1 | |
2 | //////////////////////////////////////////////////////////// |
3 | // Headers |
4 | //////////////////////////////////////////////////////////// |
5 | #define GLAD_VULKAN_IMPLEMENTATION |
6 | #include "vulkan.h" |
7 | |
8 | // Include graphics because we use sf::Image for loading images |
9 | #include <SFML/Graphics.hpp> |
10 | |
11 | #include <SFML/Window.hpp> |
12 | #include <vector> |
13 | #include <limits> |
14 | #include <cstring> |
15 | #include <cmath> |
16 | |
17 | |
18 | //////////////////////////////////////////////////////////// |
19 | // Helper functions |
20 | //////////////////////////////////////////////////////////// |
21 | namespace |
22 | { |
23 | typedef float Vec3[3]; |
24 | typedef float Matrix[4][4]; |
25 | |
26 | // Multiply 2 matrices |
27 | void matrixMultiply(Matrix& result, const Matrix& left, const Matrix& right) |
28 | { |
29 | Matrix temp; |
30 | |
31 | for (int i = 0; i < 4; i++) |
32 | { |
33 | for (int j = 0; j < 4; j++) |
34 | temp[i][j] = left[0][j] * right[i][0] + left[1][j] * right[i][1] + left[2][j] * right[i][2] + left[3][j] * right[i][3]; |
35 | } |
36 | |
37 | std::memcpy(result, temp, sizeof(Matrix)); |
38 | } |
39 | |
40 | // Rotate a matrix around the x-axis |
41 | void matrixRotateX(Matrix& result, float angle) |
42 | { |
43 | Matrix matrix = { |
44 | {1.f, 0.f, 0.f, 0.f}, |
45 | {0.f, std::cos(angle), std::sin(angle), 0.f}, |
46 | {0.f, -std::sin(angle), std::cos(angle), 0.f}, |
47 | {0.f, 0.f, 0.f, 1.f} |
48 | }; |
49 | |
50 | matrixMultiply(result, result, matrix); |
51 | } |
52 | |
53 | // Rotate a matrix around the y-axis |
54 | void matrixRotateY(Matrix& result, float angle) |
55 | { |
56 | Matrix matrix = { |
57 | { std::cos(angle), 0.f, std::sin(angle), 0.f}, |
58 | { 0.f, 1.f, 0.f, 0.f}, |
59 | {-std::sin(angle), 0.f, std::cos(angle), 0.f}, |
60 | { 0.f, 0.f, 0.f, 1.f} |
61 | }; |
62 | |
63 | matrixMultiply(result, result, matrix); |
64 | } |
65 | |
66 | // Rotate a matrix around the z-axis |
67 | void matrixRotateZ(Matrix& result, float angle) |
68 | { |
69 | Matrix matrix = { |
70 | { std::cos(angle), std::sin(angle), 0.f, 0.f}, |
71 | {-std::sin(angle), std::cos(angle), 0.f, 0.f}, |
72 | { 0.f, 0.f, 1.f, 0.f}, |
73 | { 0.f, 0.f, 0.f, 1.f} |
74 | }; |
75 | |
76 | matrixMultiply(result, result, matrix); |
77 | } |
78 | |
79 | // Construct a lookat view matrix |
80 | void matrixLookAt(Matrix& result, const Vec3& eye, const Vec3& center, const Vec3& up) |
81 | { |
82 | // Forward-looking vector |
83 | Vec3 forward = { |
84 | center[0] - eye[0], |
85 | center[1] - eye[1], |
86 | center[2] - eye[2] |
87 | }; |
88 | |
89 | // Normalize |
90 | float factor = 1.0f / std::sqrt(forward[0] * forward[0] + forward[1] * forward[1] + forward[2] * forward[2]); |
91 | |
92 | for(int i = 0; i < 3; i++) |
93 | forward[i] = forward[i] * factor; |
94 | |
95 | // Side vector (Forward cross product Up) |
96 | Vec3 side = { |
97 | forward[1] * up[2] - forward[2] * up[1], |
98 | forward[2] * up[0] - forward[0] * up[2], |
99 | forward[0] * up[1] - forward[1] * up[0] |
100 | }; |
101 | |
102 | // Normalize |
103 | factor = 1.0f / std::sqrt(side[0] * side[0] + side[1] * side[1] + side[2] * side[2]); |
104 | |
105 | for(int i = 0; i < 3; i++) |
106 | side[i] = side[i] * factor; |
107 | |
108 | result[0][0] = side[0]; |
109 | result[0][1] = side[1] * forward[2] - side[2] * forward[1]; |
110 | result[0][2] = -forward[0]; |
111 | result[0][3] = 0.f; |
112 | |
113 | result[1][0] = side[1]; |
114 | result[1][1] = side[2] * forward[0] - side[0] * forward[2]; |
115 | result[1][2] = -forward[1]; |
116 | result[1][3] = 0.f; |
117 | |
118 | result[2][0] = side[2]; |
119 | result[2][1] = side[0] * forward[1] - side[1] * forward[0]; |
120 | result[2][2] = -forward[2]; |
121 | result[2][3] = 0.f; |
122 | |
123 | result[3][0] = (-eye[0]) * result[0][0] + (-eye[1]) * result[1][0] + (-eye[2]) * result[2][0]; |
124 | result[3][1] = (-eye[0]) * result[0][1] + (-eye[1]) * result[1][1] + (-eye[2]) * result[2][1]; |
125 | result[3][2] = (-eye[0]) * result[0][2] + (-eye[1]) * result[1][2] + (-eye[2]) * result[2][2]; |
126 | result[3][3] = (-eye[0]) * result[0][3] + (-eye[1]) * result[1][3] + (-eye[2]) * result[2][3] + 1.0f; |
127 | } |
128 | |
129 | // Construct a perspective projection matrix |
130 | void matrixPerspective(Matrix& result, float fov, float aspect, float nearPlane, float farPlane) |
131 | { |
132 | const float a = 1.f / std::tan(fov / 2.f); |
133 | |
134 | result[0][0] = a / aspect; |
135 | result[0][1] = 0.f; |
136 | result[0][2] = 0.f; |
137 | result[0][3] = 0.f; |
138 | |
139 | result[1][0] = 0.f; |
140 | result[1][1] = -a; |
141 | result[1][2] = 0.f; |
142 | result[1][3] = 0.f; |
143 | |
144 | result[2][0] = 0.f; |
145 | result[2][1] = 0.f; |
146 | result[2][2] = -((farPlane + nearPlane) / (farPlane - nearPlane)); |
147 | result[2][3] = -1.f; |
148 | |
149 | result[3][0] = 0.f; |
150 | result[3][1] = 0.f; |
151 | result[3][2] = -((2.f * farPlane * nearPlane) / (farPlane - nearPlane)); |
152 | result[3][3] = 0.f; |
153 | } |
154 | |
155 | // Clamp a value between low and high values |
156 | template<typename T> |
157 | T clamp(T value, T low, T high) |
158 | { |
159 | return (value <= low) ? low : ((value >= high) ? high : value); |
160 | } |
161 | |
162 | // Helper function we pass to GLAD to load Vulkan functions via SFML |
163 | GLADapiproc getVulkanFunction(const char* name) |
164 | { |
165 | return reinterpret_cast<GLADapiproc>(sf::Vulkan::getFunction(name)); |
166 | } |
167 | |
168 | // Debug we pass to Vulkan to call when it detects warnings or errors |
169 | VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugReportFlagsEXT, VkDebugReportObjectTypeEXT, uint64_t, size_t, int32_t, const char*, const char* pMessage, void*) |
170 | { |
171 | sf::err() << pMessage << std::endl; |
172 | |
173 | return VK_FALSE; |
174 | } |
175 | } |
176 | |
177 | |
178 | //////////////////////////////////////////////////////////// |
179 | // VulkanExample class |
180 | //////////////////////////////////////////////////////////// |
181 | class VulkanExample |
182 | { |
183 | public: |
184 | // Constructor |
185 | VulkanExample() : |
186 | window(sf::VideoMode(800, 600), "SFML window with Vulkan" , sf::Style::Default), |
187 | vulkanAvailable(sf::Vulkan::isAvailable()), |
188 | maxFramesInFlight(2), |
189 | currentFrame(0), |
190 | swapchainOutOfDate(false), |
191 | instance(0), |
192 | debugReportCallback(0), |
193 | surface(0), |
194 | gpu(0), |
195 | queueFamilyIndex(-1), |
196 | device(0), |
197 | queue(0), |
198 | swapchainFormat(), |
199 | swapchainExtent(), |
200 | swapchain(0), |
201 | depthFormat(VK_FORMAT_UNDEFINED), |
202 | depthImage(0), |
203 | depthImageMemory(0), |
204 | depthImageView(0), |
205 | vertexShaderModule(0), |
206 | fragmentShaderModule(0), |
207 | descriptorSetLayout(0), |
208 | pipelineLayout(0), |
209 | renderPass(0), |
210 | graphicsPipeline(0), |
211 | commandPool(0), |
212 | vertexBuffer(0), |
213 | vertexBufferMemory(0), |
214 | indexBuffer(0), |
215 | indexBufferMemory(0), |
216 | textureImage(0), |
217 | textureImageMemory(0), |
218 | textureImageView(0), |
219 | textureSampler(0), |
220 | descriptorPool(0) |
221 | { |
222 | // Vulkan setup procedure |
223 | if (vulkanAvailable) setupInstance(); |
224 | if (vulkanAvailable) setupDebugReportCallback(); |
225 | if (vulkanAvailable) setupSurface(); |
226 | if (vulkanAvailable) setupPhysicalDevice(); |
227 | if (vulkanAvailable) setupLogicalDevice(); |
228 | if (vulkanAvailable) setupSwapchain(); |
229 | if (vulkanAvailable) setupSwapchainImages(); |
230 | if (vulkanAvailable) setupShaders(); |
231 | if (vulkanAvailable) setupRenderpass(); |
232 | if (vulkanAvailable) setupDescriptorSetLayout(); |
233 | if (vulkanAvailable) setupPipelineLayout(); |
234 | if (vulkanAvailable) setupPipeline(); |
235 | if (vulkanAvailable) setupCommandPool(); |
236 | if (vulkanAvailable) setupVertexBuffer(); |
237 | if (vulkanAvailable) setupIndexBuffer(); |
238 | if (vulkanAvailable) setupUniformBuffers(); |
239 | if (vulkanAvailable) setupDepthImage(); |
240 | if (vulkanAvailable) setupDepthImageView(); |
241 | if (vulkanAvailable) setupTextureImage(); |
242 | if (vulkanAvailable) setupTextureImageView(); |
243 | if (vulkanAvailable) setupTextureSampler(); |
244 | if (vulkanAvailable) setupFramebuffers(); |
245 | if (vulkanAvailable) setupDescriptorPool(); |
246 | if (vulkanAvailable) setupDescriptorSets(); |
247 | if (vulkanAvailable) setupCommandBuffers(); |
248 | if (vulkanAvailable) setupDraw(); |
249 | if (vulkanAvailable) setupSemaphores(); |
250 | if (vulkanAvailable) setupFences(); |
251 | |
252 | // If something went wrong, notify the user by setting the window title |
253 | if (!vulkanAvailable) |
254 | window.setTitle("SFML window with Vulkan (Vulkan not available)" ); |
255 | } |
256 | |
257 | |
258 | // Destructor |
259 | ~VulkanExample() |
260 | { |
261 | // Wait until there are no pending frames |
262 | if (device) |
263 | vkDeviceWaitIdle(device); |
264 | |
265 | // Teardown swapchain |
266 | cleanupSwapchain(); |
267 | |
268 | // Vulkan teardown procedure |
269 | for (std::size_t i = 0; i < fences.size(); i++) |
270 | vkDestroyFence(device, fences[i], 0); |
271 | |
272 | for (std::size_t i = 0; i < renderFinishedSemaphores.size(); i++) |
273 | vkDestroySemaphore(device, renderFinishedSemaphores[i], 0); |
274 | |
275 | for (std::size_t i = 0; i < imageAvailableSemaphores.size(); i++) |
276 | vkDestroySemaphore(device, imageAvailableSemaphores[i], 0); |
277 | |
278 | if (descriptorPool) |
279 | vkDestroyDescriptorPool(device, descriptorPool, 0); |
280 | |
281 | for (std::size_t i = 0; i < uniformBuffersMemory.size(); i++) |
282 | vkFreeMemory(device, uniformBuffersMemory[i], 0); |
283 | |
284 | for (std::size_t i = 0; i < uniformBuffers.size(); i++) |
285 | vkDestroyBuffer(device, uniformBuffers[i], 0); |
286 | |
287 | if (textureSampler) |
288 | vkDestroySampler(device, textureSampler, 0); |
289 | |
290 | if (textureImageView) |
291 | vkDestroyImageView(device, textureImageView, 0); |
292 | |
293 | if (textureImageMemory) |
294 | vkFreeMemory(device, textureImageMemory, 0); |
295 | |
296 | if (textureImage) |
297 | vkDestroyImage(device, textureImage, 0); |
298 | |
299 | if (indexBufferMemory) |
300 | vkFreeMemory(device, indexBufferMemory, 0); |
301 | |
302 | if (indexBuffer) |
303 | vkDestroyBuffer(device, indexBuffer, 0); |
304 | |
305 | if (vertexBufferMemory) |
306 | vkFreeMemory(device, vertexBufferMemory, 0); |
307 | |
308 | if (vertexBuffer) |
309 | vkDestroyBuffer(device, vertexBuffer, 0); |
310 | |
311 | if (commandPool) |
312 | vkDestroyCommandPool(device, commandPool, 0); |
313 | |
314 | if (descriptorSetLayout) |
315 | vkDestroyDescriptorSetLayout(device, descriptorSetLayout, 0); |
316 | |
317 | if (fragmentShaderModule) |
318 | vkDestroyShaderModule(device, fragmentShaderModule, 0); |
319 | |
320 | if (vertexShaderModule) |
321 | vkDestroyShaderModule(device, vertexShaderModule, 0); |
322 | |
323 | if (device) |
324 | vkDestroyDevice(device, 0); |
325 | |
326 | if (surface) |
327 | vkDestroySurfaceKHR(instance, surface, 0); |
328 | |
329 | if (debugReportCallback) |
330 | vkDestroyDebugReportCallbackEXT(instance, debugReportCallback, 0); |
331 | |
332 | if (instance) |
333 | vkDestroyInstance(instance, 0); |
334 | } |
335 | |
336 | // Cleanup swapchain |
337 | void cleanupSwapchain() |
338 | { |
339 | // Swapchain teardown procedure |
340 | for (std::size_t i = 0; i < fences.size(); i++) |
341 | vkWaitForFences(device, 1, &fences[i], VK_TRUE, std::numeric_limits<uint64_t>::max()); |
342 | |
343 | if (commandBuffers.size()) |
344 | vkFreeCommandBuffers(device, commandPool, commandBuffers.size(), &commandBuffers[0]); |
345 | |
346 | commandBuffers.clear(); |
347 | |
348 | for (std::size_t i = 0; i < swapchainFramebuffers.size(); i++) |
349 | vkDestroyFramebuffer(device, swapchainFramebuffers[i], 0); |
350 | |
351 | swapchainFramebuffers.clear(); |
352 | |
353 | if (graphicsPipeline) |
354 | vkDestroyPipeline(device, graphicsPipeline, 0); |
355 | |
356 | if (renderPass) |
357 | vkDestroyRenderPass(device, renderPass, 0); |
358 | |
359 | if (pipelineLayout) |
360 | vkDestroyPipelineLayout(device, pipelineLayout, 0); |
361 | |
362 | if (depthImageView) |
363 | vkDestroyImageView(device, depthImageView, 0); |
364 | |
365 | if (depthImageMemory) |
366 | vkFreeMemory(device, depthImageMemory, 0); |
367 | |
368 | if (depthImage) |
369 | vkDestroyImage(device, depthImage, 0); |
370 | |
371 | for (std::size_t i = 0; i < swapchainImageViews.size(); i++) |
372 | vkDestroyImageView(device, swapchainImageViews[i], 0); |
373 | |
374 | swapchainImageViews.clear(); |
375 | |
376 | if (swapchain) |
377 | vkDestroySwapchainKHR(device, swapchain, 0); |
378 | } |
379 | |
380 | // Cleanup and recreate swapchain |
381 | void recreateSwapchain() |
382 | { |
383 | // Wait until there are no pending frames |
384 | vkDeviceWaitIdle(device); |
385 | |
386 | // Cleanup swapchain |
387 | cleanupSwapchain(); |
388 | |
389 | // Swapchain setup procedure |
390 | if (vulkanAvailable) setupSwapchain(); |
391 | if (vulkanAvailable) setupSwapchainImages(); |
392 | if (vulkanAvailable) setupPipelineLayout(); |
393 | if (vulkanAvailable) setupRenderpass(); |
394 | if (vulkanAvailable) setupPipeline(); |
395 | if (vulkanAvailable) setupDepthImage(); |
396 | if (vulkanAvailable) setupDepthImageView(); |
397 | if (vulkanAvailable) setupFramebuffers(); |
398 | if (vulkanAvailable) setupCommandBuffers(); |
399 | if (vulkanAvailable) setupDraw(); |
400 | } |
401 | |
402 | // Setup Vulkan instance |
403 | void setupInstance() |
404 | { |
405 | // Load bootstrap entry points |
406 | gladLoadVulkan(0, getVulkanFunction); |
407 | |
408 | if (!vkCreateInstance) |
409 | { |
410 | vulkanAvailable = false; |
411 | return; |
412 | } |
413 | |
414 | // Retrieve the available instance layers |
415 | uint32_t objectCount = 0; |
416 | |
417 | std::vector<VkLayerProperties> layers; |
418 | |
419 | if (vkEnumerateInstanceLayerProperties(&objectCount, 0) != VK_SUCCESS) |
420 | { |
421 | vulkanAvailable = false; |
422 | return; |
423 | } |
424 | |
425 | layers.resize(objectCount); |
426 | |
427 | if (vkEnumerateInstanceLayerProperties(&objectCount, &layers[0]) != VK_SUCCESS) |
428 | { |
429 | vulkanAvailable = false; |
430 | return; |
431 | } |
432 | |
433 | // Activate the layers we are interested in |
434 | std::vector<const char*> validationLayers; |
435 | |
436 | for (std::size_t i = 0; i < layers.size(); i++) |
437 | { |
438 | // VK_LAYER_LUNARG_standard_validation, meta-layer for the following layers: |
439 | // -- VK_LAYER_GOOGLE_threading |
440 | // -- VK_LAYER_LUNARG_parameter_validation |
441 | // -- VK_LAYER_LUNARG_device_limits |
442 | // -- VK_LAYER_LUNARG_object_tracker |
443 | // -- VK_LAYER_LUNARG_image |
444 | // -- VK_LAYER_LUNARG_core_validation |
445 | // -- VK_LAYER_LUNARG_swapchain |
446 | // -- VK_LAYER_GOOGLE_unique_objects |
447 | // These layers perform error checking and warn about bad or sub-optimal Vulkan API usage |
448 | // VK_LAYER_LUNARG_monitor appends an FPS counter to the window title |
449 | if (!std::strcmp(layers[i].layerName, "VK_LAYER_LUNARG_standard_validation" )) |
450 | { |
451 | validationLayers.push_back("VK_LAYER_LUNARG_standard_validation" ); |
452 | } |
453 | else if (!std::strcmp(layers[i].layerName, "VK_LAYER_LUNARG_monitor" )) |
454 | { |
455 | validationLayers.push_back("VK_LAYER_LUNARG_monitor" ); |
456 | } |
457 | } |
458 | |
459 | // Retrieve the extensions we need to enable in order to use Vulkan with SFML |
460 | std::vector<const char*> requiredExtentions = sf::Vulkan::getGraphicsRequiredInstanceExtensions(); |
461 | requiredExtentions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); |
462 | |
463 | // Register our application information |
464 | VkApplicationInfo applicationInfo = VkApplicationInfo(); |
465 | applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; |
466 | applicationInfo.pApplicationName = "SFML Vulkan Test" ; |
467 | applicationInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); |
468 | applicationInfo.pEngineName = "SFML Vulkan Test Engine" ; |
469 | applicationInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); |
470 | applicationInfo.apiVersion = VK_API_VERSION_1_0; |
471 | |
472 | VkInstanceCreateInfo instanceCreateInfo = VkInstanceCreateInfo(); |
473 | instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; |
474 | instanceCreateInfo.pApplicationInfo = &applicationInfo; |
475 | instanceCreateInfo.enabledLayerCount = validationLayers.size(); |
476 | instanceCreateInfo.ppEnabledLayerNames = &validationLayers[0]; |
477 | instanceCreateInfo.enabledExtensionCount = requiredExtentions.size(); |
478 | instanceCreateInfo.ppEnabledExtensionNames = &requiredExtentions[0]; |
479 | |
480 | // Try to create a Vulkan instance with debug report enabled |
481 | VkResult result = vkCreateInstance(&instanceCreateInfo, 0, &instance); |
482 | |
483 | // If an extension is missing, try disabling debug report |
484 | if (result == VK_ERROR_EXTENSION_NOT_PRESENT) |
485 | { |
486 | requiredExtentions.pop_back(); |
487 | |
488 | instanceCreateInfo.enabledExtensionCount = requiredExtentions.size(); |
489 | instanceCreateInfo.ppEnabledExtensionNames = &requiredExtentions[0]; |
490 | |
491 | result = vkCreateInstance(&instanceCreateInfo, 0, &instance); |
492 | } |
493 | |
494 | // If instance creation still fails, give up |
495 | if (result != VK_SUCCESS) |
496 | { |
497 | vulkanAvailable = false; |
498 | return; |
499 | } |
500 | |
501 | // Load instance entry points |
502 | gladLoadVulkan(0, getVulkanFunction); |
503 | } |
504 | |
505 | // Setup our debug callback function to be called by Vulkan |
506 | void setupDebugReportCallback() |
507 | { |
508 | // Don't try to register the callback if the extension is not available |
509 | if (!vkCreateDebugReportCallbackEXT) |
510 | return; |
511 | |
512 | // Register for warnings and errors |
513 | VkDebugReportCallbackCreateInfoEXT debugReportCallbackCreateInfo = VkDebugReportCallbackCreateInfoEXT(); |
514 | debugReportCallbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT; |
515 | debugReportCallbackCreateInfo.flags = VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_ERROR_BIT_EXT; |
516 | debugReportCallbackCreateInfo.pfnCallback = debugCallback; |
517 | |
518 | // Create the debug callback |
519 | if (vkCreateDebugReportCallbackEXT(instance, &debugReportCallbackCreateInfo, 0, &debugReportCallback) != VK_SUCCESS) |
520 | { |
521 | vulkanAvailable = false; |
522 | return; |
523 | } |
524 | } |
525 | |
526 | // Setup the SFML window Vulkan rendering surface |
527 | void setupSurface() |
528 | { |
529 | if (!window.createVulkanSurface(instance, surface)) |
530 | vulkanAvailable = false; |
531 | } |
532 | |
533 | // Select a GPU to use and query its capabilities |
534 | void setupPhysicalDevice() |
535 | { |
536 | // Last sanity check |
537 | if (!vkEnumeratePhysicalDevices || !vkCreateDevice || !vkGetPhysicalDeviceProperties) |
538 | { |
539 | vulkanAvailable = false; |
540 | return; |
541 | } |
542 | |
543 | // Retrieve list of GPUs |
544 | uint32_t objectCount = 0; |
545 | |
546 | std::vector<VkPhysicalDevice> devices; |
547 | |
548 | if (vkEnumeratePhysicalDevices(instance, &objectCount, 0) != VK_SUCCESS) |
549 | { |
550 | vulkanAvailable = false; |
551 | return; |
552 | } |
553 | |
554 | devices.resize(objectCount); |
555 | |
556 | if (vkEnumeratePhysicalDevices(instance, &objectCount, &devices[0]) != VK_SUCCESS) |
557 | { |
558 | vulkanAvailable = false; |
559 | return; |
560 | } |
561 | |
562 | // Look for a GPU that supports swapchains |
563 | for (std::size_t i = 0; i < devices.size(); i++) |
564 | { |
565 | VkPhysicalDeviceProperties deviceProperties; |
566 | vkGetPhysicalDeviceProperties(devices[i], &deviceProperties); |
567 | |
568 | std::vector<VkExtensionProperties> extensions; |
569 | |
570 | if (vkEnumerateDeviceExtensionProperties(devices[i], 0, &objectCount, 0) != VK_SUCCESS) |
571 | { |
572 | vulkanAvailable = false; |
573 | return; |
574 | } |
575 | |
576 | extensions.resize(objectCount); |
577 | |
578 | if (vkEnumerateDeviceExtensionProperties(devices[i], 0, &objectCount, &extensions[0]) != VK_SUCCESS) |
579 | { |
580 | vulkanAvailable = false; |
581 | return; |
582 | } |
583 | |
584 | bool supportsSwapchain = false; |
585 | |
586 | for (std::size_t j = 0; j < extensions.size(); j++) |
587 | { |
588 | if (!std::strcmp(extensions[j].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) |
589 | { |
590 | supportsSwapchain = true; |
591 | break; |
592 | } |
593 | } |
594 | |
595 | if (!supportsSwapchain) |
596 | continue; |
597 | |
598 | // Prefer discrete over integrated GPUs if multiple are available |
599 | if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) |
600 | { |
601 | gpu = devices[i]; |
602 | break; |
603 | } |
604 | else if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) |
605 | { |
606 | gpu = devices[i]; |
607 | } |
608 | } |
609 | |
610 | if (!gpu) |
611 | { |
612 | vulkanAvailable = false; |
613 | return; |
614 | } |
615 | |
616 | // Load physical device entry points |
617 | gladLoadVulkan(gpu, getVulkanFunction); |
618 | |
619 | // Check what depth formats are available and select one |
620 | VkFormatProperties formatProperties = VkFormatProperties(); |
621 | |
622 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D24_UNORM_S8_UINT, &formatProperties); |
623 | |
624 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
625 | depthFormat = VK_FORMAT_D24_UNORM_S8_UINT; |
626 | } |
627 | else |
628 | { |
629 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D32_SFLOAT_S8_UINT, &formatProperties); |
630 | |
631 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
632 | depthFormat = VK_FORMAT_D32_SFLOAT_S8_UINT; |
633 | } |
634 | else |
635 | { |
636 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D32_SFLOAT, &formatProperties); |
637 | |
638 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
639 | depthFormat = VK_FORMAT_D32_SFLOAT; |
640 | } |
641 | else |
642 | { |
643 | vulkanAvailable = false; |
644 | return; |
645 | } |
646 | } |
647 | } |
648 | } |
649 | |
650 | // Setup logical device and device queue |
651 | void setupLogicalDevice() |
652 | { |
653 | // Select a queue family that supports graphics operations and surface presentation |
654 | uint32_t objectCount = 0; |
655 | |
656 | std::vector<VkQueueFamilyProperties> queueFamilyProperties; |
657 | |
658 | vkGetPhysicalDeviceQueueFamilyProperties(gpu, &objectCount, 0); |
659 | |
660 | queueFamilyProperties.resize(objectCount); |
661 | |
662 | vkGetPhysicalDeviceQueueFamilyProperties(gpu, &objectCount, &queueFamilyProperties[0]); |
663 | |
664 | for (std::size_t i = 0; i < queueFamilyProperties.size(); i++) |
665 | { |
666 | VkBool32 surfaceSupported = VK_FALSE; |
667 | |
668 | vkGetPhysicalDeviceSurfaceSupportKHR(gpu, i, surface, &surfaceSupported); |
669 | |
670 | if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) && (surfaceSupported == VK_TRUE)) |
671 | { |
672 | queueFamilyIndex = i; |
673 | break; |
674 | } |
675 | } |
676 | |
677 | if (queueFamilyIndex < 0) |
678 | { |
679 | vulkanAvailable = false; |
680 | return; |
681 | } |
682 | |
683 | float queuePriority = 1.0f; |
684 | |
685 | VkDeviceQueueCreateInfo deviceQueueCreateInfo = VkDeviceQueueCreateInfo(); |
686 | deviceQueueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; |
687 | deviceQueueCreateInfo.queueCount = 1; |
688 | deviceQueueCreateInfo.queueFamilyIndex = queueFamilyIndex; |
689 | deviceQueueCreateInfo.pQueuePriorities = &queuePriority; |
690 | |
691 | // Enable the swapchain extension |
692 | const char* extentions[1] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; |
693 | |
694 | // Enable anisotropic filtering |
695 | VkPhysicalDeviceFeatures physicalDeviceFeatures = VkPhysicalDeviceFeatures(); |
696 | physicalDeviceFeatures.samplerAnisotropy = VK_TRUE; |
697 | |
698 | VkDeviceCreateInfo deviceCreateInfo = VkDeviceCreateInfo(); |
699 | deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; |
700 | deviceCreateInfo.enabledExtensionCount = 1; |
701 | deviceCreateInfo.ppEnabledExtensionNames = extentions; |
702 | deviceCreateInfo.queueCreateInfoCount = 1; |
703 | deviceCreateInfo.pQueueCreateInfos = &deviceQueueCreateInfo; |
704 | deviceCreateInfo.pEnabledFeatures = &physicalDeviceFeatures; |
705 | |
706 | // Create our logical device |
707 | if (vkCreateDevice(gpu, &deviceCreateInfo, 0, &device) != VK_SUCCESS) |
708 | { |
709 | vulkanAvailable = false; |
710 | return; |
711 | } |
712 | |
713 | // Retrieve a handle to the logical device command queue |
714 | vkGetDeviceQueue(device, queueFamilyIndex, 0, &queue); |
715 | } |
716 | |
717 | // Query surface formats and set up swapchain |
718 | void setupSwapchain() |
719 | { |
720 | // Select a surface format that supports RGBA color format |
721 | uint32_t objectCount = 0; |
722 | |
723 | std::vector<VkSurfaceFormatKHR> surfaceFormats; |
724 | |
725 | if (vkGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &objectCount, 0) != VK_SUCCESS) |
726 | { |
727 | vulkanAvailable = false; |
728 | return; |
729 | } |
730 | |
731 | surfaceFormats.resize(objectCount); |
732 | |
733 | if (vkGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &objectCount, &surfaceFormats[0]) != VK_SUCCESS) |
734 | { |
735 | vulkanAvailable = false; |
736 | return; |
737 | } |
738 | |
739 | if ((surfaceFormats.size() == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED)) |
740 | { |
741 | swapchainFormat.format = VK_FORMAT_B8G8R8A8_UNORM; |
742 | swapchainFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; |
743 | } |
744 | else if (!surfaceFormats.empty()) |
745 | { |
746 | for (std::size_t i = 0; i < surfaceFormats.size(); i++) |
747 | { |
748 | if ((surfaceFormats[i].format == VK_FORMAT_B8G8R8A8_UNORM) && (surfaceFormats[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)) |
749 | { |
750 | swapchainFormat.format = VK_FORMAT_B8G8R8A8_UNORM; |
751 | swapchainFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; |
752 | |
753 | break; |
754 | } |
755 | } |
756 | |
757 | if (swapchainFormat.format == VK_FORMAT_UNDEFINED) |
758 | swapchainFormat = surfaceFormats[0]; |
759 | } |
760 | else |
761 | { |
762 | vulkanAvailable = false; |
763 | return; |
764 | } |
765 | |
766 | // Select a swapchain present mode |
767 | std::vector<VkPresentModeKHR> presentModes; |
768 | |
769 | if (vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, surface, &objectCount, 0) != VK_SUCCESS) |
770 | { |
771 | vulkanAvailable = false; |
772 | return; |
773 | } |
774 | |
775 | presentModes.resize(objectCount); |
776 | |
777 | if (vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, surface, &objectCount, &presentModes[0]) != VK_SUCCESS) |
778 | { |
779 | vulkanAvailable = false; |
780 | return; |
781 | } |
782 | |
783 | // Prefer mailbox over FIFO if it is available |
784 | VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR; |
785 | |
786 | for (std::size_t i = 0; i < presentModes.size(); i++) |
787 | { |
788 | if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) |
789 | { |
790 | presentMode = presentModes[i]; |
791 | break; |
792 | } |
793 | } |
794 | |
795 | // Determine size and count of swapchain images |
796 | VkSurfaceCapabilitiesKHR surfaceCapabilities; |
797 | |
798 | if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, surface, &surfaceCapabilities) != VK_SUCCESS) |
799 | { |
800 | vulkanAvailable = false; |
801 | return; |
802 | } |
803 | |
804 | swapchainExtent.width = clamp<uint32_t>(window.getSize().x, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width); |
805 | swapchainExtent.height = clamp<uint32_t>(window.getSize().y, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height); |
806 | |
807 | uint32_t imageCount = clamp<uint32_t>(2, surfaceCapabilities.minImageCount, surfaceCapabilities.maxImageCount); |
808 | |
809 | VkSwapchainCreateInfoKHR swapchainCreateInfo = VkSwapchainCreateInfoKHR(); |
810 | swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
811 | swapchainCreateInfo.surface = surface; |
812 | swapchainCreateInfo.minImageCount = imageCount; |
813 | swapchainCreateInfo.imageFormat = swapchainFormat.format; |
814 | swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace; |
815 | swapchainCreateInfo.imageExtent = swapchainExtent; |
816 | swapchainCreateInfo.imageArrayLayers = 1; |
817 | swapchainCreateInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
818 | swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
819 | swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform; |
820 | swapchainCreateInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
821 | swapchainCreateInfo.presentMode = presentMode; |
822 | swapchainCreateInfo.clipped = VK_TRUE; |
823 | swapchainCreateInfo.oldSwapchain = VK_NULL_HANDLE; |
824 | |
825 | // Create the swapchain |
826 | if (vkCreateSwapchainKHR(device, &swapchainCreateInfo, 0, &swapchain) != VK_SUCCESS) |
827 | { |
828 | vulkanAvailable = false; |
829 | return; |
830 | } |
831 | } |
832 | |
833 | // Retrieve the swapchain images and create image views for them |
834 | void setupSwapchainImages() |
835 | { |
836 | // Retrieve swapchain images |
837 | uint32_t objectCount = 0; |
838 | |
839 | if (vkGetSwapchainImagesKHR(device, swapchain, &objectCount, 0) != VK_SUCCESS) |
840 | { |
841 | vulkanAvailable = false; |
842 | return; |
843 | } |
844 | |
845 | swapchainImages.resize(objectCount); |
846 | swapchainImageViews.resize(objectCount); |
847 | |
848 | if (vkGetSwapchainImagesKHR(device, swapchain, &objectCount, &swapchainImages[0]) != VK_SUCCESS) |
849 | { |
850 | vulkanAvailable = false; |
851 | return; |
852 | } |
853 | |
854 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
855 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
856 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
857 | imageViewCreateInfo.format = swapchainFormat.format; |
858 | imageViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; |
859 | imageViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; |
860 | imageViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; |
861 | imageViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; |
862 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
863 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
864 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
865 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
866 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
867 | |
868 | // Create an image view for each swapchain image |
869 | for (std::size_t i = 0; i < swapchainImages.size(); i++) |
870 | { |
871 | imageViewCreateInfo.image = swapchainImages[i]; |
872 | |
873 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &swapchainImageViews[i]) != VK_SUCCESS) |
874 | { |
875 | vulkanAvailable = false; |
876 | return; |
877 | } |
878 | } |
879 | } |
880 | |
881 | // Load vertex and fragment shader modules |
882 | void setupShaders() |
883 | { |
884 | VkShaderModuleCreateInfo shaderModuleCreateInfo = VkShaderModuleCreateInfo(); |
885 | shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
886 | |
887 | // Use the vertex shader SPIR-V code to create a vertex shader module |
888 | { |
889 | sf::FileInputStream file; |
890 | |
891 | if (!file.open("resources/shader.vert.spv" )) |
892 | { |
893 | vulkanAvailable = false; |
894 | return; |
895 | } |
896 | |
897 | std::vector<char> buffer(static_cast<std::size_t>(file.getSize())); |
898 | |
899 | if (file.read(&buffer[0], file.getSize()) != file.getSize()) |
900 | { |
901 | vulkanAvailable = false; |
902 | return; |
903 | } |
904 | |
905 | shaderModuleCreateInfo.codeSize = buffer.size(); |
906 | shaderModuleCreateInfo.pCode = reinterpret_cast<const uint32_t*>(&buffer[0]); |
907 | |
908 | if (vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &vertexShaderModule) != VK_SUCCESS) |
909 | { |
910 | vulkanAvailable = false; |
911 | return; |
912 | } |
913 | } |
914 | |
915 | // Use the fragment shader SPIR-V code to create a fragment shader module |
916 | { |
917 | sf::FileInputStream file; |
918 | |
919 | if (!file.open("resources/shader.frag.spv" )) |
920 | { |
921 | vulkanAvailable = false; |
922 | return; |
923 | } |
924 | |
925 | std::vector<char> buffer(static_cast<std::size_t>(file.getSize())); |
926 | |
927 | if (file.read(&buffer[0], file.getSize()) != file.getSize()) |
928 | { |
929 | vulkanAvailable = false; |
930 | return; |
931 | } |
932 | |
933 | shaderModuleCreateInfo.codeSize = buffer.size(); |
934 | shaderModuleCreateInfo.pCode = reinterpret_cast<const uint32_t*>(&buffer[0]); |
935 | |
936 | if (vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &fragmentShaderModule) != VK_SUCCESS) |
937 | { |
938 | vulkanAvailable = false; |
939 | return; |
940 | } |
941 | } |
942 | |
943 | // Prepare the shader stage information for later pipeline creation |
944 | shaderStages[0]= VkPipelineShaderStageCreateInfo(); |
945 | shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
946 | shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; |
947 | shaderStages[0].module = vertexShaderModule; |
948 | shaderStages[0].pName = "main" ; |
949 | |
950 | shaderStages[1]= VkPipelineShaderStageCreateInfo(); |
951 | shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
952 | shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; |
953 | shaderStages[1].module = fragmentShaderModule; |
954 | shaderStages[1].pName = "main" ; |
955 | } |
956 | |
957 | // Setup renderpass and its subpass dependencies |
958 | void setupRenderpass() |
959 | { |
960 | VkAttachmentDescription attachmentDescriptions[2]; |
961 | |
962 | // Color attachment |
963 | attachmentDescriptions[0] = VkAttachmentDescription(); |
964 | attachmentDescriptions[0].format = swapchainFormat.format; |
965 | attachmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT; |
966 | attachmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
967 | attachmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
968 | attachmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
969 | attachmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
970 | attachmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
971 | attachmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
972 | |
973 | // Depth attachment |
974 | attachmentDescriptions[1] = VkAttachmentDescription(); |
975 | attachmentDescriptions[1].format = depthFormat; |
976 | attachmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT; |
977 | attachmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
978 | attachmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
979 | attachmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
980 | attachmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
981 | attachmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
982 | attachmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
983 | |
984 | VkAttachmentReference attachmentReferences[2]; |
985 | |
986 | attachmentReferences[0] = VkAttachmentReference(); |
987 | attachmentReferences[0].attachment = 0; |
988 | attachmentReferences[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
989 | |
990 | attachmentReferences[1] = VkAttachmentReference(); |
991 | attachmentReferences[1].attachment = 1; |
992 | attachmentReferences[1].layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
993 | |
994 | // Set up the renderpass to depend on commands that execute before the renderpass begins |
995 | VkSubpassDescription subpassDescription = VkSubpassDescription(); |
996 | subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; |
997 | subpassDescription.colorAttachmentCount = 1; |
998 | subpassDescription.pColorAttachments = &attachmentReferences[0]; |
999 | subpassDescription.pDepthStencilAttachment = &attachmentReferences[1]; |
1000 | |
1001 | VkSubpassDependency subpassDependency = VkSubpassDependency(); |
1002 | subpassDependency.srcSubpass = VK_SUBPASS_EXTERNAL; |
1003 | subpassDependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
1004 | subpassDependency.srcAccessMask = 0; |
1005 | subpassDependency.dstSubpass = 0; |
1006 | subpassDependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
1007 | subpassDependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
1008 | |
1009 | VkRenderPassCreateInfo renderPassCreateInfo = VkRenderPassCreateInfo(); |
1010 | renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
1011 | renderPassCreateInfo.attachmentCount = 2; |
1012 | renderPassCreateInfo.pAttachments = attachmentDescriptions; |
1013 | renderPassCreateInfo.subpassCount = 1; |
1014 | renderPassCreateInfo.pSubpasses = &subpassDescription; |
1015 | renderPassCreateInfo.dependencyCount = 1; |
1016 | renderPassCreateInfo.pDependencies = &subpassDependency; |
1017 | |
1018 | // Create the renderpass |
1019 | if (vkCreateRenderPass(device, &renderPassCreateInfo, 0, &renderPass) != VK_SUCCESS) |
1020 | { |
1021 | vulkanAvailable = false; |
1022 | return; |
1023 | } |
1024 | } |
1025 | |
1026 | // Set up uniform buffer and texture sampler descriptor set layouts |
1027 | void setupDescriptorSetLayout() |
1028 | { |
1029 | VkDescriptorSetLayoutBinding descriptorSetLayoutBindings[2]; |
1030 | |
1031 | // Layout binding for uniform buffer |
1032 | descriptorSetLayoutBindings[0] = VkDescriptorSetLayoutBinding(); |
1033 | descriptorSetLayoutBindings[0].binding = 0; |
1034 | descriptorSetLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
1035 | descriptorSetLayoutBindings[0].descriptorCount = 1; |
1036 | descriptorSetLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; |
1037 | |
1038 | // Layout binding for texture sampler |
1039 | descriptorSetLayoutBindings[1] = VkDescriptorSetLayoutBinding(); |
1040 | descriptorSetLayoutBindings[1].binding = 1; |
1041 | descriptorSetLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
1042 | descriptorSetLayoutBindings[1].descriptorCount = 1; |
1043 | descriptorSetLayoutBindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; |
1044 | |
1045 | VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = VkDescriptorSetLayoutCreateInfo(); |
1046 | descriptorSetLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; |
1047 | descriptorSetLayoutCreateInfo.bindingCount = 2; |
1048 | descriptorSetLayoutCreateInfo.pBindings = descriptorSetLayoutBindings; |
1049 | |
1050 | // Create descriptor set layout |
1051 | if (vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, 0, &descriptorSetLayout) != VK_SUCCESS) |
1052 | { |
1053 | vulkanAvailable = false; |
1054 | return; |
1055 | } |
1056 | } |
1057 | |
1058 | // Set up pipeline layout |
1059 | void setupPipelineLayout() |
1060 | { |
1061 | VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = VkPipelineLayoutCreateInfo(); |
1062 | pipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
1063 | pipelineLayoutCreateInfo.setLayoutCount = 1; |
1064 | pipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout; |
1065 | |
1066 | // Create pipeline layout |
1067 | if (vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, 0, &pipelineLayout) != VK_SUCCESS) |
1068 | { |
1069 | vulkanAvailable = false; |
1070 | return; |
1071 | } |
1072 | } |
1073 | |
1074 | // Set up rendering pipeline |
1075 | void setupPipeline() |
1076 | { |
1077 | // Set up how the vertex shader pulls data out of our vertex buffer |
1078 | VkVertexInputBindingDescription vertexInputBindingDescription = VkVertexInputBindingDescription(); |
1079 | vertexInputBindingDescription.binding = 0; |
1080 | vertexInputBindingDescription.stride = sizeof(float) * 9; |
1081 | vertexInputBindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; |
1082 | |
1083 | // Set up how the vertex buffer data is interpreted as attributes by the vertex shader |
1084 | VkVertexInputAttributeDescription vertexInputAttributeDescriptions[3]; |
1085 | |
1086 | // Position attribute |
1087 | vertexInputAttributeDescriptions[0] = VkVertexInputAttributeDescription(); |
1088 | vertexInputAttributeDescriptions[0].binding = 0; |
1089 | vertexInputAttributeDescriptions[0].location = 0; |
1090 | vertexInputAttributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT; |
1091 | vertexInputAttributeDescriptions[0].offset = sizeof(float) * 0; |
1092 | |
1093 | // Color attribute |
1094 | vertexInputAttributeDescriptions[1] = VkVertexInputAttributeDescription(); |
1095 | vertexInputAttributeDescriptions[1].binding = 0; |
1096 | vertexInputAttributeDescriptions[1].location = 1; |
1097 | vertexInputAttributeDescriptions[1].format = VK_FORMAT_R32G32B32A32_SFLOAT; |
1098 | vertexInputAttributeDescriptions[1].offset = sizeof(float) * 3; |
1099 | |
1100 | // Texture coordinate attribute |
1101 | vertexInputAttributeDescriptions[2] = VkVertexInputAttributeDescription(); |
1102 | vertexInputAttributeDescriptions[2].binding = 0; |
1103 | vertexInputAttributeDescriptions[2].location = 2; |
1104 | vertexInputAttributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT; |
1105 | vertexInputAttributeDescriptions[2].offset = sizeof(float) * 7; |
1106 | |
1107 | VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo = VkPipelineVertexInputStateCreateInfo(); |
1108 | vertexInputStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
1109 | vertexInputStateCreateInfo.vertexBindingDescriptionCount = 1; |
1110 | vertexInputStateCreateInfo.pVertexBindingDescriptions = &vertexInputBindingDescription; |
1111 | vertexInputStateCreateInfo.vertexAttributeDescriptionCount = 3; |
1112 | vertexInputStateCreateInfo.pVertexAttributeDescriptions = vertexInputAttributeDescriptions; |
1113 | |
1114 | // We want to generate a triangle list with our vertex data |
1115 | VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCreateInfo = VkPipelineInputAssemblyStateCreateInfo(); |
1116 | inputAssemblyStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
1117 | inputAssemblyStateCreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
1118 | inputAssemblyStateCreateInfo.primitiveRestartEnable = VK_FALSE; |
1119 | |
1120 | // Set up the viewport |
1121 | VkViewport viewport = VkViewport(); |
1122 | viewport.x = 0.0f; |
1123 | viewport.y = 0.0f; |
1124 | viewport.width = static_cast<float>(swapchainExtent.width); |
1125 | viewport.height = static_cast<float>(swapchainExtent.height); |
1126 | viewport.minDepth = 0.0f; |
1127 | viewport.maxDepth = 1.f; |
1128 | |
1129 | // Set up the scissor region |
1130 | VkRect2D scissor = VkRect2D(); |
1131 | scissor.offset.x = 0; |
1132 | scissor.offset.y = 0; |
1133 | scissor.extent = swapchainExtent; |
1134 | |
1135 | VkPipelineViewportStateCreateInfo pipelineViewportStateCreateInfo = VkPipelineViewportStateCreateInfo(); |
1136 | pipelineViewportStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
1137 | pipelineViewportStateCreateInfo.viewportCount = 1; |
1138 | pipelineViewportStateCreateInfo.pViewports = &viewport; |
1139 | pipelineViewportStateCreateInfo.scissorCount = 1; |
1140 | pipelineViewportStateCreateInfo.pScissors = &scissor; |
1141 | |
1142 | // Set up rasterization parameters: fill polygons, no backface culling, front face is counter-clockwise |
1143 | VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo = VkPipelineRasterizationStateCreateInfo(); |
1144 | pipelineRasterizationStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
1145 | pipelineRasterizationStateCreateInfo.depthClampEnable = VK_FALSE; |
1146 | pipelineRasterizationStateCreateInfo.rasterizerDiscardEnable = VK_FALSE; |
1147 | pipelineRasterizationStateCreateInfo.polygonMode = VK_POLYGON_MODE_FILL; |
1148 | pipelineRasterizationStateCreateInfo.lineWidth = 1.0f; |
1149 | pipelineRasterizationStateCreateInfo.cullMode = VK_CULL_MODE_NONE; |
1150 | pipelineRasterizationStateCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; |
1151 | pipelineRasterizationStateCreateInfo.depthBiasEnable = VK_FALSE; |
1152 | |
1153 | // Enable depth testing and disable scissor testing |
1154 | VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo = VkPipelineDepthStencilStateCreateInfo(); |
1155 | pipelineDepthStencilStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; |
1156 | pipelineDepthStencilStateCreateInfo.depthTestEnable = VK_TRUE; |
1157 | pipelineDepthStencilStateCreateInfo.depthWriteEnable = VK_TRUE; |
1158 | pipelineDepthStencilStateCreateInfo.depthCompareOp = VK_COMPARE_OP_LESS; |
1159 | pipelineDepthStencilStateCreateInfo.depthBoundsTestEnable = VK_FALSE; |
1160 | pipelineDepthStencilStateCreateInfo.stencilTestEnable = VK_FALSE; |
1161 | |
1162 | // Enable multi-sampling |
1163 | VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo = VkPipelineMultisampleStateCreateInfo(); |
1164 | pipelineMultisampleStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
1165 | pipelineMultisampleStateCreateInfo.sampleShadingEnable = VK_FALSE; |
1166 | pipelineMultisampleStateCreateInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; |
1167 | |
1168 | // Set up blending parameters |
1169 | VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState = VkPipelineColorBlendAttachmentState(); |
1170 | pipelineColorBlendAttachmentState.blendEnable = VK_TRUE; |
1171 | pipelineColorBlendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; |
1172 | pipelineColorBlendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
1173 | pipelineColorBlendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; |
1174 | pipelineColorBlendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; |
1175 | pipelineColorBlendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
1176 | pipelineColorBlendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; |
1177 | pipelineColorBlendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; |
1178 | |
1179 | VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo = VkPipelineColorBlendStateCreateInfo(); |
1180 | pipelineColorBlendStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
1181 | pipelineColorBlendStateCreateInfo.logicOpEnable = VK_FALSE; |
1182 | pipelineColorBlendStateCreateInfo.attachmentCount = 1; |
1183 | pipelineColorBlendStateCreateInfo.pAttachments = &pipelineColorBlendAttachmentState; |
1184 | |
1185 | VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo = VkGraphicsPipelineCreateInfo(); |
1186 | graphicsPipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
1187 | graphicsPipelineCreateInfo.stageCount = 2; |
1188 | graphicsPipelineCreateInfo.pStages = shaderStages; |
1189 | graphicsPipelineCreateInfo.pVertexInputState = &vertexInputStateCreateInfo; |
1190 | graphicsPipelineCreateInfo.pInputAssemblyState = &inputAssemblyStateCreateInfo; |
1191 | graphicsPipelineCreateInfo.pViewportState = &pipelineViewportStateCreateInfo; |
1192 | graphicsPipelineCreateInfo.pRasterizationState = &pipelineRasterizationStateCreateInfo; |
1193 | graphicsPipelineCreateInfo.pDepthStencilState = &pipelineDepthStencilStateCreateInfo; |
1194 | graphicsPipelineCreateInfo.pMultisampleState = &pipelineMultisampleStateCreateInfo; |
1195 | graphicsPipelineCreateInfo.pColorBlendState = &pipelineColorBlendStateCreateInfo; |
1196 | graphicsPipelineCreateInfo.layout = pipelineLayout; |
1197 | graphicsPipelineCreateInfo.renderPass = renderPass; |
1198 | graphicsPipelineCreateInfo.subpass = 0; |
1199 | |
1200 | // Create our graphics pipeline |
1201 | if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &graphicsPipelineCreateInfo, 0, &graphicsPipeline) != VK_SUCCESS) |
1202 | { |
1203 | vulkanAvailable = false; |
1204 | return; |
1205 | } |
1206 | } |
1207 | |
1208 | // Use our renderpass and swapchain images to create the corresponding framebuffers |
1209 | void setupFramebuffers() |
1210 | { |
1211 | swapchainFramebuffers.resize(swapchainImageViews.size()); |
1212 | |
1213 | VkFramebufferCreateInfo framebufferCreateInfo = VkFramebufferCreateInfo(); |
1214 | framebufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
1215 | framebufferCreateInfo.renderPass = renderPass; |
1216 | framebufferCreateInfo.attachmentCount = 2; |
1217 | framebufferCreateInfo.width = swapchainExtent.width; |
1218 | framebufferCreateInfo.height = swapchainExtent.height; |
1219 | framebufferCreateInfo.layers = 1; |
1220 | |
1221 | for (std::size_t i = 0; i < swapchainFramebuffers.size(); i++) |
1222 | { |
1223 | // Each framebuffer consists of a corresponding swapchain image and the shared depth image |
1224 | VkImageView attachments[] = {swapchainImageViews[i], depthImageView}; |
1225 | |
1226 | framebufferCreateInfo.pAttachments = attachments; |
1227 | |
1228 | // Create the framebuffer |
1229 | if (vkCreateFramebuffer(device, &framebufferCreateInfo, 0, &swapchainFramebuffers[i]) != VK_SUCCESS) |
1230 | { |
1231 | vulkanAvailable = false; |
1232 | return; |
1233 | } |
1234 | } |
1235 | } |
1236 | |
1237 | // Set up our command pool |
1238 | void setupCommandPool() |
1239 | { |
1240 | // We want to be able to reset command buffers after submitting them |
1241 | VkCommandPoolCreateInfo commandPoolCreateInfo = VkCommandPoolCreateInfo(); |
1242 | commandPoolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
1243 | commandPoolCreateInfo.queueFamilyIndex = queueFamilyIndex; |
1244 | commandPoolCreateInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; |
1245 | |
1246 | // Create our command pool |
1247 | if (vkCreateCommandPool(device, &commandPoolCreateInfo, 0, &commandPool) != VK_SUCCESS) |
1248 | { |
1249 | vulkanAvailable = false; |
1250 | return; |
1251 | } |
1252 | } |
1253 | |
1254 | // Helper to create a generic buffer with the specified size, usage and memory flags |
1255 | bool createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& memory) |
1256 | { |
1257 | // We only have a single queue so we can request exclusive access |
1258 | VkBufferCreateInfo bufferCreateInfo = VkBufferCreateInfo(); |
1259 | bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
1260 | bufferCreateInfo.size = size; |
1261 | bufferCreateInfo.usage = usage; |
1262 | bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
1263 | |
1264 | // Create the buffer, this does not allocate any memory for it yet |
1265 | if (vkCreateBuffer(device, &bufferCreateInfo, 0, &buffer) != VK_SUCCESS) |
1266 | return false; |
1267 | |
1268 | // Check what kind of memory we need to request from the GPU |
1269 | VkMemoryRequirements memoryRequirements = VkMemoryRequirements(); |
1270 | vkGetBufferMemoryRequirements(device, buffer, &memoryRequirements); |
1271 | |
1272 | // Check what GPU memory type is available for us to allocate out of |
1273 | VkPhysicalDeviceMemoryProperties memoryProperties = VkPhysicalDeviceMemoryProperties(); |
1274 | vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties); |
1275 | |
1276 | uint32_t memoryType = 0; |
1277 | |
1278 | for (; memoryType < memoryProperties.memoryTypeCount; memoryType++) |
1279 | { |
1280 | if ((memoryRequirements.memoryTypeBits & (1 << memoryType)) && |
1281 | ((memoryProperties.memoryTypes[memoryType].propertyFlags & properties) == properties)) |
1282 | break; |
1283 | } |
1284 | |
1285 | if (memoryType == memoryProperties.memoryTypeCount) |
1286 | return false; |
1287 | |
1288 | VkMemoryAllocateInfo memoryAllocateInfo = VkMemoryAllocateInfo(); |
1289 | memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
1290 | memoryAllocateInfo.allocationSize = memoryRequirements.size; |
1291 | memoryAllocateInfo.memoryTypeIndex = memoryType; |
1292 | |
1293 | // Allocate the memory out of the GPU pool for the required memory type |
1294 | if (vkAllocateMemory(device, &memoryAllocateInfo, 0, &memory) != VK_SUCCESS) |
1295 | return false; |
1296 | |
1297 | // Bind the allocated memory to our buffer object |
1298 | if (vkBindBufferMemory(device, buffer, memory, 0) != VK_SUCCESS) |
1299 | return false; |
1300 | |
1301 | return true; |
1302 | } |
1303 | |
1304 | // Helper to copy the contents of one buffer to another buffer |
1305 | bool copyBuffer(VkBuffer dst, VkBuffer src, VkDeviceSize size) |
1306 | { |
1307 | // Allocate a primary command buffer out of our command pool |
1308 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
1309 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
1310 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
1311 | commandBufferAllocateInfo.commandPool = commandPool; |
1312 | commandBufferAllocateInfo.commandBufferCount = 1; |
1313 | |
1314 | VkCommandBuffer commandBuffer; |
1315 | |
1316 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
1317 | return false; |
1318 | |
1319 | // Begin the command buffer |
1320 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
1321 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
1322 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
1323 | |
1324 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
1325 | { |
1326 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1327 | |
1328 | return false; |
1329 | } |
1330 | |
1331 | // Add our buffer copy command |
1332 | VkBufferCopy bufferCopy = VkBufferCopy(); |
1333 | bufferCopy.srcOffset = 0; |
1334 | bufferCopy.dstOffset = 0; |
1335 | bufferCopy.size = size; |
1336 | |
1337 | vkCmdCopyBuffer(commandBuffer, src, dst, 1, &bufferCopy); |
1338 | |
1339 | // End and submit the command buffer |
1340 | vkEndCommandBuffer(commandBuffer); |
1341 | |
1342 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
1343 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
1344 | submitInfo.commandBufferCount = 1; |
1345 | submitInfo.pCommandBuffers = &commandBuffer; |
1346 | |
1347 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
1348 | { |
1349 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1350 | |
1351 | return false; |
1352 | } |
1353 | |
1354 | // Ensure the command buffer has been processed |
1355 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
1356 | { |
1357 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1358 | |
1359 | return false; |
1360 | } |
1361 | |
1362 | // Free the command buffer |
1363 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1364 | |
1365 | return true; |
1366 | } |
1367 | |
1368 | // Create our vertex buffer and upload its data |
1369 | void setupVertexBuffer() |
1370 | { |
1371 | float vertexData[] = { |
1372 | // X Y Z R G B A U V |
1373 | -0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
1374 | 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
1375 | 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
1376 | -0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
1377 | |
1378 | -0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
1379 | 0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
1380 | 0.5f, 0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
1381 | -0.5f, 0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
1382 | |
1383 | 0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
1384 | 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
1385 | 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
1386 | 0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
1387 | |
1388 | -0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
1389 | -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
1390 | -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, |
1391 | -0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
1392 | |
1393 | -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
1394 | 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, |
1395 | 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
1396 | -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
1397 | |
1398 | -0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
1399 | 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
1400 | 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
1401 | -0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f |
1402 | }; |
1403 | |
1404 | // Create a staging buffer that is writable by the CPU |
1405 | VkBuffer stagingBuffer = 0; |
1406 | VkDeviceMemory stagingBufferMemory = 0; |
1407 | |
1408 | if (!createBuffer( |
1409 | sizeof(vertexData), |
1410 | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, |
1411 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
1412 | stagingBuffer, |
1413 | stagingBufferMemory |
1414 | )) |
1415 | { |
1416 | vulkanAvailable = false; |
1417 | return; |
1418 | } |
1419 | |
1420 | void* ptr; |
1421 | |
1422 | // Map the buffer into our address space |
1423 | if (vkMapMemory(device, stagingBufferMemory, 0, sizeof(vertexData), 0, &ptr) != VK_SUCCESS) |
1424 | { |
1425 | vkFreeMemory(device, stagingBufferMemory, 0); |
1426 | vkDestroyBuffer(device, stagingBuffer, 0); |
1427 | |
1428 | vulkanAvailable = false; |
1429 | return; |
1430 | } |
1431 | |
1432 | // Copy the vertex data into the buffer |
1433 | std::memcpy(ptr, vertexData, sizeof(vertexData)); |
1434 | |
1435 | // Unmap the buffer |
1436 | vkUnmapMemory(device, stagingBufferMemory); |
1437 | |
1438 | // Create the GPU local vertex buffer |
1439 | if (!createBuffer( |
1440 | sizeof(vertexData), |
1441 | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, |
1442 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
1443 | vertexBuffer, |
1444 | vertexBufferMemory |
1445 | )) |
1446 | { |
1447 | vkFreeMemory(device, stagingBufferMemory, 0); |
1448 | vkDestroyBuffer(device, stagingBuffer, 0); |
1449 | |
1450 | vulkanAvailable = false; |
1451 | return; |
1452 | } |
1453 | |
1454 | // Copy the contents of the staging buffer into the GPU vertex buffer |
1455 | vulkanAvailable = copyBuffer(vertexBuffer, stagingBuffer, sizeof(vertexData)); |
1456 | |
1457 | // Free the staging buffer and its memory |
1458 | vkFreeMemory(device, stagingBufferMemory, 0); |
1459 | vkDestroyBuffer(device, stagingBuffer, 0); |
1460 | } |
1461 | |
1462 | // Create our index buffer and upload its data |
1463 | void setupIndexBuffer() |
1464 | { |
1465 | uint16_t indexData[] = { |
1466 | 0, 1, 2, |
1467 | 2, 3, 0, |
1468 | |
1469 | 4, 5, 6, |
1470 | 6, 7, 4, |
1471 | |
1472 | 8, 9, 10, |
1473 | 10, 11, 8, |
1474 | |
1475 | 12, 13, 14, |
1476 | 14, 15, 12, |
1477 | |
1478 | 16, 17, 18, |
1479 | 18, 19, 16, |
1480 | |
1481 | 20, 21, 22, |
1482 | 22, 23, 20 |
1483 | }; |
1484 | |
1485 | // Create a staging buffer that is writable by the CPU |
1486 | VkBuffer stagingBuffer = 0; |
1487 | VkDeviceMemory stagingBufferMemory = 0; |
1488 | |
1489 | if (!createBuffer( |
1490 | sizeof(indexData), |
1491 | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, |
1492 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
1493 | stagingBuffer, |
1494 | stagingBufferMemory |
1495 | )) |
1496 | { |
1497 | vulkanAvailable = false; |
1498 | return; |
1499 | } |
1500 | |
1501 | void* ptr; |
1502 | |
1503 | // Map the buffer into our address space |
1504 | if (vkMapMemory(device, stagingBufferMemory, 0, sizeof(indexData), 0, &ptr) != VK_SUCCESS) |
1505 | { |
1506 | vkFreeMemory(device, stagingBufferMemory, 0); |
1507 | vkDestroyBuffer(device, stagingBuffer, 0); |
1508 | |
1509 | vulkanAvailable = false; |
1510 | return; |
1511 | } |
1512 | |
1513 | // Copy the index data into the buffer |
1514 | std::memcpy(ptr, indexData, sizeof(indexData)); |
1515 | |
1516 | // Unmap the buffer |
1517 | vkUnmapMemory(device, stagingBufferMemory); |
1518 | |
1519 | // Create the GPU local index buffer |
1520 | if (!createBuffer( |
1521 | sizeof(indexData), |
1522 | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, |
1523 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
1524 | indexBuffer, |
1525 | indexBufferMemory |
1526 | )) |
1527 | { |
1528 | vkFreeMemory(device, stagingBufferMemory, 0); |
1529 | vkDestroyBuffer(device, stagingBuffer, 0); |
1530 | |
1531 | vulkanAvailable = false; |
1532 | return; |
1533 | } |
1534 | |
1535 | // Copy the contents of the staging buffer into the GPU index buffer |
1536 | vulkanAvailable = copyBuffer(indexBuffer, stagingBuffer, sizeof(indexData)); |
1537 | |
1538 | // Free the staging buffer and its memory |
1539 | vkFreeMemory(device, stagingBufferMemory, 0); |
1540 | vkDestroyBuffer(device, stagingBuffer, 0); |
1541 | } |
1542 | |
1543 | // Create our uniform buffer but don't upload any data yet |
1544 | void setupUniformBuffers() |
1545 | { |
1546 | // Create a uniform buffer for every frame that might be in flight to prevent clobbering |
1547 | for (size_t i = 0; i < swapchainImages.size(); i++) |
1548 | { |
1549 | uniformBuffers.push_back(0); |
1550 | uniformBuffersMemory.push_back(0); |
1551 | |
1552 | // The uniform buffer will be host visible and coherent since we use it for streaming data every frame |
1553 | if (!createBuffer( |
1554 | sizeof(Matrix) * 3, |
1555 | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, |
1556 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
1557 | uniformBuffers[i], |
1558 | uniformBuffersMemory[i] |
1559 | )) |
1560 | { |
1561 | vulkanAvailable = false; |
1562 | return; |
1563 | } |
1564 | } |
1565 | } |
1566 | |
1567 | // Helper to create a generic image with the specified size, format, usage and memory flags |
1568 | bool createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) |
1569 | { |
1570 | // We only have a single queue so we can request exclusive access |
1571 | VkImageCreateInfo imageCreateInfo = VkImageCreateInfo(); |
1572 | imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
1573 | imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; |
1574 | imageCreateInfo.extent.width = width; |
1575 | imageCreateInfo.extent.height = height; |
1576 | imageCreateInfo.extent.depth = 1; |
1577 | imageCreateInfo.mipLevels = 1; |
1578 | imageCreateInfo.arrayLayers = 1; |
1579 | imageCreateInfo.format = format; |
1580 | imageCreateInfo.tiling = tiling; |
1581 | imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
1582 | imageCreateInfo.usage = usage; |
1583 | imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
1584 | imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
1585 | |
1586 | // Create the image, this does not allocate any memory for it yet |
1587 | if (vkCreateImage(device, &imageCreateInfo, 0, &image) != VK_SUCCESS) |
1588 | return false; |
1589 | |
1590 | // Check what kind of memory we need to request from the GPU |
1591 | VkMemoryRequirements memoryRequirements = VkMemoryRequirements(); |
1592 | vkGetImageMemoryRequirements(device, image, &memoryRequirements); |
1593 | |
1594 | // Check what GPU memory type is available for us to allocate out of |
1595 | VkPhysicalDeviceMemoryProperties memoryProperties = VkPhysicalDeviceMemoryProperties(); |
1596 | vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties); |
1597 | |
1598 | uint32_t memoryType = 0; |
1599 | |
1600 | for (; memoryType < memoryProperties.memoryTypeCount; memoryType++) |
1601 | { |
1602 | if ((memoryRequirements.memoryTypeBits & (1 << memoryType)) && |
1603 | ((memoryProperties.memoryTypes[memoryType].propertyFlags & properties) == properties)) |
1604 | break; |
1605 | } |
1606 | |
1607 | if (memoryType == memoryProperties.memoryTypeCount) |
1608 | return false; |
1609 | |
1610 | VkMemoryAllocateInfo memoryAllocateInfo = VkMemoryAllocateInfo(); |
1611 | memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
1612 | memoryAllocateInfo.allocationSize = memoryRequirements.size; |
1613 | memoryAllocateInfo.memoryTypeIndex = memoryType; |
1614 | |
1615 | // Allocate the memory out of the GPU pool for the required memory type |
1616 | if (vkAllocateMemory(device, &memoryAllocateInfo, 0, &imageMemory) != VK_SUCCESS) |
1617 | return false; |
1618 | |
1619 | // Bind the allocated memory to our image object |
1620 | if (vkBindImageMemory(device, image, imageMemory, 0) != VK_SUCCESS) |
1621 | return false; |
1622 | |
1623 | return true; |
1624 | } |
1625 | |
1626 | // Create our depth image and transition it into the proper layout |
1627 | void setupDepthImage() |
1628 | { |
1629 | // Create our depth image |
1630 | if (!createImage( |
1631 | swapchainExtent.width, |
1632 | swapchainExtent.height, |
1633 | depthFormat, |
1634 | VK_IMAGE_TILING_OPTIMAL, |
1635 | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
1636 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
1637 | depthImage, |
1638 | depthImageMemory |
1639 | )) |
1640 | { |
1641 | vulkanAvailable = false; |
1642 | return; |
1643 | } |
1644 | |
1645 | // Allocate a command buffer |
1646 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
1647 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
1648 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
1649 | commandBufferAllocateInfo.commandPool = commandPool; |
1650 | commandBufferAllocateInfo.commandBufferCount = 1; |
1651 | |
1652 | VkCommandBuffer commandBuffer; |
1653 | |
1654 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
1655 | { |
1656 | vulkanAvailable = false; |
1657 | return; |
1658 | } |
1659 | |
1660 | // Begin the command buffer |
1661 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
1662 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
1663 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
1664 | |
1665 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
1666 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
1667 | submitInfo.commandBufferCount = 1; |
1668 | submitInfo.pCommandBuffers = &commandBuffer; |
1669 | |
1670 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
1671 | { |
1672 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1673 | |
1674 | vulkanAvailable = false; |
1675 | return; |
1676 | } |
1677 | |
1678 | // Submit a barrier to transition the image layout to depth stencil optimal |
1679 | VkImageMemoryBarrier barrier = VkImageMemoryBarrier(); |
1680 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
1681 | barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
1682 | barrier.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
1683 | barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
1684 | barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
1685 | barrier.image = depthImage; |
1686 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | ((depthFormat == VK_FORMAT_D32_SFLOAT) ? 0 : VK_IMAGE_ASPECT_STENCIL_BIT); |
1687 | barrier.subresourceRange.baseMipLevel = 0; |
1688 | barrier.subresourceRange.levelCount = 1; |
1689 | barrier.subresourceRange.baseArrayLayer = 0; |
1690 | barrier.subresourceRange.layerCount = 1; |
1691 | barrier.srcAccessMask = 0; |
1692 | barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
1693 | |
1694 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
1695 | |
1696 | // End and submit the command buffer |
1697 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
1698 | { |
1699 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1700 | |
1701 | vulkanAvailable = false; |
1702 | return; |
1703 | } |
1704 | |
1705 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
1706 | { |
1707 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1708 | |
1709 | vulkanAvailable = false; |
1710 | return; |
1711 | } |
1712 | |
1713 | // Ensure the command buffer has been processed |
1714 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
1715 | { |
1716 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1717 | |
1718 | vulkanAvailable = false; |
1719 | return; |
1720 | } |
1721 | |
1722 | // Free the command buffer |
1723 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1724 | } |
1725 | |
1726 | // Create an image view for our depth image |
1727 | void setupDepthImageView() |
1728 | { |
1729 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
1730 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
1731 | imageViewCreateInfo.image = depthImage; |
1732 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
1733 | imageViewCreateInfo.format = depthFormat; |
1734 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | ((depthFormat == VK_FORMAT_D32_SFLOAT) ? 0 : VK_IMAGE_ASPECT_STENCIL_BIT); |
1735 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
1736 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
1737 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
1738 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
1739 | |
1740 | // Create the depth image view |
1741 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &depthImageView) != VK_SUCCESS) |
1742 | { |
1743 | vulkanAvailable = false; |
1744 | return; |
1745 | } |
1746 | } |
1747 | |
1748 | // Create an image for our texture data |
1749 | void setupTextureImage() |
1750 | { |
1751 | // Load the image data |
1752 | sf::Image imageData; |
1753 | |
1754 | if (!imageData.loadFromFile("resources/logo.png" )) |
1755 | { |
1756 | vulkanAvailable = false; |
1757 | return; |
1758 | } |
1759 | |
1760 | // Create a staging buffer to transfer the data with |
1761 | VkDeviceSize imageSize = imageData.getSize().x * imageData.getSize().y * 4; |
1762 | |
1763 | VkBuffer stagingBuffer; |
1764 | VkDeviceMemory stagingBufferMemory; |
1765 | createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); |
1766 | |
1767 | void* ptr; |
1768 | |
1769 | // Map the buffer into our address space |
1770 | if (vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &ptr) != VK_SUCCESS) |
1771 | { |
1772 | vkFreeMemory(device, stagingBufferMemory, 0); |
1773 | vkDestroyBuffer(device, stagingBuffer, 0); |
1774 | |
1775 | vulkanAvailable = false; |
1776 | return; |
1777 | } |
1778 | |
1779 | // Copy the image data into the buffer |
1780 | std::memcpy(ptr, imageData.getPixelsPtr(), static_cast<size_t>(imageSize)); |
1781 | |
1782 | // Unmap the buffer |
1783 | vkUnmapMemory(device, stagingBufferMemory); |
1784 | |
1785 | // Create a GPU local image |
1786 | if (!createImage( |
1787 | imageData.getSize().x, |
1788 | imageData.getSize().y, |
1789 | VK_FORMAT_R8G8B8A8_UNORM, |
1790 | VK_IMAGE_TILING_OPTIMAL, |
1791 | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, |
1792 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
1793 | textureImage, |
1794 | textureImageMemory |
1795 | )) |
1796 | { |
1797 | vkFreeMemory(device, stagingBufferMemory, 0); |
1798 | vkDestroyBuffer(device, stagingBuffer, 0); |
1799 | |
1800 | vulkanAvailable = false; |
1801 | return; |
1802 | } |
1803 | |
1804 | // Create a command buffer |
1805 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
1806 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
1807 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
1808 | commandBufferAllocateInfo.commandPool = commandPool; |
1809 | commandBufferAllocateInfo.commandBufferCount = 1; |
1810 | |
1811 | VkCommandBuffer commandBuffer; |
1812 | |
1813 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
1814 | { |
1815 | vkFreeMemory(device, stagingBufferMemory, 0); |
1816 | vkDestroyBuffer(device, stagingBuffer, 0); |
1817 | |
1818 | vulkanAvailable = false; |
1819 | return; |
1820 | } |
1821 | |
1822 | // Begin the command buffer |
1823 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
1824 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
1825 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
1826 | |
1827 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
1828 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
1829 | submitInfo.commandBufferCount = 1; |
1830 | submitInfo.pCommandBuffers = &commandBuffer; |
1831 | |
1832 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
1833 | { |
1834 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1835 | |
1836 | vkFreeMemory(device, stagingBufferMemory, 0); |
1837 | vkDestroyBuffer(device, stagingBuffer, 0); |
1838 | |
1839 | vulkanAvailable = false; |
1840 | return; |
1841 | } |
1842 | |
1843 | // Submit a barrier to transition the image layout to transfer destionation optimal |
1844 | VkImageMemoryBarrier barrier = VkImageMemoryBarrier(); |
1845 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
1846 | barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
1847 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
1848 | barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
1849 | barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
1850 | barrier.image = textureImage; |
1851 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
1852 | barrier.subresourceRange.baseMipLevel = 0; |
1853 | barrier.subresourceRange.levelCount = 1; |
1854 | barrier.subresourceRange.baseArrayLayer = 0; |
1855 | barrier.subresourceRange.layerCount = 1; |
1856 | barrier.srcAccessMask = 0; |
1857 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
1858 | |
1859 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
1860 | |
1861 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
1862 | { |
1863 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1864 | |
1865 | vkFreeMemory(device, stagingBufferMemory, 0); |
1866 | vkDestroyBuffer(device, stagingBuffer, 0); |
1867 | |
1868 | vulkanAvailable = false; |
1869 | return; |
1870 | } |
1871 | |
1872 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
1873 | { |
1874 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1875 | |
1876 | vkFreeMemory(device, stagingBufferMemory, 0); |
1877 | vkDestroyBuffer(device, stagingBuffer, 0); |
1878 | |
1879 | vulkanAvailable = false; |
1880 | return; |
1881 | } |
1882 | |
1883 | // Ensure the command buffer has been processed |
1884 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
1885 | { |
1886 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1887 | |
1888 | vkFreeMemory(device, stagingBufferMemory, 0); |
1889 | vkDestroyBuffer(device, stagingBuffer, 0); |
1890 | |
1891 | vulkanAvailable = false; |
1892 | return; |
1893 | } |
1894 | |
1895 | // Begin the command buffer |
1896 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
1897 | { |
1898 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1899 | |
1900 | vkFreeMemory(device, stagingBufferMemory, 0); |
1901 | vkDestroyBuffer(device, stagingBuffer, 0); |
1902 | |
1903 | vulkanAvailable = false; |
1904 | return; |
1905 | } |
1906 | |
1907 | // Copy the staging buffer contents into the image |
1908 | VkBufferImageCopy bufferImageCopy = VkBufferImageCopy(); |
1909 | bufferImageCopy.bufferOffset = 0; |
1910 | bufferImageCopy.bufferRowLength = 0; |
1911 | bufferImageCopy.bufferImageHeight = 0; |
1912 | bufferImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
1913 | bufferImageCopy.imageSubresource.mipLevel = 0; |
1914 | bufferImageCopy.imageSubresource.baseArrayLayer = 0; |
1915 | bufferImageCopy.imageSubresource.layerCount = 1; |
1916 | bufferImageCopy.imageOffset.x = 0; |
1917 | bufferImageCopy.imageOffset.y = 0; |
1918 | bufferImageCopy.imageOffset.z = 0; |
1919 | bufferImageCopy.imageExtent.width = imageData.getSize().x; |
1920 | bufferImageCopy.imageExtent.height = imageData.getSize().y; |
1921 | bufferImageCopy.imageExtent.depth = 1; |
1922 | |
1923 | vkCmdCopyBufferToImage(commandBuffer, stagingBuffer, textureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferImageCopy); |
1924 | |
1925 | // End and submit the command buffer |
1926 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
1927 | { |
1928 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1929 | |
1930 | vkFreeMemory(device, stagingBufferMemory, 0); |
1931 | vkDestroyBuffer(device, stagingBuffer, 0); |
1932 | |
1933 | vulkanAvailable = false; |
1934 | return; |
1935 | } |
1936 | |
1937 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
1938 | { |
1939 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1940 | |
1941 | vkFreeMemory(device, stagingBufferMemory, 0); |
1942 | vkDestroyBuffer(device, stagingBuffer, 0); |
1943 | |
1944 | vulkanAvailable = false; |
1945 | return; |
1946 | } |
1947 | |
1948 | // Ensure the command buffer has been processed |
1949 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
1950 | { |
1951 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1952 | |
1953 | vkFreeMemory(device, stagingBufferMemory, 0); |
1954 | vkDestroyBuffer(device, stagingBuffer, 0); |
1955 | |
1956 | vulkanAvailable = false; |
1957 | return; |
1958 | } |
1959 | |
1960 | // Begin the command buffer |
1961 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
1962 | { |
1963 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1964 | |
1965 | vkFreeMemory(device, stagingBufferMemory, 0); |
1966 | vkDestroyBuffer(device, stagingBuffer, 0); |
1967 | |
1968 | vulkanAvailable = false; |
1969 | return; |
1970 | } |
1971 | |
1972 | // Submit a barrier to transition the image layout from transfer destionation optimal to shader read-only optimal |
1973 | barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
1974 | barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
1975 | barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
1976 | barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; |
1977 | |
1978 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
1979 | |
1980 | // End and submit the command buffer |
1981 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
1982 | { |
1983 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1984 | |
1985 | vkFreeMemory(device, stagingBufferMemory, 0); |
1986 | vkDestroyBuffer(device, stagingBuffer, 0); |
1987 | |
1988 | vulkanAvailable = false; |
1989 | return; |
1990 | } |
1991 | |
1992 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
1993 | { |
1994 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
1995 | |
1996 | vkFreeMemory(device, stagingBufferMemory, 0); |
1997 | vkDestroyBuffer(device, stagingBuffer, 0); |
1998 | |
1999 | vulkanAvailable = false; |
2000 | return; |
2001 | } |
2002 | |
2003 | // Ensure the command buffer has been processed |
2004 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
2005 | { |
2006 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
2007 | |
2008 | vkFreeMemory(device, stagingBufferMemory, 0); |
2009 | vkDestroyBuffer(device, stagingBuffer, 0); |
2010 | |
2011 | vulkanAvailable = false; |
2012 | return; |
2013 | } |
2014 | |
2015 | // Free the command buffer |
2016 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
2017 | |
2018 | vkFreeMemory(device, stagingBufferMemory, 0); |
2019 | vkDestroyBuffer(device, stagingBuffer, 0); |
2020 | } |
2021 | |
2022 | // Create an image view for our texture |
2023 | void setupTextureImageView() |
2024 | { |
2025 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
2026 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
2027 | imageViewCreateInfo.image = textureImage; |
2028 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
2029 | imageViewCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; |
2030 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
2031 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
2032 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
2033 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
2034 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
2035 | |
2036 | // Create our texture image view |
2037 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &textureImageView) != VK_SUCCESS) |
2038 | { |
2039 | vulkanAvailable = false; |
2040 | return; |
2041 | } |
2042 | } |
2043 | |
2044 | // Create a sampler for our texture |
2045 | void setupTextureSampler() |
2046 | { |
2047 | // Sampler parameters: linear min/mag filtering, 4x anisotropic |
2048 | VkSamplerCreateInfo samplerCreateInfo = VkSamplerCreateInfo(); |
2049 | samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; |
2050 | samplerCreateInfo.magFilter = VK_FILTER_LINEAR; |
2051 | samplerCreateInfo.minFilter = VK_FILTER_LINEAR; |
2052 | samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
2053 | samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
2054 | samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
2055 | samplerCreateInfo.anisotropyEnable = VK_TRUE; |
2056 | samplerCreateInfo.maxAnisotropy = 4; |
2057 | samplerCreateInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; |
2058 | samplerCreateInfo.unnormalizedCoordinates = VK_FALSE; |
2059 | samplerCreateInfo.compareEnable = VK_FALSE; |
2060 | samplerCreateInfo.compareOp = VK_COMPARE_OP_ALWAYS; |
2061 | samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; |
2062 | samplerCreateInfo.mipLodBias = 0.0f; |
2063 | samplerCreateInfo.minLod = 0.0f; |
2064 | samplerCreateInfo.maxLod = 0.0f; |
2065 | |
2066 | // Create our sampler |
2067 | if (vkCreateSampler(device, &samplerCreateInfo, 0, &textureSampler) != VK_SUCCESS) |
2068 | { |
2069 | vulkanAvailable = false; |
2070 | return; |
2071 | } |
2072 | } |
2073 | |
2074 | // Set up our descriptor pool |
2075 | void setupDescriptorPool() |
2076 | { |
2077 | // We need to allocate as many descriptor sets as we have frames in flight |
2078 | VkDescriptorPoolSize descriptorPoolSizes[2]; |
2079 | |
2080 | descriptorPoolSizes[0] = VkDescriptorPoolSize(); |
2081 | descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
2082 | descriptorPoolSizes[0].descriptorCount = static_cast<uint32_t>(swapchainImages.size()); |
2083 | |
2084 | descriptorPoolSizes[1] = VkDescriptorPoolSize(); |
2085 | descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
2086 | descriptorPoolSizes[1].descriptorCount = static_cast<uint32_t>(swapchainImages.size()); |
2087 | |
2088 | VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = VkDescriptorPoolCreateInfo(); |
2089 | descriptorPoolCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; |
2090 | descriptorPoolCreateInfo.poolSizeCount = 2; |
2091 | descriptorPoolCreateInfo.pPoolSizes = descriptorPoolSizes; |
2092 | descriptorPoolCreateInfo.maxSets = static_cast<uint32_t>(swapchainImages.size()); |
2093 | |
2094 | // Create the descriptor pool |
2095 | if (vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, 0, &descriptorPool) != VK_SUCCESS) |
2096 | { |
2097 | vulkanAvailable = false; |
2098 | return; |
2099 | } |
2100 | } |
2101 | |
2102 | // Set up our descriptor sets |
2103 | void setupDescriptorSets() |
2104 | { |
2105 | // Allocate a descriptor set for each frame in flight |
2106 | std::vector<VkDescriptorSetLayout> descriptorSetLayouts(swapchainImages.size(), descriptorSetLayout); |
2107 | |
2108 | VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = VkDescriptorSetAllocateInfo(); |
2109 | descriptorSetAllocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; |
2110 | descriptorSetAllocateInfo.descriptorPool = descriptorPool; |
2111 | descriptorSetAllocateInfo.descriptorSetCount = static_cast<uint32_t>(swapchainImages.size()); |
2112 | descriptorSetAllocateInfo.pSetLayouts = &descriptorSetLayouts[0]; |
2113 | |
2114 | descriptorSets.resize(swapchainImages.size()); |
2115 | |
2116 | if (vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSets[0]) != VK_SUCCESS) |
2117 | { |
2118 | descriptorSets.clear(); |
2119 | |
2120 | vulkanAvailable = false; |
2121 | return; |
2122 | } |
2123 | |
2124 | // For every descriptor set, set up the bindings to our uniform buffer and texture sampler |
2125 | for (std::size_t i = 0; i < descriptorSets.size(); i++) |
2126 | { |
2127 | VkWriteDescriptorSet writeDescriptorSets[2]; |
2128 | |
2129 | // Uniform buffer binding information |
2130 | VkDescriptorBufferInfo descriptorBufferInfo = VkDescriptorBufferInfo(); |
2131 | descriptorBufferInfo.buffer = uniformBuffers[i]; |
2132 | descriptorBufferInfo.offset = 0; |
2133 | descriptorBufferInfo.range = sizeof(Matrix) * 3; |
2134 | |
2135 | writeDescriptorSets[0] = VkWriteDescriptorSet(); |
2136 | writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
2137 | writeDescriptorSets[0].dstSet = descriptorSets[i]; |
2138 | writeDescriptorSets[0].dstBinding = 0; |
2139 | writeDescriptorSets[0].dstArrayElement = 0; |
2140 | writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
2141 | writeDescriptorSets[0].descriptorCount = 1; |
2142 | writeDescriptorSets[0].pBufferInfo = &descriptorBufferInfo; |
2143 | |
2144 | // Texture sampler binding information |
2145 | VkDescriptorImageInfo descriptorImageInfo = VkDescriptorImageInfo(); |
2146 | descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
2147 | descriptorImageInfo.imageView = textureImageView; |
2148 | descriptorImageInfo.sampler = textureSampler; |
2149 | |
2150 | writeDescriptorSets[1] = VkWriteDescriptorSet(); |
2151 | writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
2152 | writeDescriptorSets[1].dstSet = descriptorSets[i]; |
2153 | writeDescriptorSets[1].dstBinding = 1; |
2154 | writeDescriptorSets[1].dstArrayElement = 0; |
2155 | writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
2156 | writeDescriptorSets[1].descriptorCount = 1; |
2157 | writeDescriptorSets[1].pImageInfo = &descriptorImageInfo; |
2158 | |
2159 | // Update the desciptor set |
2160 | vkUpdateDescriptorSets(device, 2, writeDescriptorSets, 0, 0); |
2161 | } |
2162 | } |
2163 | |
2164 | // Set up the command buffers we use for drawing each frame |
2165 | void setupCommandBuffers() |
2166 | { |
2167 | // We need a command buffer for every frame in flight |
2168 | commandBuffers.resize(swapchainFramebuffers.size()); |
2169 | |
2170 | // These are primary command buffers |
2171 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
2172 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
2173 | commandBufferAllocateInfo.commandPool = commandPool; |
2174 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
2175 | commandBufferAllocateInfo.commandBufferCount = static_cast<uint32_t>(commandBuffers.size()); |
2176 | |
2177 | // Allocate the command buffers from our command pool |
2178 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffers[0]) != VK_SUCCESS) |
2179 | { |
2180 | commandBuffers.clear(); |
2181 | vulkanAvailable = false; |
2182 | return; |
2183 | } |
2184 | } |
2185 | |
2186 | // Set up the commands we need to issue to draw a frame |
2187 | void setupDraw() |
2188 | { |
2189 | // Set up our clear colors |
2190 | VkClearValue clearColors[2]; |
2191 | |
2192 | // Clear color buffer to opaque black |
2193 | clearColors[0] = VkClearValue(); |
2194 | clearColors[0].color.float32[0] = 0.0f; |
2195 | clearColors[0].color.float32[1] = 0.0f; |
2196 | clearColors[0].color.float32[2] = 0.0f; |
2197 | clearColors[0].color.float32[3] = 0.0f; |
2198 | |
2199 | // Clear depth to 1.0f |
2200 | clearColors[1] = VkClearValue(); |
2201 | clearColors[1].depthStencil.depth = 1.0f; |
2202 | clearColors[1].depthStencil.stencil = 0; |
2203 | |
2204 | VkRenderPassBeginInfo renderPassBeginInfo = VkRenderPassBeginInfo(); |
2205 | renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
2206 | renderPassBeginInfo.renderPass = renderPass; |
2207 | renderPassBeginInfo.renderArea.offset.x = 0; |
2208 | renderPassBeginInfo.renderArea.offset.y = 0; |
2209 | renderPassBeginInfo.renderArea.extent = swapchainExtent; |
2210 | renderPassBeginInfo.clearValueCount = 2; |
2211 | renderPassBeginInfo.pClearValues = clearColors; |
2212 | |
2213 | // Simultaneous use: this command buffer can be resubmitted to a queue before a previous submission is completed |
2214 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
2215 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
2216 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; |
2217 | |
2218 | // Set up the command buffers for each frame in flight |
2219 | for (std::size_t i = 0; i < commandBuffers.size(); i++) |
2220 | { |
2221 | // Begin the command buffer |
2222 | if (vkBeginCommandBuffer(commandBuffers[i], &commandBufferBeginInfo) != VK_SUCCESS) |
2223 | { |
2224 | vulkanAvailable = false; |
2225 | return; |
2226 | } |
2227 | |
2228 | // Begin the renderpass |
2229 | renderPassBeginInfo.framebuffer = swapchainFramebuffers[i]; |
2230 | |
2231 | vkCmdBeginRenderPass(commandBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); |
2232 | |
2233 | // Bind our graphics pipeline |
2234 | vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); |
2235 | |
2236 | // Bind our vertex buffer |
2237 | VkDeviceSize offset = 0; |
2238 | |
2239 | vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, &vertexBuffer, &offset); |
2240 | |
2241 | // Bind our index buffer |
2242 | vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16); |
2243 | |
2244 | // Bind our descriptor sets |
2245 | vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets[i], 0, 0); |
2246 | |
2247 | // Draw our primitives |
2248 | vkCmdDrawIndexed(commandBuffers[i], 36, 1, 0, 0, 0); |
2249 | |
2250 | // End the renderpass |
2251 | vkCmdEndRenderPass(commandBuffers[i]); |
2252 | |
2253 | // End the command buffer |
2254 | if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) |
2255 | { |
2256 | vulkanAvailable = false; |
2257 | return; |
2258 | } |
2259 | } |
2260 | } |
2261 | |
2262 | // Set up the semaphores we use to synchronize frames among each other |
2263 | void setupSemaphores() |
2264 | { |
2265 | VkSemaphoreCreateInfo semaphoreCreateInfo = VkSemaphoreCreateInfo(); |
2266 | semaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
2267 | |
2268 | // Create a semaphore to track when an swapchain image is available for each frame in flight |
2269 | for (int i = 0; i < maxFramesInFlight; i++) |
2270 | { |
2271 | imageAvailableSemaphores.push_back(0); |
2272 | |
2273 | if (vkCreateSemaphore(device, &semaphoreCreateInfo, 0, &imageAvailableSemaphores[i]) != VK_SUCCESS) |
2274 | { |
2275 | imageAvailableSemaphores.pop_back(); |
2276 | vulkanAvailable = false; |
2277 | return; |
2278 | } |
2279 | } |
2280 | |
2281 | // Create a semaphore to track when rendering is complete for each frame in flight |
2282 | for (int i = 0; i < maxFramesInFlight; i++) |
2283 | { |
2284 | renderFinishedSemaphores.push_back(0); |
2285 | |
2286 | if (vkCreateSemaphore(device, &semaphoreCreateInfo, 0, &renderFinishedSemaphores[i]) != VK_SUCCESS) |
2287 | { |
2288 | renderFinishedSemaphores.pop_back(); |
2289 | vulkanAvailable = false; |
2290 | return; |
2291 | } |
2292 | } |
2293 | } |
2294 | |
2295 | // Set up the fences we use to synchronize frames among each other |
2296 | void setupFences() |
2297 | { |
2298 | // Create the fences in the signaled state |
2299 | VkFenceCreateInfo fenceCreateInfo = VkFenceCreateInfo(); |
2300 | fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
2301 | fenceCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; |
2302 | |
2303 | // Create a fence to track when queue submission is complete for each frame in flight |
2304 | for (int i = 0; i < maxFramesInFlight; i++) |
2305 | { |
2306 | fences.push_back(0); |
2307 | |
2308 | if (vkCreateFence(device, &fenceCreateInfo, 0, &fences[i]) != VK_SUCCESS) |
2309 | { |
2310 | fences.pop_back(); |
2311 | vulkanAvailable = false; |
2312 | return; |
2313 | } |
2314 | } |
2315 | } |
2316 | |
2317 | // Update the matrices in our uniform buffer every frame |
2318 | void updateUniformBuffer(float elapsed) |
2319 | { |
2320 | const float pi = 3.14159265359f; |
2321 | |
2322 | // Construct the model matrix |
2323 | Matrix model = { |
2324 | 1.0f, 0.0f, 0.0f, 0.0f, |
2325 | 0.0f, 1.0f, 0.0f, 0.0f, |
2326 | 0.0f, 0.0f, 1.0f, 0.0f, |
2327 | 0.0f, 0.0f, 0.0f, 1.0f |
2328 | }; |
2329 | |
2330 | matrixRotateX(model, elapsed * 59.0f * pi / 180.f); |
2331 | matrixRotateY(model, elapsed * 83.0f * pi / 180.f); |
2332 | matrixRotateZ(model, elapsed * 109.0f * pi / 180.f); |
2333 | |
2334 | // Translate the model based on the mouse position |
2335 | float x = clamp( sf::Mouse::getPosition(window).x * 2.f / window.getSize().x - 1.f, -1.0f, 1.0f) * 2.0f; |
2336 | float y = clamp(-sf::Mouse::getPosition(window).y * 2.f / window.getSize().y + 1.f, -1.0f, 1.0f) * 1.5f; |
2337 | |
2338 | model[3][0] -= x; |
2339 | model[3][2] += y; |
2340 | |
2341 | // Construct the view matrix |
2342 | const Vec3 eye = {0.0f, 4.0f, 0.0f}; |
2343 | const Vec3 center = {0.0f, 0.0f, 0.0f}; |
2344 | const Vec3 up = {0.0f, 0.0f, 1.0f}; |
2345 | |
2346 | Matrix view; |
2347 | |
2348 | matrixLookAt(view, eye, center, up); |
2349 | |
2350 | // Construct the projection matrix |
2351 | const float fov = 45.0f; |
2352 | const float aspect = static_cast<float>(swapchainExtent.width) / static_cast<float>(swapchainExtent.height); |
2353 | const float nearPlane = 0.1f; |
2354 | const float farPlane = 10.0f; |
2355 | |
2356 | Matrix projection; |
2357 | |
2358 | matrixPerspective(projection, fov * pi / 180.f, aspect, nearPlane, farPlane); |
2359 | |
2360 | char* ptr; |
2361 | |
2362 | // Map the current frame's uniform buffer into our address space |
2363 | if (vkMapMemory(device, uniformBuffersMemory[currentFrame], 0, sizeof(Matrix) * 3, 0, reinterpret_cast<void**>(&ptr)) != VK_SUCCESS) |
2364 | { |
2365 | vulkanAvailable = false; |
2366 | return; |
2367 | } |
2368 | |
2369 | // Copy the matrix data into the current frame's uniform buffer |
2370 | std::memcpy(ptr + sizeof(Matrix) * 0, model, sizeof(Matrix)); |
2371 | std::memcpy(ptr + sizeof(Matrix) * 1, view, sizeof(Matrix)); |
2372 | std::memcpy(ptr + sizeof(Matrix) * 2, projection, sizeof(Matrix)); |
2373 | |
2374 | // Unmap the buffer |
2375 | vkUnmapMemory(device, uniformBuffersMemory[currentFrame]); |
2376 | } |
2377 | |
2378 | void draw() |
2379 | { |
2380 | uint32_t imageIndex = 0; |
2381 | |
2382 | // If the objects we need to submit this frame are still pending, wait here |
2383 | vkWaitForFences(device, 1, &fences[currentFrame], VK_TRUE, std::numeric_limits<uint64_t>::max()); |
2384 | |
2385 | { |
2386 | // Get the next image in the swapchain |
2387 | VkResult result = vkAcquireNextImageKHR(device, swapchain, std::numeric_limits<uint64_t>::max(), imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); |
2388 | |
2389 | // Check if we need to re-create the swapchain (e.g. if the window was resized) |
2390 | if (result == VK_ERROR_OUT_OF_DATE_KHR) |
2391 | { |
2392 | recreateSwapchain(); |
2393 | swapchainOutOfDate = false; |
2394 | return; |
2395 | } |
2396 | |
2397 | if ((result != VK_SUCCESS) && (result != VK_TIMEOUT) && (result != VK_NOT_READY) && (result != VK_SUBOPTIMAL_KHR)) |
2398 | { |
2399 | vulkanAvailable = false; |
2400 | return; |
2401 | } |
2402 | } |
2403 | |
2404 | // Wait for the swapchain image to be available in the color attachment stage before submitting the queue |
2405 | VkPipelineStageFlags waitStages = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
2406 | |
2407 | // Signal the render finished semaphore once the queue has been processed |
2408 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
2409 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
2410 | submitInfo.waitSemaphoreCount = 1; |
2411 | submitInfo.pWaitSemaphores = &imageAvailableSemaphores[currentFrame]; |
2412 | submitInfo.pWaitDstStageMask = &waitStages; |
2413 | submitInfo.commandBufferCount = 1; |
2414 | submitInfo.pCommandBuffers = &commandBuffers[imageIndex]; |
2415 | submitInfo.signalSemaphoreCount = 1; |
2416 | submitInfo.pSignalSemaphores = &renderFinishedSemaphores[currentFrame]; |
2417 | |
2418 | vkResetFences(device, 1, &fences[currentFrame]); |
2419 | |
2420 | if (vkQueueSubmit(queue, 1, &submitInfo, fences[currentFrame]) != VK_SUCCESS) |
2421 | { |
2422 | vulkanAvailable = false; |
2423 | return; |
2424 | } |
2425 | |
2426 | // Wait for rendering to complete before presenting |
2427 | VkPresentInfoKHR presentInfo = VkPresentInfoKHR(); |
2428 | presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; |
2429 | presentInfo.waitSemaphoreCount = 1; |
2430 | presentInfo.pWaitSemaphores = &renderFinishedSemaphores[currentFrame]; |
2431 | presentInfo.swapchainCount = 1; |
2432 | presentInfo.pSwapchains = &swapchain; |
2433 | presentInfo.pImageIndices = &imageIndex; |
2434 | |
2435 | { |
2436 | // Queue presentation |
2437 | VkResult result = vkQueuePresentKHR(queue, &presentInfo); |
2438 | |
2439 | // Check if we need to re-create the swapchain (e.g. if the window was resized) |
2440 | if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR) || swapchainOutOfDate) |
2441 | { |
2442 | recreateSwapchain(); |
2443 | swapchainOutOfDate = false; |
2444 | } |
2445 | else if (result != VK_SUCCESS) |
2446 | { |
2447 | vulkanAvailable = false; |
2448 | return; |
2449 | } |
2450 | } |
2451 | |
2452 | // Make sure to use the next frame's objects next frame |
2453 | currentFrame = (currentFrame + 1) % maxFramesInFlight; |
2454 | } |
2455 | |
2456 | void run() |
2457 | { |
2458 | sf::Clock clock; |
2459 | |
2460 | // Start game loop |
2461 | while (window.isOpen()) |
2462 | { |
2463 | // Process events |
2464 | sf::Event event; |
2465 | while (window.pollEvent(event)) |
2466 | { |
2467 | // Close window: exit |
2468 | if (event.type == sf::Event::Closed) |
2469 | window.close(); |
2470 | |
2471 | // Escape key: exit |
2472 | if ((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)) |
2473 | window.close(); |
2474 | |
2475 | // Re-create the swapchain when the window is resized |
2476 | if (event.type == sf::Event::Resized) |
2477 | swapchainOutOfDate = true; |
2478 | } |
2479 | |
2480 | if (vulkanAvailable) |
2481 | { |
2482 | // Update the uniform buffer (matrices) |
2483 | updateUniformBuffer(clock.getElapsedTime().asSeconds()); |
2484 | |
2485 | // Render the frame |
2486 | draw(); |
2487 | } |
2488 | } |
2489 | } |
2490 | |
2491 | private: |
2492 | sf::WindowBase window; |
2493 | |
2494 | bool vulkanAvailable; |
2495 | |
2496 | const int maxFramesInFlight; |
2497 | int currentFrame; |
2498 | bool swapchainOutOfDate; |
2499 | |
2500 | VkInstance instance; |
2501 | VkDebugReportCallbackEXT debugReportCallback; |
2502 | VkSurfaceKHR surface; |
2503 | VkPhysicalDevice gpu; |
2504 | int queueFamilyIndex; |
2505 | VkDevice device; |
2506 | VkQueue queue; |
2507 | VkSurfaceFormatKHR swapchainFormat; |
2508 | VkExtent2D swapchainExtent; |
2509 | VkSwapchainKHR swapchain; |
2510 | std::vector<VkImage> swapchainImages; |
2511 | std::vector<VkImageView> swapchainImageViews; |
2512 | VkFormat depthFormat; |
2513 | VkImage depthImage; |
2514 | VkDeviceMemory depthImageMemory; |
2515 | VkImageView depthImageView; |
2516 | VkShaderModule vertexShaderModule; |
2517 | VkShaderModule fragmentShaderModule; |
2518 | VkPipelineShaderStageCreateInfo shaderStages[2]; |
2519 | VkDescriptorSetLayout descriptorSetLayout; |
2520 | VkPipelineLayout pipelineLayout; |
2521 | VkRenderPass renderPass; |
2522 | VkPipeline graphicsPipeline; |
2523 | std::vector<VkFramebuffer> swapchainFramebuffers; |
2524 | VkCommandPool commandPool; |
2525 | VkBuffer vertexBuffer; |
2526 | VkDeviceMemory vertexBufferMemory; |
2527 | VkBuffer indexBuffer; |
2528 | VkDeviceMemory indexBufferMemory; |
2529 | std::vector<VkBuffer> uniformBuffers; |
2530 | std::vector<VkDeviceMemory> uniformBuffersMemory; |
2531 | VkImage textureImage; |
2532 | VkDeviceMemory textureImageMemory; |
2533 | VkImageView textureImageView; |
2534 | VkSampler textureSampler; |
2535 | VkDescriptorPool descriptorPool; |
2536 | std::vector<VkDescriptorSet> descriptorSets; |
2537 | std::vector<VkCommandBuffer> commandBuffers; |
2538 | std::vector<VkSemaphore> imageAvailableSemaphores; |
2539 | std::vector<VkSemaphore> renderFinishedSemaphores; |
2540 | std::vector<VkFence> fences; |
2541 | }; |
2542 | |
2543 | |
2544 | //////////////////////////////////////////////////////////// |
2545 | /// Entry point of application |
2546 | /// |
2547 | /// \return Application exit code |
2548 | /// |
2549 | //////////////////////////////////////////////////////////// |
2550 | int main() |
2551 | { |
2552 | VulkanExample example; |
2553 | |
2554 | example.run(); |
2555 | |
2556 | return EXIT_SUCCESS; |
2557 | } |
2558 | |