| 1 | /* |
| 2 | * run.h |
| 3 | * |
| 4 | */ |
| 5 | |
| 6 | #ifndef INCLUDE_CONTAINERS_RUN_H_ |
| 7 | #define INCLUDE_CONTAINERS_RUN_H_ |
| 8 | |
| 9 | #include <assert.h> |
| 10 | #include <stdbool.h> |
| 11 | #include <stdint.h> |
| 12 | #include <string.h> |
| 13 | |
| 14 | #include <roaring/containers/perfparameters.h> |
| 15 | #include <roaring/portability.h> |
| 16 | #include <roaring/roaring_types.h> |
| 17 | #include <roaring/array_util.h> |
| 18 | |
| 19 | /* struct rle16_s - run length pair |
| 20 | * |
| 21 | * @value: start position of the run |
| 22 | * @length: length of the run is `length + 1` |
| 23 | * |
| 24 | * An RLE pair {v, l} would represent the integers between the interval |
| 25 | * [v, v+l+1], e.g. {3, 2} = [3, 4, 5]. |
| 26 | */ |
| 27 | struct rle16_s { |
| 28 | uint16_t value; |
| 29 | uint16_t length; |
| 30 | }; |
| 31 | |
| 32 | typedef struct rle16_s rle16_t; |
| 33 | |
| 34 | /* struct run_container_s - run container bitmap |
| 35 | * |
| 36 | * @n_runs: number of rle_t pairs in `runs`. |
| 37 | * @capacity: capacity in rle_t pairs `runs` can hold. |
| 38 | * @runs: pairs of rle_t. |
| 39 | * |
| 40 | */ |
| 41 | struct run_container_s { |
| 42 | int32_t n_runs; |
| 43 | int32_t capacity; |
| 44 | rle16_t *runs; |
| 45 | }; |
| 46 | |
| 47 | typedef struct run_container_s run_container_t; |
| 48 | |
| 49 | /* Create a new run container. Return NULL in case of failure. */ |
| 50 | run_container_t *run_container_create(void); |
| 51 | |
| 52 | /* Create a new run container with given capacity. Return NULL in case of |
| 53 | * failure. */ |
| 54 | run_container_t *run_container_create_given_capacity(int32_t size); |
| 55 | |
| 56 | /* |
| 57 | * Shrink the capacity to the actual size, return the number of bytes saved. |
| 58 | */ |
| 59 | int run_container_shrink_to_fit(run_container_t *src); |
| 60 | |
| 61 | /* Free memory owned by `run'. */ |
| 62 | void run_container_free(run_container_t *run); |
| 63 | |
| 64 | /* Duplicate container */ |
| 65 | run_container_t *run_container_clone(const run_container_t *src); |
| 66 | |
| 67 | int32_t run_container_serialize(const run_container_t *container, |
| 68 | char *buf) WARN_UNUSED; |
| 69 | |
| 70 | uint32_t run_container_serialization_len(const run_container_t *container); |
| 71 | |
| 72 | void *run_container_deserialize(const char *buf, size_t buf_len); |
| 73 | |
| 74 | /* |
| 75 | * Effectively deletes the value at index index, repacking data. |
| 76 | */ |
| 77 | static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) { |
| 78 | memmove(run->runs + index, run->runs + (1 + index), |
| 79 | (run->n_runs - index - 1) * sizeof(rle16_t)); |
| 80 | run->n_runs--; |
| 81 | } |
| 82 | |
| 83 | /** |
| 84 | * Good old binary search through rle data |
| 85 | */ |
| 86 | inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray, |
| 87 | uint16_t ikey) { |
| 88 | int32_t low = 0; |
| 89 | int32_t high = lenarray - 1; |
| 90 | while (low <= high) { |
| 91 | int32_t middleIndex = (low + high) >> 1; |
| 92 | uint16_t middleValue = array[middleIndex].value; |
| 93 | if (middleValue < ikey) { |
| 94 | low = middleIndex + 1; |
| 95 | } else if (middleValue > ikey) { |
| 96 | high = middleIndex - 1; |
| 97 | } else { |
| 98 | return middleIndex; |
| 99 | } |
| 100 | } |
| 101 | return -(low + 1); |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Returns index of the run which contains $ikey |
| 106 | */ |
| 107 | static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray, |
| 108 | uint16_t ikey) { |
| 109 | int32_t low = 0; |
| 110 | int32_t high = lenarray - 1; |
| 111 | while (low <= high) { |
| 112 | int32_t middleIndex = (low + high) >> 1; |
| 113 | uint16_t min = array[middleIndex].value; |
| 114 | uint16_t max = array[middleIndex].value + array[middleIndex].length; |
| 115 | if (ikey > max) { |
| 116 | low = middleIndex + 1; |
| 117 | } else if (ikey < min) { |
| 118 | high = middleIndex - 1; |
| 119 | } else { |
| 120 | return middleIndex; |
| 121 | } |
| 122 | } |
| 123 | return -(low + 1); |
| 124 | } |
| 125 | |
| 126 | |
| 127 | /** |
| 128 | * Returns number of runs which can'be be merged with the key because they |
| 129 | * are less than the key. |
| 130 | * Note that [5,6,7,8] can be merged with the key 9 and won't be counted. |
| 131 | */ |
| 132 | static inline int32_t rle16_count_less(const rle16_t* array, int32_t lenarray, |
| 133 | uint16_t key) { |
| 134 | if (lenarray == 0) return 0; |
| 135 | int32_t low = 0; |
| 136 | int32_t high = lenarray - 1; |
| 137 | while (low <= high) { |
| 138 | int32_t middleIndex = (low + high) >> 1; |
| 139 | uint16_t min_value = array[middleIndex].value; |
| 140 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
| 141 | if (max_value + UINT32_C(1) < key) { // uint32 arithmetic |
| 142 | low = middleIndex + 1; |
| 143 | } else if (key < min_value) { |
| 144 | high = middleIndex - 1; |
| 145 | } else { |
| 146 | return middleIndex; |
| 147 | } |
| 148 | } |
| 149 | return low; |
| 150 | } |
| 151 | |
| 152 | static inline int32_t rle16_count_greater(const rle16_t* array, int32_t lenarray, |
| 153 | uint16_t key) { |
| 154 | if (lenarray == 0) return 0; |
| 155 | int32_t low = 0; |
| 156 | int32_t high = lenarray - 1; |
| 157 | while (low <= high) { |
| 158 | int32_t middleIndex = (low + high) >> 1; |
| 159 | uint16_t min_value = array[middleIndex].value; |
| 160 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
| 161 | if (max_value < key) { |
| 162 | low = middleIndex + 1; |
| 163 | } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic |
| 164 | high = middleIndex - 1; |
| 165 | } else { |
| 166 | return lenarray - (middleIndex + 1); |
| 167 | } |
| 168 | } |
| 169 | return lenarray - low; |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * increase capacity to at least min. Whether the |
| 174 | * existing data needs to be copied over depends on copy. If "copy" is false, |
| 175 | * then the new content will be uninitialized, otherwise a copy is made. |
| 176 | */ |
| 177 | void run_container_grow(run_container_t *run, int32_t min, bool copy); |
| 178 | |
| 179 | /** |
| 180 | * Moves the data so that we can write data at index |
| 181 | */ |
| 182 | static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) { |
| 183 | /* This function calls realloc + memmove sequentially to move by one index. |
| 184 | * Potentially copying twice the array. |
| 185 | */ |
| 186 | if (run->n_runs + 1 > run->capacity) |
| 187 | run_container_grow(run, run->n_runs + 1, true); |
| 188 | memmove(run->runs + 1 + index, run->runs + index, |
| 189 | (run->n_runs - index) * sizeof(rle16_t)); |
| 190 | run->n_runs++; |
| 191 | } |
| 192 | |
| 193 | /* Add `pos' to `run'. Returns true if `pos' was not present. */ |
| 194 | bool run_container_add(run_container_t *run, uint16_t pos); |
| 195 | |
| 196 | /* Remove `pos' from `run'. Returns true if `pos' was present. */ |
| 197 | static inline bool run_container_remove(run_container_t *run, uint16_t pos) { |
| 198 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
| 199 | if (index >= 0) { |
| 200 | int32_t le = run->runs[index].length; |
| 201 | if (le == 0) { |
| 202 | recoverRoomAtIndex(run, (uint16_t)index); |
| 203 | } else { |
| 204 | run->runs[index].value++; |
| 205 | run->runs[index].length--; |
| 206 | } |
| 207 | return true; |
| 208 | } |
| 209 | index = -index - 2; // points to preceding value, possibly -1 |
| 210 | if (index >= 0) { // possible match |
| 211 | int32_t offset = pos - run->runs[index].value; |
| 212 | int32_t le = run->runs[index].length; |
| 213 | if (offset < le) { |
| 214 | // need to break in two |
| 215 | run->runs[index].length = (uint16_t)(offset - 1); |
| 216 | // need to insert |
| 217 | uint16_t newvalue = pos + 1; |
| 218 | int32_t newlength = le - offset - 1; |
| 219 | makeRoomAtIndex(run, (uint16_t)(index + 1)); |
| 220 | run->runs[index + 1].value = newvalue; |
| 221 | run->runs[index + 1].length = (uint16_t)newlength; |
| 222 | return true; |
| 223 | |
| 224 | } else if (offset == le) { |
| 225 | run->runs[index].length--; |
| 226 | return true; |
| 227 | } |
| 228 | } |
| 229 | // no match |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | /* Check whether `pos' is present in `run'. */ |
| 234 | inline bool run_container_contains(const run_container_t *run, uint16_t pos) { |
| 235 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
| 236 | if (index >= 0) return true; |
| 237 | index = -index - 2; // points to preceding value, possibly -1 |
| 238 | if (index != -1) { // possible match |
| 239 | int32_t offset = pos - run->runs[index].value; |
| 240 | int32_t le = run->runs[index].length; |
| 241 | if (offset <= le) return true; |
| 242 | } |
| 243 | return false; |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Check whether all positions in a range of positions from pos_start (included) |
| 248 | * to pos_end (excluded) is present in `run'. |
| 249 | */ |
| 250 | static inline bool run_container_contains_range(const run_container_t *run, |
| 251 | uint32_t pos_start, uint32_t pos_end) { |
| 252 | uint32_t count = 0; |
| 253 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos_start); |
| 254 | if (index < 0) { |
| 255 | index = -index - 2; |
| 256 | if ((index == -1) || ((pos_start - run->runs[index].value) > run->runs[index].length)){ |
| 257 | return false; |
| 258 | } |
| 259 | } |
| 260 | for (int32_t i = index; i < run->n_runs; ++i) { |
| 261 | const uint32_t stop = run->runs[i].value + run->runs[i].length; |
| 262 | if (run->runs[i].value >= pos_end) break; |
| 263 | if (stop >= pos_end) { |
| 264 | count += (((pos_end - run->runs[i].value) > 0) ? (pos_end - run->runs[i].value) : 0); |
| 265 | break; |
| 266 | } |
| 267 | const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0; |
| 268 | count += (min < run->runs[i].length) ? min : run->runs[i].length; |
| 269 | } |
| 270 | return count >= (pos_end - pos_start - 1); |
| 271 | } |
| 272 | |
| 273 | #ifdef USEAVX |
| 274 | |
| 275 | /* Get the cardinality of `run'. Requires an actual computation. */ |
| 276 | static inline int run_container_cardinality(const run_container_t *run) { |
| 277 | const int32_t n_runs = run->n_runs; |
| 278 | const rle16_t *runs = run->runs; |
| 279 | |
| 280 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
| 281 | int sum = n_runs; |
| 282 | int32_t k = 0; |
| 283 | const int32_t step = sizeof(__m256i) / sizeof(rle16_t); |
| 284 | if (n_runs > step) { |
| 285 | __m256i total = _mm256_setzero_si256(); |
| 286 | for (; k + step <= n_runs; k += step) { |
| 287 | __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k)); |
| 288 | __m256i justlengths = _mm256_srli_epi32(ymm1, 16); |
| 289 | total = _mm256_add_epi32(total, justlengths); |
| 290 | } |
| 291 | // a store might be faster than extract? |
| 292 | uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; |
| 293 | _mm256_storeu_si256((__m256i *)buffer, total); |
| 294 | sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + |
| 295 | (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); |
| 296 | } |
| 297 | for (; k < n_runs; ++k) { |
| 298 | sum += runs[k].length; |
| 299 | } |
| 300 | |
| 301 | return sum; |
| 302 | } |
| 303 | |
| 304 | #else |
| 305 | |
| 306 | /* Get the cardinality of `run'. Requires an actual computation. */ |
| 307 | static inline int run_container_cardinality(const run_container_t *run) { |
| 308 | const int32_t n_runs = run->n_runs; |
| 309 | const rle16_t *runs = run->runs; |
| 310 | |
| 311 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
| 312 | int sum = n_runs; |
| 313 | for (int k = 0; k < n_runs; ++k) { |
| 314 | sum += runs[k].length; |
| 315 | } |
| 316 | |
| 317 | return sum; |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | /* Card > 0?, see run_container_empty for the reverse */ |
| 322 | static inline bool run_container_nonzero_cardinality( |
| 323 | const run_container_t *run) { |
| 324 | return run->n_runs > 0; // runs never empty |
| 325 | } |
| 326 | |
| 327 | /* Card == 0?, see run_container_nonzero_cardinality for the reverse */ |
| 328 | static inline bool run_container_empty( |
| 329 | const run_container_t *run) { |
| 330 | return run->n_runs == 0; // runs never empty |
| 331 | } |
| 332 | |
| 333 | |
| 334 | |
| 335 | /* Copy one container into another. We assume that they are distinct. */ |
| 336 | void run_container_copy(const run_container_t *src, run_container_t *dst); |
| 337 | |
| 338 | /* Set the cardinality to zero (does not release memory). */ |
| 339 | static inline void run_container_clear(run_container_t *run) { |
| 340 | run->n_runs = 0; |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * Append run described by vl to the run container, possibly merging. |
| 345 | * It is assumed that the run would be inserted at the end of the container, no |
| 346 | * check is made. |
| 347 | * It is assumed that the run container has the necessary capacity: caller is |
| 348 | * responsible for checking memory capacity. |
| 349 | * |
| 350 | * |
| 351 | * This is not a safe function, it is meant for performance: use with care. |
| 352 | */ |
| 353 | static inline void run_container_append(run_container_t *run, rle16_t vl, |
| 354 | rle16_t *previousrl) { |
| 355 | const uint32_t previousend = previousrl->value + previousrl->length; |
| 356 | if (vl.value > previousend + 1) { // we add a new one |
| 357 | run->runs[run->n_runs] = vl; |
| 358 | run->n_runs++; |
| 359 | *previousrl = vl; |
| 360 | } else { |
| 361 | uint32_t newend = vl.value + vl.length + UINT32_C(1); |
| 362 | if (newend > previousend) { // we merge |
| 363 | previousrl->length = (uint16_t)(newend - 1 - previousrl->value); |
| 364 | run->runs[run->n_runs - 1] = *previousrl; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | /** |
| 370 | * Like run_container_append but it is assumed that the content of run is empty. |
| 371 | */ |
| 372 | static inline rle16_t run_container_append_first(run_container_t *run, |
| 373 | rle16_t vl) { |
| 374 | run->runs[run->n_runs] = vl; |
| 375 | run->n_runs++; |
| 376 | return vl; |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * append a single value given by val to the run container, possibly merging. |
| 381 | * It is assumed that the value would be inserted at the end of the container, |
| 382 | * no check is made. |
| 383 | * It is assumed that the run container has the necessary capacity: caller is |
| 384 | * responsible for checking memory capacity. |
| 385 | * |
| 386 | * This is not a safe function, it is meant for performance: use with care. |
| 387 | */ |
| 388 | static inline void run_container_append_value(run_container_t *run, |
| 389 | uint16_t val, |
| 390 | rle16_t *previousrl) { |
| 391 | const uint32_t previousend = previousrl->value + previousrl->length; |
| 392 | if (val > previousend + 1) { // we add a new one |
| 393 | //*previousrl = (rle16_t){.value = val, .length = 0};// requires C99 |
| 394 | previousrl->value = val; |
| 395 | previousrl->length = 0; |
| 396 | |
| 397 | run->runs[run->n_runs] = *previousrl; |
| 398 | run->n_runs++; |
| 399 | } else if (val == previousend + 1) { // we merge |
| 400 | previousrl->length++; |
| 401 | run->runs[run->n_runs - 1] = *previousrl; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | /** |
| 406 | * Like run_container_append_value but it is assumed that the content of run is |
| 407 | * empty. |
| 408 | */ |
| 409 | static inline rle16_t run_container_append_value_first(run_container_t *run, |
| 410 | uint16_t val) { |
| 411 | // rle16_t newrle = (rle16_t){.value = val, .length = 0};// requires C99 |
| 412 | rle16_t newrle; |
| 413 | newrle.value = val; |
| 414 | newrle.length = 0; |
| 415 | |
| 416 | run->runs[run->n_runs] = newrle; |
| 417 | run->n_runs++; |
| 418 | return newrle; |
| 419 | } |
| 420 | |
| 421 | /* Check whether the container spans the whole chunk (cardinality = 1<<16). |
| 422 | * This check can be done in constant time (inexpensive). */ |
| 423 | static inline bool run_container_is_full(const run_container_t *run) { |
| 424 | rle16_t vl = run->runs[0]; |
| 425 | return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF); |
| 426 | } |
| 427 | |
| 428 | /* Compute the union of `src_1' and `src_2' and write the result to `dst' |
| 429 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
| 430 | void run_container_union(const run_container_t *src_1, |
| 431 | const run_container_t *src_2, run_container_t *dst); |
| 432 | |
| 433 | /* Compute the union of `src_1' and `src_2' and write the result to `src_1' */ |
| 434 | void run_container_union_inplace(run_container_t *src_1, |
| 435 | const run_container_t *src_2); |
| 436 | |
| 437 | /* Compute the intersection of src_1 and src_2 and write the result to |
| 438 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
| 439 | void run_container_intersection(const run_container_t *src_1, |
| 440 | const run_container_t *src_2, |
| 441 | run_container_t *dst); |
| 442 | |
| 443 | /* Compute the size of the intersection of src_1 and src_2 . */ |
| 444 | int run_container_intersection_cardinality(const run_container_t *src_1, |
| 445 | const run_container_t *src_2); |
| 446 | |
| 447 | /* Check whether src_1 and src_2 intersect. */ |
| 448 | bool run_container_intersect(const run_container_t *src_1, |
| 449 | const run_container_t *src_2); |
| 450 | |
| 451 | /* Compute the symmetric difference of `src_1' and `src_2' and write the result |
| 452 | * to `dst' |
| 453 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
| 454 | void run_container_xor(const run_container_t *src_1, |
| 455 | const run_container_t *src_2, run_container_t *dst); |
| 456 | |
| 457 | /* |
| 458 | * Write out the 16-bit integers contained in this container as a list of 32-bit |
| 459 | * integers using base |
| 460 | * as the starting value (it might be expected that base has zeros in its 16 |
| 461 | * least significant bits). |
| 462 | * The function returns the number of values written. |
| 463 | * The caller is responsible for allocating enough memory in out. |
| 464 | */ |
| 465 | int run_container_to_uint32_array(void *vout, const run_container_t *cont, |
| 466 | uint32_t base); |
| 467 | |
| 468 | /* |
| 469 | * Print this container using printf (useful for debugging). |
| 470 | */ |
| 471 | void run_container_printf(const run_container_t *v); |
| 472 | |
| 473 | /* |
| 474 | * Print this container using printf as a comma-separated list of 32-bit |
| 475 | * integers starting at base. |
| 476 | */ |
| 477 | void run_container_printf_as_uint32_array(const run_container_t *v, |
| 478 | uint32_t base); |
| 479 | |
| 480 | /** |
| 481 | * Return the serialized size in bytes of a container having "num_runs" runs. |
| 482 | */ |
| 483 | static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) { |
| 484 | return sizeof(uint16_t) + |
| 485 | sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries. |
| 486 | } |
| 487 | |
| 488 | bool run_container_iterate(const run_container_t *cont, uint32_t base, |
| 489 | roaring_iterator iterator, void *ptr); |
| 490 | bool run_container_iterate64(const run_container_t *cont, uint32_t base, |
| 491 | roaring_iterator64 iterator, uint64_t high_bits, |
| 492 | void *ptr); |
| 493 | |
| 494 | /** |
| 495 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 496 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 497 | * Roaring. |
| 498 | * The number of bytes written should be run_container_size_in_bytes(container). |
| 499 | */ |
| 500 | int32_t run_container_write(const run_container_t *container, char *buf); |
| 501 | |
| 502 | /** |
| 503 | * Reads the instance from buf, outputs how many bytes were read. |
| 504 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 505 | * Roaring. |
| 506 | * The number of bytes read should be bitset_container_size_in_bytes(container). |
| 507 | * The cardinality parameter is provided for consistency with other containers, |
| 508 | * but |
| 509 | * it might be effectively ignored.. |
| 510 | */ |
| 511 | int32_t run_container_read(int32_t cardinality, run_container_t *container, |
| 512 | const char *buf); |
| 513 | |
| 514 | /** |
| 515 | * Return the serialized size in bytes of a container (see run_container_write). |
| 516 | * This is meant to be compatible with the Java and Go versions of Roaring. |
| 517 | */ |
| 518 | static inline int32_t run_container_size_in_bytes( |
| 519 | const run_container_t *container) { |
| 520 | return run_container_serialized_size_in_bytes(container->n_runs); |
| 521 | } |
| 522 | |
| 523 | /** |
| 524 | * Return true if the two containers have the same content. |
| 525 | */ |
| 526 | static inline bool run_container_equals(const run_container_t *container1, |
| 527 | const run_container_t *container2) { |
| 528 | if (container1->n_runs != container2->n_runs) { |
| 529 | return false; |
| 530 | } |
| 531 | return memequals(container1->runs, container2->runs, |
| 532 | container1->n_runs * sizeof(rle16_t)); |
| 533 | } |
| 534 | |
| 535 | /** |
| 536 | * Return true if container1 is a subset of container2. |
| 537 | */ |
| 538 | bool run_container_is_subset(const run_container_t *container1, |
| 539 | const run_container_t *container2); |
| 540 | |
| 541 | /** |
| 542 | * Used in a start-finish scan that appends segments, for XOR and NOT |
| 543 | */ |
| 544 | |
| 545 | void run_container_smart_append_exclusive(run_container_t *src, |
| 546 | const uint16_t start, |
| 547 | const uint16_t length); |
| 548 | |
| 549 | /** |
| 550 | * The new container consists of a single run [start,stop). |
| 551 | * It is required that stop>start, the caller is responsability for this check. |
| 552 | * It is required that stop <= (1<<16), the caller is responsability for this check. |
| 553 | * The cardinality of the created container is stop - start. |
| 554 | * Returns NULL on failure |
| 555 | */ |
| 556 | static inline run_container_t *run_container_create_range(uint32_t start, |
| 557 | uint32_t stop) { |
| 558 | run_container_t *rc = run_container_create_given_capacity(1); |
| 559 | if (rc) { |
| 560 | rle16_t r; |
| 561 | r.value = (uint16_t)start; |
| 562 | r.length = (uint16_t)(stop - start - 1); |
| 563 | run_container_append_first(rc, r); |
| 564 | } |
| 565 | return rc; |
| 566 | } |
| 567 | |
| 568 | /** |
| 569 | * If the element of given rank is in this container, supposing that the first |
| 570 | * element has rank start_rank, then the function returns true and sets element |
| 571 | * accordingly. |
| 572 | * Otherwise, it returns false and update start_rank. |
| 573 | */ |
| 574 | bool run_container_select(const run_container_t *container, |
| 575 | uint32_t *start_rank, uint32_t rank, |
| 576 | uint32_t *element); |
| 577 | |
| 578 | /* Compute the difference of src_1 and src_2 and write the result to |
| 579 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
| 580 | |
| 581 | void run_container_andnot(const run_container_t *src_1, |
| 582 | const run_container_t *src_2, run_container_t *dst); |
| 583 | |
| 584 | /* Returns the smallest value (assumes not empty) */ |
| 585 | inline uint16_t run_container_minimum(const run_container_t *run) { |
| 586 | if (run->n_runs == 0) return 0; |
| 587 | return run->runs[0].value; |
| 588 | } |
| 589 | |
| 590 | /* Returns the largest value (assumes not empty) */ |
| 591 | inline uint16_t run_container_maximum(const run_container_t *run) { |
| 592 | if (run->n_runs == 0) return 0; |
| 593 | return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length; |
| 594 | } |
| 595 | |
| 596 | /* Returns the number of values equal or smaller than x */ |
| 597 | int run_container_rank(const run_container_t *arr, uint16_t x); |
| 598 | |
| 599 | /* Returns the index of the first run containing a value at least as large as x, or -1 */ |
| 600 | inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x) { |
| 601 | int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x); |
| 602 | if (index >= 0) return index; |
| 603 | index = -index - 2; // points to preceding run, possibly -1 |
| 604 | if (index != -1) { // possible match |
| 605 | int32_t offset = x - arr->runs[index].value; |
| 606 | int32_t le = arr->runs[index].length; |
| 607 | if (offset <= le) return index; |
| 608 | } |
| 609 | index += 1; |
| 610 | if(index < arr->n_runs) { |
| 611 | return index; |
| 612 | } |
| 613 | return -1; |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * Add all values in range [min, max] using hint. |
| 618 | */ |
| 619 | static inline void run_container_add_range_nruns(run_container_t* run, |
| 620 | uint32_t min, uint32_t max, |
| 621 | int32_t nruns_less, |
| 622 | int32_t nruns_greater) { |
| 623 | int32_t nruns_common = run->n_runs - nruns_less - nruns_greater; |
| 624 | if (nruns_common == 0) { |
| 625 | makeRoomAtIndex(run, nruns_less); |
| 626 | run->runs[nruns_less].value = min; |
| 627 | run->runs[nruns_less].length = max - min; |
| 628 | } else { |
| 629 | uint32_t common_min = run->runs[nruns_less].value; |
| 630 | uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value + |
| 631 | run->runs[nruns_less + nruns_common - 1].length; |
| 632 | uint32_t result_min = (common_min < min) ? common_min : min; |
| 633 | uint32_t result_max = (common_max > max) ? common_max : max; |
| 634 | |
| 635 | run->runs[nruns_less].value = result_min; |
| 636 | run->runs[nruns_less].length = result_max - result_min; |
| 637 | |
| 638 | memmove(&(run->runs[nruns_less + 1]), |
| 639 | &(run->runs[run->n_runs - nruns_greater]), |
| 640 | nruns_greater*sizeof(rle16_t)); |
| 641 | run->n_runs = nruns_less + 1 + nruns_greater; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /** |
| 646 | * Add all values in range [min, max] |
| 647 | */ |
| 648 | static inline void run_container_add_range(run_container_t* run, |
| 649 | uint32_t min, uint32_t max) { |
| 650 | int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); |
| 651 | int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); |
| 652 | run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); |
| 653 | } |
| 654 | |
| 655 | /** |
| 656 | * Shifts last $count elements either left (distance < 0) or right (distance > 0) |
| 657 | */ |
| 658 | static inline void run_container_shift_tail(run_container_t* run, |
| 659 | int32_t count, int32_t distance) { |
| 660 | if (distance > 0) { |
| 661 | if (run->capacity < count+distance) { |
| 662 | run_container_grow(run, count+distance, true); |
| 663 | } |
| 664 | } |
| 665 | int32_t srcpos = run->n_runs - count; |
| 666 | int32_t dstpos = srcpos + distance; |
| 667 | memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), sizeof(rle16_t) * count); |
| 668 | run->n_runs += distance; |
| 669 | } |
| 670 | |
| 671 | /** |
| 672 | * Remove all elements in range [min, max] |
| 673 | */ |
| 674 | static inline void run_container_remove_range(run_container_t *run, uint32_t min, uint32_t max) { |
| 675 | int32_t first = rle16_find_run(run->runs, run->n_runs, min); |
| 676 | int32_t last = rle16_find_run(run->runs, run->n_runs, max); |
| 677 | |
| 678 | if (first >= 0 && min > run->runs[first].value && |
| 679 | max < ((uint32_t)run->runs[first].value + (uint32_t)run->runs[first].length)) { |
| 680 | // split this run into two adjacent runs |
| 681 | |
| 682 | // right subinterval |
| 683 | makeRoomAtIndex(run, first+1); |
| 684 | run->runs[first+1].value = max + 1; |
| 685 | run->runs[first+1].length = (run->runs[first].value + run->runs[first].length) - (max + 1); |
| 686 | |
| 687 | // left subinterval |
| 688 | run->runs[first].length = (min - 1) - run->runs[first].value; |
| 689 | |
| 690 | return; |
| 691 | } |
| 692 | |
| 693 | // update left-most partial run |
| 694 | if (first >= 0) { |
| 695 | if (min > run->runs[first].value) { |
| 696 | run->runs[first].length = (min - 1) - run->runs[first].value; |
| 697 | first++; |
| 698 | } |
| 699 | } else { |
| 700 | first = -first-1; |
| 701 | } |
| 702 | |
| 703 | // update right-most run |
| 704 | if (last >= 0) { |
| 705 | uint16_t run_max = run->runs[last].value + run->runs[last].length; |
| 706 | if (run_max > max) { |
| 707 | run->runs[last].value = max + 1; |
| 708 | run->runs[last].length = run_max - (max + 1); |
| 709 | last--; |
| 710 | } |
| 711 | } else { |
| 712 | last = (-last-1) - 1; |
| 713 | } |
| 714 | |
| 715 | // remove intermediate runs |
| 716 | if (first <= last) { |
| 717 | run_container_shift_tail(run, run->n_runs - (last+1), -(last-first+1)); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | |
| 722 | #endif /* INCLUDE_CONTAINERS_RUN_H_ */ |
| 723 | |