1 | /* |
2 | * run.h |
3 | * |
4 | */ |
5 | |
6 | #ifndef INCLUDE_CONTAINERS_RUN_H_ |
7 | #define INCLUDE_CONTAINERS_RUN_H_ |
8 | |
9 | #include <assert.h> |
10 | #include <stdbool.h> |
11 | #include <stdint.h> |
12 | #include <string.h> |
13 | |
14 | #include <roaring/containers/perfparameters.h> |
15 | #include <roaring/portability.h> |
16 | #include <roaring/roaring_types.h> |
17 | #include <roaring/array_util.h> |
18 | |
19 | /* struct rle16_s - run length pair |
20 | * |
21 | * @value: start position of the run |
22 | * @length: length of the run is `length + 1` |
23 | * |
24 | * An RLE pair {v, l} would represent the integers between the interval |
25 | * [v, v+l+1], e.g. {3, 2} = [3, 4, 5]. |
26 | */ |
27 | struct rle16_s { |
28 | uint16_t value; |
29 | uint16_t length; |
30 | }; |
31 | |
32 | typedef struct rle16_s rle16_t; |
33 | |
34 | /* struct run_container_s - run container bitmap |
35 | * |
36 | * @n_runs: number of rle_t pairs in `runs`. |
37 | * @capacity: capacity in rle_t pairs `runs` can hold. |
38 | * @runs: pairs of rle_t. |
39 | * |
40 | */ |
41 | struct run_container_s { |
42 | int32_t n_runs; |
43 | int32_t capacity; |
44 | rle16_t *runs; |
45 | }; |
46 | |
47 | typedef struct run_container_s run_container_t; |
48 | |
49 | /* Create a new run container. Return NULL in case of failure. */ |
50 | run_container_t *run_container_create(void); |
51 | |
52 | /* Create a new run container with given capacity. Return NULL in case of |
53 | * failure. */ |
54 | run_container_t *run_container_create_given_capacity(int32_t size); |
55 | |
56 | /* |
57 | * Shrink the capacity to the actual size, return the number of bytes saved. |
58 | */ |
59 | int run_container_shrink_to_fit(run_container_t *src); |
60 | |
61 | /* Free memory owned by `run'. */ |
62 | void run_container_free(run_container_t *run); |
63 | |
64 | /* Duplicate container */ |
65 | run_container_t *run_container_clone(const run_container_t *src); |
66 | |
67 | int32_t run_container_serialize(const run_container_t *container, |
68 | char *buf) WARN_UNUSED; |
69 | |
70 | uint32_t run_container_serialization_len(const run_container_t *container); |
71 | |
72 | void *run_container_deserialize(const char *buf, size_t buf_len); |
73 | |
74 | /* |
75 | * Effectively deletes the value at index index, repacking data. |
76 | */ |
77 | static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) { |
78 | memmove(run->runs + index, run->runs + (1 + index), |
79 | (run->n_runs - index - 1) * sizeof(rle16_t)); |
80 | run->n_runs--; |
81 | } |
82 | |
83 | /** |
84 | * Good old binary search through rle data |
85 | */ |
86 | inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray, |
87 | uint16_t ikey) { |
88 | int32_t low = 0; |
89 | int32_t high = lenarray - 1; |
90 | while (low <= high) { |
91 | int32_t middleIndex = (low + high) >> 1; |
92 | uint16_t middleValue = array[middleIndex].value; |
93 | if (middleValue < ikey) { |
94 | low = middleIndex + 1; |
95 | } else if (middleValue > ikey) { |
96 | high = middleIndex - 1; |
97 | } else { |
98 | return middleIndex; |
99 | } |
100 | } |
101 | return -(low + 1); |
102 | } |
103 | |
104 | /* |
105 | * Returns index of the run which contains $ikey |
106 | */ |
107 | static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray, |
108 | uint16_t ikey) { |
109 | int32_t low = 0; |
110 | int32_t high = lenarray - 1; |
111 | while (low <= high) { |
112 | int32_t middleIndex = (low + high) >> 1; |
113 | uint16_t min = array[middleIndex].value; |
114 | uint16_t max = array[middleIndex].value + array[middleIndex].length; |
115 | if (ikey > max) { |
116 | low = middleIndex + 1; |
117 | } else if (ikey < min) { |
118 | high = middleIndex - 1; |
119 | } else { |
120 | return middleIndex; |
121 | } |
122 | } |
123 | return -(low + 1); |
124 | } |
125 | |
126 | |
127 | /** |
128 | * Returns number of runs which can'be be merged with the key because they |
129 | * are less than the key. |
130 | * Note that [5,6,7,8] can be merged with the key 9 and won't be counted. |
131 | */ |
132 | static inline int32_t rle16_count_less(const rle16_t* array, int32_t lenarray, |
133 | uint16_t key) { |
134 | if (lenarray == 0) return 0; |
135 | int32_t low = 0; |
136 | int32_t high = lenarray - 1; |
137 | while (low <= high) { |
138 | int32_t middleIndex = (low + high) >> 1; |
139 | uint16_t min_value = array[middleIndex].value; |
140 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
141 | if (max_value + UINT32_C(1) < key) { // uint32 arithmetic |
142 | low = middleIndex + 1; |
143 | } else if (key < min_value) { |
144 | high = middleIndex - 1; |
145 | } else { |
146 | return middleIndex; |
147 | } |
148 | } |
149 | return low; |
150 | } |
151 | |
152 | static inline int32_t rle16_count_greater(const rle16_t* array, int32_t lenarray, |
153 | uint16_t key) { |
154 | if (lenarray == 0) return 0; |
155 | int32_t low = 0; |
156 | int32_t high = lenarray - 1; |
157 | while (low <= high) { |
158 | int32_t middleIndex = (low + high) >> 1; |
159 | uint16_t min_value = array[middleIndex].value; |
160 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
161 | if (max_value < key) { |
162 | low = middleIndex + 1; |
163 | } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic |
164 | high = middleIndex - 1; |
165 | } else { |
166 | return lenarray - (middleIndex + 1); |
167 | } |
168 | } |
169 | return lenarray - low; |
170 | } |
171 | |
172 | /** |
173 | * increase capacity to at least min. Whether the |
174 | * existing data needs to be copied over depends on copy. If "copy" is false, |
175 | * then the new content will be uninitialized, otherwise a copy is made. |
176 | */ |
177 | void run_container_grow(run_container_t *run, int32_t min, bool copy); |
178 | |
179 | /** |
180 | * Moves the data so that we can write data at index |
181 | */ |
182 | static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) { |
183 | /* This function calls realloc + memmove sequentially to move by one index. |
184 | * Potentially copying twice the array. |
185 | */ |
186 | if (run->n_runs + 1 > run->capacity) |
187 | run_container_grow(run, run->n_runs + 1, true); |
188 | memmove(run->runs + 1 + index, run->runs + index, |
189 | (run->n_runs - index) * sizeof(rle16_t)); |
190 | run->n_runs++; |
191 | } |
192 | |
193 | /* Add `pos' to `run'. Returns true if `pos' was not present. */ |
194 | bool run_container_add(run_container_t *run, uint16_t pos); |
195 | |
196 | /* Remove `pos' from `run'. Returns true if `pos' was present. */ |
197 | static inline bool run_container_remove(run_container_t *run, uint16_t pos) { |
198 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
199 | if (index >= 0) { |
200 | int32_t le = run->runs[index].length; |
201 | if (le == 0) { |
202 | recoverRoomAtIndex(run, (uint16_t)index); |
203 | } else { |
204 | run->runs[index].value++; |
205 | run->runs[index].length--; |
206 | } |
207 | return true; |
208 | } |
209 | index = -index - 2; // points to preceding value, possibly -1 |
210 | if (index >= 0) { // possible match |
211 | int32_t offset = pos - run->runs[index].value; |
212 | int32_t le = run->runs[index].length; |
213 | if (offset < le) { |
214 | // need to break in two |
215 | run->runs[index].length = (uint16_t)(offset - 1); |
216 | // need to insert |
217 | uint16_t newvalue = pos + 1; |
218 | int32_t newlength = le - offset - 1; |
219 | makeRoomAtIndex(run, (uint16_t)(index + 1)); |
220 | run->runs[index + 1].value = newvalue; |
221 | run->runs[index + 1].length = (uint16_t)newlength; |
222 | return true; |
223 | |
224 | } else if (offset == le) { |
225 | run->runs[index].length--; |
226 | return true; |
227 | } |
228 | } |
229 | // no match |
230 | return false; |
231 | } |
232 | |
233 | /* Check whether `pos' is present in `run'. */ |
234 | inline bool run_container_contains(const run_container_t *run, uint16_t pos) { |
235 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
236 | if (index >= 0) return true; |
237 | index = -index - 2; // points to preceding value, possibly -1 |
238 | if (index != -1) { // possible match |
239 | int32_t offset = pos - run->runs[index].value; |
240 | int32_t le = run->runs[index].length; |
241 | if (offset <= le) return true; |
242 | } |
243 | return false; |
244 | } |
245 | |
246 | /* |
247 | * Check whether all positions in a range of positions from pos_start (included) |
248 | * to pos_end (excluded) is present in `run'. |
249 | */ |
250 | static inline bool run_container_contains_range(const run_container_t *run, |
251 | uint32_t pos_start, uint32_t pos_end) { |
252 | uint32_t count = 0; |
253 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos_start); |
254 | if (index < 0) { |
255 | index = -index - 2; |
256 | if ((index == -1) || ((pos_start - run->runs[index].value) > run->runs[index].length)){ |
257 | return false; |
258 | } |
259 | } |
260 | for (int32_t i = index; i < run->n_runs; ++i) { |
261 | const uint32_t stop = run->runs[i].value + run->runs[i].length; |
262 | if (run->runs[i].value >= pos_end) break; |
263 | if (stop >= pos_end) { |
264 | count += (((pos_end - run->runs[i].value) > 0) ? (pos_end - run->runs[i].value) : 0); |
265 | break; |
266 | } |
267 | const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0; |
268 | count += (min < run->runs[i].length) ? min : run->runs[i].length; |
269 | } |
270 | return count >= (pos_end - pos_start - 1); |
271 | } |
272 | |
273 | #ifdef USEAVX |
274 | |
275 | /* Get the cardinality of `run'. Requires an actual computation. */ |
276 | static inline int run_container_cardinality(const run_container_t *run) { |
277 | const int32_t n_runs = run->n_runs; |
278 | const rle16_t *runs = run->runs; |
279 | |
280 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
281 | int sum = n_runs; |
282 | int32_t k = 0; |
283 | const int32_t step = sizeof(__m256i) / sizeof(rle16_t); |
284 | if (n_runs > step) { |
285 | __m256i total = _mm256_setzero_si256(); |
286 | for (; k + step <= n_runs; k += step) { |
287 | __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k)); |
288 | __m256i justlengths = _mm256_srli_epi32(ymm1, 16); |
289 | total = _mm256_add_epi32(total, justlengths); |
290 | } |
291 | // a store might be faster than extract? |
292 | uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; |
293 | _mm256_storeu_si256((__m256i *)buffer, total); |
294 | sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + |
295 | (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); |
296 | } |
297 | for (; k < n_runs; ++k) { |
298 | sum += runs[k].length; |
299 | } |
300 | |
301 | return sum; |
302 | } |
303 | |
304 | #else |
305 | |
306 | /* Get the cardinality of `run'. Requires an actual computation. */ |
307 | static inline int run_container_cardinality(const run_container_t *run) { |
308 | const int32_t n_runs = run->n_runs; |
309 | const rle16_t *runs = run->runs; |
310 | |
311 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
312 | int sum = n_runs; |
313 | for (int k = 0; k < n_runs; ++k) { |
314 | sum += runs[k].length; |
315 | } |
316 | |
317 | return sum; |
318 | } |
319 | #endif |
320 | |
321 | /* Card > 0?, see run_container_empty for the reverse */ |
322 | static inline bool run_container_nonzero_cardinality( |
323 | const run_container_t *run) { |
324 | return run->n_runs > 0; // runs never empty |
325 | } |
326 | |
327 | /* Card == 0?, see run_container_nonzero_cardinality for the reverse */ |
328 | static inline bool run_container_empty( |
329 | const run_container_t *run) { |
330 | return run->n_runs == 0; // runs never empty |
331 | } |
332 | |
333 | |
334 | |
335 | /* Copy one container into another. We assume that they are distinct. */ |
336 | void run_container_copy(const run_container_t *src, run_container_t *dst); |
337 | |
338 | /* Set the cardinality to zero (does not release memory). */ |
339 | static inline void run_container_clear(run_container_t *run) { |
340 | run->n_runs = 0; |
341 | } |
342 | |
343 | /** |
344 | * Append run described by vl to the run container, possibly merging. |
345 | * It is assumed that the run would be inserted at the end of the container, no |
346 | * check is made. |
347 | * It is assumed that the run container has the necessary capacity: caller is |
348 | * responsible for checking memory capacity. |
349 | * |
350 | * |
351 | * This is not a safe function, it is meant for performance: use with care. |
352 | */ |
353 | static inline void run_container_append(run_container_t *run, rle16_t vl, |
354 | rle16_t *previousrl) { |
355 | const uint32_t previousend = previousrl->value + previousrl->length; |
356 | if (vl.value > previousend + 1) { // we add a new one |
357 | run->runs[run->n_runs] = vl; |
358 | run->n_runs++; |
359 | *previousrl = vl; |
360 | } else { |
361 | uint32_t newend = vl.value + vl.length + UINT32_C(1); |
362 | if (newend > previousend) { // we merge |
363 | previousrl->length = (uint16_t)(newend - 1 - previousrl->value); |
364 | run->runs[run->n_runs - 1] = *previousrl; |
365 | } |
366 | } |
367 | } |
368 | |
369 | /** |
370 | * Like run_container_append but it is assumed that the content of run is empty. |
371 | */ |
372 | static inline rle16_t run_container_append_first(run_container_t *run, |
373 | rle16_t vl) { |
374 | run->runs[run->n_runs] = vl; |
375 | run->n_runs++; |
376 | return vl; |
377 | } |
378 | |
379 | /** |
380 | * append a single value given by val to the run container, possibly merging. |
381 | * It is assumed that the value would be inserted at the end of the container, |
382 | * no check is made. |
383 | * It is assumed that the run container has the necessary capacity: caller is |
384 | * responsible for checking memory capacity. |
385 | * |
386 | * This is not a safe function, it is meant for performance: use with care. |
387 | */ |
388 | static inline void run_container_append_value(run_container_t *run, |
389 | uint16_t val, |
390 | rle16_t *previousrl) { |
391 | const uint32_t previousend = previousrl->value + previousrl->length; |
392 | if (val > previousend + 1) { // we add a new one |
393 | //*previousrl = (rle16_t){.value = val, .length = 0};// requires C99 |
394 | previousrl->value = val; |
395 | previousrl->length = 0; |
396 | |
397 | run->runs[run->n_runs] = *previousrl; |
398 | run->n_runs++; |
399 | } else if (val == previousend + 1) { // we merge |
400 | previousrl->length++; |
401 | run->runs[run->n_runs - 1] = *previousrl; |
402 | } |
403 | } |
404 | |
405 | /** |
406 | * Like run_container_append_value but it is assumed that the content of run is |
407 | * empty. |
408 | */ |
409 | static inline rle16_t run_container_append_value_first(run_container_t *run, |
410 | uint16_t val) { |
411 | // rle16_t newrle = (rle16_t){.value = val, .length = 0};// requires C99 |
412 | rle16_t newrle; |
413 | newrle.value = val; |
414 | newrle.length = 0; |
415 | |
416 | run->runs[run->n_runs] = newrle; |
417 | run->n_runs++; |
418 | return newrle; |
419 | } |
420 | |
421 | /* Check whether the container spans the whole chunk (cardinality = 1<<16). |
422 | * This check can be done in constant time (inexpensive). */ |
423 | static inline bool run_container_is_full(const run_container_t *run) { |
424 | rle16_t vl = run->runs[0]; |
425 | return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF); |
426 | } |
427 | |
428 | /* Compute the union of `src_1' and `src_2' and write the result to `dst' |
429 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
430 | void run_container_union(const run_container_t *src_1, |
431 | const run_container_t *src_2, run_container_t *dst); |
432 | |
433 | /* Compute the union of `src_1' and `src_2' and write the result to `src_1' */ |
434 | void run_container_union_inplace(run_container_t *src_1, |
435 | const run_container_t *src_2); |
436 | |
437 | /* Compute the intersection of src_1 and src_2 and write the result to |
438 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
439 | void run_container_intersection(const run_container_t *src_1, |
440 | const run_container_t *src_2, |
441 | run_container_t *dst); |
442 | |
443 | /* Compute the size of the intersection of src_1 and src_2 . */ |
444 | int run_container_intersection_cardinality(const run_container_t *src_1, |
445 | const run_container_t *src_2); |
446 | |
447 | /* Check whether src_1 and src_2 intersect. */ |
448 | bool run_container_intersect(const run_container_t *src_1, |
449 | const run_container_t *src_2); |
450 | |
451 | /* Compute the symmetric difference of `src_1' and `src_2' and write the result |
452 | * to `dst' |
453 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
454 | void run_container_xor(const run_container_t *src_1, |
455 | const run_container_t *src_2, run_container_t *dst); |
456 | |
457 | /* |
458 | * Write out the 16-bit integers contained in this container as a list of 32-bit |
459 | * integers using base |
460 | * as the starting value (it might be expected that base has zeros in its 16 |
461 | * least significant bits). |
462 | * The function returns the number of values written. |
463 | * The caller is responsible for allocating enough memory in out. |
464 | */ |
465 | int run_container_to_uint32_array(void *vout, const run_container_t *cont, |
466 | uint32_t base); |
467 | |
468 | /* |
469 | * Print this container using printf (useful for debugging). |
470 | */ |
471 | void run_container_printf(const run_container_t *v); |
472 | |
473 | /* |
474 | * Print this container using printf as a comma-separated list of 32-bit |
475 | * integers starting at base. |
476 | */ |
477 | void run_container_printf_as_uint32_array(const run_container_t *v, |
478 | uint32_t base); |
479 | |
480 | /** |
481 | * Return the serialized size in bytes of a container having "num_runs" runs. |
482 | */ |
483 | static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) { |
484 | return sizeof(uint16_t) + |
485 | sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries. |
486 | } |
487 | |
488 | bool run_container_iterate(const run_container_t *cont, uint32_t base, |
489 | roaring_iterator iterator, void *ptr); |
490 | bool run_container_iterate64(const run_container_t *cont, uint32_t base, |
491 | roaring_iterator64 iterator, uint64_t high_bits, |
492 | void *ptr); |
493 | |
494 | /** |
495 | * Writes the underlying array to buf, outputs how many bytes were written. |
496 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
497 | * Roaring. |
498 | * The number of bytes written should be run_container_size_in_bytes(container). |
499 | */ |
500 | int32_t run_container_write(const run_container_t *container, char *buf); |
501 | |
502 | /** |
503 | * Reads the instance from buf, outputs how many bytes were read. |
504 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
505 | * Roaring. |
506 | * The number of bytes read should be bitset_container_size_in_bytes(container). |
507 | * The cardinality parameter is provided for consistency with other containers, |
508 | * but |
509 | * it might be effectively ignored.. |
510 | */ |
511 | int32_t run_container_read(int32_t cardinality, run_container_t *container, |
512 | const char *buf); |
513 | |
514 | /** |
515 | * Return the serialized size in bytes of a container (see run_container_write). |
516 | * This is meant to be compatible with the Java and Go versions of Roaring. |
517 | */ |
518 | static inline int32_t run_container_size_in_bytes( |
519 | const run_container_t *container) { |
520 | return run_container_serialized_size_in_bytes(container->n_runs); |
521 | } |
522 | |
523 | /** |
524 | * Return true if the two containers have the same content. |
525 | */ |
526 | static inline bool run_container_equals(const run_container_t *container1, |
527 | const run_container_t *container2) { |
528 | if (container1->n_runs != container2->n_runs) { |
529 | return false; |
530 | } |
531 | return memequals(container1->runs, container2->runs, |
532 | container1->n_runs * sizeof(rle16_t)); |
533 | } |
534 | |
535 | /** |
536 | * Return true if container1 is a subset of container2. |
537 | */ |
538 | bool run_container_is_subset(const run_container_t *container1, |
539 | const run_container_t *container2); |
540 | |
541 | /** |
542 | * Used in a start-finish scan that appends segments, for XOR and NOT |
543 | */ |
544 | |
545 | void run_container_smart_append_exclusive(run_container_t *src, |
546 | const uint16_t start, |
547 | const uint16_t length); |
548 | |
549 | /** |
550 | * The new container consists of a single run [start,stop). |
551 | * It is required that stop>start, the caller is responsability for this check. |
552 | * It is required that stop <= (1<<16), the caller is responsability for this check. |
553 | * The cardinality of the created container is stop - start. |
554 | * Returns NULL on failure |
555 | */ |
556 | static inline run_container_t *run_container_create_range(uint32_t start, |
557 | uint32_t stop) { |
558 | run_container_t *rc = run_container_create_given_capacity(1); |
559 | if (rc) { |
560 | rle16_t r; |
561 | r.value = (uint16_t)start; |
562 | r.length = (uint16_t)(stop - start - 1); |
563 | run_container_append_first(rc, r); |
564 | } |
565 | return rc; |
566 | } |
567 | |
568 | /** |
569 | * If the element of given rank is in this container, supposing that the first |
570 | * element has rank start_rank, then the function returns true and sets element |
571 | * accordingly. |
572 | * Otherwise, it returns false and update start_rank. |
573 | */ |
574 | bool run_container_select(const run_container_t *container, |
575 | uint32_t *start_rank, uint32_t rank, |
576 | uint32_t *element); |
577 | |
578 | /* Compute the difference of src_1 and src_2 and write the result to |
579 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
580 | |
581 | void run_container_andnot(const run_container_t *src_1, |
582 | const run_container_t *src_2, run_container_t *dst); |
583 | |
584 | /* Returns the smallest value (assumes not empty) */ |
585 | inline uint16_t run_container_minimum(const run_container_t *run) { |
586 | if (run->n_runs == 0) return 0; |
587 | return run->runs[0].value; |
588 | } |
589 | |
590 | /* Returns the largest value (assumes not empty) */ |
591 | inline uint16_t run_container_maximum(const run_container_t *run) { |
592 | if (run->n_runs == 0) return 0; |
593 | return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length; |
594 | } |
595 | |
596 | /* Returns the number of values equal or smaller than x */ |
597 | int run_container_rank(const run_container_t *arr, uint16_t x); |
598 | |
599 | /* Returns the index of the first run containing a value at least as large as x, or -1 */ |
600 | inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x) { |
601 | int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x); |
602 | if (index >= 0) return index; |
603 | index = -index - 2; // points to preceding run, possibly -1 |
604 | if (index != -1) { // possible match |
605 | int32_t offset = x - arr->runs[index].value; |
606 | int32_t le = arr->runs[index].length; |
607 | if (offset <= le) return index; |
608 | } |
609 | index += 1; |
610 | if(index < arr->n_runs) { |
611 | return index; |
612 | } |
613 | return -1; |
614 | } |
615 | |
616 | /* |
617 | * Add all values in range [min, max] using hint. |
618 | */ |
619 | static inline void run_container_add_range_nruns(run_container_t* run, |
620 | uint32_t min, uint32_t max, |
621 | int32_t nruns_less, |
622 | int32_t nruns_greater) { |
623 | int32_t nruns_common = run->n_runs - nruns_less - nruns_greater; |
624 | if (nruns_common == 0) { |
625 | makeRoomAtIndex(run, nruns_less); |
626 | run->runs[nruns_less].value = min; |
627 | run->runs[nruns_less].length = max - min; |
628 | } else { |
629 | uint32_t common_min = run->runs[nruns_less].value; |
630 | uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value + |
631 | run->runs[nruns_less + nruns_common - 1].length; |
632 | uint32_t result_min = (common_min < min) ? common_min : min; |
633 | uint32_t result_max = (common_max > max) ? common_max : max; |
634 | |
635 | run->runs[nruns_less].value = result_min; |
636 | run->runs[nruns_less].length = result_max - result_min; |
637 | |
638 | memmove(&(run->runs[nruns_less + 1]), |
639 | &(run->runs[run->n_runs - nruns_greater]), |
640 | nruns_greater*sizeof(rle16_t)); |
641 | run->n_runs = nruns_less + 1 + nruns_greater; |
642 | } |
643 | } |
644 | |
645 | /** |
646 | * Add all values in range [min, max] |
647 | */ |
648 | static inline void run_container_add_range(run_container_t* run, |
649 | uint32_t min, uint32_t max) { |
650 | int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); |
651 | int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); |
652 | run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); |
653 | } |
654 | |
655 | /** |
656 | * Shifts last $count elements either left (distance < 0) or right (distance > 0) |
657 | */ |
658 | static inline void run_container_shift_tail(run_container_t* run, |
659 | int32_t count, int32_t distance) { |
660 | if (distance > 0) { |
661 | if (run->capacity < count+distance) { |
662 | run_container_grow(run, count+distance, true); |
663 | } |
664 | } |
665 | int32_t srcpos = run->n_runs - count; |
666 | int32_t dstpos = srcpos + distance; |
667 | memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), sizeof(rle16_t) * count); |
668 | run->n_runs += distance; |
669 | } |
670 | |
671 | /** |
672 | * Remove all elements in range [min, max] |
673 | */ |
674 | static inline void run_container_remove_range(run_container_t *run, uint32_t min, uint32_t max) { |
675 | int32_t first = rle16_find_run(run->runs, run->n_runs, min); |
676 | int32_t last = rle16_find_run(run->runs, run->n_runs, max); |
677 | |
678 | if (first >= 0 && min > run->runs[first].value && |
679 | max < ((uint32_t)run->runs[first].value + (uint32_t)run->runs[first].length)) { |
680 | // split this run into two adjacent runs |
681 | |
682 | // right subinterval |
683 | makeRoomAtIndex(run, first+1); |
684 | run->runs[first+1].value = max + 1; |
685 | run->runs[first+1].length = (run->runs[first].value + run->runs[first].length) - (max + 1); |
686 | |
687 | // left subinterval |
688 | run->runs[first].length = (min - 1) - run->runs[first].value; |
689 | |
690 | return; |
691 | } |
692 | |
693 | // update left-most partial run |
694 | if (first >= 0) { |
695 | if (min > run->runs[first].value) { |
696 | run->runs[first].length = (min - 1) - run->runs[first].value; |
697 | first++; |
698 | } |
699 | } else { |
700 | first = -first-1; |
701 | } |
702 | |
703 | // update right-most run |
704 | if (last >= 0) { |
705 | uint16_t run_max = run->runs[last].value + run->runs[last].length; |
706 | if (run_max > max) { |
707 | run->runs[last].value = max + 1; |
708 | run->runs[last].length = run_max - (max + 1); |
709 | last--; |
710 | } |
711 | } else { |
712 | last = (-last-1) - 1; |
713 | } |
714 | |
715 | // remove intermediate runs |
716 | if (first <= last) { |
717 | run_container_shift_tail(run, run->n_runs - (last+1), -(last-first+1)); |
718 | } |
719 | } |
720 | |
721 | |
722 | #endif /* INCLUDE_CONTAINERS_RUN_H_ */ |
723 | |