
714 | __node._M_node = nullptr; |
715 | return __pos->second; |
716 | } |
717 | |
718 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
719 | typename _Hash, typename _RangeHash, typename _Unused, |
720 | typename _RehashPolicy, typename _Traits> |
721 | auto |
722 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
723 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
724 | operator[](key_type&& __k) |
725 | -> mapped_type& |
726 | { |
727 | __hashtable* __h = static_cast<__hashtable*>(this); |
728 | __hash_code __code = __h->_M_hash_code(__k); |
729 | std::size_t __bkt = __h->_M_bucket_index(__code); |
730 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
731 | return __node->_M_v().second; |
732 | |
733 | typename __hashtable::_Scoped_node __node { |
734 | __h, |
735 | std::piecewise_construct, |
736 | std::forward_as_tuple(std::move(__k)), |
737 | std::tuple<>() |
738 | }; |
739 | auto __pos |
740 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
741 | __node._M_node = nullptr; |
742 | return __pos->second; |
743 | } |
744 | |
745 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
746 | typename _Hash, typename _RangeHash, typename _Unused, |
747 | typename _RehashPolicy, typename _Traits> |
748 | auto |
749 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
750 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
751 | at(const key_type& __k) |
752 | -> mapped_type& |
753 | { |
754 | __hashtable* __h = static_cast<__hashtable*>(this); |
755 | auto __ite = __h->find(__k); |
756 | |
757 | if (!__ite._M_cur) |
758 | __throw_out_of_range(__N("_Map_base::at" )); |
759 | return __ite->second; |
760 | } |
761 | |
762 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
763 | typename _Hash, typename _RangeHash, typename _Unused, |
764 | typename _RehashPolicy, typename _Traits> |
765 | auto |
766 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
767 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
768 | at(const key_type& __k) const |
769 | -> const mapped_type& |
770 | { |
771 | const __hashtable* __h = static_cast<const __hashtable*>(this); |
772 | auto __ite = __h->find(__k); |
773 | |
774 | if (!__ite._M_cur) |
775 | __throw_out_of_range(__N("_Map_base::at" )); |
776 | return __ite->second; |
777 | } |
778 | |
779 | /** |
780 | * Primary class template _Insert_base. |
781 | * |
782 | * Defines @c insert member functions appropriate to all _Hashtables. |
783 | */ |
784 | template<typename _Key, typename _Value, typename _Alloc, |
785 | typename _ExtractKey, typename _Equal, |
786 | typename _Hash, typename _RangeHash, typename _Unused, |
787 | typename _RehashPolicy, typename _Traits> |
788 | struct _Insert_base |
789 | { |
790 | protected: |
791 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
792 | _Equal, _Hash, _RangeHash, |
793 | _Unused, _Traits>; |
794 | |
795 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
796 | _Hash, _RangeHash, |
797 | _Unused, _RehashPolicy, _Traits>; |
798 | |
799 | using __hash_cached = typename _Traits::__hash_cached; |
800 | using __constant_iterators = typename _Traits::__constant_iterators; |
801 | |
802 | using __hashtable_alloc = _Hashtable_alloc< |
803 | __alloc_rebind<_Alloc, _Hash_node<_Value, |
804 | __hash_cached::value>>>; |
805 | |
806 | using value_type = typename __hashtable_base::value_type; |
807 | using size_type = typename __hashtable_base::size_type; |
808 | |
809 | using __unique_keys = typename _Traits::__unique_keys; |
810 | using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
811 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
812 | |
813 | __hashtable& |
814 | _M_conjure_hashtable() |
815 | { return *(static_cast<__hashtable*>(this)); } |
816 | |
817 | template<typename _InputIterator, typename _NodeGetter> |
818 | void |
819 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
820 | const _NodeGetter&, true_type __uks); |
821 | |
822 | template<typename _InputIterator, typename _NodeGetter> |
823 | void |
824 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
825 | const _NodeGetter&, false_type __uks); |
826 | |
827 | public: |
828 | using iterator = _Node_iterator<_Value, __constant_iterators::value, |
829 | __hash_cached::value>; |
830 | |
831 | using const_iterator = _Node_const_iterator<_Value, __constant_iterators::value, |
832 | __hash_cached::value>; |
833 | |
834 | using __ireturn_type = typename std::conditional<__unique_keys::value, |
835 | std::pair<iterator, bool>, |
836 | iterator>::type; |
837 | |
838 | __ireturn_type |
839 | insert(const value_type& __v) |
840 | { |
841 | __hashtable& __h = _M_conjure_hashtable(); |
842 | __node_gen_type __node_gen(__h); |
843 | return __h._M_insert(__v, __node_gen, __unique_keys{}); |
844 | } |
845 | |
846 | iterator |
847 | insert(const_iterator __hint, const value_type& __v) |
848 | { |
849 | __hashtable& __h = _M_conjure_hashtable(); |
850 | __node_gen_type __node_gen(__h); |
851 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
852 | } |
853 | |
854 | template<typename _KType, typename... _Args> |
855 | std::pair<iterator, bool> |
856 | try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
857 | { |
858 | __hashtable& __h = _M_conjure_hashtable(); |
859 | auto __code = __h._M_hash_code(__k); |
860 | std::size_t __bkt = __h._M_bucket_index(__code); |
861 | if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
862 | return { iterator(__node), false }; |
863 | |
864 | typename __hashtable::_Scoped_node __node { |
865 | &__h, |
866 | std::piecewise_construct, |
867 | std::forward_as_tuple(std::forward<_KType>(__k)), |
868 | std::forward_as_tuple(std::forward<_Args>(__args)...) |
869 | }; |
870 | auto __it |
871 | = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
872 | __node._M_node = nullptr; |
873 | return { __it, true }; |
874 | } |
875 | |
876 | void |
877 | insert(initializer_list<value_type> __l) |
878 | { this->insert(__l.begin(), __l.end()); } |
879 | |
880 | template<typename _InputIterator> |
881 | void |
882 | insert(_InputIterator __first, _InputIterator __last) |
883 | { |
884 | __hashtable& __h = _M_conjure_hashtable(); |
885 | __node_gen_type __node_gen(__h); |
886 | return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
887 | } |
888 | }; |
889 | |
890 | template<typename _Key, typename _Value, typename _Alloc, |
891 | typename _ExtractKey, typename _Equal, |
892 | typename _Hash, typename _RangeHash, typename _Unused, |
893 | typename _RehashPolicy, typename _Traits> |
894 | template<typename _InputIterator, typename _NodeGetter> |
895 | void |
896 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
897 | _Hash, _RangeHash, _Unused, |
898 | _RehashPolicy, _Traits>:: |
899 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
900 | const _NodeGetter& __node_gen, true_type __uks) |
901 | { |
902 | __hashtable& __h = _M_conjure_hashtable(); |
903 | for (; __first != __last; ++__first) |
904 | __h._M_insert(*__first, __node_gen, __uks); |
905 | } |
906 | |
907 | template<typename _Key, typename _Value, typename _Alloc, |
908 | typename _ExtractKey, typename _Equal, |
909 | typename _Hash, typename _RangeHash, typename _Unused, |
910 | typename _RehashPolicy, typename _Traits> |
911 | template<typename _InputIterator, typename _NodeGetter> |
912 | void |
913 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
914 | _Hash, _RangeHash, _Unused, |
915 | _RehashPolicy, _Traits>:: |
916 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
917 | const _NodeGetter& __node_gen, false_type __uks) |
918 | { |
919 | using __rehash_type = typename __hashtable::__rehash_type; |
920 | using __rehash_state = typename __hashtable::__rehash_state; |
921 | using pair_type = std::pair<bool, std::size_t>; |
922 | |
923 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
924 | if (__n_elt == 0) |
925 | return; |
926 | |
927 | __hashtable& __h = _M_conjure_hashtable(); |
928 | __rehash_type& __rehash = __h._M_rehash_policy; |
929 | const __rehash_state& __saved_state = __rehash._M_state(); |
930 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
931 | __h._M_element_count, |
932 | __n_elt); |
933 | |
934 | if (__do_rehash.first) |
935 | __h._M_rehash(__do_rehash.second, __saved_state); |
936 | |
937 | for (; __first != __last; ++__first) |
938 | __h._M_insert(*__first, __node_gen, __uks); |
939 | } |
940 | |
941 | /** |
942 | * Primary class template _Insert. |
943 | * |
944 | * Defines @c insert member functions that depend on _Hashtable policies, |
945 | * via partial specializations. |
946 | */ |
947 | template<typename _Key, typename _Value, typename _Alloc, |
948 | typename _ExtractKey, typename _Equal, |
949 | typename _Hash, typename _RangeHash, typename _Unused, |
950 | typename _RehashPolicy, typename _Traits, |
951 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
952 | struct _Insert; |
953 | |
954 | /// Specialization. |
955 | template<typename _Key, typename _Value, typename _Alloc, |
956 | typename _ExtractKey, typename _Equal, |
957 | typename _Hash, typename _RangeHash, typename _Unused, |
958 | typename _RehashPolicy, typename _Traits> |
959 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
960 | _Hash, _RangeHash, _Unused, |
961 | _RehashPolicy, _Traits, true> |
962 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
963 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
964 | { |
965 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
966 | _Equal, _Hash, _RangeHash, _Unused, |
967 | _RehashPolicy, _Traits>; |
968 | |
969 | using value_type = typename __base_type::value_type; |
970 | using iterator = typename __base_type::iterator; |
971 | using const_iterator = typename __base_type::const_iterator; |
972 | using __ireturn_type = typename __base_type::__ireturn_type; |
973 | |
974 | using __unique_keys = typename __base_type::__unique_keys; |
975 | using __hashtable = typename __base_type::__hashtable; |
976 | using __node_gen_type = typename __base_type::__node_gen_type; |
977 | |
978 | using __base_type::insert; |
979 | |
980 | __ireturn_type |
981 | insert(value_type&& __v) |
982 | { |
983 | __hashtable& __h = this->_M_conjure_hashtable(); |
984 | __node_gen_type __node_gen(__h); |
985 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
986 | } |
987 | |
988 | iterator |
989 | insert(const_iterator __hint, value_type&& __v) |
990 | { |
991 | __hashtable& __h = this->_M_conjure_hashtable(); |
992 | __node_gen_type __node_gen(__h); |
993 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
994 | __unique_keys{}); |
995 | } |
996 | }; |
997 | |
998 | /// Specialization. |
999 | template<typename _Key, typename _Value, typename _Alloc, |
1000 | typename _ExtractKey, typename _Equal, |
1001 | typename _Hash, typename _RangeHash, typename _Unused, |
1002 | typename _RehashPolicy, typename _Traits> |
1003 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1004 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1005 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1006 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1007 | { |
1008 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1009 | _Equal, _Hash, _RangeHash, _Unused, |
1010 | _RehashPolicy, _Traits>; |
1011 | using value_type = typename __base_type::value_type; |
1012 | using iterator = typename __base_type::iterator; |
1013 | using const_iterator = typename __base_type::const_iterator; |
1014 | |
1015 | using __unique_keys = typename __base_type::__unique_keys; |
1016 | using __hashtable = typename __base_type::__hashtable; |
1017 | using __ireturn_type = typename __base_type::__ireturn_type; |
1018 | |
1019 | using __base_type::insert; |
1020 | |
1021 | template<typename _Pair> |
1022 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
1023 | |
1024 | template<typename _Pair> |
1025 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
1026 | |
1027 | template<typename _Pair> |
1028 | using _IFconsp = typename _IFcons<_Pair>::type; |
1029 | |
1030 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1031 | __ireturn_type |
1032 | insert(_Pair&& __v) |
1033 | { |
1034 | __hashtable& __h = this->_M_conjure_hashtable(); |
1035 | return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
1036 | } |
1037 | |
1038 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1039 | iterator |
1040 | insert(const_iterator __hint, _Pair&& __v) |
1041 | { |
1042 | __hashtable& __h = this->_M_conjure_hashtable(); |
1043 | return __h._M_emplace(__hint, __unique_keys{}, |
1044 | std::forward<_Pair>(__v)); |
1045 | } |
1046 | }; |
1047 | |
1048 | template<typename _Policy> |
1049 | using __has_load_factor = typename _Policy::__has_load_factor; |
1050 | |
1051 | /** |
1052 | * Primary class template _Rehash_base. |
1053 | * |
1054 | * Give hashtable the max_load_factor functions and reserve iff the |
1055 | * rehash policy supports it. |
1056 | */ |
1057 | template<typename _Key, typename _Value, typename _Alloc, |
1058 | typename _ExtractKey, typename _Equal, |
1059 | typename _Hash, typename _RangeHash, typename _Unused, |
1060 | typename _RehashPolicy, typename _Traits, |
1061 | typename = |
1062 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
1063 | struct _Rehash_base; |
1064 | |
1065 | /// Specialization when rehash policy doesn't provide load factor management. |
1066 | template<typename _Key, typename _Value, typename _Alloc, |
1067 | typename _ExtractKey, typename _Equal, |
1068 | typename _Hash, typename _RangeHash, typename _Unused, |
1069 | typename _RehashPolicy, typename _Traits> |
1070 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1071 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1072 | false_type /* Has load factor */> |
1073 | { |
1074 | }; |
1075 | |
1076 | /// Specialization when rehash policy provide load factor management. |
1077 | template<typename _Key, typename _Value, typename _Alloc, |
1078 | typename _ExtractKey, typename _Equal, |
1079 | typename _Hash, typename _RangeHash, typename _Unused, |
1080 | typename _RehashPolicy, typename _Traits> |
1081 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1082 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1083 | true_type /* Has load factor */> |
1084 | { |
1085 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1086 | _Equal, _Hash, _RangeHash, _Unused, |
1087 | _RehashPolicy, _Traits>; |
1088 | |
1089 | float |
1090 | max_load_factor() const noexcept |
1091 | { |
1092 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1093 | return __this->__rehash_policy().max_load_factor(); |
1094 | } |
1095 | |
1096 | void |
1097 | max_load_factor(float __z) |
1098 | { |
1099 | __hashtable* __this = static_cast<__hashtable*>(this); |
1100 | __this->__rehash_policy(_RehashPolicy(__z)); |
1101 | } |
1102 | |
1103 | void |
1104 | reserve(std::size_t __n) |
1105 | { |
1106 | __hashtable* __this = static_cast<__hashtable*>(this); |
1107 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
1108 | } |
1109 | }; |
1110 | |
1111 | /** |
1112 | * Primary class template _Hashtable_ebo_helper. |
1113 | * |
1114 | * Helper class using EBO when it is not forbidden (the type is not |
1115 | * final) and when it is worth it (the type is empty.) |
1116 | */ |
1117 | template<int _Nm, typename _Tp, |
1118 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1119 | struct _Hashtable_ebo_helper; |
1120 | |
1121 | /// Specialization using EBO. |
1122 | template<int _Nm, typename _Tp> |
1123 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1124 | : private _Tp |
1125 | { |
1126 | _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
1127 | |
1128 | template<typename _OtherTp> |
1129 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1130 | : _Tp(std::forward<_OtherTp>(__tp)) |
1131 | { } |
1132 | |
1133 | const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
1134 | _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
1135 | }; |
1136 | |
1137 | /// Specialization not using EBO. |
1138 | template<int _Nm, typename _Tp> |
1139 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1140 | { |
1141 | _Hashtable_ebo_helper() = default; |
1142 | |
1143 | template<typename _OtherTp> |
1144 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1145 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1146 | { } |
1147 | |
1148 | const _Tp& _M_cget() const { return _M_tp; } |
1149 | _Tp& _M_get() { return _M_tp; } |
1150 | |
1151 | private: |
1152 | _Tp _M_tp{}; |
1153 | }; |
1154 | |
1155 | /** |
1156 | * Primary class template _Local_iterator_base. |
1157 | * |
1158 | * Base class for local iterators, used to iterate within a bucket |
1159 | * but not between buckets. |
1160 | */ |
1161 | template<typename _Key, typename _Value, typename _ExtractKey, |
1162 | typename _Hash, typename _RangeHash, typename _Unused, |
1163 | bool __cache_hash_code> |
1164 | struct _Local_iterator_base; |
1165 | |
1166 | /** |
1167 | * Primary class template _Hash_code_base. |
1168 | * |
1169 | * Encapsulates two policy issues that aren't quite orthogonal. |
1170 | * (1) the difference between using a ranged hash function and using |
1171 | * the combination of a hash function and a range-hashing function. |
1172 | * In the former case we don't have such things as hash codes, so |
1173 | * we have a dummy type as placeholder. |
1174 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1175 | * meaningless if we have a ranged hash function. |
1176 | * |
1177 | * We also put the key extraction objects here, for convenience. |
1178 | * Each specialization derives from one or more of the template |
1179 | * parameters to benefit from Ebo. This is important as this type |
1180 | * is inherited in some cases by the _Local_iterator_base type used |
1181 | * to implement local_iterator and const_local_iterator. As with |
1182 | * any iterator type we prefer to make it as small as possible. |
1183 | */ |
1184 | template<typename _Key, typename _Value, typename _ExtractKey, |
1185 | typename _Hash, typename _RangeHash, typename _Unused, |
1186 | bool __cache_hash_code> |
1187 | struct _Hash_code_base |
1188 | : private _Hashtable_ebo_helper<1, _Hash> |
1189 | { |
1190 | private: |
1191 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1192 | |
1193 | // Gives the local iterator implementation access to _M_bucket_index(). |
1194 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1195 | _Hash, _RangeHash, _Unused, false>; |
1196 | |
1197 | public: |
1198 | typedef _Hash hasher; |
1199 | |
1200 | hasher |
1201 | hash_function() const |
1202 | { return _M_hash(); } |
1203 | |
1204 | protected: |
1205 | typedef std::size_t __hash_code; |
1206 | |
1207 | // We need the default constructor for the local iterators and _Hashtable |
1208 | // default constructor. |
1209 | _Hash_code_base() = default; |
1210 | |
1211 | _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
1212 | |
1213 | __hash_code |
1214 | _M_hash_code(const _Key& __k) const |
1215 | { |
1216 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
1217 | "hash function must be invocable with an argument of key type" ); |
1218 | return _M_hash()(__k); |
1219 | } |
1220 | |
1221 | template<typename _Kt> |
1222 | __hash_code |
1223 | _M_hash_code_tr(const _Kt& __k) const |
1224 | { |
1225 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
1226 | "hash function must be invocable with an argument of key type" ); |
1227 | return _M_hash()(__k); |
1228 | } |
1229 | |
1230 | std::size_t |
1231 | _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
1232 | { return _RangeHash{}(__c, __bkt_count); } |
1233 | |
1234 | std::size_t |
1235 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
1236 | std::size_t __bkt_count) const |
1237 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
1238 | && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1239 | (std::size_t)0)) ) |
1240 | { |
1241 | return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
1242 | __bkt_count); |
1243 | } |
1244 | |
1245 | std::size_t |
1246 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
1247 | std::size_t __bkt_count) const |
1248 | noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1249 | (std::size_t)0)) ) |
1250 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
1251 | |
1252 | void |
1253 | _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
1254 | { } |
1255 | |
1256 | void |
1257 | _M_copy_code(_Hash_node_code_cache<false>&, |
1258 | const _Hash_node_code_cache<false>&) const |
1259 | { } |
1260 | |
1261 | void |
1262 | _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
1263 | { __n._M_hash_code = __c; } |
1264 | |
1265 | void |
1266 | _M_copy_code(_Hash_node_code_cache<true>& __to, |
1267 | const _Hash_node_code_cache<true>& __from) const |
1268 | { __to._M_hash_code = __from._M_hash_code; } |
1269 | |
1270 | void |
1271 | _M_swap(_Hash_code_base& __x) |
1272 | { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
1273 | |
1274 | const _Hash& |
1275 | _M_hash() const { return __ebo_hash::_M_cget(); } |
1276 | }; |
1277 | |
1278 | /// Partial specialization used when nodes contain a cached hash code. |
1279 | template<typename _Key, typename _Value, typename _ExtractKey, |
1280 | typename _Hash, typename _RangeHash, typename _Unused> |
1281 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1282 | _Hash, _RangeHash, _Unused, true> |
1283 | : public _Node_iterator_base<_Value, true> |
1284 | { |
1285 | protected: |
1286 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
1287 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1288 | _Hash, _RangeHash, _Unused, true>; |
1289 | |
1290 | _Local_iterator_base() = default; |
1291 | _Local_iterator_base(const __hash_code_base&, |
1292 | _Hash_node<_Value, true>* __p, |
1293 | std::size_t __bkt, std::size_t __bkt_count) |
1294 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1295 | { } |
1296 | |
1297 | void |
1298 | _M_incr() |
1299 | { |
1300 | __base_node_iter::_M_incr(); |
1301 | if (this->_M_cur) |
1302 | { |
1303 | std::size_t __bkt |
1304 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
1305 | if (__bkt != _M_bucket) |
1306 | this->_M_cur = nullptr; |
1307 | } |
1308 | } |
1309 | |
1310 | std::size_t _M_bucket; |
1311 | std::size_t _M_bucket_count; |
1312 | |
1313 | public: |
1314 | std::size_t |
1315 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1316 | }; |
1317 | |
1318 | // Uninitialized storage for a _Hash_code_base. |
1319 | // This type is DefaultConstructible and Assignable even if the |
1320 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1321 | // can be DefaultConstructible and Assignable. |
1322 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1323 | struct _Hash_code_storage |
1324 | { |
1325 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1326 | |
1327 | _Tp* |
1328 | _M_h() { return _M_storage._M_ptr(); } |
1329 | |
1330 | const _Tp* |
1331 | _M_h() const { return _M_storage._M_ptr(); } |
1332 | }; |
1333 | |
1334 | // Empty partial specialization for empty _Hash_code_base types. |
1335 | template<typename _Tp> |
1336 | struct _Hash_code_storage<_Tp, true> |
1337 | { |
1338 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1339 | |
1340 | // As _Tp is an empty type there will be no bytes written/read through |
1341 | // the cast pointer, so no strict-aliasing violation. |
1342 | _Tp* |
1343 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1344 | |
1345 | const _Tp* |
1346 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1347 | }; |
1348 | |
1349 | template<typename _Key, typename _Value, typename _ExtractKey, |
1350 | typename _Hash, typename _RangeHash, typename _Unused> |
1351 | using __hash_code_for_local_iter |
1352 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1353 | _Hash, _RangeHash, _Unused, false>>; |
1354 | |
1355 | // Partial specialization used when hash codes are not cached |
1356 | template<typename _Key, typename _Value, typename _ExtractKey, |
1357 | typename _Hash, typename _RangeHash, typename _Unused> |
1358 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1359 | _Hash, _RangeHash, _Unused, false> |
1360 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1361 | _Unused> |
1362 | , _Node_iterator_base<_Value, false> |
1363 | { |
1364 | protected: |
1365 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1366 | _Hash, _RangeHash, _Unused, false>; |
1367 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
1368 | |
1369 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1370 | |
1371 | _Local_iterator_base(const __hash_code_base& __base, |
1372 | _Hash_node<_Value, false>* __p, |
1373 | std::size_t __bkt, std::size_t __bkt_count) |
1374 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1375 | { _M_init(__base); } |
1376 | |
1377 | ~_Local_iterator_base() |
1378 | { |
1379 | if (_M_bucket_count != size_t(-1)) |
1380 | _M_destroy(); |
1381 | } |
1382 | |
1383 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1384 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
1385 | , _M_bucket_count(__iter._M_bucket_count) |
1386 | { |
1387 | if (_M_bucket_count != size_t(-1)) |
1388 | _M_init(*__iter._M_h()); |
1389 | } |
1390 | |
1391 | _Local_iterator_base& |
1392 | operator=(const _Local_iterator_base& __iter) |
1393 | { |
1394 | if (_M_bucket_count != -1) |
1395 | _M_destroy(); |
1396 | this->_M_cur = __iter._M_cur; |
1397 | _M_bucket = __iter._M_bucket; |
1398 | _M_bucket_count = __iter._M_bucket_count; |
1399 | if (_M_bucket_count != -1) |
1400 | _M_init(*__iter._M_h()); |
1401 | return *this; |
1402 | } |
1403 | |
1404 | void |
1405 | _M_incr() |
1406 | { |
1407 | __node_iter_base::_M_incr(); |
1408 | if (this->_M_cur) |
1409 | { |
1410 | std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
1411 | _M_bucket_count); |
1412 | if (__bkt != _M_bucket) |
1413 | this->_M_cur = nullptr; |
1414 | } |
1415 | } |
1416 | |
1417 | std::size_t _M_bucket; |
1418 | std::size_t _M_bucket_count; |
1419 | |
1420 | void |
1421 | _M_init(const __hash_code_base& __base) |
1422 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1423 | |
1424 | void |
1425 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1426 | |
1427 | public: |
1428 | std::size_t |
1429 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1430 | }; |
1431 | |
1432 | /// local iterators |
1433 | template<typename _Key, typename _Value, typename _ExtractKey, |
1434 | typename _Hash, typename _RangeHash, typename _Unused, |
1435 | bool __constant_iterators, bool __cache> |
1436 | struct _Local_iterator |
1437 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1438 | _Hash, _RangeHash, _Unused, __cache> |
1439 | { |
1440 | private: |
1441 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1442 | _Hash, _RangeHash, _Unused, __cache>; |
1443 | using __hash_code_base = typename __base_type::__hash_code_base; |
1444 | |
1445 | public: |
1446 | typedef _Value value_type; |
1447 | typedef typename std::conditional<__constant_iterators, |
1448 | const value_type*, value_type*>::type |
1449 | pointer; |
1450 | typedef typename std::conditional<__constant_iterators, |
1451 | const value_type&, value_type&>::type |
1452 | reference; |
1453 | typedef std::ptrdiff_t difference_type; |
1454 | typedef std::forward_iterator_tag iterator_category; |
1455 | |
1456 | _Local_iterator() = default; |
1457 | |
1458 | _Local_iterator(const __hash_code_base& __base, |
1459 | _Hash_node<_Value, __cache>* __n, |
1460 | std::size_t __bkt, std::size_t __bkt_count) |
1461 | : __base_type(__base, __n, __bkt, __bkt_count) |
1462 | { } |
1463 | |
1464 | reference |
1465 | operator*() const |
1466 | { return this->_M_cur->_M_v(); } |
1467 | |
1468 | pointer |
1469 | operator->() const |
1470 | { return this->_M_cur->_M_valptr(); } |
1471 | |
1472 | _Local_iterator& |
1473 | operator++() |
1474 | { |
1475 | this->_M_incr(); |
1476 | return *this; |
1477 | } |
1478 | |
1479 | _Local_iterator |
1480 | operator++(int) |
1481 | { |
1482 | _Local_iterator __tmp(*this); |
1483 | this->_M_incr(); |
1484 | return __tmp; |
1485 | } |
1486 | }; |
1487 | |
1488 | /// local const_iterators |
1489 | template<typename _Key, typename _Value, typename _ExtractKey, |
1490 | typename _Hash, typename _RangeHash, typename _Unused, |
1491 | bool __constant_iterators, bool __cache> |
1492 | struct _Local_const_iterator |
1493 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1494 | _Hash, _RangeHash, _Unused, __cache> |
1495 | { |
1496 | private: |
1497 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1498 | _Hash, _RangeHash, _Unused, __cache>; |
1499 | using __hash_code_base = typename __base_type::__hash_code_base; |
1500 | |
1501 | public: |
1502 | typedef _Value value_type; |
1503 | typedef const value_type* pointer; |
1504 | typedef const value_type& reference; |
1505 | typedef std::ptrdiff_t difference_type; |
1506 | typedef std::forward_iterator_tag iterator_category; |
1507 | |
1508 | _Local_const_iterator() = default; |
1509 | |
1510 | _Local_const_iterator(const __hash_code_base& __base, |
1511 | _Hash_node<_Value, __cache>* __n, |
1512 | std::size_t __bkt, std::size_t __bkt_count) |
1513 | : __base_type(__base, __n, __bkt, __bkt_count) |
1514 | { } |
1515 | |
1516 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1517 | _Hash, _RangeHash, _Unused, |
1518 | __constant_iterators, |
1519 | __cache>& __x) |
1520 | : __base_type(__x) |
1521 | { } |
1522 | |
1523 | reference |
1524 | operator*() const |
1525 | { return this->_M_cur->_M_v(); } |
1526 | |
1527 | pointer |
1528 | operator->() const |
1529 | { return this->_M_cur->_M_valptr(); } |
1530 | |
1531 | _Local_const_iterator& |
1532 | operator++() |
1533 | { |
1534 | this->_M_incr(); |
1535 | return *this; |
1536 | } |
1537 | |
1538 | _Local_const_iterator |
1539 | operator++(int) |
1540 | { |
1541 | _Local_const_iterator __tmp(*this); |
1542 | this->_M_incr(); |
1543 | return __tmp; |
1544 | } |
1545 | }; |
1546 | |
1547 | /** |
1548 | * Primary class template _Hashtable_base. |
1549 | * |
1550 | * Helper class adding management of _Equal functor to |
1551 | * _Hash_code_base type. |
1552 | * |
1553 | * Base class templates are: |
1554 | * - __detail::_Hash_code_base |
1555 | * - __detail::_Hashtable_ebo_helper |
1556 | */ |
1557 | template<typename _Key, typename _Value, typename _ExtractKey, |
1558 | typename _Equal, typename _Hash, typename _RangeHash, |
1559 | typename _Unused, typename _Traits> |
1560 | struct _Hashtable_base |
1561 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1562 | _Unused, _Traits::__hash_cached::value>, |
1563 | private _Hashtable_ebo_helper<0, _Equal> |
1564 | { |
1565 | public: |
1566 | typedef _Key key_type; |
1567 | typedef _Value value_type; |
1568 | typedef _Equal key_equal; |
1569 | typedef std::size_t size_type; |
1570 | typedef std::ptrdiff_t difference_type; |
1571 | |
1572 | using __traits_type = _Traits; |
1573 | using __hash_cached = typename __traits_type::__hash_cached; |
1574 | |
1575 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1576 | _Hash, _RangeHash, _Unused, |
1577 | __hash_cached::value>; |
1578 | |
1579 | using __hash_code = typename __hash_code_base::__hash_code; |
1580 | |
1581 | private: |
1582 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1583 | |
1584 | static bool |
1585 | _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
1586 | { return true; } |
1587 | |
1588 | static bool |
1589 | _S_node_equals(const _Hash_node_code_cache<false>&, |
1590 | const _Hash_node_code_cache<false>&) |
1591 | { return true; } |
1592 | |
1593 | static bool |
1594 | _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
1595 | { return __c == __n._M_hash_code; } |
1596 | |
1597 | static bool |
1598 | _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
1599 | const _Hash_node_code_cache<true>& __rhn) |
1600 | { return __lhn._M_hash_code == __rhn._M_hash_code; } |
1601 | |
1602 | protected: |
1603 | _Hashtable_base() = default; |
1604 | |
1605 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
1606 | : __hash_code_base(__hash), _EqualEBO(__eq) |
1607 | { } |
1608 | |
1609 | bool |
1610 | _M_equals(const _Key& __k, __hash_code __c, |
1611 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
1612 | { |
1613 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
1614 | "key equality predicate must be invocable with two arguments of " |
1615 | "key type" ); |
1616 | return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1617 | } |
1618 | |
1619 | template<typename _Kt> |
1620 | bool |
1621 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
1622 | const _Hash_node_value<_Value, |
1623 | __hash_cached::value>& __n) const |
1624 | { |
1625 | static_assert( |
1626 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
1627 | "key equality predicate must be invocable with two arguments of " |
1628 | "key type" ); |
1629 | return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1630 | } |
1631 | |
1632 | bool |
1633 | _M_node_equals( |
1634 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
1635 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
1636 | { |
1637 | return _S_node_equals(__lhn, __rhn) |
1638 | && _M_eq()(_ExtractKey{}(__lhn._M_v()), _ExtractKey{}(__rhn._M_v())); |
1639 | } |
1640 | |
1641 | void |
1642 | _M_swap(_Hashtable_base& __x) |
1643 | { |
1644 | __hash_code_base::_M_swap(__x); |
1645 | std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
1646 | } |
1647 | |
1648 | const _Equal& |
1649 | _M_eq() const { return _EqualEBO::_M_cget(); } |
1650 | }; |
1651 | |
1652 | /** |
1653 | * Primary class template _Equality. |
1654 | * |
1655 | * This is for implementing equality comparison for unordered |
1656 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1657 | * Algorithmically, we follow closely the reference implementations |
1658 | * therein. |
1659 | */ |
1660 | template<typename _Key, typename _Value, typename _Alloc, |
1661 | typename _ExtractKey, typename _Equal, |
1662 | typename _Hash, typename _RangeHash, typename _Unused, |
1663 | typename _RehashPolicy, typename _Traits, |
1664 | bool _Unique_keys = _Traits::__unique_keys::value> |
1665 | struct _Equality; |
1666 | |
1667 | /// unordered_map and unordered_set specializations. |
1668 | template<typename _Key, typename _Value, typename _Alloc, |
1669 | typename _ExtractKey, typename _Equal, |
1670 | typename _Hash, typename _RangeHash, typename _Unused, |
1671 | typename _RehashPolicy, typename _Traits> |
1672 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1673 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
1674 | { |
1675 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1676 | _Hash, _RangeHash, _Unused, |
1677 | _RehashPolicy, _Traits>; |
1678 | |
1679 | bool |
1680 | _M_equal(const __hashtable&) const; |
1681 | }; |
1682 | |
1683 | template<typename _Key, typename _Value, typename _Alloc, |
1684 | typename _ExtractKey, typename _Equal, |
1685 | typename _Hash, typename _RangeHash, typename _Unused, |
1686 | typename _RehashPolicy, typename _Traits> |
1687 | bool |
1688 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1689 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
1690 | _M_equal(const __hashtable& __other) const |
1691 | { |
1692 | using __node_type = typename __hashtable::__node_type; |
1693 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1694 | if (__this->size() != __other.size()) |
1695 | return false; |
1696 | |
1697 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
1698 | { |
1699 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1700 | auto __prev_n = __other._M_buckets[__ybkt]; |
1701 | if (!__prev_n) |
1702 | return false; |
1703 | |
1704 | for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; |
1705 | __n = __n->_M_next()) |
1706 | { |
1707 | if (__n->_M_v() == *__itx) |
1708 | break; |
1709 | |
1710 | if (!__n->_M_nxt |
1711 | || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
1712 | return false; |
1713 | } |
1714 | } |
1715 | |
1716 | return true; |
1717 | } |
1718 | |
1719 | /// unordered_multiset and unordered_multimap specializations. |
1720 | template<typename _Key, typename _Value, typename _Alloc, |
1721 | typename _ExtractKey, typename _Equal, |
1722 | typename _Hash, typename _RangeHash, typename _Unused, |
1723 | typename _RehashPolicy, typename _Traits> |
1724 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1725 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1726 | { |
1727 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1728 | _Hash, _RangeHash, _Unused, |
1729 | _RehashPolicy, _Traits>; |
1730 | |
1731 | bool |
1732 | _M_equal(const __hashtable&) const; |
1733 | }; |
1734 | |
1735 | template<typename _Key, typename _Value, typename _Alloc, |
1736 | typename _ExtractKey, typename _Equal, |
1737 | typename _Hash, typename _RangeHash, typename _Unused, |
1738 | typename _RehashPolicy, typename _Traits> |
1739 | bool |
1740 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1741 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
1742 | _M_equal(const __hashtable& __other) const |
1743 | { |
1744 | using __node_type = typename __hashtable::__node_type; |
1745 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1746 | if (__this->size() != __other.size()) |
1747 | return false; |
1748 | |
1749 | for (auto __itx = __this->begin(); __itx != __this->end();) |
1750 | { |
1751 | std::size_t __x_count = 1; |
1752 | auto __itx_end = __itx; |
1753 | for (++__itx_end; __itx_end != __this->end() |
1754 | && __this->key_eq()(_ExtractKey{}(*__itx), |
1755 | _ExtractKey{}(*__itx_end)); |
1756 | ++__itx_end) |
1757 | ++__x_count; |
1758 | |
1759 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1760 | auto __y_prev_n = __other._M_buckets[__ybkt]; |
1761 | if (!__y_prev_n) |
1762 | return false; |
1763 | |
1764 | __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); |
1765 | for (;;) |
1766 | { |
1767 | if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
1768 | _ExtractKey{}(*__itx))) |
1769 | break; |
1770 | |
1771 | auto __y_ref_n = __y_n; |
1772 | for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
1773 | if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
1774 | break; |
1775 | |
1776 | if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
1777 | return false; |
1778 | } |
1779 | |
1780 | typename __hashtable::const_iterator __ity(__y_n); |
1781 | for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) |
1782 | if (--__x_count == 0) |
1783 | break; |
1784 | |
1785 | if (__x_count != 0) |
1786 | return false; |
1787 | |
1788 | if (!std::is_permutation(__itx, __itx_end, __ity)) |
1789 | return false; |
1790 | |
1791 | __itx = __itx_end; |
1792 | } |
1793 | return true; |
1794 | } |
1795 | |
1796 | /** |
1797 | * This type deals with all allocation and keeps an allocator instance |
1798 | * through inheritance to benefit from EBO when possible. |
1799 | */ |
1800 | template<typename _NodeAlloc> |
1801 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
1802 | { |
1803 | private: |
1804 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
1805 | public: |
1806 | using __node_type = typename _NodeAlloc::value_type; |
1807 | using __node_alloc_type = _NodeAlloc; |
1808 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
1809 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
1810 | |
1811 | using __value_alloc_traits = typename __node_alloc_traits::template |
1812 | rebind_traits<typename __node_type::value_type>; |
1813 | |
1814 | using __node_ptr = __node_type*; |
1815 | using __node_base = _Hash_node_base; |
1816 | using __node_base_ptr = __node_base*; |
1817 | using __buckets_alloc_type = |
1818 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
1819 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
1820 | using __buckets_ptr = __node_base_ptr*; |
1821 | |
1822 | _Hashtable_alloc() = default; |
1823 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
1824 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
1825 | |
1826 | template<typename _Alloc> |
1827 | _Hashtable_alloc(_Alloc&& __a) |
1828 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
1829 | { } |
1830 | |
1831 | __node_alloc_type& |
1832 | _M_node_allocator() |
1833 | { return __ebo_node_alloc::_M_get(); } |
1834 | |
1835 | const __node_alloc_type& |
1836 | _M_node_allocator() const |
1837 | { return __ebo_node_alloc::_M_cget(); } |
1838 | |
1839 | // Allocate a node and construct an element within it. |
1840 | template<typename... _Args> |
1841 | __node_ptr |
1842 | _M_allocate_node(_Args&&... __args); |
1843 | |
1844 | // Destroy the element within a node and deallocate the node. |
1845 | void |
1846 | _M_deallocate_node(__node_ptr __n); |
1847 | |
1848 | // Deallocate a node. |
1849 | void |
1850 | _M_deallocate_node_ptr(__node_ptr __n); |
1851 | |
1852 | // Deallocate the linked list of nodes pointed to by __n. |
1853 | // The elements within the nodes are destroyed. |
1854 | void |
1855 | _M_deallocate_nodes(__node_ptr __n); |
1856 | |
1857 | __buckets_ptr |
1858 | _M_allocate_buckets(std::size_t __bkt_count); |
1859 | |
1860 | void |
1861 | _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
1862 | }; |
1863 | |
1864 | // Definitions of class template _Hashtable_alloc's out-of-line member |
1865 | // functions. |
1866 | template<typename _NodeAlloc> |
1867 | template<typename... _Args> |
1868 | auto |
1869 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
1870 | -> __node_ptr |
1871 | { |
1872 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
1873 | __node_ptr __n = std::__to_address(__nptr); |
1874 | __try |
1875 | { |
1876 | ::new ((void*)__n) __node_type; |
1877 | __node_alloc_traits::construct(_M_node_allocator(), |
1878 | __n->_M_valptr(), |
1879 | std::forward<_Args>(__args)...); |
1880 | return __n; |
1881 | } |
1882 | __catch(...) |
1883 | { |
1884 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
1885 | __throw_exception_again; |
1886 | } |
1887 | } |
1888 | |
1889 | template<typename _NodeAlloc> |
1890 | void |
1891 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
1892 | { |
1893 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
1894 | _M_deallocate_node_ptr(__n); |
1895 | } |
1896 | |
1897 | template<typename _NodeAlloc> |
1898 | void |
1899 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
1900 | { |
1901 | typedef typename __node_alloc_traits::pointer _Ptr; |
1902 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
1903 | __n->~__node_type(); |
1904 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
1905 | } |
1906 | |
1907 | template<typename _NodeAlloc> |
1908 | void |
1909 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
1910 | { |
1911 | while (__n) |
1912 | { |
1913 | __node_ptr __tmp = __n; |
1914 | __n = __n->_M_next(); |
1915 | _M_deallocate_node(__tmp); |
1916 | } |
1917 | } |
1918 | |
1919 | template<typename _NodeAlloc> |
1920 | auto |
1921 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
1922 | -> __buckets_ptr |
1923 | { |
1924 | __buckets_alloc_type __alloc(_M_node_allocator()); |
1925 | |
1926 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
1927 | __buckets_ptr __p = std::__to_address(__ptr); |
1928 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
1929 | return __p; |
1930 | } |
1931 | |
1932 | template<typename _NodeAlloc> |
1933 | void |
1934 | _Hashtable_alloc<_NodeAlloc>:: |
1935 | _M_deallocate_buckets(__buckets_ptr __bkts, |
1936 | std::size_t __bkt_count) |
1937 | { |
1938 | typedef typename __buckets_alloc_traits::pointer _Ptr; |
1939 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
1940 | __buckets_alloc_type __alloc(_M_node_allocator()); |
1941 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
1942 | } |
1943 | |
1944 | ///@} hashtable-detail |
1945 | } // namespace __detail |
1946 | _GLIBCXX_END_NAMESPACE_VERSION |
1947 | } // namespace std |
1948 | |
1949 | #endif // _HASHTABLE_POLICY_H |
1950 | |