| 1 | /* |
| 2 | * array.c |
| 3 | * |
| 4 | */ |
| 5 | |
| 6 | #include <assert.h> |
| 7 | #include <roaring/containers/array.h> |
| 8 | #include <stdio.h> |
| 9 | #include <stdlib.h> |
| 10 | |
| 11 | extern inline uint16_t array_container_minimum(const array_container_t *arr); |
| 12 | extern inline uint16_t array_container_maximum(const array_container_t *arr); |
| 13 | extern inline int array_container_index_equalorlarger(const array_container_t *arr, uint16_t x); |
| 14 | |
| 15 | extern inline int array_container_rank(const array_container_t *arr, |
| 16 | uint16_t x); |
| 17 | extern inline bool array_container_contains(const array_container_t *arr, |
| 18 | uint16_t pos); |
| 19 | extern inline int array_container_cardinality(const array_container_t *array); |
| 20 | extern inline bool array_container_nonzero_cardinality(const array_container_t *array); |
| 21 | extern inline void array_container_clear(array_container_t *array); |
| 22 | extern inline int32_t array_container_serialized_size_in_bytes(int32_t card); |
| 23 | extern inline bool array_container_empty(const array_container_t *array); |
| 24 | extern inline bool array_container_full(const array_container_t *array); |
| 25 | |
| 26 | /* Create a new array with capacity size. Return NULL in case of failure. */ |
| 27 | array_container_t *array_container_create_given_capacity(int32_t size) { |
| 28 | array_container_t *container; |
| 29 | |
| 30 | if ((container = (array_container_t *)malloc(sizeof(array_container_t))) == |
| 31 | NULL) { |
| 32 | return NULL; |
| 33 | } |
| 34 | |
| 35 | if( size <= 0 ) { // we don't want to rely on malloc(0) |
| 36 | container->array = NULL; |
| 37 | } else if ((container->array = (uint16_t *)malloc(sizeof(uint16_t) * size)) == |
| 38 | NULL) { |
| 39 | free(container); |
| 40 | return NULL; |
| 41 | } |
| 42 | |
| 43 | container->capacity = size; |
| 44 | container->cardinality = 0; |
| 45 | |
| 46 | return container; |
| 47 | } |
| 48 | |
| 49 | /* Create a new array. Return NULL in case of failure. */ |
| 50 | array_container_t *array_container_create() { |
| 51 | return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE); |
| 52 | } |
| 53 | |
| 54 | /* Create a new array containing all values in [min,max). */ |
| 55 | array_container_t * array_container_create_range(uint32_t min, uint32_t max) { |
| 56 | array_container_t * answer = array_container_create_given_capacity(max - min + 1); |
| 57 | if(answer == NULL) return answer; |
| 58 | answer->cardinality = 0; |
| 59 | for(uint32_t k = min; k < max; k++) { |
| 60 | answer->array[answer->cardinality++] = k; |
| 61 | } |
| 62 | return answer; |
| 63 | } |
| 64 | |
| 65 | /* Duplicate container */ |
| 66 | array_container_t *array_container_clone(const array_container_t *src) { |
| 67 | array_container_t *newcontainer = |
| 68 | array_container_create_given_capacity(src->capacity); |
| 69 | if (newcontainer == NULL) return NULL; |
| 70 | |
| 71 | newcontainer->cardinality = src->cardinality; |
| 72 | |
| 73 | memcpy(newcontainer->array, src->array, |
| 74 | src->cardinality * sizeof(uint16_t)); |
| 75 | |
| 76 | return newcontainer; |
| 77 | } |
| 78 | |
| 79 | int array_container_shrink_to_fit(array_container_t *src) { |
| 80 | if (src->cardinality == src->capacity) return 0; // nothing to do |
| 81 | int savings = src->capacity - src->cardinality; |
| 82 | src->capacity = src->cardinality; |
| 83 | if( src->capacity == 0) { // we do not want to rely on realloc for zero allocs |
| 84 | free(src->array); |
| 85 | src->array = NULL; |
| 86 | } else { |
| 87 | uint16_t *oldarray = src->array; |
| 88 | src->array = |
| 89 | (uint16_t *)realloc(oldarray, src->capacity * sizeof(uint16_t)); |
| 90 | if (src->array == NULL) free(oldarray); // should never happen? |
| 91 | } |
| 92 | return savings; |
| 93 | } |
| 94 | |
| 95 | /* Free memory. */ |
| 96 | void array_container_free(array_container_t *arr) { |
| 97 | if(arr->array != NULL) {// Jon Strabala reports that some tools complain otherwise |
| 98 | free(arr->array); |
| 99 | arr->array = NULL; // pedantic |
| 100 | } |
| 101 | free(arr); |
| 102 | } |
| 103 | |
| 104 | static inline int32_t grow_capacity(int32_t capacity) { |
| 105 | return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE |
| 106 | : capacity < 64 ? capacity * 2 |
| 107 | : capacity < 1024 ? capacity * 3 / 2 |
| 108 | : capacity * 5 / 4; |
| 109 | } |
| 110 | |
| 111 | static inline int32_t clamp(int32_t val, int32_t min, int32_t max) { |
| 112 | return ((val < min) ? min : (val > max) ? max : val); |
| 113 | } |
| 114 | |
| 115 | void array_container_grow(array_container_t *container, int32_t min, |
| 116 | bool preserve) { |
| 117 | |
| 118 | int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536); |
| 119 | int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max); |
| 120 | |
| 121 | container->capacity = new_capacity; |
| 122 | uint16_t *array = container->array; |
| 123 | |
| 124 | if (preserve) { |
| 125 | container->array = |
| 126 | (uint16_t *)realloc(array, new_capacity * sizeof(uint16_t)); |
| 127 | if (container->array == NULL) free(array); |
| 128 | } else { |
| 129 | // Jon Strabala reports that some tools complain otherwise |
| 130 | if (array != NULL) { |
| 131 | free(array); |
| 132 | } |
| 133 | container->array = (uint16_t *)malloc(new_capacity * sizeof(uint16_t)); |
| 134 | } |
| 135 | |
| 136 | // handle the case where realloc fails |
| 137 | if (container->array == NULL) { |
| 138 | fprintf(stderr, "could not allocate memory\n" ); |
| 139 | } |
| 140 | assert(container->array != NULL); |
| 141 | } |
| 142 | |
| 143 | /* Copy one container into another. We assume that they are distinct. */ |
| 144 | void array_container_copy(const array_container_t *src, |
| 145 | array_container_t *dst) { |
| 146 | const int32_t cardinality = src->cardinality; |
| 147 | if (cardinality > dst->capacity) { |
| 148 | array_container_grow(dst, cardinality, false); |
| 149 | } |
| 150 | |
| 151 | dst->cardinality = cardinality; |
| 152 | memcpy(dst->array, src->array, cardinality * sizeof(uint16_t)); |
| 153 | } |
| 154 | |
| 155 | void array_container_add_from_range(array_container_t *arr, uint32_t min, |
| 156 | uint32_t max, uint16_t step) { |
| 157 | for (uint32_t value = min; value < max; value += step) { |
| 158 | array_container_append(arr, value); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /* Computes the union of array1 and array2 and write the result to arrayout. |
| 163 | * It is assumed that arrayout is distinct from both array1 and array2. |
| 164 | */ |
| 165 | void array_container_union(const array_container_t *array_1, |
| 166 | const array_container_t *array_2, |
| 167 | array_container_t *out) { |
| 168 | const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; |
| 169 | const int32_t max_cardinality = card_1 + card_2; |
| 170 | |
| 171 | if (out->capacity < max_cardinality) { |
| 172 | array_container_grow(out, max_cardinality, false); |
| 173 | } |
| 174 | out->cardinality = (int32_t)fast_union_uint16(array_1->array, card_1, |
| 175 | array_2->array, card_2, out->array); |
| 176 | |
| 177 | } |
| 178 | |
| 179 | /* Computes the difference of array1 and array2 and write the result |
| 180 | * to array out. |
| 181 | * Array out does not need to be distinct from array_1 |
| 182 | */ |
| 183 | void array_container_andnot(const array_container_t *array_1, |
| 184 | const array_container_t *array_2, |
| 185 | array_container_t *out) { |
| 186 | if (out->capacity < array_1->cardinality) |
| 187 | array_container_grow(out, array_1->cardinality, false); |
| 188 | #ifdef ROARING_VECTOR_OPERATIONS_ENABLED |
| 189 | if((out != array_1) && (out != array_2)) { |
| 190 | out->cardinality = |
| 191 | difference_vector16(array_1->array, array_1->cardinality, |
| 192 | array_2->array, array_2->cardinality, out->array); |
| 193 | } else { |
| 194 | out->cardinality = |
| 195 | difference_uint16(array_1->array, array_1->cardinality, array_2->array, |
| 196 | array_2->cardinality, out->array); |
| 197 | } |
| 198 | #else |
| 199 | out->cardinality = |
| 200 | difference_uint16(array_1->array, array_1->cardinality, array_2->array, |
| 201 | array_2->cardinality, out->array); |
| 202 | #endif |
| 203 | } |
| 204 | |
| 205 | /* Computes the symmetric difference of array1 and array2 and write the |
| 206 | * result |
| 207 | * to arrayout. |
| 208 | * It is assumed that arrayout is distinct from both array1 and array2. |
| 209 | */ |
| 210 | void array_container_xor(const array_container_t *array_1, |
| 211 | const array_container_t *array_2, |
| 212 | array_container_t *out) { |
| 213 | const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; |
| 214 | const int32_t max_cardinality = card_1 + card_2; |
| 215 | if (out->capacity < max_cardinality) { |
| 216 | array_container_grow(out, max_cardinality, false); |
| 217 | } |
| 218 | |
| 219 | #ifdef ROARING_VECTOR_OPERATIONS_ENABLED |
| 220 | out->cardinality = |
| 221 | xor_vector16(array_1->array, array_1->cardinality, array_2->array, |
| 222 | array_2->cardinality, out->array); |
| 223 | #else |
| 224 | out->cardinality = |
| 225 | xor_uint16(array_1->array, array_1->cardinality, array_2->array, |
| 226 | array_2->cardinality, out->array); |
| 227 | #endif |
| 228 | } |
| 229 | |
| 230 | static inline int32_t minimum_int32(int32_t a, int32_t b) { |
| 231 | return (a < b) ? a : b; |
| 232 | } |
| 233 | |
| 234 | /* computes the intersection of array1 and array2 and write the result to |
| 235 | * arrayout. |
| 236 | * It is assumed that arrayout is distinct from both array1 and array2. |
| 237 | * */ |
| 238 | void array_container_intersection(const array_container_t *array1, |
| 239 | const array_container_t *array2, |
| 240 | array_container_t *out) { |
| 241 | int32_t card_1 = array1->cardinality, card_2 = array2->cardinality, |
| 242 | min_card = minimum_int32(card_1, card_2); |
| 243 | const int threshold = 64; // subject to tuning |
| 244 | #ifdef USEAVX |
| 245 | if (out->capacity < min_card) { |
| 246 | array_container_grow(out, min_card + sizeof(__m128i) / sizeof(uint16_t), |
| 247 | false); |
| 248 | } |
| 249 | #else |
| 250 | if (out->capacity < min_card) { |
| 251 | array_container_grow(out, min_card, false); |
| 252 | } |
| 253 | #endif |
| 254 | |
| 255 | if (card_1 * threshold < card_2) { |
| 256 | out->cardinality = intersect_skewed_uint16( |
| 257 | array1->array, card_1, array2->array, card_2, out->array); |
| 258 | } else if (card_2 * threshold < card_1) { |
| 259 | out->cardinality = intersect_skewed_uint16( |
| 260 | array2->array, card_2, array1->array, card_1, out->array); |
| 261 | } else { |
| 262 | #ifdef USEAVX |
| 263 | out->cardinality = intersect_vector16( |
| 264 | array1->array, card_1, array2->array, card_2, out->array); |
| 265 | #else |
| 266 | out->cardinality = intersect_uint16(array1->array, card_1, |
| 267 | array2->array, card_2, out->array); |
| 268 | #endif |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /* computes the size of the intersection of array1 and array2 |
| 273 | * */ |
| 274 | int array_container_intersection_cardinality(const array_container_t *array1, |
| 275 | const array_container_t *array2) { |
| 276 | int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; |
| 277 | const int threshold = 64; // subject to tuning |
| 278 | if (card_1 * threshold < card_2) { |
| 279 | return intersect_skewed_uint16_cardinality(array1->array, card_1, |
| 280 | array2->array, card_2); |
| 281 | } else if (card_2 * threshold < card_1) { |
| 282 | return intersect_skewed_uint16_cardinality(array2->array, card_2, |
| 283 | array1->array, card_1); |
| 284 | } else { |
| 285 | #ifdef USEAVX |
| 286 | return intersect_vector16_cardinality(array1->array, card_1, |
| 287 | array2->array, card_2); |
| 288 | #else |
| 289 | return intersect_uint16_cardinality(array1->array, card_1, |
| 290 | array2->array, card_2); |
| 291 | #endif |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | bool array_container_intersect(const array_container_t *array1, |
| 296 | const array_container_t *array2) { |
| 297 | int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; |
| 298 | const int threshold = 64; // subject to tuning |
| 299 | if (card_1 * threshold < card_2) { |
| 300 | return intersect_skewed_uint16_nonempty( |
| 301 | array1->array, card_1, array2->array, card_2); |
| 302 | } else if (card_2 * threshold < card_1) { |
| 303 | return intersect_skewed_uint16_nonempty( |
| 304 | array2->array, card_2, array1->array, card_1); |
| 305 | } else { |
| 306 | // we do not bother vectorizing |
| 307 | return intersect_uint16_nonempty(array1->array, card_1, |
| 308 | array2->array, card_2); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /* computes the intersection of array1 and array2 and write the result to |
| 313 | * array1. |
| 314 | * */ |
| 315 | void array_container_intersection_inplace(array_container_t *src_1, |
| 316 | const array_container_t *src_2) { |
| 317 | // todo: can any of this be vectorized? |
| 318 | int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality; |
| 319 | const int threshold = 64; // subject to tuning |
| 320 | if (card_1 * threshold < card_2) { |
| 321 | src_1->cardinality = intersect_skewed_uint16( |
| 322 | src_1->array, card_1, src_2->array, card_2, src_1->array); |
| 323 | } else if (card_2 * threshold < card_1) { |
| 324 | src_1->cardinality = intersect_skewed_uint16( |
| 325 | src_2->array, card_2, src_1->array, card_1, src_1->array); |
| 326 | } else { |
| 327 | src_1->cardinality = intersect_uint16( |
| 328 | src_1->array, card_1, src_2->array, card_2, src_1->array); |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | int array_container_to_uint32_array(void *vout, const array_container_t *cont, |
| 333 | uint32_t base) { |
| 334 | int outpos = 0; |
| 335 | uint32_t *out = (uint32_t *)vout; |
| 336 | for (int i = 0; i < cont->cardinality; ++i) { |
| 337 | const uint32_t val = base + cont->array[i]; |
| 338 | memcpy(out + outpos, &val, |
| 339 | sizeof(uint32_t)); // should be compiled as a MOV on x64 |
| 340 | outpos++; |
| 341 | } |
| 342 | return outpos; |
| 343 | } |
| 344 | |
| 345 | void array_container_printf(const array_container_t *v) { |
| 346 | if (v->cardinality == 0) { |
| 347 | printf("{}" ); |
| 348 | return; |
| 349 | } |
| 350 | printf("{" ); |
| 351 | printf("%d" , v->array[0]); |
| 352 | for (int i = 1; i < v->cardinality; ++i) { |
| 353 | printf(",%d" , v->array[i]); |
| 354 | } |
| 355 | printf("}" ); |
| 356 | } |
| 357 | |
| 358 | void array_container_printf_as_uint32_array(const array_container_t *v, |
| 359 | uint32_t base) { |
| 360 | if (v->cardinality == 0) { |
| 361 | return; |
| 362 | } |
| 363 | printf("%u" , v->array[0] + base); |
| 364 | for (int i = 1; i < v->cardinality; ++i) { |
| 365 | printf(",%u" , v->array[i] + base); |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | /* Compute the number of runs */ |
| 370 | int32_t array_container_number_of_runs(const array_container_t *a) { |
| 371 | // Can SIMD work here? |
| 372 | int32_t nr_runs = 0; |
| 373 | int32_t prev = -2; |
| 374 | for (const uint16_t *p = a->array; p != a->array + a->cardinality; ++p) { |
| 375 | if (*p != prev + 1) nr_runs++; |
| 376 | prev = *p; |
| 377 | } |
| 378 | return nr_runs; |
| 379 | } |
| 380 | |
| 381 | int32_t array_container_serialize(const array_container_t *container, char *buf) { |
| 382 | int32_t l, off; |
| 383 | uint16_t cardinality = (uint16_t)container->cardinality; |
| 384 | |
| 385 | memcpy(buf, &cardinality, off = sizeof(cardinality)); |
| 386 | l = sizeof(uint16_t) * container->cardinality; |
| 387 | if (l) memcpy(&buf[off], container->array, l); |
| 388 | |
| 389 | return (off + l); |
| 390 | } |
| 391 | |
| 392 | /** |
| 393 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 394 | * The number of bytes written should be |
| 395 | * array_container_size_in_bytes(container). |
| 396 | * |
| 397 | */ |
| 398 | int32_t array_container_write(const array_container_t *container, char *buf) { |
| 399 | memcpy(buf, container->array, container->cardinality * sizeof(uint16_t)); |
| 400 | return array_container_size_in_bytes(container); |
| 401 | } |
| 402 | |
| 403 | bool array_container_is_subset(const array_container_t *container1, |
| 404 | const array_container_t *container2) { |
| 405 | if (container1->cardinality > container2->cardinality) { |
| 406 | return false; |
| 407 | } |
| 408 | int i1 = 0, i2 = 0; |
| 409 | while (i1 < container1->cardinality && i2 < container2->cardinality) { |
| 410 | if (container1->array[i1] == container2->array[i2]) { |
| 411 | i1++; |
| 412 | i2++; |
| 413 | } else if (container1->array[i1] > container2->array[i2]) { |
| 414 | i2++; |
| 415 | } else { // container1->array[i1] < container2->array[i2] |
| 416 | return false; |
| 417 | } |
| 418 | } |
| 419 | if (i1 == container1->cardinality) { |
| 420 | return true; |
| 421 | } else { |
| 422 | return false; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | int32_t array_container_read(int32_t cardinality, array_container_t *container, |
| 427 | const char *buf) { |
| 428 | if (container->capacity < cardinality) { |
| 429 | array_container_grow(container, cardinality, false); |
| 430 | } |
| 431 | container->cardinality = cardinality; |
| 432 | memcpy(container->array, buf, container->cardinality * sizeof(uint16_t)); |
| 433 | |
| 434 | return array_container_size_in_bytes(container); |
| 435 | } |
| 436 | |
| 437 | uint32_t array_container_serialization_len(const array_container_t *container) { |
| 438 | return (sizeof(uint16_t) /* container->cardinality converted to 16 bit */ + |
| 439 | (sizeof(uint16_t) * container->cardinality)); |
| 440 | } |
| 441 | |
| 442 | void *array_container_deserialize(const char *buf, size_t buf_len) { |
| 443 | array_container_t *ptr; |
| 444 | |
| 445 | if (buf_len < 2) /* capacity converted to 16 bit */ |
| 446 | return (NULL); |
| 447 | else |
| 448 | buf_len -= 2; |
| 449 | |
| 450 | if ((ptr = (array_container_t *)malloc(sizeof(array_container_t))) != |
| 451 | NULL) { |
| 452 | size_t len; |
| 453 | int32_t off; |
| 454 | uint16_t cardinality; |
| 455 | |
| 456 | memcpy(&cardinality, buf, off = sizeof(cardinality)); |
| 457 | |
| 458 | ptr->capacity = ptr->cardinality = (uint32_t)cardinality; |
| 459 | len = sizeof(uint16_t) * ptr->cardinality; |
| 460 | |
| 461 | if (len != buf_len) { |
| 462 | free(ptr); |
| 463 | return (NULL); |
| 464 | } |
| 465 | |
| 466 | if ((ptr->array = (uint16_t *)malloc(sizeof(uint16_t) * |
| 467 | ptr->capacity)) == NULL) { |
| 468 | free(ptr); |
| 469 | return (NULL); |
| 470 | } |
| 471 | |
| 472 | if (len) memcpy(ptr->array, &buf[off], len); |
| 473 | |
| 474 | /* Check if returned values are monotonically increasing */ |
| 475 | for (int32_t i = 0, j = 0; i < ptr->cardinality; i++) { |
| 476 | if (ptr->array[i] < j) { |
| 477 | free(ptr->array); |
| 478 | free(ptr); |
| 479 | return (NULL); |
| 480 | } else |
| 481 | j = ptr->array[i]; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | return (ptr); |
| 486 | } |
| 487 | |
| 488 | bool array_container_iterate(const array_container_t *cont, uint32_t base, |
| 489 | roaring_iterator iterator, void *ptr) { |
| 490 | for (int i = 0; i < cont->cardinality; i++) |
| 491 | if (!iterator(cont->array[i] + base, ptr)) return false; |
| 492 | return true; |
| 493 | } |
| 494 | |
| 495 | bool array_container_iterate64(const array_container_t *cont, uint32_t base, |
| 496 | roaring_iterator64 iterator, uint64_t high_bits, |
| 497 | void *ptr) { |
| 498 | for (int i = 0; i < cont->cardinality; i++) |
| 499 | if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr)) |
| 500 | return false; |
| 501 | return true; |
| 502 | } |
| 503 | |